SI9011067A - Thin-type picture display device - Google Patents

Thin-type picture display device Download PDF

Info

Publication number
SI9011067A
SI9011067A SI9011067A SI9011067A SI9011067A SI 9011067 A SI9011067 A SI 9011067A SI 9011067 A SI9011067 A SI 9011067A SI 9011067 A SI9011067 A SI 9011067A SI 9011067 A SI9011067 A SI 9011067A
Authority
SI
Slovenia
Prior art keywords
electrodes
electronic
luminescent screen
apertures
electrons
Prior art date
Application number
SI9011067A
Other languages
Slovenian (sl)
Inventor
Gorkom Gerardu G Petrus Van
Petrus H Franciscu Trompenaars
Original Assignee
Philips Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL8901391A external-priority patent/NL8901391A/en
Priority claimed from NL9000060A external-priority patent/NL9000060A/en
Application filed by Philips Nv filed Critical Philips Nv
Publication of SI9011067A publication Critical patent/SI9011067A/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

Tanka slikovna prikazovalna priprava, obsegajoča vakuumski ovoj, za prikazovanje slik, sestavljenih iz pikslov, na luminiscentni zaslon (7) obsega drug ob drugem ležeče elektronske emiterje (5), v majhni razdalji od luminiscentnega zaslona (7) nameščene votline (11, 11’, 11”) za vodenje elektronov, ki sodelujejo z emiterji (5) in imajo stene (4, 10) iz električno izolacijskega materiala s koeficientom ro sekundarne emisije, katerega vrednost pri energijah primarnih elektronov presega 1, in aperture (8, 8’, 8”,...) ter elektrode (9, 9’, 9”,...), za odvzemanje elektronov iz votlin (11, 1Γ, 11”,...) in usmerjanje le-teh proti lumioniscentnem zaslonu (7).Thin image display device, comprising vacuum wrapper for displaying assembled images of pixels, onto the luminescent screen (7) comprises another ob other electronic transmitters (5), in small the distance from the luminescent screen (7) installed cavities (11, 11 ', 11 ”) for conducting electrons that interact with broadcasters (5) and have walls (4, 10) from electrically insulating material with coefficient ro secondary emissions whose energy value of primary electrons exceeds 1, and apertures (8, 8 ', 8 ", ...) and electrodes (9, 9 ', 9", ...) for removal electrons from cavities (11, 1Γ, 11 ”,…) and routing against the luminescent screen (7).

Description

N. V. PHILIPS’ GLOEELAMPENFABRIEKENN. V. PHILIPS 'GLOEELAMPENFABRIEKEN

TANKA SLIKOVNA PRIKAZOVALNA PRIPRAVAA Slim Image Display Tool

Področje tehnikeThe field of technology

Izum spada v področje katodnih cevi.The invention relates to the field of cathode ray tubes.

Predmet izuma je po mednarodni klasifikaciji patentov uvrščen v razred H 01J 29/08.According to the international patent classification, the subject matter of the invention is classified in class H 01J 29/08.

Tehnični problemA technical problem

Glede na pomanjkljivosti dosedaj znanih rešitev je tehnični problem izuma v tem, kako izdelati tanko slikovno prikazovalno pripravo, da bo svetlost opazovanega zaslona stalna, ne da bi bilo potrebno uporabiti zapletene elektronsko-optične konstrukcije.In view of the disadvantages of the known solutions so far, the technical problem of the invention is how to make a thin image display device to keep the brightness of the observed screen constant without the need for complex electronic-optical structures.

Stanje tehnikeThe state of the art

Znane so slikovne prikazovalne priprave, ki imajo vakuumski ovoj, za prikazovanje slik, ki so sestavljene iz pikslov na luminiscentnem zaslonu in predvsem tanke slikovne prikazovalne priprave, to se pravi slikovne prikazovalne priprave, ki imajo majhno dimenzijo od sprednjega do zadnjega dela.Vacuum-imaging imaging devices are known for displaying images consisting of pixels on a luminescent screen, and in particular thin imaging devices, i.e., imaging devices having a small dimension from front to rear.

Tipični približki po stanju tehnike za tanke slikovne prikazovalne priprave so priprave, ki imajo prozorno sprednjo ploščo, katere notranja stran je opremljena s fosforescentnim vzorcem, katerega ena stran je opremljena z električno prevodno prevleko. Ta kombinacija se imenuje tudi luminiscenten zaslon. Če elektroni, ki so usmerjani v skladu z video informacijo, zadanejo luminiscenten zaslon, se tvori vidna slika, ki sejo lahko opazuje preko sprednje strani sprednje plošče. Sprednja plošča je lahko ravna ali, če se želi, ukrivljena, npr. sferična ali cilindrična.Typical prior art approximations for thin imaging devices are devices having a transparent front panel, the interior of which is provided with a phosphorescent pattern, one side of which is provided with an electrically conductive coating. This combination is also called a luminescent screen. If the electrons directed according to the video information hit a luminescent screen, a visible image is formed that can be viewed from the front of the front panel. The front panel may be straight or, if desired, curved, e.g. spherical or cylindrical.

V prvi vrsti slikovnih prikazovalnih priprav je določeno število termično ogrevanih katodnih žic razporejenih v ravnini, ki je vzporedna luminiscentnemu zaslonu, na mestu v slikovni prikazovalni pripravi, ki je oddaljeno od zaslona, in so te katode namenjene oddajanju zahtevanih elektronov. Oddani elektroni so lahko prisotni v obliki elektronskega oblaka. Da se doseže, da elektroni zadevajo na določena mesta na luminiscentnem zaslonu, da bi se stvorila slika v takšni pripravi, je treba elektronski tok potegniti iz oblaka. To zahteva skladovno obliko naslavljanih elektrod (bufferskih elektrod), fokusirnih elektrod in v nekaterih primerih odklonskih sredstev. Problem, ki se je s tem v zvezi pojavil v nekaterih slikovnih prikazovalnih pripravah, je v tem, da se pojavljajo variacije v opazovani svetlosti.The first row of imaging devices is a number of thermally heated cathode wires arranged in a plane parallel to the luminescent screen at a location in the imaging device away from the screen, and these cathodes are intended to emit the required electrons. The emitted electrons may be present in the form of an electron cloud. In order to reach electrons at specific locations on the luminescent screen, in order to create an image in such a preparation, the electron current must be drawn from the cloud. This requires a stacked design of addressed electrodes (buffer electrodes), focusing electrodes and in some cases deviation means. The problem that has arisen in this regard in some imaging devices is that variations in the observed brightness occur.

Druga vrsta svetlobnih prikazovalnih priprav, ki so tanke, uporablja en sam ali več elektronskih curkov, ki se v začetku v bistvu razširijo vzporedno z ravnino prikazovalnega zaslona in so končno usmerjeni proti prikazovalnem zaslonu, tako da zadanejo željena področja na luminiscentnem zaslonu bodisi direktno ali s pomočjo npr. izbiralne mrežne strukture. Izraz elektronski curek se razume, kot da so poti elektronov v curku v bistvu vzporedne ali pa se razlikujejo le za majhen kot druga glede na drugo in da obstoja glavna smer, v kateri se elektroni gibajo. Zgoraj omenjene priprave zahtevajo med drugim zapletene elektronsko optične konstrukcije.Another type of light display device that is thin uses one or more electronic jets that initially extend substantially parallel to the plane of the display screen and are ultimately directed toward the display screen by targeting the desired areas on the luminescent screen either directly or by help e.g. selection network structures. The term electron jet is understood as being that the electron paths in the jet are substantially parallel, or differ only slightly from each other and that there is a principal direction in which the electrons move. The aforementioned preparations require, among other things, complex electronic optical structures.

Razen tega slikovne prikazovalne priprave na en sam curek v splošnem zahtevajo zapleten elektronski pomnoževalnik matrične vrste v obliki kanalne plošče, posebno če imajo rahlo večje formate zaslona.In addition, single-jet imaging displays generally require a complex channel-plate-type matrix-type electronic multiplier, especially if they have slightly larger screen formats.

Popolnejši pregled pomanjkljivosti stanja tehnike na področju slikovnih prikazovalnih priprav je bil podan v EP-A 213,839.A more complete overview of the disadvantages of the art in the field of imaging displays has been given in EP-A 213,839.

Opis rešitve tehničnega problema s primeri izvedbeDescription of the solution to a technical problem with examples of implementation

Po izumu slikovna prikazovalna priprava, ki ima vakuumski ovoj za prikazovanje slik, ki so sestavljene iz pikslov na luminiscentnem zaslonu zato obsega množico drug ob drugem nameščenih izvorov za oddajanje elektronov, lokalne elektronske vodnike, ki sodelujejo z izvori in imajo stene iz električno izolacijskega materiala s koeficientom za sekundarno emisijo, ki je primeren za elektronski transport za transportiranje skozi vakuum oddanih elektronov v obliki elektronskih tokov po druga ob drugi ležečih trajektorijah v majhni razdalji od luminiscentnega zaslona, in sredstva za odvzemanje vsakega elektronskega toka na vnaprej določenih (predvsem zaporednih) lokacijah in ustreznega vodnika in njegovega usmerjanja proti željeni lokaciji na luminiscentnem zaslonu za tvorjenje slike, ki sestoji iz pikslov.According to the invention, an image display device having a vacuum envelope for displaying images consisting of pixels on a luminescent screen therefore comprises a plurality of electronically emitting sources arranged side by side, local electronic conductors cooperating with the sources and having walls of electrically insulating material with a secondary emission coefficient suitable for electron transport to transport electronically transmitted electrons electronically in parallel to each other at short distances from the luminescent screen, and means for capturing each electron current at predetermined (especially consecutive) locations; and an appropriate guide and its orientation towards the desired location on a luminescent pixel-forming image screen.

Inventiven pristop za izvedbo tanke slikovne prikazovalne priprave temelji na odkritju, da je elektronski transport možen v podolgovati izčrpani votlini (tako imenovanem predelku), ki je obdan s stenami iz električno izolacijskega materiala, npr. stekla), če je električno polje zadostne jakosti zagotovljeno v vzdolžni smeri predelka (s tem, da se vzpostavi električno potencialno razliko med koncema predelka). Kot bo v nadaljnjem opisano, se razmere (jakost E električnega polja, električno upornost sten, koeficient δ sekundarne emisije sten) lahko izbere takšne, da bo tekel po predelku stalen električen tok. Da se omogoči elektronskemu toku, da zapusti predelek na željenih (zaporednih) lokacijah v smeri luminiscentnega zaslona, so stene predelka, ki so obrnjene proti luminiscentnemu zaslonu, opremljene z vrsto apertur, ki so kombinirane z elektrodami, ki se jih lahko napaja s pomočjo (pozitivne) električne napetosti, tako da se potegne električni tok iz predelka skozi aperturo, ki se jih lahko napaja s pomočjo druge električne napetosti, če ni potrebno lokalno odvzeti iz predelka nobenega elektronskega toka.An inventive approach to performing a thin image display device is based on the discovery that electronic transport is possible in an elongated exhausted cavity (called a compartment) surrounded by walls of electrically insulating material, e.g. glass) if an electric field of sufficient strength is provided in the longitudinal direction of the compartment (by establishing an electrical potential difference between the ends of the compartment). As will be described below, conditions (E field strength, wall electrical resistance, coefficient δ of secondary wall emission) can be chosen such that a constant electric current will flow through the compartment. To allow the electron stream to leave the compartment at the desired (consecutive) locations in the direction of the luminescent screen, the walls of the compartment facing the luminescent screen are provided with a series of apertures that are combined with electrodes that can be powered by ( positive) electrical voltage by drawing electric current from the compartment through an aperture, which can be supplied by another electrical voltage if no electronic current is required to be locally taken from the compartment.

Zgoraj omenjeno spoznanje je uporabljeno v prvem izvedbenem primeru naprave po izumu, ki je značilna po tem, da so elektronski vodniki izvedeni iz podolgovatih votlin, ki so določene s stenami električno izolacijskega materiala, ki ima koeficient δ sekundarne emisije, pri čemer so stene opremljene z elektrodnimi sredstvi za ustvarjanje električnega polja v vzdolžni smeri votlin, pri čemer ima omenjeno polje električno poljsko jakost E in je stena vsake votline, ki je obrnjena proti luminiscentnemu zaslonu, opremljena z več aperturami, tako da vse aperture skupaj sestavljajo sestav vrstic in stolpcev. V tem primeru imata δ in E vrednosti, ki omogočata elektronski transport po votlinah. Prednosti, ki se jih lahko na ta način doseže, bodo v nadaljnjem obrazložene podrobneje.The aforementioned cognition is used in the first embodiment of the device according to the invention, characterized in that the electronic conductors are made of elongated cavities defined by the walls of electrically insulating material having a coefficient δ of secondary emission, wherein the walls are provided with electrode means for generating an electric field in the longitudinal direction of the cavities, said field having an electric field strength E and the wall of each cavity facing the luminescent screen is provided with several apertures, so that all apertures together form an assembly of rows and columns. In this case, δ and E have values that allow electron transport across the cavities. The benefits that can be achieved in this way will be explained in more detail below.

