SI8212278A8 - Process for controlling aerodynamical body - Google Patents

Process for controlling aerodynamical body Download PDF

Info

Publication number
SI8212278A8
SI8212278A8 SI8212278A SI8212278A SI8212278A8 SI 8212278 A8 SI8212278 A8 SI 8212278A8 SI 8212278 A SI8212278 A SI 8212278A SI 8212278 A SI8212278 A SI 8212278A SI 8212278 A8 SI8212278 A8 SI 8212278A8
Authority
SI
Slovenia
Prior art keywords
signal
value
change
line
sight
Prior art date
Application number
SI8212278A
Other languages
Slovenian (sl)
Inventor
Bengt Skarman
Original Assignee
Saab Scania Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE8105948A external-priority patent/SE430102B/en
Application filed by Saab Scania Ab filed Critical Saab Scania Ab
Publication of SI8212278A8 publication Critical patent/SI8212278A8/en

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Ovaj se pronalazak odnosi na postupak za upravljanje aerodinamičnog tela,npr.projektila ili zrna,po njegovom ispaljivanju ria metu. Pomocu izlaznog.signala uredaja za navodenje,koji je mera trenutne vrednosti ugaone greške izmedu fiksne ose tela, λThe present invention relates to a method for controlling an aerodynamic body, such as a projectile or grain, upon firing a target. Using the output signal of the guidance device, which is a measure of the instantaneous value of the angular error between the fixed axis of the body, λ

prvenstveno ose simetrije tela,i linije vidljivosti od tela ka meti,telo je vodeno putanjom leta ka meti,odazivajuči se varijabilnom kontrolnom signalu koji je zavisan od brzine ugaone promene linije vidljivosti.primarily the axis of symmetry of the body, and the line of sight from the body to the target, the body is guided by the flight path to the target, responding to a variable control signal that depends on the speed of the angular change of the line of sight.

2. Tehnički problem:2. Technical problem:

Cilj je pronalaska da predloži postupak napred- pomenute vrste, za upravljanje projektilom bez potrebe za žiro uredajem.The object of the invention is to propose a process of the aforementioned type for managing a projectile without the need for a gyro device.

5» Stanje tehnike:5 »State of the art:

Projektili su ranij e imali uredaj za navodenje koji su za odredivanje ugaone greške 6» izmedu položaja projektila i linije vidljivosti do mete koristili žiro uredaj za odredivanje promene ugaone brzine položaja potrebne za izračunavanje promene ugaone brzine <o linije vidljivosti prema izrazu (o - S +·Missiles previously had an guidance device that used the gyro device to determine the angular velocity change required to calculate the angular velocity change <o line of sight by expression (o - S + to determine the angular error 6 »between the position of the projectile and the line of sight to the target. ·

Da bi se smanjili troškovi,poželjno je da se eliminiše skupi žiro uredaj.In order to reduce costs, it is advisable to eliminate expensive giro.

R. Opis rešenja tehničkog problema:R. Description of solution to a technical problem:

Prema pronalasku cilj pronalaska je postignut tako što se,na bazi odnosa koji optsuju aerodinamičko ponašanje tela u odnosu na metu,vrednost signala koji predstavlja brzinu ugaone promene linije vidljivosti,na jednoj strani,i vrednosti signala što predstavlja brzinu iAccording to the invention, the object of the invention is achieved by, on the basis of the relations observing the aerodynamic behavior of the body with respect to the target, the value of the signal representing the speed of the angular change of the line of sight, on the one hand, and the value of the signal representing the speed and

ugaone promene položaja tela). na drugo j strani.Pomenute dve vrednosti signala 3e kombinuju da obrazuju vrednost signala ugaone greške.Vrednost 3ignala razlike ugla greško se obrazuje putera merenja ugaone greške dobijenog od uredjaja za navodjenje i od signala vrednosti približnog signala greške, i vrača se pomenutom aerodinaničkom odnosu radi ažuriranja veličina pomenutih odnosa ·angular changes in body position). on the other side.The two values of signal 3e combine to form the value of the angular error signal. the size of the relationships mentioned ·

Pronalazak je dalje detaljnije opisan sa pozivom na priloženo erteže .The invention is further described in more detail with reference to the accompanying drawings.

Slika 1 je prikaz, u jednoj ravni, projektile koji se vodi, putem proporcionalne navigacije, prema pokretnoj meti radi presretanja, i prikazane su neke bitne veličine .Figure 1 is a single plane view of a guided missile, by means of proportional navigation, against a moving target for interception, and some essential sizes are shown.

Slika 2 je je'no-kanalna blok šema ranijeg sistema za proporcionalna navigacija projektila i prikazuje način rada .Figure 2 is a single-channel block diagram of an earlier system for proportional projectile navigation and shows the mode.

Slika 3 ja jednokanalna blok šema pronalaska, prikazuje njegov način rada, i ima sličan raspored kao slika 2 .Figure 3 shows a single-channel block diagram of the invention, showing its mode of operation, and having a similar arrangement as Figure 2.

