SI26349A - Method for measuring various fluid parameters and a device for performing the method - Google Patents
Method for measuring various fluid parameters and a device for performing the method Download PDFInfo
- Publication number
- SI26349A SI26349A SI202200054A SI202200054A SI26349A SI 26349 A SI26349 A SI 26349A SI 202200054 A SI202200054 A SI 202200054A SI 202200054 A SI202200054 A SI 202200054A SI 26349 A SI26349 A SI 26349A
- Authority
- SI
- Slovenia
- Prior art keywords
- communication
- internal
- processing unit
- external
- measuring unit
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000012545 processing Methods 0.000 claims abstract description 39
- 239000012528 membrane Substances 0.000 claims abstract description 35
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 8
- 239000002904 solvent Substances 0.000 claims abstract description 7
- 230000001939 inductive effect Effects 0.000 claims description 21
- 238000004891 communication Methods 0.000 claims description 11
- 230000005284 excitation Effects 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000006378 damage Effects 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000010612 desalination reaction Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- LXRZVMYMQHNYJB-UNXOBOICSA-N [(1R,2S,4R)-4-[[5-[4-[(1R)-7-chloro-1,2,3,4-tetrahydroisoquinolin-1-yl]-5-methylthiophene-2-carbonyl]pyrimidin-4-yl]amino]-2-hydroxycyclopentyl]methyl sulfamate Chemical compound CC1=C(C=C(S1)C(=O)C1=C(N[C@H]2C[C@H](O)[C@@H](COS(N)(=O)=O)C2)N=CN=C1)[C@@H]1NCCC2=C1C=C(Cl)C=C2 LXRZVMYMQHNYJB-UNXOBOICSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
- B01D61/026—Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/08—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/12—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/02—Elements in series
- B01D2317/025—Permeate series
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
- C02F2209/008—Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
Landscapes
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Predlagani izum se nanaša na postopek za merjenje različnih parametrov fluida in naprava za izvedbo postopka, kot na primer merjenje prevodnosti, temperature, Ph vrednosti, pretoka, tlaka in podobnega, pri fluidih s pomočjo polprepustnih membran, ki po principu reverzne osmoze ločujejo topljenec od topila. Naprava za izvedbo postopka obsega notranjo, merilno enoto (8), ki je razporejena v osrednji cevi (6) v končnem območju, gledano v smeri (A) toka, vsakokratne membrane (1) in neposredno pred veznim cevastim nastavkom (4), in zunanjo, komunikacijsko-obdelovalno enoto (9), ki je razporejena neposredno na zunanjem obodu visokotlačne cevi (2) in v območju neposredno nad omenjeno notranjo, merilno enoto (8), pri čemer se omenjena notranja, merilna enota (8) napaja z energijo kot tudi komunicira z omenjeno zunanjo, komunikacijsko-obdelovalno enoto (9) na osnovi brezžičnega sodelovanja.The proposed invention relates to a process for measuring various fluid parameters and a device for performing the process, such as measuring conductivity, temperature, Ph value, flow, pressure and the like, in fluids with the help of semi-permeable membranes, which separate the solute from the solvent according to the principle of reverse osmosis . The device for carrying out the process comprises an internal, measuring unit (8) which is arranged in the central tube (6) in the final area, viewed in the direction (A) of the flow, of each membrane (1) and directly in front of the connecting tubular fitting (4), and an external, communication-processing unit (9), which is arranged directly on the outer circumference of the high-pressure pipe (2) and in the area directly above said internal, measuring unit (8), whereby said internal, measuring unit (8) is supplied with energy as well as communicates with the mentioned external, communication-processing unit (9) on the basis of wireless cooperation.
Description
POSTOPEK ZA MERJENJE RAZLIČNIH PARAMETROV FLUIDA IN NAPRAVA ZA IZVEDBO POSTOPKAPROCEDURE FOR MEASURING VARIOUS FLUID PARAMETERS AND DEVICE FOR PERFORMING THE PROCEDURE
[0001] Predlagani izum se nanaša na postopek za merjenje različnih parametrov, kot na primer prevodnosti, temperature, Ph vrednosti, pretoka, tlaka in podobnega, pri fluidih s pomočjo polprepustnih membran, ki po principu reverzne osmoze ločujejo topljenec od topila, in na napravo za izvedbo omenjenega postopka.[0001] The proposed invention relates to a process for measuring various parameters, such as conductivity, temperature, Ph value, flow, pressure and the like, in fluids with the help of semi-permeable membranes, which separate the solute from the solvent according to the principle of reverse osmosis, and to the device to carry out the mentioned procedure.