Za tvorjenje elektronskih tokov, ki jih je treba transportirati skozi vakuum v elektronskih vodnikih, je možno uporabiti (linijsko) razporeditev večjega števila elektronskih emitorjev, vzporedno (enemu izmed robov) luminiscentnemu zaslonu. Termične katode in hladne katode, kot so poljski emiterji, so primerne za ta namen.For the generation of electronic currents to be transported through vacuum in electronic conductors, it is possible to use the (line) arrangement of a plurality of electronic emitters, parallel to (one of the edges) of the luminescent screen. Thermal cathodes and cold cathodes such as field emitters are suitable for this purpose.

Različni načini transportiranja elektronov skozi vakuum so možni v obsegu izuma. Lahko gre samo za vodenje elektronov ali pa lahko gre tudi za elektronsko ojačevanje v povezavi z vodenjem elektronov preko dela, predvsem v začetnem delu, ali preko celotne dolžine vodnika. Če nastopa ojačevanje v elektronskih vodnikih, mora vsak emitor dajati majhen tok, npr. reda velikosti nA. Emitorski sestav lahko obsega npr. eno vrstico, ki je nameščena ob rob luminiscentnega zaslona na dnu visoke škatle, katere ena glavna stranica sestavlja prikazovalni zaslon. Sicer pa ima lahko emitorski sestav n medsebojno vzporednih vrstic, ki so razmeščene v takšnih razdaljah od dna škatle, da elektronski tokovi, ki so v njih proizvedeni, med delovanjem skupaj skenirajo celotno višino prikazovalnega zaslona. Če je v posebnem primeru n = 1, je emitorski sestav nameščen na sredini med dvemi vzporednimi robovi luminiscentnega zaslona. Kot bo pojasnjeno v nadaljnjem, je prednost te alternative, da se največjo potencialno razliko, ki se jo zahteva za generiranje električnega polja, ki je potrebno za vodenje elektronov, lahko izvede manjšo kot tedaj, kadar se en emitorski sestav namesti na dnu.Various methods of electron transport through vacuum are possible within the scope of the invention. It can only be about conducting electrons, or it can also be about electronic amplification in connection with guiding electrons through work, especially in the initial part, or over the entire length of the conductor. If amplification occurs in the electronic conductors, each emitter must produce a small current, e.g. order of magnitude nA. The emitter composition may comprise e.g. one line placed along the edge of the luminescent screen at the bottom of the tall box, one main page of which is the display screen. Alternatively, the emitter assembly may have parallel lines arranged at such distances from the bottom of the box that the electronic streams produced therein can scan the entire height of the display screen during operation. If n = 1 in the particular case, the emitter assembly is positioned midway between two parallel edges of the luminescent screen. As will be explained below, the advantage of this alternative is that the maximum potential difference required to generate the electric field required to guide the electrons can be made smaller than when one emitter assembly is placed at the bottom.

Vsi elektronski tokovi, ki jih generirajo emitorji, morajo biti vodeni v elektronskih vodnikih preko vsaj dela višine škatle proti zgornjemu robu ali spodnjemu robu luminiscentnega zaslona.All electronic streams generated by the emitters must be guided in the electronic conductors through at least part of the height of the box towards the top edge or bottom edge of the luminescent screen.

Elektronske emitorje se lahko namesti v elektronski vodnik, s katerim sodelujejo, prednostno pa je vsak lociran na zunanji strani nasproti vhodnem delu elektronskega vodnika, s katerim sodelujejo.Electronic transmitters can be installed in the electronic conductor with which they cooperate, and preferably each is located on the outside opposite the input portion of the electronic conductor with which they cooperate.

S priključitvijo zadosti velike pozitivne napetostne razlike med emitorjem in koncem elektronskega vodnika, s katerim sodeluje, so elektroni, ki jih emitira emitor, pospešeni proti elektronskemu vodniku, nakar generirajo sekundarne elektrone v elektronskem vodniku s pomočjo interakcije s stenami. Ta proces se lahko naravna tako, da bo skozi ustrezen elektronski vodnik tekel stalen vakuumski tok.By connecting sufficiently large voltage differences between the emitter and the end of the electronic conductor with which it cooperates, the electrons emitted by the emitter are accelerated toward the electronic conductor and then generate secondary electrons in the electronic conductor by interaction with the walls. This process can be adjusted so that a constant vacuum flow will flow through the appropriate electronic conductor.

Vrstični sestav elektrod je lahko nameščen ob robu sten z aperturami, ki so obrnjene proti luminiscentnemu zaslonu zaradi elektronskega transporta in/ali slikovne linijske selekcije. To pomeni, da dovajanje linearno naraščajočih napetosti elektrodam omogoča, da se generira osno električno polje, ki je potrebno za elektronski transport, in dovajanje primernega napetostnega pulza omogoča, da se aperture kontrolira linijsko sekvencialno, tako da se omogoči ali onemogoči vsakemu elektronskemu toku, da zapusti svoj elektronski vodnik preko njemu prirejene aperture vrstice. Elektroni, ki se jih po linijah odvzema iz elektronskih vodnikov, se pospešujejo proti luminiscentnemu zaslonu, s tem da se zagotovi zadosti veliko napetostno razliko med elektronskimi vodniki in zaslonom, npr. razliko 3 kV. Možno je tako pisati eno slikovno vrstico obenem. Video informacije, t.j. sivi nivoji, so lahko predstavljeni v obliki npr. pulznoširinske modulacije. Razdalja do zaslona je lahko zelo majhna, tako da pika ostane majhna. Posamezne elektronske curke, ki so pospešeni proti zaslonu, se lahko lokalizira, s tem da se zagotovi strukturo za lokalizacijo elektronskega curka, npr. v obliki, npr. ploščične zgradbe sten med elektronskimi vodniki in luminiscentnim zaslonom ali, kar je preprosteje, s tem da se namesti vmesno ploščo, ki ima aperture, ki so koaksialne z ekstrakcijskimi aperturami v elektronskih vodnikih.The line assembly of the electrodes may be positioned at the edge of the walls with apertures facing the luminescent screen for electronic transport and / or image line selection. This means that the supply of linearly increasing voltages to the electrodes enables the axial electric field required for electronic transport to be generated, and the supply of a suitable voltage pulse allows the aperture to be controlled in a line-by-line manner, enabling or disabling each electron stream to he leaves his electronic guide through the aperture lines he has assigned. The electrons drawn along the lines from the electronic conductors are accelerated towards the luminescent screen, providing a sufficiently large voltage difference between the electronic conductors and the screen, e.g. difference of 3 kV. It is possible to write one image line at a time. Video information, i.e. gray levels may be presented in the form of e.g. pulse width modulations. The distance to the screen can be very short, leaving the dot small. Individual electronic jets that are accelerated toward the screen can be localized by providing a structure for localizing the electronic jet, e.g. in the form of, e.g. the tiled wall structures between the electronic conductors and the luminescent screen, or, more simply, by installing an intermediate plate having apertures that are coaxial with the extraction apertures in the electronic conductors.

Da se prepreči nezaželjeno spontano emisijo elektronov proti zaslonu, kar bi lahko povzročilo luminiscenco na nezaželjenih lokacijah, je lahko prednostno, da se elektrode poglobi v elektrodnem sestavu v električno izolacijski material.In order to prevent unwanted spontaneous emission of electrons against the screen, which could cause luminescence at undesired locations, it may be advantageous to deepen the electrodes in the electrode assembly into electrically insulating material.

Da se izboljša kontrast prikazane slike, imajo lahko elektrode elektrodnega sestava dvojno konstrukcijo. V ta namen se lahko npr. uporablja folija iz sintetičnega materiala, npr. kaptonska folija, ki ima elektrodni vzorec na obeh straneh, pri čemer elektrodna vzorca ustrezata drug drugemu.In order to improve the contrast of the displayed image, the electrodes of the electrode assembly may have a double construction. For this purpose, e.g. used foil made of synthetic material, e.g. a captonic film having an electrode pattern on both sides, the electrode patterns corresponding to each other.

Da se prepreči naelektrenje sten lokalizacijske strukture, lahko lokalizacijska struktura obsega več votlih elektrodnih sredstev, ki obdajajo pot vsakega posameznega elektronskega curka in so električno vezana na elektrode elektrodnega sestava. Ta elektrodna sredstva so lahko samonosilne cilindrične ali konične kovinske komponente ali pa kovinske plasti, ki so vakuumsko naparjene na notranji strani votle izolirajoče pomožne strukture. Če so zgoraj omenjena elektrodna sredstva stvorjena v dveh delih, se jih lahko uporjablja za selekcijo barv, s tem da se jih napaja ločeno, kot bo opisano v nadaljnjem. Npr. lahko obsegajo dve vzporedni plošči, ki imata lahko vse aperture vrstice skupne.In order to prevent the walls of the localization structure from being charged, the localization structure may comprise several hollow electrode means that surround the path of each individual electron jet and are electrically coupled to the electrodes of the electrode assembly. These electrode means can be self-supporting cylindrical or conical metal components or metal layers that are vacuum-vaporized on the inside of a hollow insulating auxiliary structure. If the aforementioned electrode means are created in two parts, they can be used for color selection by supplying them separately, as will be described below. E.g. they may comprise two parallel plates which may have all the apertures of the row in common.

Za enakomeren elektronski transport v elektronskih vodnikih se uporjablja (v bistvu linearno) naraščajoče napetosti na elektrodah elektrodnega sestava, pri čemer v osni smeri jakost longitudinalnega električnetga transportnega polja ustrezno variira.For uniform electronic transport in the electronic conductors, the (essentially linear) increasing voltages at the electrodes of the electrode assembly are used, in which the strength of the longitudinal electric transport field varies accordingly in the axial direction.

To zagotavlja, da elektroni zapuščajo elektronske vodnike le, kjer se želi zaradi dovoda pozitivnega napetostnega pulza na selekcijsko elektrodo, je pomembno, da se predvidi sredstva, ki zagotavljajo, da je (osno) spreminjanje vzdolžnega električnega (transportnega) polja, ki je generirano med delovanjem, v bistvu enakomerno. Primerna možnost je, da se zagotovi plast z visoko ohmsko upornostjo na vsaj eni steni vsakega predelka, ki tvorijo elektronski vodnik, npr. na sprednji strani/ali zadnji steni ali na dveh stranskih stenah. Da se poveča upornost, ima lahko ta uporovna plast meanderski vzorec.This ensures that electrons leave the electronic conductors only where, due to the supply of a positive voltage pulse to the selection electrode, it is important to provide means that ensure that the (axial) variation of the longitudinal electric (transport) field generated during action, basically evenly. It is a convenient option to provide a high ohmic resistance layer on at least one wall of each compartment forming an electronic conductor, e.g. on the front / or back wall or on the two side walls. In order to increase the resistance, this resistive layer may have a meander pattern.

Če bi številni elektroni dosegali previsoke hitrosti med transportom skozi elektronske vodnike, bi to lahko vodilo do zmanjšanja kontrasta. Previsoke hitrosti lahko nastopijo zaradi elastičnih trkov s stenami (sipanje nazaj) ali zaradi elektronov, ki začno pri nizki hitrosti, ne pridejo v dotiku s stenami in dobivajo več in več energije na svoji poti. Da bi se to preprečilo, so elektronski vodniki lahko opremljeni npr. z geometrijskimi ovirami, tako da se elektronom, ki so transportirani v teh vodnikih, podeli v bistvu enakomerne hitrosti.If many electrons reach high speeds during transport through electronic conductors, this could lead to a decrease in contrast. High speeds can be due to elastic collisions with walls (back-scattering) or electrons that start at low speeds, do not come into contact with the walls and receive more and more energy in their path. To prevent this, electronic conductors may be provided e.g. with geometric obstacles such that the electrons transported in these conductors are given substantially uniform velocities.