Pronalazak može da se p?eimeni na sve tipove projektila, npr., vodjene ili artiljerijeke projektile, opremljene oredstvina za vodjeno skretanje.Slika 1 prikazuje takav projektil M koji leti putanjem ka vozilu-meti T što se kreče putanjom Pg,.Uz pomoč linija vidljivosti S-^- 5^ u četiri položaja I, II, III, i IV prikazano je kako ne projektil približava meti u isto vreme kada linija vidljivosti postepeno postaju sve paralelnije što se projektil više približava meti.The invention can be referred to all types of missiles, for example, guided or artillery projectiles, equipped with guided-turn tools. Figure 1 shows such a projectile M flying on a path to a target-vehicle T moving along a Pg path. The S - ^ - 5 ^ visibility in the four positions I, II, III, and IV shows that the projectile does not approach the target at the same time that the line of sight gradually becomes more parallel as the projectile approaches the target.

U položaju I projektil ?I ima brzinu V u smeru leta, <3 je ugao linije vidljivosti izmedju linije vidljivosti S i inercijalnog refe· rentnog omara R, θ osnrsava ugasni položaj projektila izmedju njegove ose (vezane za njegovo telo) A, koja je ovde osa simetrije projektila, i inercijalnog referentnog smera R. C je ugao greško izmedju fiksne ose A projektila, i linije vidljivosti S,Vidi se da je ugao gresko £_ dobi jen iz ugla linije vidi jivo3'ti<o i ugaonog položaja 0 , prema izrazu :At position I, the projectile has a velocity V in the flight direction, <3 being the angle of line of sight between the line of sight S and the inertial reference cabinet R, θ defines the extinguishing position of the projectile between its axis (related to its body) A, which is here the axis of symmetry of the projectile, and the inertial reference direction R. C is the angle of error between the fixed axis A of the projectile, and the line of sight S, It is seen that the angle of error £ _ is obtained from the angle of the line see jivo3'ti <o and angular position 0, by the expression :

ζ. s: G* — θ'ζ. s: G * - θ '

3.3.

Slika 2 je operaciona blok šema jednog primera ranijeg sistema za projektile, tipa aa proporcionalnom navigacljom, koji koristi uredjaj 1* za navodjenje.Svi uticaji na projektil, u pogledu dinamike projektila, olcoline i vodjenog skretanja su prikazani pomoču bloka 3*.Aktuelne 'vrednosti ugla €> linije vidljivosti i ugaonog položaja O, dobi jene od bloka 3*, rezultuju u aU/aO-vu. ugaonu grdšku č. .Ovaj ugao se meri sa uredjajem za navodjenje lr, čiji je izlazni signal mera £ trenutne ugaone greške izmedju fiksne ose simetrije A i linije vidljivosti S .Figure 2 is an operating block diagram of an example of an earlier missile system, type aa proportional navigation, which uses a 1 * guidance device. angles €> line of sight and angular position O, age of block 3 *, result in aU / aO. angular gr. .This angle is measured with a guidance device l r whose output signal is a measure of £ the instantaneous angular error between the fixed axis of symmetry A and the line of sight S.

Kako je pomenuto u uvodu, ovakav sistem traši žiro-uredjaj 2' koji se ovde koristi da odredi raeru ugaonog položaja projektila. Merenja ©ra i £ se sabiraju da bi se dobila veličina m ugla linije vidljivosti, Što posle diferenciranja daje veličinu &m ugaone brzine promene linije vidijivosti.Pomocu ove poslednje veličine še u bloku 4* izračunava signal koji predstavlja kontrolnu (upravljačku) promenljivu u , na osnovu zakona upravljanja u o c · <y u skladu sa principom proporcionalne navigacije gde je '· c konstanta.Signal koji predstavlja upravljačku promenljivu u vodi se neprikazanom upravijačkom uredjaju projektila u bloku 3*, i upravljačka promenljiva može da se ostvari putem sktetanja uppravljačke površine .As mentioned in the introduction, this kind of system requires the gyro 2 'used here to determine the angular position of the projectile. MEASURING © ra i £ sabiraju is to get variable m ugla line visibility, a hundred business differentiation gives veličinu & m Ugaona speed changes of the last line vidijivosti.Pomocu's greatness in block 4 * calculated signal koji represents kontrolnu (upravljačku) promenljivu u based on the law of control uoc · <y in accordance with the principle of proportional navigation, where '· c is a constant. The signal representing the control variable in water is not shown to the projectile control unit in block 3 *, and the control variable can be obtained by damaging the control surface.

U gornjem opisu ranijeg načina rada, i dalje u opisu pronalaska radi jcdnostavnosti je predstavljeno da se orojektil krece n jcdnoj istoj vertikalnoj ili horizontalno j ravni Što odgpvara kanalu za nagib odnosno za skretanja.Medjutim, i rani ji postupak i pronalazak imaju širu oblast primene, i u praksi projektil se takodje mož? da upfavlja i po drugoj ravni koja je upravna na romenutu prvu.iledjuzavicnosti (odnosi) aerodina.mičkog ponašanja projektila, koje su dal.je koriščene u objavljenem re.šenju pronalaska, su navedene da opisu kretanje u vertikalnoj ravni i zato je bilo moguce zanemariti uticaj gravitacije.Otuda je očigledno da više nisu obulivaceni odnosi koji opisuju kretanje projektila upravno na vertikalnu ravan .In the above description of the earlier mode, still in the description of the invention, for the sake of simplicity, it is presented that orojectile moves on the same vertical or horizontal plane, which opens the channel for inclination or for turns. and in practice a missile is also a man? that it also operates on the second plane that is governed by the first first-order (aerodynamic) relationship of the projectile's aerodynamic behavior, which was further used in the published embodiment of the invention, was described to describe the movement in the vertical plane and could therefore be neglected the effect of gravity. It is therefore obvious that the relations describing the movement of the projectile perpendicular to the vertical plane are no longer obsolete.