[0002] Iz dokumenta US 2014180610 je znana podobna rešitev, ki predlaga uporabo baterijsko napajanega tipala prevodnosti, kar omejuje življenjsko dobo naprave in zahteva dokaj pogosto servisiranje oz. menjavo baterij. Poleg tega uporaba baterije pogojuje tudi velikost vezja in s tem celotnega tipala.[0002] A similar solution is known from document US 2014180610, which proposes the use of a battery-powered conductivity sensor, which limits the lifetime of the device and requires fairly frequent servicing or changing batteries. In addition, the use of a battery also determines the size of the circuit and thus of the entire sensor.
[0003] Dalje je v dokumentu US 2011114561 razkrita rešitev, kjer se za napajanje uporablja generator (rotor), ki je vstavljen v osrednjo cev membrane in ga poganja tok fluida. Omenjena rešitev za svoje delovanje potrebuje konstanten pretok in tako omogoča delovanje samo v tekočem fluidu z zadostnim pretokom.[0003] Furthermore, document US 2011114561 discloses a solution where a generator (rotor) is used for power supply, which is inserted into the central tube of the membrane and driven by the fluid flow. The aforementioned solution requires a constant flow for its operation and thus enables operation only in liquid fluid with sufficient flow.
[0004] Še dalje je iz dokumenta EP 1937386 znana rešitev, ki predlaga uporabo brezžične WLAN komunikacije za prenos izmerjenih podatkov, kar zahteva veliko zalogo energije, kot sta baterija ali drugi načini žičnega napajanja.[0004] Furthermore, a solution is known from document EP 1937386, which proposes the use of wireless WLAN communication for the transfer of measured data, which requires a large supply of energy, such as a battery or other wired power supply methods.
[0005] Še dalje je iz dokumenta EP 2471591 znana rešitev, ki predlaga prenos podatkov s pomočjo antene, vstavljene med membrano za reverzno osmozo in notranjo steno visokotlačne cevi, ki deluje na principu elektromagnetnega valovanja.[0005] Furthermore, a solution is known from document EP 2471591, which proposes the transmission of data with the help of an antenna inserted between the membrane for reverse osmosis and the inner wall of a high-pressure pipe, which works on the principle of electromagnetic waves.
[0006] Naloga predlaganega izuma je ustvariti napravo za merjenje v realnem času različnih parametrov, kot na primer prevodnosti, temperature, Ph vrednosti, pretoka, tlaka in podobnega, pri fluidih s pomočjo polprepustnih membran, ki po principu reverzne osmoze ločujejo topljenec od topila.[0006] The task of the proposed invention is to create a device for real-time measurement of various parameters, such as conductivity, temperature, Ph value, flow, pressure and the like, in fluids with the help of semi-permeable membranes, which separate the solute from the solvent according to the principle of reverse osmosis.
[0007] Dalje je naloga predlaganega izuma ustvariti nov postopek za merjenje v realnem času različnih parametrov, kot na primer prevodnosti, temperature, Ph vrednosti, pretoka, tlaka in podobnega, pri fluidih s pomočjo polprepustnih membran, ki po principu reverzne osmoze ločujejo topljenec od topila.[0007] Furthermore, the task of the proposed invention is to create a new procedure for measuring in real time various parameters, such as conductivity, temperature, Ph value, flow, pressure and the like, in fluids with the help of semi-permeable membranes, which, according to the principle of reverse osmosis, separate the solute from solvents.
[0008] Zastavljena naloga je po predlaganem izumu rešena z značilnostmi, podanimi v značilnostnem delu 1. patentnega zahtevka. Podrobnosti izuma so razkrite v pripadajočih podzahtevkih.[0008] According to the proposed invention, the set task is solved by the characteristics given in the characteristic part of the 1st patent claim. Details of the invention are disclosed in the accompanying subclaims.