Zelo zanimiv aspekt izuma je v tem, da se selekcijske elektrode lahko napaja kapacitivno, tako da je število zahtevanih vakuumskih prehodov žic lahko sorazmerno majhno. Če se po prednostnem izvedbenem primeru elektronske emitorje preklaplja tudi kapacitivno, lahko to vodi do majhnega števila vakuumskih prehodov žic v absolutnem smislu, predvsem majšega od 10, npr. 3.A very interesting aspect of the invention is that the selection electrodes can be fed capacitively, so that the number of required vacuum transitions of the wires can be relatively small. If, according to a preferred embodiment, the electronic emitters also switch capacitively, this can lead to a small number of vacuum transitions of the wires in absolute terms, in particular less than 10, e.g. 3.

Pomemben aspekt predložene slikovne prikazovalne priprave je njena dobra slikovna enakomernost, ki se jo lahko doseže. To se doseže s tem, da je generiranje elektronov in elektronski transport skozi predelke omejeno zaradi nasičenja poljskega popačenja/ali nasičenja v prostorskem naboju. Če je potrebno, se lahko meri tokove ob koncu predelkov (v zaporednih periodah brez slik). V primeru medsebojne neenakosti je možno povratno napajanje video signala ali tokovnega krmiljenja (krmiljenja amplitude) emiterskih tokov, tako da dobi željeno enakomernost.An important aspect of the presented imaging device is its good image uniformity that can be achieved. This is achieved by limiting electron generation and electron transport through compartments due to the saturation of field distortion / or saturation in the space charge. If necessary, flows can be measured at the end of compartments (in successive periods without images). In case of mutual inequality, the video signal or current control (amplitude control) of the broadcast streams can be re-energized to obtain the desired uniformity.

Nadaljnji pomemben vidik je v tem, da ni potrebno uporabljati zapletenih elektronsko-optičnih sistemov ali senčenja magnetnega polja.Another important aspect is that there is no need to use complex electronic-optical systems or magnetic field shading.

Niti se ne pojavi problem ionskega povratnega vodenja, ki lahko na splošno nastopa, ko se uporablja elektronske pomnoževalnike s kanalno ploščo. To je zaradi tega, ker pozitivne ione izvleče polje, ki elektrone drži v predelkih, preden lahko generirajo nezaželjene elektrone.Nor does the problem of ion feedback, which can generally occur when using channel multiplier electronic multipliers, arise. This is because positive ions are pulled out by a field that holds electrons in compartments before they can generate unwanted electrons.

Pomemben aspekt izuma je v tem, da elektronski vodniki (lahko) služijo kot vakuumska opora, tako da so lahko tako sprednje kot zadnje stene slikovne prikazovalne pripave po izumu sorazmerno tanke v primerjavi z le-temi pri znanih slikovnih prikazovalnih pripravah tankega tipa (celotna debelina je npr. manjša od 10 mm). V tej povezavi je izvedbeni primer značilen po tem, da množica vzporednih predelnih sten iz električno izolacijskega materiala služi lateralni lokalizaciji oddanih elektronov, pri čemer predelne stene prav tako lahko služijo kot vakuumska opora.An important aspect of the invention is that the electronic conductors (can) serve as a vacuum support, so that both the front and back walls of the image display device of the invention can be relatively thin compared to those of known thin type image display devices (full thickness) is less than 10 mm, for example). In this connection, the embodiment is characterized by the fact that a plurality of parallel partitions of electrically insulating material serve the lateral localization of the emitted electrons, and the partitions can also serve as a vacuum support.

V tej povezavi je nadaljnji izvedbeni primer značilen po tem, da je slikovna prikazovalna priprava opremljena s središčno ploščo iz električno izolacijskega materiala, medtem ko ima ena glavna ploskev možico prvih poglobitev, ki so ločene s stenami, ki tvorijo omenjene predelne stene, in ima druga glavna ploskev množico drugih poglobitev, ki se raztezajo prečno na prve poglobitve. Prve in druge poglobitve lahko sekajo druga drugo, pri čemer so aperture za zavzemanje elektronov izoblikovane v presečiščih. Alternativno lahko prve in druge poglobitve križajo druga drugo, pri čemer je plošča preluknjana v presečiščih prvih in drugih poglobitev, da se stvori omenjene aperture.In this connection, a further embodiment is characterized in that the image display device is provided with a center panel of electrically insulating material, while one main surface has a plurality of first recesses separated by walls forming said partitions and the other the main plot is a set of other recesses that extend transversely to the first recesses. The first and second recesses may intersect each other, with electron trapping apertures formed at the intersections. Alternatively, the first and second recesses may intersect each other, the plate being punched at the intersections of the first and second recesses to create said apertures.

V tej povezavi so nadaljnji prednostni aspekti značilni po tem, da so votline lahko stvorjene v substratu, pri čemer substrat lahko tvori del vakuumskega ovoja.In this connection, further advantageous aspects are characterized in that the cavities can be formed in the substrate, the substrate being able to form part of the vacuum envelope.

Sedaj bodo podrobneje in sklicujoč se na priložene risbe podrobneje opisane nekatere izvedbene oblike izuma; pri tem prikazuje sl. 1 diagramski perspektiven naris, delno prekinjen, dela zgradbe slikovne prikazovalne priprave po izumu, katere komponente niso prikazane v prave merilu, sl.lA stranski pogled na konstrukcijo s sl. 1, sl. IB shematično v prečnem prečnem prerezu možno modularno zgradbo slikovne prikazovalne priprave po izumu, sl.lC del (slekcijskega) elektrodnega sestava, ki ga je treba uporabiti v konstrukciji po sl. 1, sl.lD preklopno vezje za napajanje (slekcijskega) elektrodnega sestava, sl.lE gonjen linijski sestav elektronskih emitorjev, sl.2A in 2B shematično in v prerezu dva tipa elektronskih vodnikov za uporabo v konstrukciji po sl.l, sl.3 vodoraven prerez skozi del konstrukcije vrste, kot je prikazano na sl.l, sl.4, 5,6 in 7 navpične prereze skozi elektronske vodnike konstrukcije, ki je primerljiva s konstrukcijo po sl.l, sl.8 navpičen prerez skozi del konstrukcije tipa po sl.l, ki je primerna za prikazovanje barvnih slik, sl.9 shematično in v prerezu možno modularno strukturo slikovne prikazovalne priprave po izumu, sl.lOA, B in C naris prereza skozi slikovno prikazovalno pripravo po izumu z alternativnim katodnim sestavom in napetostne razlike, ki jih je treba vzpostaviti, sl. 11 in 12 prereza slikovnih prikazovalnih priprav z nadaljnjima katodnima sestavoma, sl. 13 alternativa k elektrodnemu preklopnemu vezju po sl. ID, sl. 14 graf, v katerem je nanešen koeficient δ sekundarne emisije v odvisnosti od energije Ep primarnih elektronov za stenski material, kije primeren za pripravo po izumu, sl.15 alternativo za konstrukcijo s sl. 1, sl.16 vodoraven prerez skozi del konstrukcije s sl.15, sl.17 pogled od spredaj na telo 44 konstrukcije s sl.15.Some embodiments of the invention will now be described in more detail and with reference to the accompanying drawings; in this, FIG. 1 is a diagrammatic perspective view, partially broken, of a part of a structure of a pictorial display device according to the invention, the components of which are not shown in true scale; FIG. 1, FIG. IB is a schematic, cross-sectional view of a possible modular structure of a pictorial display device according to the invention, FIG. 1C is a portion of a (sleek) electrode assembly to be used in the construction of FIG. 1, FIG. 1D is a switching circuit for powering the (electrode) electrode assembly, FIG. 1 is a linear drive assembly of electronic emitters, FIGS. 2A and 2B schematically and in cross section two types of electronic conductors for use in the structure of FIG. cross-section through part of the structure of the type, as shown in Figs. 1, 4, 5,6 and 7 vertical cross-sections through the electronic conductors of the structure, which is comparable to the structure according to Figs. Fig. 1 is suitable for displaying color images, Fig. 9 is a schematic and cross-sectional view of a modular structure of an image display device according to the invention; Figure 10A, B and C is a cross-sectional view through an image display device according to the invention with an alternative cathode composition to be established, Figs. 11 and 12 are sections of the image display devices with further cathode assemblies, FIG. 13 shows an alternative to an electrode switch circuit according to FIG. ID, FIG. 14 is a graph depicting the secondary emission coefficient δ, depending on the energy E p, of the primary electrons for the wall material suitable for the preparation according to the invention; FIG. 1, Fig. 16 is a horizontal cross-section through a portion of the structure of FIG. 15, FIG. 17 is a front view of the body 44 of the structure of FIG.

Sl. 1 prikazuje slikovno prikazovalno pripravo 1 tankega tipa, ki ima sprednjo ploščo (okno) 3 in zadnjo steno 4, ki je nameščena nasproti omenjeni sprednji plošči 3. Katodni sestav 5, npr. linijska katoda, ki s pomočjo elektrod zagotavlja številne katode, npr. 600, ali podobno število ločenih elektrod, je nameščen blizu stene 2, ki povezuje sprednjo ploščo 3 z zadnjo steno 4. Vsaka izmed teh katod je namenjena, npr. da zagotovi tok le nekaj nanoamperov odvisno od ojačenja, tako daje primernih več vrst katod, npr. hladnih ali termičnih katod. Katode so lahko razporejene skupaj ali ločeno. Lahko imajo stalno ali nastavljivo emisijo.FIG. 1 shows an image display device 1 of a thin type having a front panel (window) 3 and a rear wall 4 which is located opposite said front panel 3. A cathode assembly 5, e.g. a line cathode that provides a number of cathodes through electrodes, e.g. 600, or a similar number of separate electrodes, is located near wall 2, which connects the front panel 3 to the rear wall 4. Each of these cathodes is intended, e.g. to provide current for only a few nanoamperes depending on the amplification, thus rendering several types of cathodes suitable, e.g. cold or thermal cathodes. The cathodes can be arranged together or separately. They can have continuous or adjustable emissions.

Sklicujoč se na sl. 2A in 2B bosta postopno opisana dva izvedbena primera principa, na katerem temelji izum:Referring to FIG. 2A and 2B, two embodiments of the principle underlying the invention will be progressively described:

a) elektronski transport z ojačenjem v predelku,a) electronic transport with compartment reinforcement,

b) elektronski transport brez ojačanja v predelku.b) electronic transport without compartment reinforcement.

V izvedbenem primeru a) je vrstica elektronskih vodnikov sestavljena iz predelkov 6 6’, 6”, ... itd. (sl. 1C) in v tem primeru je en predelek na katodo razporejen nad katodnim sestavom 5. Ti predelki imajo stene, ki obdajajo votline 11, 11’, 11”, ... predelka, pri čemer so stene narejene iz materiala, ki ima primemo električno upornost za namen izuma (npr. keramičen material, steklo, sintetičen material, prevlečen ali neprevlečen) in ki imajo koeficient δ za sekundarno emisijo večji od 1 preko določenega področja Ej-En energije primarnih elektronov (sl. 14). Električna upornost materiala sten mora biti tako velika, da bo najmanjša možna količina toka, prednostno pod npr. 10 mA, tekla po stenah v primeru potencialne razlike, ki je reda velikosti 100 do nekaj 100 voltov na cm, kar se zahteva za elektronski transport. Sprednje stene predelkov so lahko sestavljene iz skupne središčne plošče 10. Zadnje stene 4 predelkov so lahko sestavljene iz zadnje stene 4 slikovne prikazovalne priprave. Zadnja stena 4 je lahko npr. substrat, ki ima površino, v kateri je izoblikovano nekaj vzporednih navpičnih votlin, in središčna plošča 10 je lahko ravna plošča. Alternativno je lahko središčna plošča 10 (npr. oblikovana vnaprej) plošča, kot je prikazna na sl. IB, na kateri so sekajoči se kanali nameščeni na obeh straneh in je lahko zadnja stena 4 ravna plošča.In embodiment a), the line of electronic conductors consists of compartments 6 6 ', 6', ... etc. (Fig. 1C), in which case one compartment per cathode is arranged above the cathode assembly 5. These compartments have walls enclosing the cavities 11, 11 ', 11', ... of the compartment, the walls being made of material that having electrical resistivity for the purpose of the invention (e.g., ceramic material, glass, synthetic material, coated or uncoated) and having a coefficient δ for secondary emission greater than 1 over a given range of Ej-E n primary energy electrons (Fig. 14). The electrical resistance of the wall material must be so large that the minimum amount of current, preferably below e.g. 10 mA, flowed through the walls in the event of a potential difference of the order of 100 to some 100 volts per cm, which is required for electronic transport. The front walls of the compartments may be composed of a common center panel 10. The rear walls of the 4 compartments may be composed of the rear wall 4 of the image display device. The rear wall 4 may be e.g. a substrate having a surface in which several parallel vertical cavities are formed, and the center plate 10 may be a flat plate. Alternatively, the center panel 10 (e.g., pre-formed) may be a panel as shown in FIG. IB, on which the intersecting ducts are located on both sides and the rear wall 4 may be a flat panel.