Slika 3 prikazuje pronalazak sa pozivom na rešenje koje ima proporcionalnu navigaciju.Blok šema na slici 3 sadrži blokove 1,3 i 4 koji imaju analogne funkcije kao i odgovarajuči blokovi na slici 2 označeni sa prim oznakama .Figure 3 shows the invention with reference to a solution having proportional navigation. The block diagram of Figure 3 contains blocks 1,3 and 4 having analog functions as well as corresponding blocks in Figure 2 marked with prim tags.

'i.'i.

Da bi sc izbegla potreba za skupim žiro-uredjajem upotrebljena je prema pronalaoku računarska jedinica lo koja radi na bazi odnosa koji opisuju aerodinamičko ponašanje projektila u odnosu na metu, radi odredjivanja veličine signala koji je predikcijn ili približna vrednost brzine ugaone promene linije vidljivooti.Pomenuti odnosi čine više ili manje približan matematički model aerodinamičkog ponašanja projektila u odnosu na metu.U ovde opioanom prvenstvenora rešenju ti odnosi, kako se dalje može d a vidi, ou poznati od ranije, Sto medjutim no lsključuje činjenicu da mogu da se upotrebe i drugi slični odnosi, u okviru pronalaska .In order to avoid the need for expensive giro, a computer unit lo, based on relationships describing the aerodynamic behavior of the projectile relative to the target, was used to determine the magnitude of the signal that is predictive or the approximate value of the angular change rate of the line visible. form a more or less approximate mathematical model of the aerodynamic behavior of the missile relative to the target. In the opioid first-order solution, these relations, as can be seen, ou known earlier, however exclude the fact that other similar relationships can be used, within the scope of the invention.

U prvora koraku, računarska jedinica lo ustanovi jeva.putem odnosa za aerodinamiku projektila, vrednost signala Q što predstavlja aproksimaciju brzine ugaone promene Θ položaja (pozioije) projektila,Sem toga, pomoču pomenutog aerodinamiekog odnosa projektila računarska jedinica lo izračunava'pribilžnu vrednost e/ za aerodinamički napadni ugao projel/ULa^, koja se koristi’u drugome koraku računarske jedinice ·In the first step, the computing unit lo establishes the value of the Q signal, which is an approximation of the angular velocity poz of the position (missile) of the projectile, by calculating the approximate value of e / for aerodynamic attack angle projel / ULa ^ used 'in the second step of the computing unit ·

U drugome koraku računarska jedinica lo, ustanovljava vrednost «In the second step, the computing unit lo sets the value "

signala 5 , posredstvom izraza - odnosa za brzinu ugaone promene projektila sa linijom vidljivosti, sto predstavlja aproksimaci ju brzine ugaone promene linije vidijivosti.Ta se vrednost signala koristi kao ulazni signal u jedinicu 4 radi uspostavljanja signala u upravljačke promcnljive posredstvom zakona upravljanja, ovde u e c · & u skladu sa principima proporcionalne navigacije .signal 5, by expression - the ratio of the angular rate of change of a projectile to the line of sight, which is an approximation of the rate of angular change of the line of sight. This signal value is used as an input signal to unit 4 to establish a signal in control variables by the control law, here uec · & in accordance with the principles of proportional navigation.

Signal u upravljačke promenljive koji je prethodno odredjen, alternativno otklon u^ upravljačke površine ili slično koji je dat kao mereni signal od upravljačke aparature u bloku 3» služi kao ulazni signal u računarsku jedinicu 10 ,A signal to control variables that has been previously determined, alternatively a deflection to ^ control surfaces or the like given as a measured signal from a control apparatus in block 3 »serves as an input signal to a computer unit 10.

Dve ustanovljene vrednosti signala G? i (o se kombinuju kako je pokazano u jedinici 20 za odredjivanje signala € što je približno vrednost ugla greške.U tačci spajanja 11 zasnovano na ddnosu • * · · <£ » S - Θ pomenute vrednosti dva signala rezultuju u signal ·** koji je približna vrednost L brzine ugaone promene ugla greške . Kasnijom’integracijorn, kako je pokazano, u bloku 16 oznaačenom sa Laplace-ovim integracionim operatorom, dolazi se do pomenutog sig/s» nala čj ·Two set values of signal G? and (o are combined as shown in unit 20 for determining signal € which is approximately the value of the error angle. At junction point 11 based on ddnos • * · · <£ »S - ute the mentioned values of the two signals result in a signal ** ** which is the approximate value L of the angular error angle change velocity. Later, 'integrational', as shown, in block 16 denoted by the Laplace integration operator, the aforementioned sig / s is found.