[0009] Izum je v nadaljevanju podrobneje predstavljen na osnovi neomejujočega izvedbenega primera in s sklicevanjem na priložene skice, kjer kaže sl. 1 v baterijo razporejen niz cevi za razsoljevanje fluida, sl. 2 eno izmed omenjenih cevi iz baterije s sl. 1 v vzdolžnem prerezu, sl. 3 merilno napravo po izumu, sl. 4 shematski prikaz merilne enote, in sl. 5 shematski prikaz komunikacijsko-obdelovalne enote.[0009] In the following, the invention is presented in more detail on the basis of a non-limiting embodiment and with reference to the attached sketches, where fig. 1, a set of tubes arranged in the battery for desalination of the fluid, fig. 2 one of the mentioned tubes from the battery from fig. 1 in longitudinal section, fig. 3 measuring device according to the invention, fig. 4 schematic representation of the measuring unit, and fig. 5 schematic representation of the communication-processing unit.
[0010] Postopek za merjenje različnih parametrov, kot na primer prevodnosti, temperature, Ph vrednosti, pretoka, tlaka in podobnega, pri fluidih je v nadaljevanju opisan na neomejujočem izvedbenem primeru postopka za razsoljevanje vode s pomočjo polprepustnih membran 1, ki po principu reverzne osmoze iz vode, to je topila, odstranjujejo sol, to je topljenec. Seveda je povsem očitno, da postopek in naprava po izumu nista omejena zgolj na razsoljevanje vode, temveč se ju lahko uporablja tudi pri drugih postopkih, na primer pri ločevanju vode iz mleka in podobno. Omenjene membrane 1 so tipično valjastih oblik, niz več enakih membran 1 pa je zaporedno vstavljen v vsakokratno visokotlačno cev 2, pri čemer je niz cevi 2 razporejen v cevno baterijo 3 (na sl. 1 prikazano s črta-pikčasto črto). Vsakokratni sosednji membrani 1 iz omenjenega niza membran sta medsebojno razstavljivo povezani s pomočjo veznega cevastega nastavka 4. Na vhod 5 vsakokratne visokotlačne cevi 2 se dovaja slano vodo, ki tekom postopka potuje v smeri puščice A skozi vse membrane 1. Razsoljena (permeatna) voda, ki pronica skozi membrane 1, se steka v osrednjo permeatno cev 6, preostali koncentrat slane vode pa se izloči na izhodu 7 iz vsakokratne visokotlačne cevi 2. Prevodnost permeatne vode se meri v območju izstopnega konca vsakokratne membrane 1 oz. v območju spoja s sosednjo membrano 1.[0010] The procedure for measuring various parameters, such as conductivity, temperature, Ph value, flow rate, pressure and the like, for fluids is described below on a non-limiting example of a procedure for desalination of water using semi-permeable membranes 1, which according to the principle of reverse osmosis from the water, that is the solvent, they remove the salt, that is the solute. Of course, it is quite obvious that the process and the device according to the invention are not limited only to water desalination, but can also be used in other processes, for example in the separation of water from milk and the like. Said membranes 1 are typically cylindrical in shape, and a set of several identical membranes 1 is successively inserted into each high-pressure pipe 2, whereby the set of pipes 2 is arranged in a pipe battery 3 (shown in Fig. 1 by a line-dotted line). Each adjacent membrane 1 from the aforementioned set of membranes is connected to each other in a detachable manner by means of a connecting pipe fitting 4. Salt water is supplied to the inlet 5 of each high-pressure pipe 2, which during the process travels in the direction of arrow A through all membranes 1. Desalinated (permeate) water, which seeps through the membranes 1, flows into the central permeate pipe 6, and the remaining salt water concentrate is separated at the exit 7 from the high-pressure pipe 2 of each time. The conductivity of the permeate water is measured in the area of the outlet end of each membrane 1 or in the area of the junction with the adjacent membrane 1.
[0011] Po prvi membrani 1 iz niza zaporednih membran 1 v vsakokratni cevi 2 je voda najbolj razsoljena, prevodnost je nizka, po zadnji membrani 1 iz niza zaporednih membran 1 v vsakokratni cevi 2 je voda najmanj razsoljena, prevodnost nekoliko naraste. Kadar prevodnost vode na vsaj enem od tipal različnih parametrov, kot na primer prevodnosti, temperature, Ph vrednosti, pretoka, tlaka in podobnega, ne ustreza vnaprej predvidenemu območju, pomeni, da je vsaj ena omenjena membrana 1 v okvari in da razsoljena voda v osrednji cevi 6 ne ustreza več kvalitativnim zahtevam. Omenjeno vsaj eno tipalo, na katerem je izmerjena presežna vrednost neposredno določi, katera od membran 1 v cevi 2 je okvarjena.[0011] After the first membrane 1 from a set of successive membranes 1 in each pipe 2, the water is the most desalinated, the conductivity is low, after the last membrane 1 from a set of successive membranes 1 in each pipe 2, the water is the least desalinated, the conductivity increases slightly. When the water conductivity on at least one of the sensors of various parameters, such as conductivity, temperature, Ph value, flow, pressure and the like, does not correspond to the predetermined range, it means that at least one mentioned membrane 1 is defective and that the desalinated water in the central pipe 6 no longer meets the qualitative requirements. Said at least one sensor on which the measured excess value directly determines which of the membranes 1 in the tube 2 is defective.