Napetost reda velikosti nekaj 100 voltov na cm (npr. 200 V/cm) je dovedena v longitudinalni smeri y preko vseh predelkov 6, 6’, 6”, ... skupaj, da bi se proizvedlo zahtevano osno električno polje. S priključitvijo napetosti reda velikosti 100 V (vrednost napetosti zavisi od razmer) med katodno vrstico 5 in predelke 6, 6’, 6”,... se elektroni pospešijo od katod do predelkov, nakar zadanejo ob stene v predelkih in tvorijo sekundarne elektrone. Ti generirani sekundarni elektroni pa se pospešujejo in tvorijo nove elektrone. To se nadaljuje do nasičenja. To nasičenje je lahko nasičenje v prostorskem naboju in/ali je lahko povzročeno s popačenjem polja. Stalen vakuumski tok bo tekel od točke nasičenja skozi ustrezne predelke (sl. 2A).A voltage of the order of some 100 volts per cm (eg 200 V / cm) is fed in the longitudinal direction y through all compartments 6, 6 ', 6', ... together to produce the required axial electric field. By connecting a voltage of the order of 100 V (voltage dependent on the conditions) between the cathode row 5 and the compartments 6, 6 ', 6', ... the electrons accelerate from the cathodes to the compartments, then they hit the walls in the compartments and form secondary electrons. These generated secondary electrons, however, accelerate and form new electrons. This continues to saturation. This saturation may be saturation in the space charge and / or may be caused by field distortion. A steady vacuum stream will flow from the saturation point through the corresponding compartments (Fig. 2A).

V zgoraj omenjenem primeru izvedbenega primera a) so razmere takšne, da elektronski transport kot tudi elektronsko pomnoževanje poteka v predelkih, npr. zaradi sten predelkov, ki so bile podvržene dani obdelavi, tako da jim je bila zagotovljena povišana sekundama emisija, ali zaradi ločenih tankih plasti, ki imajo visoko sekundarno emisijo in ki so bile nameščene na stene predelkov. Vendar pa se zdi, da je presenetljivo možno izbrati razmere tako, da se pojavi le elektronski transport (izvedbeni primer b). To ima med drugim prednost, da je lahko potencialna razlika, ki jo je treba vzpostaviti preko predelka, znatno manjša, kar je zelo pomembno za električno napajanje slikovne prikazovalne priprave. Kot rezultat bo tudi poraba moči znatno manjša, kar je še pomnoženo ob dejstvu, da po stenah teče najmanjši tok. Še več, operacija ni odvisna od efektov zasičenja v tem primeru. V približku je tok stalen preko vse dolžine 1 predelka: tok, ki vstopa v predelek, je isti kot tok, ki zapušča predelek (sl. 1, 2B).In the aforementioned embodiment example a) the conditions are such that electronic transport as well as electronic multiplication takes place in compartments, e.g. owing to the compartment walls which have undergone a given treatment in order to provide them with increased seconds of emission, or because of separate thin layers having high secondary emissions which have been applied to the compartment walls. However, it seems surprisingly possible to choose the situation so that only electronic transport occurs (example b). This has the advantage, among other things, that the potential difference to be made across the compartment may be significantly smaller, which is very important for the power supply of the image display device. As a result, the power consumption will also be significantly reduced, which is further multiplied by the fact that the least current flows through the walls. Moreover, the operation does not depend on the saturation effects in this case. In the approximation, the flow is constant over all length 1 of the compartment: the flow entering the compartment is the same as the flow leaving the compartment (Figs. 1, 2B).

Izvedbeni primer b) temelji na spoznanju, da vakuumski elektronski transport v predelkih, ki imajo stene iz električno izolacijskega materiala, lahko poteka, če je v vzdolžni smeri y predelka vzpostavljeno električno polje zadostne moči. Takšno polje povzroča dano energijsko porazdelitev in prostorsko porazdelitev elektronov, ki so bili injicirani v predelek, tako da bo efektivni koeficient 5ef za sekundarno emisijo sten predelka v povprečenju enak 1 in sicer med vsem delovanjem. V teh razmerah en elektron izstopa za vsak elektron, ki vstopa (v povprečju), z drugimi besedami, elektronski tok je stalen preko predelka in je približno enak toku, ki vstopa. Če je material sten zadosti visokoohmski, kar je primer pri vseh primerno obdelanih vrstah stekla kot tudi pri kaptonu, pertinaksu in keramičnih materialih, stene predelka ne moreje proizvajati ali prevzemati kakršnega koli neto toka, tako da je ta tok celo v dobrem približku enak vstopajočemu toku. Če je proizvedeno električno polje večje kot najmanjša vrednost Ej (sl. 14), ki se jo zahateva, da se dobi 5ef = 1, se bo zgodilo naslednje. Brž ko bo 5ef neznatno večji od 1, se stena nehomogeno nabije pozitivno. Zaradi zelo majhne prevodnosti stene ta naboj ne more odteči. Zato bodo elektroni dosegli steno v povprečju prej kot v odsotnosti tega pozitivnega naboja, z drugimi besedami, povprečna energija, ki jo prevzamejo od električnega polja v vzdolžni smeri y, bo manjša, tako da se bo stanje Sef = 1 vzpostavilo samo po sebi. To je zelo ugodno, ker točna vrednost polja ni pomembna, če je le večja od prej omenjene najmanjše vrednosti Ef Embodiment b) is based on the realization that vacuum electronic transport in compartments having walls made of electrically insulating material can take place if an electric field of sufficient strength is established in the longitudinal direction of the compartment. Such a field produces a given energy distribution and spatial distribution of electrons injected into the compartment, such that the effective coefficient of 5 ef for the secondary emission of the compartment walls averages 1 during all operation. Under these conditions, one electron exits for each electron entering (on average), in other words, the electron flux is constant across the compartment and is approximately equal to the flux entering it. If the wall material is sufficiently high ohmic, which is the case for all properly treated types of glass, as well as for capton, pertinax and ceramic materials, the compartment wall cannot produce or absorb any net current, so that this current is even in good approximation equal to the inlet current . If the electric field produced is greater than the minimum value Ej (Fig. 14) required to obtain 5 ef = 1, the following will occur. As soon as 5 ef is slightly greater than 1, the wall is inhomogeneously charged. Due to the low conductivity of the wall, this charge cannot drain. Therefore, electrons will reach the wall on average sooner than in the absence of this positive charge, in other words, the average energy they take from the electric field in the longitudinal direction y will be smaller, so that the state S ef = 1 will be restored in itself. This is very advantageous because the exact value of the field does not matter if it is greater than the minimum value E f mentioned earlier

Pojavi pa se še druga prednost. Izvedbeni primer a) uporablja elektronsko pomnoževanje (Sef > 1). Vrednost od δ pa se lahko spreminja preko dolžine predelka in od predelka do predelka. Enakomerna slika na luminiscentnem zaslonu se lahko dobi le, če je omejitev jakosti tokov zaradi prostorskega naboja zadosti stalna in reproducibilna. Pri izvedbenem primeru brez ojačevanja (5ef ~ 1) je elektronski tok v predelku stalen in se ga lahko zelo zadovoljivo naredi enakega preko merjenja in povratnega vezja ali preko krmiljenja toka za vsak predelek, tako da se zagotovi enakomernost.However, another advantage emerges. Embodiment a) uses electronic amplification (S ef > 1). However, the value of δ may vary over the length of the compartment and from compartment to compartment. A steady-state image on a luminescent screen can only be obtained if the current limitation due to space charge is sufficiently constant and reproducible. In the embodiment without amplification (5 ef ~ 1), the electronic current in the compartment is constant and can be very satisfactorily made the same through measurement and feedback or by controlling the current for each compartment to ensure uniformity.

V stenah 10 predelkov, ki gledajo proti luminiscentnemu zaslonu 7, ki je nameščen na notranji steni sprednje plošče 3 (sl. 1A), so nameščene aperture 8, 8’, 8” ... itd. Struktura vrat je lahko prisotna, da se odvzema tok elektronov iz željene aperture, ko se uporablja katode, ki niso ločeno poganjane. Vendar pa ločeno gnani elektronski emiterji nastopajo prednostno v povezavi s selekcijskimi elektrodami 9, 9”, 9’”,... z aperturami, ki jih je treba napajati s selekcijsko napetostjo, ki je prisotna med predelki in zaslonom 7. Sl. 1E, prikazuje, kako so elektronski emiterji, ki jih je treba individualno poganjati s pomočjo elektrod 17a, 17b, izvedeni s pomočjo linijske katode 16 in katodne plošče B, ki ima aperture 15. Elektroni, ki so tako proizvedeni, so potegnjeni v poglobitve 14. Selekcijske elektrode 9, 9”, 9”’,... so izvedene za vsako slikovno linijo, npr. na prikazan način na sl. 1C in so kooksialne aperturam 8, 8’, 8”,... Aperture v elektrodah bodo v splošnem tako velike kot aperture 8, 8’, 8”,... Če bodo večje, bo poravnavanje lažje. Željene lokacije na zaslonu 7 se lahko naslovi s pomočjo matričnega pogona individualnih elektronskih emiterjev in selekcijskih elektrod 9, 9’, 9”, ... Napetosti, ki naraščajo v bistvu linearno, kot se vidi s katodne strani, so dovedene selekcijskim elektrodam 9, 9’, 9”,... preko vezja 9c za kapacitivno poganjanje elektrod (sl. ID). Stikala S so odprta v odklopljenem stanju. Kadar je treba aktivirati slikovno linijo, to se pravi, kadar je treba elektrone potegniti skozi aperture v odprtinski vrstici od stolpčno nameščenih elektronskih tokov, ki tečejo za njimi, se doda pulzirajočo napetost AU lokalni napetosti, s tem da se sklene stikalo, ki je električno vezano na ustrezno linijo. Ker imajo elektroni v predelkih sorazmerno nizke hitrosti zaradi trkov s stenami, je AU lahko sorazmerno nizka, t.j. reda velikosti 100 V. V tem primeru se napetostno razliko Va vzame preko celotne višine predelka, ki je ravno premajhna, da bi potegnila elektrone iz apertur. To se dogaja, ko se uporabi pozitiven pulz za linijsko selekcijo primerne vrednosti.The apertures 8, 8 ', 8' ... etc. are mounted in the walls 10 of the compartments facing the luminescent screen 7, which is mounted on the inner wall of the front panel 3 (Fig. 1A). A gate structure may be present to draw the flow of electrons from the desired aperture when using non-separately driven cathodes. However, separately driven electronic emitters preferably act in conjunction with the selection electrodes 9, 9 ”, 9 '”, ... with apertures to be fed by the selection voltage present between the compartments and the screen 7. FIG. 1E shows how electron emitters to be individually driven by electrodes 17a, 17b are made using a line cathode 16 and a cathode plate B having apertures 15. The electrons thus produced are drawn into the recesses 14 Selection electrodes 9, 9 ”, 9” ', ... are made for each image line, e.g. as shown in FIG. 1C and are coaxial apertures 8, 8 ', 8', ... The apertures in the electrodes will generally be as large as the apertures 8, 8 ', 8', ... If larger, the alignment will be easier. The desired locations on the screen 7 can be addressed by means of a matrix drive of individual electronic transmitters and selection electrodes 9, 9 ', 9', ... The voltages, which increase essentially linearly, as seen from the cathode side, are supplied to the selection electrodes 9, 9 ', 9', ... via circuit 9c for capacitive electrode drive (Fig. ID). Switches S are open when disconnected. When an image line is to be activated, that is, when electrons need to be drawn through apertures in the aperture line from the columnar electronic currents flowing behind them, the pulsed voltage AU is added to the local voltage by closing the switch which is electrically tied to the appropriate line. Since the electrons in the compartments have relatively low velocities due to collisions with the walls, the AU may be relatively low, ie on the order of 100 V. In this case, the voltage difference V a is taken over the entire height of the compartment, which is just too small to pull the electrons from the apertures . This occurs when a positive pulse is used to line-select a suitable value.