Upravljavka proraenljiva. u koja je odredjena u bloku 4 kroz zakon o upravljanju, daje, u zavianonti od ualova okollne i od aerodinamike projektila, u skladu aa blokom 3, ugao grečke G koji sc meri prema £ putem uredjaja za nnvodjenjo 1 na način kao i rani je.Treba, pomenuti da uredjaj sa navodjenje može dr> bude, i prvenatveno i jeste, fiksiran za telo projektila.Medjutim, uredaj za navodjenje može takodje da bude i usmeriv u odnosu na osu projektila, a da pri tora ne bude otabilizovan pomoču žiro-uredjaaja, jer je cilj pronalaoka da ne po3toji žiro uredjaj .Controllable. into which is specified in block 4 through the control law, gives, in the curve of the ambient waves and the aerodynamics of the projectiles, in accordance with aa block 3, the error angle G, which is measured by £ through guidance device 1 in the same way as it was early. It should be noted that the guidance device may be, and may be, initially fixed to the body of the projectile. , because the aim of the inventor is not to have a giro device.

ažuriranje odgovarajučib veličina je nledoče :updating the appropriate size is as follows:

Korekcija iliCorrection or

* z> Θ i A a C b * z> Θ i A a C b - Γ * Ί Θ £ A i t i, Γ * Ί Θ £ A and t and, + + •s • s f I II f I II _ A * Θ A o( A σ A ε A _ A * Θ A o ( A σ A ε A -V -V H· ¢-Δ.Θ A Zkk A Δ & A δ£ A H · ¢ -Δ.Θ A Zkk A Δ & A δ £ A A A A A Δ b* Δ b * bt b t K K - - -t -t -t-1 -t-1 I t I t

Ovde indeks t označava korigovanu vrednost u anda-njem vmmeuu a indeka t-1 označava prethodnu vrednost.Korekcioni faktori k^ - kg su ovde koeficijenti koji ou zaviani od onotljivoati naHere, the index t denotes the corrected value in ande vmmeu and indeka t-1 denotes the previous value. The correction factors k ^ - kg are here the coefficients that ou are dependent on the

Z\£. , aa jedne strane, i od povercnja u odgovarajoče veličine aa druge strane .Svaki korekcioni faktor k^ - kg je funtomja tipa k f ( a^, a^» a-jj» V, r, u ),Prema torne, to su promenljive u proceduri upravljanja projektilom i one ae izražava ju vile puta, uto prikazano na slici 3 nomoču bloka 14.Pogodan nostunak za izračunavanje poraenutih korekeiouih faktora ki - kg je putem Kalma.n - fil.tera ; v,npr, Introduction to Stonaatic Control Theory , Glava 5-4, od Karl J. AstrUin, Academic Press, Nev/ York, London 1970 .Z \ £. , aa on the one hand, and from the rotation in the corresponding magnitudes aa on the other hand. Each correction factor k ^ - kg is a pound-mass of the type kf (a ^, a ^ »a-jj» V, r, u), According to the towers, these are variables in the projectile control procedure, it also expresses the forks of the path, as shown in Figure 3 by the presence of block 14. A convenient note for calculating the correlated correction factors ki - kg is via Kalma.n - fil.ter; v, e.g., Introduction to Stonaatic Control Theory, Chapter 5-4, by Karl J. AstrUin, Academic Press, Nev / York, London 1970.

U jedinici 2o je ilustrovana sukccaivna korekcija ili ažuriranje . ~. a i . Aveličine £ . , ..Korekciona vrednost Δc. je korabinovana sa prethod.no odredjenora vrednošču veličine u tačci spajanja lB.Prekidač koji je prikazan izmedju izlasa pomenute tačke spajanja i izlaza integratora 16 ilustruje uvodjenje korigovane vrednosti veličine £ ^..Ažuriranje drugih veličina nije pokazano detaljno ali 00 vrči na sličan način .Unit 2o illustrates a successive correction or update. ~. a i. Avelines £. , .. Correction value Δc. The switch shown between the output of said junction point and the output of the integrator 16 illustrates the introduction of a corrected value of size £ ^. Updating other sizes is not shown in detail but 00 is similar.

ΛΛ

Vrednost signala £ odredjena kao aproksimativna vrednost ugla grečke kombinuje se putem oduzimanja u tačci spajanja 12 sa vrednošču signala £ merenja u£le grečke, čto rezultuje u signaJ U lu razlike koji odgovara razlici ,The value of the signal £ determined as an approximate value of the error angle is combined by subtracting at the junction point 12 with the value of the signal £ measured in £ le error, resulting in a signifier In difference corresponding to the difference.

Ta vrednost razlike signala ugaone greško At koristi se za korekciju ili ažuriranje veličina, npr., i promenljivih i željenih pararaetara, u odnosima (izrnzima) u računarskcj jedinici ,This value of the difference signal of the angular error At is used to correct or update the magnitudes, eg, of variables and desired pararaeters, in ratios (calculations) in a computer unit,

Kao osnova za prvi korale računarske jedinice jesu dve jednači· ne stahgaa :The basis for the first coral of a computer unit are two equals:

Vi ©-, + aoc>L + b.u © + a^ cL + h2u gde proinenljive veličine stanja © i o(. odgovaraju brziPi promenc ugaone pozicije odnosno aorodinaraičnom nanadnora uglu ; u je kontrolna (upravi jarka) pronenljiva koja može da se realizuje kao skretanje urravljačke površine ;Vi © -, + a o c> L + bu © + a ^ cL + h 2 u where the pronounced states of magnitude © io (. Correspond to the rapid change of the angular position or aorodinarically at the angle; u is controllable (control of the ditch) it is realized as a deflection of the control surface;

aa2’?'3 su a^edih^ički parametri ko ji su zavisni od oblika pro jektila i rasporeda raaaa, b^ i b^ su parametri sprega i sile . a l » a 2 ' ? '3 are a ^ edical parameters which depend on the shape of the projectile and the arrangement of raaaa, b ^ ib ^ are the parameters of coupling and force.

Ove jednačine stanja ou aprokcdraacija potpuuijih jednačina stanja, koje se nalaze u npr., Bynaraic of Atmospheric Flight” str 162,163, od Bernard. htkin, John 'Jiley A Sons Inc., 1972 ,These equations of state ou approximation of the more complete equations of state, found in, e.g., Bynaraic of Atmospheric Flight ”p. 162,163, by Bernard. htkin, John 'Jiley A Sons Inc., 1972,

Rešenje dveju jednačina 'stanja rezultuje u aproksiraativnimThe solution of the two equations of state results in an approximate one

ZS- Zs vrednostima © i X. brzine premene ugaone pozivi je odnosno nerodi nami Čnog napadnog ugla .ZS-Zs with values of © and X. the angular rate of change of call are, respectively, an awkward angle of attack.

Što se tiče param etara b^ i b^ u jeduačinama stanja, u ovom resenju pronalaska je predpostavljeno da b^. α 0 ; bg “ 0 tj. da su b^ i b2 suatinski konstantni .With respect to the param ethers b ^ ib ^ in the state-eaters, it is assumed in this embodiment of the invention that b ^. α 0; bg “0 ie. that b ^ ib 2 are suatinally constant.

t ·t ·

JJ

Tokom kratkih intervala približne vrednosti Θ i oi su odredjene putem računa, sa signalom u - koji je izlazna kontrolna promenljiva - od jedinice 4, ili sa lzmerenira signalom uffl upravljačkog skretanja kao ulazora u računarsku jedinicu ·During short intervals, the approximate values of Θ and oi are determined by the calculus, with a signal in - which is the output control variable - of unit 4, or with the signal in ffl of the control turn as input to the computing unit ·

Za odredjivanje, u drugome koraku računarske jedinice 10,To determine, in the second step of computing unit 10,

A približne vrednosti S* brzine promene ugla linije vidljivosti, koristi se sledeča jednačina stanja, tj : 6 = «-ičkoja je poysebi poznata.U toj jednačini veličine koje imaju iste • * simbole kao gore, imaju odgovarajuča napred navedena značenja, Č i G? predstavljaju ugaono ubrzanje odnosno ugaonu brzinu linije vidljivosti ; V je putna brzina projektila za koju se pretpostavlja da je poznata, i kao primer ona može da bude konstantna ; r je udaljenost od prdjektila do mete .For the approximate values of S * the speed of change of the angle of the line of sight, the following equation of state is used, ie: 6 = «-which is known by itself. In this equation, the sizes having the same • * symbols as above have the corresponding meanings given above, Č and G ? represent the angular acceleration or angular velocity of the line of sight; V is the projectile velocity of a projectile assumed to be known, and as an example it can be constant; r is the distance from the projectile to the target.

Pri odredjivanju vrednosti signala 6 što predstavlja aproksimaciju ugaone brzine linije vidljivosti, najpre senodredjuje približna vrednost a ubrzanja ^projektila poprečno na liniju A vidljivosti, iz prethodno izračunate aproksimacije <%. aerodlnamičkog napadnog ugla,Pomenuto ubrzanje je aproksimirano poprečno na osu-simetrije, prema izrazu a « -(a^c< + b2ti)Y , />In determining the value of signal 6, which is an approximation of the angular velocity of the line of sight, it first determines the approximate value a of the acceleration ^ of the projectile transversely to the line A of the line of sight, from the previously calculated approximation <%. aerodynamic attack angle, the said acceleration is approximated transversely to the axis of symmetry by the expression a «- (a ^ c <+ b 2 ti) Y, />

Potoiji se odredjuje signal približne vrednosti 5 prema izrazu S =(2VG - a)/r .The signal of approximate value 5 is then determined according to the expression S = (2VG - a) / r.

Upravljački sistem projektila se aktivira na unapred odredjonom pastojanju od mete, detektovanom uredjajem za navodjenje, pričemu se dobija poeetna vrednost rQ za rastojanje do mete.Potom se dobija vrednost rastojanja r na način koji nije objavljen u crtežu.Ako je meta nepokretna, vrednost rastojanja r može na primer da bude izražena kao r =« rQ - Vt gde je t vreme od trenutka kada je bila detektovana poeetna vrednost Γθ rastojanja .The projectile control system is activated at a predetermined target distance from the target, detected by the guidance device, to obtain the initial value of r Q for the distance to the target. r may, for example, be expressed as r = «r Q - Vt where t is the time from which the initial value Γθ of the distance was detected.