Sl. 3, ki je vodoraven prerez skozi del konstrukcije, kije prikazan na sl. 1, prikazuje s pomočjo puščic, da se elektrone, ki so s selekcijskimi elektrodami izvlečeni iz vodniške votline 11 za elektrone, kije obdana s stenami predelka, preko aperture 8, pospeši proti luminiscentnemu zaslonu 7, kjer je lahko skenirana ena slikovna linija naenkrat. Lahko se uporabi video informacija, npr. v obliki pulznoširinske modulacije. Katoda, ki sodeluje z elektronskim vodnikom, je lahko aktivirana za krajši ali daljši čas. Za tvorbo belega piksla je lahko katoda aktivirana med vso linijsko periodo v tem primeru. Alternativa obstoji v tem, da se aktivira katodo stalno med celotno linijsko periodo, medtem ko se kontrolira emisijski nivo. Elektronski tok, ki se ga potegne skozi aperturo 8, je lahko ujet med vodoravne stene 12 (sl. 1) oz. grebene 12’ v plošči 10 (sl. IB) in/ali med navpične stene 13 (sl. 3), kar hkrati zagotavlja željeno vakuumsko podporo. Alternativa obstoji v tem, da se uporabi vmesno ploščo, ki zapolnjuje prostor med zaslonom 7 in središčno ploščo 10 (in ki je označena z referenčno številko 13), ki ima aperture, ki so koaksialne z aperturami 8, 8’, 8”, ... in so večje od le-teh, ki so prednostno rotacijsko simetrične. Zaradi celotne vakuumske podpore sta sprednja in zadnja stena 3, 4 lahko tanki (< 1 mm) in slikovna prikazovalna priprava 1 sama po sebi ima lahko zato majhno težo. Zunanja dimenzija prečno na zaslon (globina) slikovne prikazovalne priprave je lahko prav tako zelo majhna. Celo za zaslone, ki so velikosti okoli 1 m2, je možna globina npr. okoli 1 cm.FIG. 3, which is a horizontal section through a portion of the structure shown in FIG. 1 shows by means of arrows that the electrons extracted from the guide cavity 11 by the selection electrodes enclosed by the walls of the compartment through the aperture 8 are accelerated towards the luminescent screen 7, where one image line can be scanned at a time. Video information may be used, e.g. in the form of pulse width modulation. The cathode that interacts with the electronic conductor can be activated for a shorter or longer time. For white pixel formation, the cathode can be activated during the entire line period in this case. An alternative is to activate the cathode continuously throughout the entire line period while controlling the emission level. The electron current drawn through the aperture 8 can be trapped between the horizontal walls 12 (FIG. 1) or. ridges 12 'in panel 10 (FIG. IB) and / or between vertical walls 13 (FIG. 3), which simultaneously provides the desired vacuum support. An alternative is to use an intermediate plate that fills the space between the screen 7 and the center panel 10 (and which is designated by reference number 13) having apertures that are coaxial with apertures 8, 8 ', 8',. .. and are larger than those which are preferably rotationally symmetric. Due to the overall vacuum support, the front and rear walls 3, 4 may be thin (<1 mm) and the imaging device 1 may therefore be light in weight. The outer dimension transversely to the screen (depth) of the image display device may also be very small. Even for screens that are about 1 m 2 in size, depth is possible, e.g. about 1 cm.

Nadaljnje prednosti so:Further advantages are:

- ni težav z barvno čistočo,- there are no problems with color purity,

- ni težav s sipanjem nazaj z luminiscentnega zaslona,- there is no problem with pouring back from the luminescent screen,

- elektronski transport deluje že pri sorazmerno nizkem vakuumu (pod nekako 10'3 torr), tako da katode določajo vakuumske zahteve,- electronic transport is already operating at relatively low vacuum (below 10 ' 3 torr), so that the cathodes determine the vacuum requirements,

- ne zahteva se zapleten elektronsko optičen sistem,- no complex electronically optical system is required,

- ne zahteva se strogih mehanskih toleranc.- No strict mechanical tolerances are required.

Električna napetost preko predelkov, ki je zahtevana za elektronsko vodenje v votlinah predelka, narašča, ko se veča dolžina predelkov. Z namestitvijo linijske razporeditve emitorjev 21 središčno v prikazovalni pripravi namesto na njenem dnu se lahko to napetost zmanjša (sl. 10A). Napetostna razlika npr. 3 kV je lahko nato najprej uporabljena med središčem predelkov in njihovimi zgornjimi konci, tako da se dvigne elektronski tok in se nato isto napetostno razliko lahko vzpostavi med središčem in dnom, tako da se spusti elektronski tok, namesto napetostne razlike 6 kV preko višine, če so emiteiji razporejeni na dnu prikazovalne priprave.The electrical voltage across compartments required for electronic guidance in compartment cavities increases as the length of the compartments increases. By positioning the line arrangement of the emitters 21 centrally in the display device instead of at its bottom, this voltage can be reduced (Fig. 10A). The voltage difference e.g. 3 kV can then be first used between the center of the compartments and their upper ends so that the electron current is raised and then the same voltage difference can be established between the center and the bottom by lowering the electron current instead of the 6 kV voltage difference if the broadcasts are arranged at the bottom of the display device.

Sl. 3 je vodoraven prerez skozi konstrukcijo tipa, ki je prikazan na sl. 1, skozi vrstico apertur 8... v središčni plošči 10.FIG. 3 is a horizontal cross-section through the construction of the type shown in FIG. 1, through line apertur 8 ... in center panel 10.

Ko se selegira (video) linijo, se pozitivni napetostni pulz vodi na relevantno selekcijsko elektrodo 9. Da se zagotovi, da dodani elektroni zapuščajo votline 11 predelka izključno preko apertur 8 v ustrezni selekcijski elektrodi 9, mora ta pulz imeti sorazmerno visoko amplitudo reda velikosti 300 V, kar se lahko izvede z dovodi do dragega vezja. Natančna vrednost te amplitude tudi zavisi od obsega prodiranja visoke napetosti skozi aperture med zaslonom 7 in elektrodami 9,...When the video line is aligned, the positive voltage pulse is guided to the relevant selection electrode 9. In order to ensure that the added electrons leave the cavities 11 of the compartment exclusively through the apertures 8 in the corresponding selection electrode 9, this pulse must have a relatively high amplitude of the order of 300 V, which can be done by leading to an expensive circuit. The exact value of this amplitude also depends on the extent of penetration of high voltage through the apertures between the screen 7 and the electrodes 9, ...

Zgoraj omenjeni problem nastopi, ko je transport elektronov nezadostno ločen od linijske selekcije. Separacijo se lahko izboljša s tem, da se zagotovi visokoohmski uporovni sloj 30 (sl. 3 in 7) na zadnji steni 4 ali na stranskih stenah votlin 11 predelka, v katerih poteka navpičen, t.j. v smeri osi y, transport elektronov. Padec napetosti preko te plasti zagotavlja električno polje Ey, ki je potrebno za transport. Če je napetost na selekcijski elektrodi 9 npr. 50 V nižja od potenciala na lokalnem uporovnem sloju, elektroni ne bodo zapuščali votlin 11 pri lokaciji te selekcijske elektrode 9, pač pa bodo dalje transportirani. Pozitiven pulz okoli 100 V, ponovno odvisno od prodiranja napetosti je nato zadosten, da selegira slikovno linijo. Namesto uporovnih plasti 30, se lahko uporablja diskretne električne prevodne pasove. Za uporovno plast je treba računati z uporom okoli 108 do ΙΟ12 fl preko višine plasti. Da se to doseže je treba vdelati v plast meandrski vzorec. Da se zagotovi, da se odvzema le elektrone z željene aperture, je prednostno, da se elektrodam 9, 9’, ..., kot prikazano na sl. 4, da dvojno konstrukcijo, npr. s tem, da se zagotovi električno prevodne sledi ali pasove na obeh straneh kaptonske folije 32.The aforementioned problem occurs when electron transport is insufficiently separated from line selection. Separation can be improved by providing a high-ohmic resistance layer 30 (Figs. 3 and 7) on the rear wall 4 or on the side walls of the cavities 11 of the compartment in which the electrons are transported vertically, ie in the y-axis direction. The voltage drop across this layer provides the electric field E y required for transport. If the voltage at selection electrode 9 is e.g. 50 In lower than the potential at the local resistive layer, electrons will not leave the cavities 11 at the location of this selection electrode 9, but will be further transported. A positive pulse of about 100 V, again depending on the voltage penetration, is then sufficient to line the image line. Discrete electrical conductive bands may be used instead of resistive layers 30. The resistivity layer should be calculated with a resistance of about 10 8 to ΙΟ 12 fl over the height of the layer. To achieve this, a meander pattern must be embedded in the layer. In order to ensure that only electrons are removed from the desired aperture, it is preferred that the electrodes 9, 9 ', ... as shown in FIG. 4 to make a double construction, e.g. by providing electrically conductive traces or bands on either side of the capton foil 32.

Razdalja S med selekcijskimi elektrodami 9,... in luminiscentnim zaslonom 7 je npr. 2 mm (sl. 5). V odsotnosti elektronskih curkov je to dovolj, da se zagotovi dovajanje pospeševalne napetosti okoli npr. 3 kV. Med polnim delovanjem so stene 13, ki razdvajajo votline 11 predelka od zaslona, pozitivno nabite, tako da je ta napetost mnogo bliže napetosti elektod. To včasih povzroča poljsko emisijo z elektrod 9, 9’,... na zaslon 7, kar lahko povzroči nezaželjeno luminiscenco.The distance S between the selection electrodes 9, ... and the luminescent screen 7 is e.g. 2 mm (Fig. 5). In the absence of electronic jets, this is sufficient to ensure the supply of accelerating voltage around e.g. 3 kV. During full operation, the walls 13 that separate the cavities 11 of the compartment from the screen are positively charged, so that this voltage is much closer to the electrode voltage. This sometimes causes field emission from electrodes 9, 9 ', ... to the screen 7, which can cause unwanted luminescence.

Ta problem je lahko razrešen npr. na naslednji način:This problem can be resolved e.g. as follows:

a. s poglablanjem selekcijskih elektrod 9, ... v električno izolacijski material 31, glej sl. 5,a. by deepening the selection electrodes 9, ... into the electrically insulating material 31, see FIG. 5,

b. z zaslanjanjem sten 13 pred sekundarnimi elektroni s pomočjo elektrod 33, ki so cilindrične, v primeru, kije prikazan, in ki so kooksialne z ekstrakcijskimi aperturami, pri čemer te elektrode nosijo potencial selekcijskih elektrod 9, ..., glej sl.6. Dodatna prednost je v tem, da nastopi ugodno delovanje sklopa kot zbiralne leče. Za zadovoljivo delovanje je pomembno, da elektrode 33 nastopajo ločeno od sten 13 preko znatnega dela svoje površine, tako da so senčene. Namesto samopodpornih kovinskih elektrod 33 se alternativno lahko uporablja votle komponente iz sintetičnega materiala s kovinskimi plastmi, ki so naparjene na njihovih notranjih straneh. Nekatere dimenzije so bile prikazane v mm s pomočjo izvedbenega primera na sl. 6.b. by screening the walls 13 in front of the secondary electrons by means of cylindrical electrodes 33, in the case shown, which are coaxial with extraction apertures, these electrodes having the potential of selection electrodes 9, ..., see Fig.6. An additional advantage is that the assembly operates as a collection lens. For satisfactory operation, it is important that the electrodes 33 project separately from the walls 13 over a substantial portion of their surface so that they are shaded. Alternatively, hollow components made of synthetic material may be used instead of self-supporting metal electrodes 33 with metal layers precipitated on their inner sides. Some dimensions have been shown in mm using the embodiment in FIG. 6.