Za odredjivanje rastojanja rQ pri kojem upravljački sistem projektila treba da počne da radi, prema slici 3 pošto ji signalna putanja r_^n ka računarskoj jedinici lo.Po toj signalnoj putanjt se dovodi informacija koja nstanovljava rQ i može da utice na-, druge veličine koje mogu da budu zavisne od rQ,Sem toga je pokazana signalna putanja Vin ka računarskoj jedinici lo za odredjivanje brzine V u ovde opisanome rešenju .To determine the distance r Q at which the projectile control system should start operating, according to Figure 3, since its signal path r_ ^ n to the computer unit lo.This signal path is given information that establishes r Q and may affect-, others magnitudes that may depend on r Q , in addition, the signal path V in the computer unit lo is shown to determine the velocity V in the solution described here.

8.8.

U vezi sa tira treba pomenuti da jodnačina stanja za signal približne vrednosti Θ' · kod priraena koje traže manju tačnost kod terminalnog rastojanja može da bude zaraenjena jednačinom b 0 ; drugim rečiroa ugaona brzina linije vidljivosti je pretpostavljena da je konstantna u intervaliraa izmedju merenja ugaone greške »In relation to the track, it should be mentioned that the equation of state for the signal of the approximate value Θ '· for the devices seeking less accuracy at the terminal distance can be earned by the equation b 0; other words the angular velocity of the line of sight is assumed to be constant at the interval between the measurement of the angular error »

Δ *Δ *

Vrednosti signala & i Θ odredjepe računarskom jedinlcorn lo kako je gore rečeno, koriste se za dobijanje signala kontrolne pro menljive u i za dobijanje vrednosti signala £ ·The values of the signal & and Θ are determined by the computer unit as above, are used to obtain the control variable signal in and to obtain the signal value £ ·

Posle integracije, ova poslednja signalna vrednost £ se koristi za dobijanje vrednosti razlike signala Δί. poredjenjera sa vrednoŠču £ merenog signala ugaone greške kao Sto je pokazano u jedinici 12 .After integration, this last signal value £ is used to obtain the signal difference value Δί. comparing the value of the measured angular error signal as shown in unit 12.

A,A,

Kao Sto je pokazano na slici 5» vrednost signala £ , koja je predvidj ena, dovodi se i uredjaju za navodjenje 1 kako bi ae obezbedilo da pomenuti uredjaj pretražuje metu u pravilnoj ugaonoj zoni .As shown in Fig. 5 »the signal value £, which is predicted, is also brought to the guidance device 1 to ensure that said device searches for the target in the correct angular zone.

Vrednost signala, razlike Δί koristi se u proceduri vod.jenja projektila da uspešno koriguje ili ažurira veličine kao proracnljive stanja i parametre, u jednačina.ma računarske jedinice.Stoga je na slici 3, pokazano u jedinici povratne sprege 13 kako?prethodno odredjenira promenljiviiMstanja Θ, oC i kf , odredjenoj vrednosz^· ti ugaone greške £ , kao i parametrima sprege i sile b^ i b^ nvakome .> dodeljen, specifični korekcioni faktor k^ - kg , kako je pokazano u bloku 15.Svaki izlazni signal iz toga bloka 15 pred· stavlja korekciju koja je posebna za svaku veličinu ·The signal value, the difference Δί, is used in the projectile guidance procedure to successfully correct or update magnitudes as calculable states and parameters, into the equation.ma of the computer unit. This is shown in Figure 3 in the feedback unit 13 for how to determine the variables and states previously. , oC and kf, a certain value of the angular error £, as well as the coupling and force parameters b ^ ib ^ in each.> assigned, a specific correction factor k ^ - kg, as shown in block 15. Each output signal from that block 15 presents · a correction that is specific to each size ·

Prema posebnom avojotvu pronalaska aerodinamični parametri “ a5 mogu da se zadrže konstantnim tokom cele procedure uprav·According to a particular invention of the invention, the aerodynamic parameters “ a 5 can be kept constant throughout the entire procedure.

Ijanja, kako je pokazano na slici .3,Stoga može d a se postigne tražena tačnost tako da se ažuriraju samo parametri b^ i b^ zajed· no sa veličinama β, i £ , potrebno je slivatiti da vrednosti signala što predstavijaju aproksimirane' veličine jesu predvidjanja pomenutih veličina u . odgovarajučem budučera vremenu ,As shown in Figure .3, therefore, the required accuracy can be achieved by updating only the parameters b ^ ib ^ together with the sizes β, and £; mentioned sizes in. appropriate time for the future,

Gore diokutovane jedinloe za ostvarivanje pronalaska mogu da budu implementirano pomoču elektronskih koraponenata kojo obezbedjuju vrlo brze računarske operacije - korake .The above-discussed invention invention units can be implemented with the help of electronic correspondents who provide very fast computer operations - steps.

Prvenstvena i vrlo kompaktna irapleneratacija pronalaska je postignuta oa mikroproceoorom koji je, prema pronalasku, predvidjen da izračuna S .Prvenstveno su u raikroprocosoru obuhvačeno 1 druga funkcija kao izračunavanje signala, u kontrolne proinenl jive, i signali koji predstavljaju približnu 'vrednost β ugaone greuke i razliku ugaone greške , kao i izračunavanje korekcionih faktora k^ - kg i korelacionih veličina, a mikroprocesor tada služi da povratno spreže vrednosti Δ £ razliko ugaone grečke radi ažuriranja veličine koje su u pitanju.Stoga, slika 3 obuhvata interfejs 17 koji služi za prilagodj enje izmedju prikazanih olokova na slici i ilustruje digitalni mikroprocesor, i projektilovih jedinioa prikazanih gore na slici a koje saradjuju sa mikroprocesorom putem sign nala .The primary and very compact irrapleneration of the invention was achieved by a microprocessor, which, according to the invention, is intended to calculate S. angular errors, as well as the calculation of the correction factors k ^ - kg and correlation quantities, and the microprocessor then serves to feedback the values of Δ £ the difference of the angular error to update the size in question. shown in the figure and illustrated by a digital microprocessor, and projectile units shown in the figure above that cooperate with the microprocessor via signal.

Na početku računarske procedure promenljivirna i parametrima se zadaju početne vrednosti odredjene iz trenutnog ugla greške projekI tile., i prethodno uvedenih informacija kao r. i V. .Tzračunavain m nje u mikroprocosoru se obavlja. u intervalima izmedju moren,ja ugaone greške radi dobijnnja vrednosti i signalne vrednosti dobljene kao rezultat izračunavanja u jednome računarskom koraku upamcuju se kao predvid. jan ja odgovarajučih veličina da bi se sukcesivno koristile u računanju narednog računarskog koraka .At the beginning of the computational procedure, the variable and parameters are given the initial values determined from the current error angle of the projectile tile, and the previously entered information as r. and V. The calculation in the microprocessor is done. at intervals between moraines, the angular errors to obtain the values and the signal values obtained as a result of the calculation in one computer step are stored as predicted. ian the appropriate sizes to be used successively in calculating the next computational step.

Pronalazak je bio euizan na pozivom na jedno posebbno rešenje, zasnovano na proporcionalno j navi.gači ji .Pronalazak, medjutim, nije ograničen na upravljaČki zakon koji vazi za proporcionalnu navigaciju, nego može ds ne predvidi bilo koji negoden kontrolni zakon koji.se svodi na upravljaČki signal u što je zavisten od ugaone brzinezlinije vidljivosti, tj. u = f( <3 ),Posebno, koda projektil ima upravljačke rakete uraesto kontrolnih površina, koristi oe raodifikovana proporcionalna navigacija, gde sc vodjeno skretanje uzrokuje kada kontrolni signal u premaži pred-odredjenu vrednost .The invention was euistic by calling for a particular solution based on the proportional and common sense. control signal which is dependent on the angular velocity z of the line of sight, i. u = f (<3), In particular, the code missile has control rockets in place of the control surfaces, uses o rodified proportional navigation, where a guided turn is caused when the control signal exceeds a predetermined value.

Claims (5)