Slika 6 je navpičen prerez skozi konstrukcijo tipa, kije prikazan na sl. 1, skozi votlino 11 predelka. Votlina 11 predelka je omejena z zadnjo steno 4 in središčno ploščo 10, ki ima aperture 8. Predvsem, če ima središčna plošča 10 zgradbo, ki je prikazana na sl. IB s križajočimi se kanali na obeh straneh, je lahko izvedena iz sintetičnega materiala (npr. teflon); prva kaptonska folija 32, ki je debela 50 /im do 100 /im, je opremljena s prevodnimi sledmi 9, 9’,... na zunanji strani, na strani središčne plošče 10 in druga kaptonska folija 34, ki je debela med 50 /im do 100 /im, s prevodnimi sledmi 9A in 9Ά, ... je opremljena na strani, ki je oddaljena od središčne plošče 10. Cilindrične pomožne elektrode 33, 33’, ..., npr. CuNi, pri debelini stene cilindra 0,1 mm, pri debelini dna npr. 0,05 mm z aperturami 1,0 mm ali 1,2 mm v premeru (brez dna pri 1,2 mm) so nameščene med vmesnimi stenami 12. Pomožne elektrode so lahko izvedene npr. iz preluknjanih kovinskih trakov s cevnimi nastavki, ki so nameščeni okrog izvrtin, npr. s pomočjo električnega nanašanja. Pomožne elektrode 33 se je prav tako lahko uporabljalo za selegiranje (slikovnih) linij, s tem da se jim je dovajalo pravo napetost. Selekcijske elektrode 9, 9’, ... in 9A, 9Ά ... so lahko nato opuščene. Kadar se uporablja dvojne selekcijske elektrode, so elektrode, ki so obrnjene proti zaslonu, lahko alternativno kombinirane s cilindričnimi pomožnimi elektrodami, kot je prikazano na sl. 7. Za selegiranje linije se lahko dovede pozitiven selekcijski pulz npr. cevnim nastavkom 35 vrstice, medtem ko je nasprotna napetost (npr. 200 V) dovedena cevnim nastavkom prirejene prejšnje vrstice. To preprečuje, da bi bili vlečeni iz neselegiranih apertur in pospešeni proti zaslonu.6 is a vertical section through the construction of the type shown in FIG. 1, through the cavity 11 of the compartment. The cavity 11 of the compartment is limited by the rear wall 4 and the center panel 10 having apertures 8. In particular, if the center panel 10 has the structure shown in FIG. IB with intersecting ducts on both sides can be made of synthetic material (eg Teflon); the first capton foil 32, which is 50 µm to 100 µm thick, is provided with conductive traces 9, 9 ', ... on the outside, on the side of the center panel 10, and the second captonic foil 34, which is between 50 / im thick im to 100 / im, with conductive traces 9A and 9Ά, ... is fitted on a side away from the center plate 10. Cylindrical auxiliary electrodes 33, 33 ', ..., e.g. CuNi, at a cylinder wall thickness of 0.1 mm, at a bottom thickness of e.g. 0.05 mm with apertures of 1.0 mm or 1.2 mm in diameter (bottomless at 1.2 mm) are placed between the intermediate walls 12. Auxiliary electrodes may be made e.g. made of punctured metal straps with tubular lugs fitted around the holes, e.g. by means of electrical deposition. The auxiliary electrodes 33 could also be used to align the (pictorial) lines by supplying the correct voltage. Selection electrodes 9, 9 ', ... and 9A, 9Ά ... may then be omitted. When dual selection electrodes are used, the electrodes facing the screen may alternatively be combined with the cylindrical auxiliary electrodes, as shown in FIG. 7. A positive selection pulse, e.g. 35 line fittings while the opposite voltage (eg 200 V) is supplied to the fittings of the previous row. This prevents them from being dragged from unalloyed apertures and accelerated toward the screen.

V prej omenjenih konstrukcijah so elektroni transportirani v predelkih s stenami, ki so izdelane iz električno izolacijskega materiala s primernim koeficientom δ za sekundarno emisijo in opremljene z majhnimi aperturami na strani zaslona. Razen v primerih, kjer je predviden visokouporoven sloj, so elektrode prisotne neposredno na zunanji strani teh apertur in zagotavljajo transport elektronov in tudi selekcijo aktivne video linije. Da se izboljša kontrast, morajo selekcijske elektrode imeti dvojno konstrukcijo. To rezultira v sorazmerno zapleteni mehanski konstrukciji. Razen tega pa število elektronov lahko dobi sorazmerno velike hitrosti med transportom, kar lahko povzroči npr. izgubo kontrasta v teh konstrukcijah.In the structures mentioned above, electrons are transported in compartments with walls made of electrically insulated material with a suitable coefficient δ for secondary emission and equipped with small apertures on the side of the screen. Except in cases where a high-resistance layer is provided, the electrodes are present directly on the outside of these apertures and provide electron transport and also selection of the active video line. In order to improve the contrast, the selection electrodes must have a dual construction. This results in a relatively complex mechanical construction. In addition, the number of electrons can get relatively high speeds during transport, which can cause e.g. loss of contrast in these constructs.

Nazadnje omenjeni problem je lahko rešen z nameščenjem geometrijskih ovir v predelkih, pri čemer ovire preprečujejo elektronom, da bi bili pospešeni naravnost do velikih hitrosti.The last mentioned problem can be solved by placing geometric obstacles in the compartments, the obstacles preventing electrons from being accelerated straight to high speeds.

Kot je bilo opisano v predhodnem, se lateralno lokalizacijo elektronskih tokov lahko doseže z nameščenjem vertikalnih predelnih sten med votlinami 11 predelkov, pri čemer te predelne stene tudi služijo kot vakuumska podpora, lateralno lokalizacijo pa se alternativno lahko doseže preko elektronskih sredstev, npr. s tem da se uporabi primerne potenciale na navpičnih električno prevodnih sledeh na zadnji steni.As described above, lateral localization of electronic flows can be achieved by placing vertical partitions between the cavities of the 11 compartments, these partitions also serving as a vacuum support, and lateral localization can alternatively be achieved by electronic means, e.g. by utilizing suitable potentials on vertical electrically conductive traces on the rear wall.

Uporabi se lahko naslednji postopek za nanašanje prej omenjenega visokoohmskega uporovnega sloja:The following procedure may be used to apply the aforementioned high ohmic resistive layer:

Steklena plošča je prevlečena s homogenim praškastim slojem ki obsega steklene emajlne delce in RuO2 delce ali podobne delce. Temu praškastemu sloju se lahko da meandrasto konfiguracijo, npr. s pomočjo praskanja, svilenega senčenja ali fotolitografije; nato se stekleno ploščo s praškasto plastjo segreje, dokler uporovna plast ne doseže željene vrednosti upora. Takšna uporovna plast je lahko uporabljena tudi kot delilnik napetosti, na katerega so priključene selekcijske elektrode.The glass plate is coated with a homogeneous powder layer comprising glass enamel particles and RuO 2 particles or similar particles. This powder layer may be given a meander configuration, e.g. by means of scratching, silk shading or photolithography; then the powder-glass pane is heated until the resistance layer reaches the desired resistance value. Such a resistive layer can also be used as a voltage divider to which selection electrodes are connected.

Materiali, ki se jih uporablja za stene elektronskih vodnikov, morajo imeti visoko električno upornost in koeficient δ za sekundarno emisijo večji od 1 (sl. 14) vsaj preko določenega področja Ej-En energij Ep primarnih elektronov. Ej je prednostno kar se da nizek, npr. 10 do nekajkrat 10 eV. Med drugim zadoščajo tej zahtevi steklo (Ej je okoli 30 eV), keramičen material, pertinaks, kapton.The materials used for the walls of the electronic conductors must have a high electrical resistance and a coefficient δ for secondary emission greater than 1 (Fig. 14), at least beyond the specified range Ej-E n of the energies E p of the primary electrons. Ej is preferably as low as possible, e.g. 10 to several times 10 eV. Glass, (about 30 eV), ceramic material, pertinax, capton are, among other things, sufficient for this requirement.

Električen upor zavisi od tega, ali ni zaželjeno le elektronsko vodenje ampak tudi ojačenje (preko dela ali preko celotne dolžine) elektronskih vodnikov in koliko celotnega toka lahko teče v stenah glede na moč, ki se porablja.The electrical resistance depends on not only the electronic control but also the reinforcement (over the work or the entire length) of the electronic conductors, and how much total current can flow in the walls depending on the power consumed.

Prednosten je seveda le način, ki uporablja elektronsko vodenje. Električen upor je lahko nato v intervalu med 106 in ΙΟ15 Ω. Alternativno ima lahko vsaj del elektronskega vodnika, ki je obrnjen proti katodi, sorazmerno nizek upor, npr. v intervalu med 10 ΚΠ in 100 Mfl, tako da se zagotovi ojačevanje. Pri zgoraj omenjenih vrednostih zahtevane moči ne presegajo 100 W.Of course, only a method that uses electronic guidance is preferred. The electrical resistance can then be between 10 6 and ΙΟ 15 Ω. Alternatively, at least a portion of the cathode-facing electronic conductor may have relatively low resistance, e.g. in the interval between 10 100 and 100 Mfl so as to provide amplification. For the values mentioned above, the power requirements do not exceed 100 W.

V danem primeru je bil elektronski transport izveden v predelku iz svinčevega stekla z dolžino 17 cm in luknjo 1 mm v premeru (električen upor > ΙΟ15 Ω) ob uporabi električne napetosti 3,5 kV preko koncev.In the present case, electronic transport was carried out in a 17 cm long lead glass compartment and a 1 mm diameter hole (electrical resistance> 15 ΙΟ) using a 3.5 kV electrical voltage across the ends.

ίξ}ίξ}

Nadalje je treba omeniti, da stene lahko obstoje iz električno izolacijskega materiala, ki ima konstruktivno funkcijo, kot tudi funkcijo sekundarne emisije. Alternativno lahko obstoje iz električno izolacijskega materiala, ki ima konstrukcijsko funkcijo (npr. sintetičen material), in je na ta material nanešena plast, ki ima funcijo sekundarne emisije (npr. kremen ali steklo ali keremični material kot MgO).Furthermore, it should be noted that the walls may exist of electrically insulating material having a structural function as well as a secondary emission function. Alternatively, they may exist from an electrically insulating material having a structural function (eg synthetic material), and a layer having a secondary emission function (eg quartz or glass or a ceramic material such as MgO) is applied to this material.

Barvno selekcijo se lahko izvede na različne načine, npr. z uporabo luminiscentnega zaslona z navpičnimi tripleti rdeče, zelene in modre fosforne linije in z uporabo trikrat več elektronskih emiterjev in elektronskih vodnikov kot v primeru monokromnega prikazovalnega zaslona v kombinaciji z vodoravnim skenirajem.Color selection can be done in different ways, e.g. using a luminescent screen with vertical triplets of red, green, and blue phosphorus lines, and using three times as many electronic transmitters and electronic conductors as in the case of a monochrome display screen in combination with a horizontal scanner.