1. Postupak za upravljanje aerodinamičkog tela, napr. upravijanog projektila ili zrna posle ispalj Ivanja u putanju leta prema meti radi presretanja, pri čemu telo preko uredaja za anvodenje emituje izlazni signal (£m) kao meru za ugaonu grešku (£) izmedu fiksne ose tela i linije (Si') vidljivosti od tela do mete, dok se telo vodi signalom upravijačke promen« ljive (u, u) u zavisnosti od brzine promene ugla (E) linije vidljivosti, naznačen time, Što se u računskoj jedinici (10), za obradu podatak o aerodinamičkom ponašanju tela u odnosu na metu, koja prima kao ulazni signal upravljačke promenljive (u, u ), obrazuje vrednost prvog signala ( Θ ), kao ni * brzinu promene ugla ( ©) linije vidljivosti, upotrebljenu za dobijanje signala upravljačke promenljive (u, u ), kao i vrednost in t drugog signala, kao brzine promene ugaonog položaja ( θ) tela, pri čemu se obrazuje vrednost trečeg signala ( £ ), kao· približa žna vrednost ugaone greške (£), od vrednosti dva signala (, /•S θ- ) , i što Se vrednost signala (bi) , kao razlike izmedu mere -O c ( ' ) i približne vrednosti ( c ) ugaone greške ( c. ) vrača u računar sku jedinicu (10).1. Procedure for controlling the aerodynamic body, e.g. guided missile or grenade after firing Ivanj in the flight path to the target for interception, whereby the body emits an output signal (£ m) through the guidance device as a measure of the angular error (£) between the fixed axis of the body and the line (Si ') of visibility from the body to the target, while the body is guided by a variable (u, u) control signal depending on the rate of change of the angle (E) of the line of sight, characterized in that, in the computational unit (10), for processing information about the aerodynamic behavior of the body in relation on the target, which receives as input a control variable (u, u), defines the value of the first signal (Θ), as well as * the rate of change of angle (©) of the line of sight used to obtain the control variable signal (u, u), and the value in t of the second signal, as the rate of change of the angular position (θ) of the body, whereby the value of the third signal (£) is formed, as the approximate value of the angular error (£), from the value of the two signals (, / • S θ-) , and what is the value of the signal (bi) , as the difference between the measure -O c (') and the approximate value (c) of the angular error (c. ) returns to the computer unit (10). 2. Postupak prema zahtevu 1, naznačen time, što se pre ulaza u računsku jedinicu (10), vrednost signala razlike (xb£) ugaone greške množi faktorom (K^ - Κθ) .2. The method of claim 1, wherein, before entering the computing unit (10), the value of the difference signal (xb £) of the angular error is multiplied by a factor (K ^ - Κθ). 3. Postupak prema zahtevu 2, n,a,zna,čen, time, žto se u toku upravljanja vrši ažuriranje korekcionog faktora (K^ - Κθ), u funkciju parametara i promenljive veličine projekta.3. The method of claim 2, n, a, ie, whereby during correction a correction factor (K ^ - Κθ) is updated to the function of the parameters and variable size of the project. 4. Postupak prema zahtevu 1, naznačen time, što se vrednost signala ( ) brzine promene ugaonog položaja menja prema zavisnosti, :Method according to claim 1, characterized in that the value of the signal () of the rate of change of the angular position changes depending on: e· Ok,, e + 6X-2c<-h b-|K oL — -e* tbt«· » i gde je O-brzina promene ugaonog položaja, a -0 njen prvi izvod po vremenu, d- aerodinamički napadni ugao, a njegov izvod po vremenu, u upravljačka promenljiva, a^, a,^, a^ aerodinamički parametri, i b2parametri sprega, odnosno sile, pri čemu se vrednost signala ( 6 ) približne vrednosti brzine promene ugla linije vidljivosti menja prema zavisnosti :e · Ok ,, e + 6X- 2 c <-h b- | K oL - -e * tbt «·» and where O is the angular position change rate, and -0 is its first derivative in time, d is the aerodynamic attack angle, and its derivation by time, into a control variable, a ^, a, ^, a ^ aerodynamic parameters, ib 2 coupling and / or force parameters, where the value of the signal (6) of the approximate value of the velocity change angle of the line of sight changes depending on : C2.5- < & h bx^) ·“ * 1 ·» gde je 6 brzina promene ugla linije vidljivosti, a (o njen izvod po vremenu, V je putna brzina projektila, a r njegovo , Nastajanje od mete, pri čemu je za manju traženu tačnost 6* = oC2.5- <& h bx ^) · “* 1 ·» where 6 is the velocity of change of angle of line of sight, and (o its derivation by time, V is the traveling velocity of the projectile, ar its, Emerging from the target, where for lower required accuracy 6 * = o 5. Postupak prema zahtevu 4, naznačen time, što se kod množenja vrednosti signala razlike (A£) korekcionimfaktorom(k^ - kg) pre njegovog uvodenja u računsku jedinicu (10), vrši ažuriranj tog faktora, pri čemu se ažuriraju parametri sprega i sile (b^, b2), dok se aerodinamički parametri drže konstantnim.Method according to claim 4, characterized in that when multiplying the difference signal value (A £) by the correction factor (k ^ - kg), before its introduction into the computing unit (10), the factor is updated, whereby the coupling parameters and forces (b ^, b 2 ), while the aerodynamic parameters are kept constant.
SI8212278A 1981-10-08 1982-10-08 Process for controlling aerodynamical body SI8212278A8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8105948A SE430102B (en) 1981-10-08 1981-10-08 SET AND DEVICE FOR CONTROL OF AN AERODYNAMIC BODY WITH HANDLESS MOLD SUGAR
YU2278/82A YU45119B (en) 1981-10-08 1982-10-08 Process for controlling aerodynamical body

Publications (1)

Publication Number Publication Date
SI8212278A8 true SI8212278A8 (en) 1994-12-31

Family

ID=26657975

Family Applications (1)

Application Number Title Priority Date Filing Date
SI8212278A SI8212278A8 (en) 1981-10-08 1982-10-08 Process for controlling aerodynamical body

Country Status (2)

Country Link
HR (1) HRP920387B1 (en)
SI (1) SI8212278A8 (en)

Also Published As

Publication number Publication date
HRP920387B1 (en) 1996-02-29

Similar Documents

Publication Publication Date Title
US3685159A (en) Method and system for establishing a correct lead when firing at a moving target
US3883091A (en) Guided missile control systems
GB1442822A (en) Stabilizing system
CN106556287B (en) One kind integration proportional guidance Nonlinearity Correction Method
GB1108072A (en) Anti-aircraft weapon carriage
US4529151A (en) Method and an apparatus for steering an aerodynamic body having a homing device
GB847232A (en) Rocket launch control system
GB1583651A (en) Fire control system for firing weapons installed on a vehicle and having a stabilized aiming device
US2821349A (en) Dive control system for pilotless aircraft
SI8212278A8 (en) Process for controlling aerodynamical body
US3995144A (en) Banked bombing system
US3206143A (en) Controller for guiding a missile carrier on the location curve of ballistic firing positions
GB1056815A (en) Fire control system for weapons
US3497161A (en) Method for compensating a ballistic missile for atmospheric perturbations
US2988960A (en) Bombing navigational computer
US3010676A (en) Missile guidance system
US5805102A (en) Apparatus for directing a mobile craft to a rendevous with another mobile craft
US3249324A (en) Method and system for inertial guidance
SI8611082A8 (en) Device for controlling aerodynamic object which has a device for directing
US5835056A (en) Apparatus for directing a mobile craft to a rendevous with another mobile craft
HRP920386A2 (en) A device for steering an aerodynamic body having a homing device
US3003449A (en) Torpedo control circuit
RU2275671C1 (en) Pilot-free flying vehicle control system
US3070307A (en) Cross-wind compensation computer
JPH0552495A (en) Flight control system