Predhodni primeri pa temeljijo na uporabi luminiscentnega zaslona 7 (sl. 1A), ki ima množico vodoravnih področij luminiscentnega materiala, ki so ločena npr. s predelnimi stenami 12. (V primeru monokromne slikovne prikazovalne priprave vsa ta področja luminiscirajo v isti barvi). V primeru barvne slikovne prikazovalne priprave je praktično, da se razdeli vsako izmed prej omenjenih področij v tri področja, ki luminiscirajo v rdečem, zelenem in modrem. Da se poganja podpodročja, mora biti slikovna prikazovalna priprava konstruirana tako, da vsako podpodročje sodeluje z vrstico ekstrakcijskih apertur. To pomeni, da je število ekstrakcijskih apertur v navpični smeri trikrat večje kot v primeru monokromne slikovne prikazovalne priprave, število elektronskih emitorjev in elektronskih vodnikov pa je isto. Ker so v tem primeru selekcijske elektrode za barvo zelo blizu skupaj, je težko namestiti vodoravne stene 12 (sl. 1), ki zagotavljajo vakuumsko podporo za luminiscentni zaslon 3. V tem primeru je prednostno, da se namesti navpično podporne stene 40, ki se raztezajo vzporedno s stranskimi stenami 41 transportnih predelkov 42, kot je shematično prikazano na sl. 15. Sl. 16 prikazuje prerez skozi vrstico apertur 43 v vmesni plošči 44 s sl. 15. Na sl. 16 je tudi viden en predstavnik 45 razporeditve električno prevodnih pasov z aperturami. Sl. 17 prikazuje prednji pogled na vmesno ploščo 44, ki je opremljena s takšno razporeditvijo električno prevodnih pasov 45. Vsak pas deluje kot selekcijska elektroda za barvno linijo. Pozicije pik na luminiscentnem zaslonu 46 (sl. 16) so določene z aperturami 43 v vmesni plošči 44, ki je dejansko le del prikazovalne cevne konstrukcije po sl. 15, ki jo je treba izdelati z visoko natančnostjo. Ugotovljeno je, da izum ni omejen na uporabo luminiscentnih zaslonov takšne vrste, ki imajo barvne triplete paralelnih linij. Drugačne tripletne konfiguracije (npr. deta konfiguracije) se lahko prav tako uporablja. Pasovi 45 so lahko izvedeni npr. s pomočjo vakuumskega nanosa. V sl. 17 imajo pasovi 45 nekrožne, v tem primeru v bistvu eliptične, aperture, ki so v ali z aperturami 43 v središčni plošči 44, ki imajo isto obliko. Nekrožne aperture 43 so lahko prednostne pred krožnimi odprtinami 8, 8” ... (sl. 1). V tem primeru ni potrebno povečati števila elektronov, ki so odvzeti iz transportnih predelkov 42. Alternativa je prikazana sklicujoč se na sl. 8. Konstrukcija, ki je prikazana na tej sliki, je izvedena tako, da vsakič triplet rdečih, zelenih in modrih luminiscentnih podpodročij 50, 51, 52, ki so nameščeni na notranji steni steklenega zaslona 53, sodeluje z ekstrakcijsko aperturo 54. V prostoru 55, v katerega je potegnjen elektronski tok z aperture 54 pospeševan proti luminiscentnim podpodročjem 50, 51, 52, so npr. izoblikovane plosko elektrode 56 in 56’, ki se raztezajo vzporedno s področji 50, 51 in 52, nameščene na obeh straneh aperture 54. Te (vodoravne) elektrode imajo lahko npr. vse aperture vrstice skupaj. Z napajanjem elektrod 56 in 56’ ločeno se lahko na elektronski tok vpliva tako, da zadeva bodisi na podpodročje 50 ali na podpodročje 51 ali na podpodročje 52. V tem primeru lahko slikovna prikazovalna priprava deluje tako, da se za vsako slikovno linijo izvede tri ločena skeniranja, vsako pri trikrat višji frekvenci od normalne skenirne frekvence, medtem ko se vzdržuje standardno frekvenco polja.The foregoing examples are based on the use of a luminescent screen 7 (Fig. 1A) having a plurality of horizontal regions of luminescent material separated e.g. with partitions 12. (In the case of a monochrome image display device, all these areas luminate in the same color). In the case of a color imaging device, it is practical to divide each of the aforementioned areas into three areas that luminate in red, green and blue. In order to drive the sub-areas, the imaging display device must be constructed in such a way that each sub-area interacts with a row of extraction apertures. This means that the number of extraction apertures in the vertical direction is three times greater than in the case of a monochrome image display device, and the number of electronic emitters and electronic conductors is the same. Since the selection electrodes for the paint are very close together in this case, it is difficult to install horizontal walls 12 (Fig. 1) that provide vacuum support for the luminescent screen 3. In this case, it is preferable to install vertically supporting walls 40 which extend parallel to the side walls 41 of the transport compartments 42, as shown schematically in FIG. 15. FIG. 16 shows a section through aperture line 43 in the intermediate plate 44 of FIG. 15. In FIG. 16 also shows one representative of the 45 arrangement of electrically conductive bands with apertures. FIG. 17 shows a front view of an intermediate plate 44 provided with such an arrangement of electrically conductive bands 45. Each band acts as a selection electrode for a color line. The pixel positions of the luminescent screen 46 (FIG. 16) are determined by the apertures 43 in the intermediate panel 44, which is actually only part of the display tube structure of FIG. 15 to be manufactured with high precision. It is found that the invention is not limited to the use of luminescent displays of this type having color triplets of parallel lines. Different triplet configurations (eg deta configurations) may also be used. Belts 45 may be made e.g. by vacuum application. In FIG. 17, the bands 45 have non-circular, in this case essentially elliptical, apertures which are in or with the apertures 43 in the center plate 44 having the same shape. Non-circular apertures 43 may be preferred over circular openings 8, 8 ”... (Fig. 1). In this case, it is not necessary to increase the number of electrons taken from the transport compartments 42. The alternative is shown with reference to FIG. 8. The construction shown in this figure is designed in such a way that each triplet of red, green and blue luminescent subsections 50, 51, 52 mounted on the inner wall of the glass screen 53 interacts with the extraction aperture 54. In space 55 , into which the electron flow from the aperture 54 is accelerated toward the luminescent subsections 50, 51, 52, e.g. formed flat electrodes 56 and 56 'extending parallel to the regions 50, 51 and 52 mounted on both sides of the aperture 54. These (horizontal) electrodes may have e.g. all aperture lines together. By supplying the electrodes 56 and 56 'separately, the electronic current can be affected by affecting either subsection 50 or subsection 51 or subsection 52. In this case, the imaging display device may operate by performing three separate imaging lines for each image line. scans, each at three times the frequency of the normal scan frequency, while maintaining the standard field frequency.

Sl. 9 prikazuje možno modularno strukturo slikovne prikazovalne priprave po izumu:FIG. 9 shows a possible modular structure of an image display device according to the invention:

A: Zadnja stena iz električno izolacijskega materiala (npr. stekla) ima debelino 2 mm. Zadnja stena ima različno število poglobitev 14, ki imajo kvadraten prerez, in rebro npr. 1 mm (čim globlje so poglobitve, tem višja napetost bo potrebna, da priprava deluje) in stopnjo S npr. 1 mm.A: The back wall of electrically insulating material (eg glass) has a thickness of 2 mm. The back wall has a different number of recesses 14 having a square cross section and a rib e.g. 1 mm (the deeper the recesses, the higher the voltage will be required for the preparation to work) and grade S e.g. 1 mm.

B: Katodna plošča B iz električno izolacijskega, npr. keramičnega materiala z debelino okoli npr. 1 mm. Ta plošča ima število apertur 15, ki ustreza številu poglobitev 14. Katodna žica 16 je prisotna pod ploščo za katodni pogon. Emiterji, ki so lahko ločeno modulirani, so lahko izvedeni s pomočjo elektrod 17a, 17b iz npr. vakuumsko naparjenega aluminija blizu apertur 15 za oddajanje elektronov v poglobitve 14 (sl. 1E). Elektrode 17a so lahko medsebojno povezane in elektrode 17b so ločeno poganjane ali nasprotno. Alternativno se lahko uporablja ločene emiterje, npr. poljske emiterje.B: Cathode plate B of electrically insulated, e.g. a ceramic material with a thickness of e.g. 1 mm. This board has aperture number 15 corresponding to the number of recesses 14. The cathode wire 16 is present below the cathode drive plate. Emitters that can be separately modulated can be made using electrodes 17a, 17b from e.g. of vacuum-charged aluminum near the apertures 15 for emitting electrons into the recesses 14 (Fig. 1E). The electrodes 17a can be interconnected and the electrodes 17b are separately driven or opposite. Alternatively, separate broadcasters may be used, e.g. Polish broadcasters.

C: Vmesniki z razsežnostno s npr. 3 mm.C: Dimensional interfaces with e.g. 3 mm.

D: Gonilna plošča iz električno izolacijskega materiala, npr. stekla, debeline, 0,75 mm. Gonilna plošča bo nameščena na zadnji steni A in ima stolpčasto razporeditev apertur 17, pri čemer stolpci ustrezajo vodnikom, določenim s poglobitvami 14. Gonilne elektrode 18 so nameščene npr. na način, kot je prikazano na sl. 1C, blizu aperturam 17 na strani gonilne plošče D oddaljeno od zadnje stene A.D: Drive plate made of electrically insulated material, e.g. glass, thickness, 0.75 mm. The driving plate will be mounted on the rear wall A and has a column arrangement of apertures 17, the columns corresponding to the conductors defined by the recesses 14. The driving electrodes 18 are arranged e.g. in the manner shown in FIG. 1C, near apertures 17 on the side of the driving plate D away from the rear wall A.

E: Mreža, ki ima širino 2 mm in ima prečke med aperturami 17 v gonilni plošči D, ali vmesna plošča, ki ima koaksialne aperture 19.E: A mesh having a width of 2 mm having cross sections between apertures 17 in the driving plate D, or an intermediate plate having coaxial apertures 19.

F: Stekleno okno (zaslon) ima debelino npr. 1 do 2 mm. Notranja stran okna ima vzorec z vodoravnimi fosfornimi linijami 20.F: The glass window (screen) has a thickness of e.g. 1 to 2 mm. The inside of the window has a pattern with horizontal phosphorus lines 20.

Za strukturo, kot je zgoraj opisana, je globina slikovne prikazovalne priprave približno 8 mm. Tako lahko v resnici govorimo o sliki na steni. Komponente A, C in D lahko sestavljajo integralni modul, kije narejen npr. iz keramičnega materiala, npr. v kombinaciji s (stekleno) zadnjo steno.For the structure as described above, the depth of the imaging device is approximately 8 mm. So we can really talk about the picture on the wall. Components A, C, and D can be made up of an integral module made e.g. made of ceramic material, e.g. in combination with the (glass) back wall.

Električna napetost preko predelkov, ki je potrebna za elektronsko vodenje v votlinah 11,11’, 11”,... predelkov, narašča z naraščajočo dolžino predelkov. Z namestitvijo linijskega sestava emiterjev 21 središčno v prikazovalno pripravo (sl. 10A) namesto na dno (kot v sl. 1) pa se to napetost lahko zmanjša. Napetostne razlike, npr. 3 kV, se lahko nato najprej dovedejo med središče predelkov in njihove zgornje konce, tako da se elektronski tok dvigne (sl. 10B), in se nato isto napetostno razliko dovede med središče in dno, tako da se elektronski tok spusti (sl. 10C). V primeru sl. 1 bi se bila zahtevala napetostna razlika 6 kV. Še nadaljnje zmanjšanje zahtevane napetostne razlike je možno, s tem da se tvori linijski sestav emiterjev 22, 23 za več kot eno vrstico, npr. za 2 vrstici, ki sta nameščeni na 'Λ dolžine 1 predelka od vrha do dna (sl. 11), kar zmanjšuje zahtevano napetostno razliko na 'Λ. Zahtevana napetostna razlika se zmanjša na eno šestino, s tem da se vzame tri vrstice emiterjev 24, 25, 26 in se jih namesti na način, kot je prikazano na sl. 12.The electrical voltage across compartments required for electronic guidance in cavities 11.11 ', 11', ... compartments increases with increasing length of compartments. By placing the line composition of the emitters 21 centrally in the display device (Fig. 10A) instead of the bottom (as in Fig. 1), this voltage can be reduced. Voltage differences, e.g. 3 kV, they can then be first fed between the center of the compartments and their upper ends so that the electron current is raised (Fig. 10B) and then the same voltage difference is brought between the center and the bottom so that the electron current is lowered (Fig. 10C ). In the case of FIG. 1, a voltage difference of 6 kV would be required. Further reduction of the required voltage difference is possible by forming a line assembly of emitters 22, 23 for more than one line, e.g. for 2 rows mounted to 'Λ length 1 compartment from top to bottom (Fig. 11), reducing the required voltage difference to' Λ. The required voltage difference is reduced to one sixth by taking the three rows of emitters 24, 25, 26 and positioning them as shown in FIG. 12.

Na sl. 10A deluje stena 27, ki ima aperture 28, kot katodna plošča. S pomočjo elektrod 30, ki so nameščene blizu aperture 28, je katodna žica 21 nameščena v prostoru 29 iz električno izolacijskega materiala in napaja emiterje, ki so lahko ločeno modulirani. Elektrode 30, ki izpolnjujejo funkcijo ene izmed elektrodnih konfiguracij 17a, 17b po sl. 1E, so lahko povezane z zunanjosti. Druga elektrodna konfiguracija ni prikazana. Lahko obstoji (in nato tvori zaporedno razporeditev) ali pa je ni, če ni pomanjkljivosti pri pogonskih možnostih, ki so skromne v tem primeru. Čimbolj prednostna izvedbena oblika je prikazana na sl. 11. S pomočjo elektrod 32, ki se jih kapacitivno poganja in se raztezajo v notranjo steno prostora do blizu vsake aperture 34, katodna žica 23, ki je v prostoru 31, skrbi za emitorje, ki so lahko ločeno modulirani. Elektrode 32 so kapacitivno poganjane s pomočjo elektrod 33, ki so nameščene na zunanji strani prostora 31. Katodna žica 22 je opremljena na podoben način. Opis sl. 10A se prav tako nanaša na elektrode.In FIG. 10A, wall 27 having apertures 28 acts as a cathode plate. Using the electrodes 30 located near the aperture 28, the cathode wire 21 is housed in the space 29 of electrically insulating material and feeds the emitters, which can be separately modulated. Electrodes 30 fulfilling the function of one of the electrode configurations 17a, 17b of FIG. 1E, may be related to the exterior. No other electrode configuration is shown. It may exist (and then form a successive arrangement) or it may not exist unless there are deficiencies in propulsion options that are modest in this case. The most preferred embodiment is shown in FIG. 11. With the help of electrodes 32, which are capacitively driven and extend into the inner wall of the space to near each aperture 34, the cathode wire 23, which is in the space 31, caters to the emitters, which can be separately modulated. The electrodes 32 are capacitively driven by electrodes 33 which are located on the outside of the space 31. The cathode wire 22 is similarly fitted. Description of FIG. 10A also refers to electrodes.

Alternativa preklopnemu vezju s sl. ID je v tem, da se dela izključno s pozitivnimi linijskimi selekcijskimi pulzi (npr. 200 V ali manj). V tem primeru je vzeta napetostna razlika Va’ preko višine poglobitev 14 (sl. 13), pri čemer je višina ravno premajhna, da bi potegnilo tok (iz aperture). To se zgodi, če se uporabi pozitiven linijski selekcijski pulz primerne vrednosti (sl. 14).An alternative to the switching circuit of FIG. The ID is to work exclusively with positive line selection pulses (eg 200 V or less). In this case, the voltage difference V a 'is taken over the height of the recesses 14 (Fig. 13), the height being just too small to draw the current (from the aperture). This happens if a positive line selection pulse of appropriate value is used (Fig. 14).

Claims (20)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Tanka slikovna prikazovalna priprava, ki ima vakuumski ovoj za prikazovanje slik, sestavljenih iz pikslov, na luminiscentni zaslon 7, označena s tem, da obsega drug ob drugem ležeče elektronske emiterje (5; 16,15; 21, 28; 22, 23, 34; 24, 25, 26), v majhni razdalji od luminiscentnega zaslona (7) nameščene votline (11,11’, H”,...; 14; 42) za vodenje elektronov, ki sodelujejo z emiterji (5; 16,15; 21, 28; 22, 23, 34; 24, 25, 26) in imajo stene (4, 10; 41, 44) iz električno izolacijskega materiala s koeficientom δ sekundarne emisije, katerega vrednost pri energijah primarnih elektronov presega 1, in aperture (8, 8’, 8”, ...; 54; 17; 43) ter elektrode (9, 9’, 9”, ...; 56, 56’; 18) za odvzemanje elektronov iz votlin (11, 11’, 11”, ...; 14; 42) in usmerjanje le-teh proti luminiscentnem zaslonu (7).1. A thin image display device having a vacuum wrapper for displaying pixel-composed images to a luminescent screen 7, characterized in that it comprises side-by-side electronic transmitters (5; 16,15; 21, 28; 22, 23 , 34; 24, 25, 26), a short distance from the luminescent screen (7) of the cavity (11,11 ', H ”, ...; 14; 42) for guiding the electrons interacting with the emitters (5; 16) , 15; 21, 28; 22, 23, 34; 24, 25, 26) and having walls (4, 10; 41, 44) of electrically insulating material having a coefficient δ of secondary emission, the value of which at primary electron energies exceeds 1, and apertures (8, 8 ', 8 ", ...; 54; 17; 43) and electrodes (9, 9', 9", ...; 56, 56 '; 18) for the removal of electrons from cavities (11 , 11 ', 11', ...; 14; 42) and directing them towards the luminescent screen (7). 2. Priprava po zahtevku 1, označena s tem, da so elektronski emiterji (5; 16, 15; 21, 28; 22, 23, 34; 24,25, 26) razporejeni vzporedno z luminiscentnim zaslonom (7).Device according to claim 1, characterized in that the electronic emitters (5; 16, 15; 21, 28; 22, 23, 34; 24,25, 26) are arranged parallel to the luminescent screen (7). 3. Priprava po zahtevku 2, označena s tem, da je emisija vsakega elektronskega emiterja (5; 16,15; 21, 28; 22,23,34; 24, 25,26) modulirana posamič.Device according to claim 2, characterized in that the emission of each electronic emitter (5; 16,15; 21, 28; 22,23,34; 24, 25,26) is individually modulated. 4. Priprava po zahtevku 1, označena s tem, da so stene (4, 10; 41, 44) podolgovatih votlin (11, 11’, 11”, ...; 14; 42) opremljene z elektrodnimi sredstvi za vzpostavljanje električnega polja Ey v vzdolžni smeri votlin (11, 11’, 11”, ...; 14; 42) in je stena (10; 44) vsake votline (11,11’, 11”,...; 14; 42), ki gleda proti luminiscentnemu zaslonu (7), opremljena z aperturami (8, 8’, 8”, ...;43), tako da so vse aperture (8, 8’, 8”, ...;43) združene v vrstice in stolpce.Device according to claim 1, characterized in that the walls (4, 10; 41, 44) of the elongated cavities (11, 11 ', 11', ...; 14; 42) are provided with electrode means for establishing an electric field E y in the longitudinal direction of the cavities (11, 11 ', 11 ", ...; 14; 42) and is the wall (10; 44) of each cavity (11,11', 11", ...; 14; 42) facing the luminescent screen (7) equipped with apertures (8, 8 ', 8 ", ...; 43) so that all apertures (8, 8', 8", ...; 43) are combined into rows and columns. 5. Priprava po zahtevku 2, označena s tem, da so elektronskih emiterji (5) razporejeni po eni sami vrstici blizu roba luminiscentnega zaslona (7).Device according to claim 2, characterized in that the electronic transmitters (5) are arranged on a single line near the edge of the luminescent screen (7). 6. Priprava po zahtevku 2, označena s tem, da so elektronski emiterji (21) nameščeni v eni sami vrstici na polovični višini luminiscentnega zaslona (7).Device according to claim 2, characterized in that the electronic transmitters (21) are arranged in a single line at half height of the luminescent screen (7). 7. Priprava po zahtevku 2, označena s tem, da so elektronski emiterji (22, 23; 24, 25, 26) nameščeni v dveh oziroma treh medsebojno vzporednih vrsticah.Device according to claim 2, characterized in that the electronic transmitters (22, 23; 24, 25, 26) are arranged in two or three parallel rows. 8. Priprava po zahtevku 4, označena s tem, da so elektrode (9, 9’, 9”, ...) za elektronski transport in/ali linijsko selekcijo nameščene ob strani apertur (8, 8’, 8”,...), obrnjenih proti luminiscentnemu zaslonu (7).Device according to claim 4, characterized in that the electrodes (9, 9 ', 9', ...) for electronic transport and / or line selection are positioned on the side of the apertures (8, 8 ', 8', ... .) facing the luminescent screen (7). 9. Priprava po zahtevku 8, označena s tem, da so elektrode (9, 9’, 9”,...) poglobljene v električno izolacijskem materialu (31).Device according to claim 8, characterized in that the electrodes (9, 9 ', 9', ...) are deepened in the electrically insulating material (31). 10. Priprava po zahtevku 4, označena s tem, da so dvojne elektrode (9, 9A, 9’, 9’A, 9”, 9”A, ...) nameščene na izolacijski foliji (32) oziroma na druga proč od druge obrnjenih straneh izolacijskih folij (32,34).Device according to claim 4, characterized in that the double electrodes (9, 9A, 9 ', 9'A, 9 ", 9" A, ...) are mounted on the insulating foil (32) or away from each other other facing sides of insulating films (32,34). 11. Priprava po zahtevku 8, označena s tem, da so sredstva (33; 35) za lokaliziranje elektronskih curkov, ekstrahiranih iz votlin (11, 11’, 11”, ...), razporejena med elektrodami (9, 9’, 9”,...) in luminiscentnim zaslonom (7).Device according to claim 8, characterized in that the means (33; 35) for localizing the electron beams extracted from the cavities (11, 11 ', 11', ...) are arranged between the electrodes (9, 9 ', 9 ”, ...) and luminescent display (7). 12. Priprava po zahtevku 11, označena s tem, da so sredstva (33; 35) za lokaliziranje električno povezana z elektrodami (9A, 9’A, 9”A,...).Device according to claim 11, characterized in that the localization means (33; 35) are electrically connected to the electrodes (9A, 9′A, 9 ”A, ...). 13. Priprava po zahtevku 8, označena s tem, da so elektrode (9, 9’, 9”,...) priključene na vezje (9c) za kapacitivno poganjanje.Apparatus according to claim 8, characterized in that the electrodes (9, 9 ', 9', ...) are connected to the circuit (9c) for capacitive propulsion. 14. Priprava po zahtevku 2, označena s tem, da so elektronski emiterji (22, 23) kapacitivno poganjani preko obdajajočih jih elektrod (32,33).Device according to Claim 2, characterized in that the electronic emitters (22, 23) are capacitively driven through the surrounding electrodes (32,33). 15. Priprava po zahtevku 1, označena s tem, da so med seboj vzporedne predelne stene (40) iz električno izolacijskega materiala nameščene prečno med luminiscentni zaslon (7) in središčno steno (44).Apparatus according to claim 1, characterized in that the parallel partitions (40) of electrically insulating material are arranged transversely between the luminescent screen (7) and the center wall (44). 16. Priprava po zahtevku 15, označena s tem, da je opremljena s središčno ploščo (10) iz električno izolacijskega materiala, katere proti luminiscentnemu zaslonu (7) obrnjena stran ima množico prvih grebenov (12’) in na katere drugi strani je množica drugih poglobitev (11,11’, 11”,...), ki se raztezajo prečno na prve grebene (12’).Apparatus according to claim 15, characterized in that it is provided with a center plate (10) made of electrically insulating material, the facing side of which has a plurality of first ridges (12 ') facing the luminescent screen (7) and to which the second side has a plurality of others. recesses (11.11 ', 11', ...) extending transversely to the first ridges (12 '). ΥΊ. Priprava po zahtevku 4, označena s tem, da so poglobitve (11,1Γ, 11”,...) stvorjene v steni (4).ΥΊ. Device according to claim 4, characterized in that the recesses (11,1Γ, 11 ”, ...) are created in the wall (4). 18. Priprava po zahtevku 17, označena s tem, da stena (4) tvori del vakuumskega ovoja.Device according to claim 17, characterized in that the wall (4) forms part of the vacuum envelope. 19. Priprava po kateremkoli izmed predhodnih zahtevkov, označena s tem, da je zunanja dimenzija priprave prečno na luminiscenten zaslon (7) med 3 in 50 mm.Device according to any one of the preceding claims, characterized in that the outer dimension of the device is transversely to the luminescent screen (7) between 3 and 50 mm. 20. Priprava po zahtevku 4, označena s tem, da je med delovanjem efektiven koeficient Sef sekundarne emisije materiala sten (4,10; 41,44), ki določajo votline (11,11’, 11”,...; 14; 42), približno enak 1.Device according to claim 4, characterized in that, during operation, the effective coefficient S ef is the secondary emission of the material of the walls (4,10; 41,44) defining the cavities (11,11 ', 11', ...; 14 ; 42), approximately equal to 1. 21. Priprava po zahtevku 4, označena s tem, da so elektrode (17a, 17b) nameščene med vsakim elektronskim emiterjem (5) in vsako votlino (11,11’, H”,...; 14; 42).Device according to claim 4, characterized in that the electrodes (17a, 17b) are positioned between each electronic emitter (5) and each cavity (11,11 ', H', ...; 14; 42).
SI9011067A 1989-06-01 1990-05-31 Thin-type picture display device SI9011067A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL8901391A NL8901391A (en) 1989-06-01 1989-06-01 Thin type picture display device - has individually ducted parallel electron currents deflected at predetermined locations from their ducts to luminescent screen
NL9000060A NL9000060A (en) 1989-06-01 1990-01-10 IMAGE DISPLAY DEVICE OF THE THIN TYPE.
YU106790A YU47679B (en) 1989-06-01 1990-05-31 A Slim Image Viewer

Publications (1)

Publication Number Publication Date
SI9011067A true SI9011067A (en) 1996-04-30

Family

ID=27352277

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9011067A SI9011067A (en) 1989-06-01 1990-05-31 Thin-type picture display device

Country Status (1)

Country Link
SI (1) SI9011067A (en)

Similar Documents

Publication Publication Date Title
EP0400750B1 (en) Thin type picture display device
EP0436997A1 (en) Thin-type picture display device
US5497046A (en) Thin-type picture display device
JPH09503095A (en) Display device
US5347199A (en) Thin-type picture display device with means for effecting electron transport by secondard emission
KR960015915B1 (en) Flat display apparatus
US5386175A (en) Thin-type picture display device
US5959397A (en) Flat-panel type picture display device
SI9011067A (en) Thin-type picture display device
US4733139A (en) Fluorescent display device
EP0560434B1 (en) Flat-panel type picture display device
JP3139800B2 (en) Flat panel image display device
KR100371040B1 (en) Thin film display device
US5625253A (en) Flat-panel type picture display device
EP0550103B1 (en) Flat-panel type picture display device with electron transport ducts and a double selection structure
US6188178B1 (en) Flat-panel picture display device with spacer means adjacent the display screen
US5598054A (en) Display device of the flat-panel type comprising an electron transport duct and a segmented filament
KR100545713B1 (en) Flat CRT structure
US5621271A (en) Display device of the flat-panel type comprising an electron transport duct and a segmented filament
NL8901391A (en) Thin type picture display device - has individually ducted parallel electron currents deflected at predetermined locations from their ducts to luminescent screen
JPS6221218B2 (en)
KR20010036948A (en) Picture display device
KR20010035694A (en) Picture display device
WO1998000852A1 (en) Device comprising an electron-transport system having a selection space
NL9001266A (en) Thin type picture display device - has individually ducted parallel electron currents deflected at predetermined locations from their ducts to luminescent screen