[0012] Naprava za merjenje v realnem času različnih parametrov, kot na primer prevodnosti, temperature, Ph vrednosti, pretoka, tlaka in podobnega po izumu obsega notranjo, merilno enoto 8, in zunanjo, komunikacijsko-obdelovalno enoto 9. Omenjena notranja enota 8 naprave po izumu je razporejena v osrednji cevi 6 v končnem območju, gledano v smeri A toka, vsakokratne membrane 1 in neposredno pred omenjenim veznim cevastim nastavkom 4. Omenjena zunanja enota 9 naprave po izumu je razporejena neposredno na visokotlačni cevi 2 in v območju neposredno nad omenjeno notranjo enoto 8. Bistvo predlaganega izuma leži v tem, da se omenjena notranja, merilna enota 8 napaja z energijo kot tudi komunicira z omenjeno zunanjo, komunikacijsko-obdelovalno enoto 9 na osnovi brezžičnega sodelovanja.[0012] The device for real-time measurement of various parameters, such as conductivity, temperature, Ph value, flow, pressure and the like according to the invention, comprises an internal, measuring unit 8, and an external, communication-processing unit 9. Said internal unit 8 of the device according to the invention it is arranged in the central tube 6 in the final area, seen in the direction A of the flow, of each membrane 1 and directly in front of the mentioned connecting tubular attachment 4. The mentioned external unit 9 of the device according to the invention is arranged directly on the high-pressure pipe 2 and in the area directly above the mentioned internal unit 8. The essence of the proposed invention lies in the fact that said internal, measuring unit 8 is supplied with energy and also communicates with said external, communication-processing unit 9 on the basis of wireless cooperation.
[0013] Po predlaganem izumu je lahko predvideno, da je zadnja izmed vseh omenjenih enot 8, gledano v smeri A toka, lahko nameščena tudi znotraj izstopne cevi, vendar ne več v območju zadnje membrane 1 oz. visokotlačne cevi 2.[0013] According to the proposed invention, it can be provided that the last of all mentioned units 8, viewed in the direction A of the flow, can also be placed inside the outlet pipe, but no longer in the area of the rear membrane 1 or. high pressure pipes 2.
[0014] Omenjeno notranjo, kot tulka zasnovano merilno enoto 8 naprave po izumu se da tesno vstaviti v notranjost osrednje cevi 6, in obsega vsaj eno merilno elektrodo 10; 10’, ki je v neposrednem stiku s fluidom, katerega parametre se meri, in notranji induktivni element 11, na primer tuljavo, ki je tesno razporejen okoli zunanjega oboda omenjene, kot tulka zasnovane merilne enote 8, in je izoliran od fluida, katerega parametre se meri. Omenjena notranja enota 8 dalje obsega procesor 12, ki je preko vzbujalnega vezja 13 povezan s prvo merilno elektrodo 10 in ki ustvarja sinusni signal na omenjeni prvi merilni elektrodi 10, analogno-digitalni pretvornik 14 za sprejem analognega signala, zajetega na drugi merilni elektrodi 10', in pretvorbo omenjenega analognega signala v digitalen signal, ki je primeren za digitalno obdelavo in prenos, ter vsaj eno tipalo 15, na primer tipalo temperature, pretoka, tlaka, pH vrednosti in podobno, za merjenje vsaj enega parametra fluida, v katerega je vstavljena omenjena vsaj ena elektroda 10; 10'. Omenjeni notranji induktivni element 11 je preko napajalnega modula 16 in komunikacijskega modula 17 povezan s procesorjem 12, pri čemer ta povezava omogoča napajanje z energijo kot tudi rušenje resonančnih pogojev oz. frekvence omenjene notranje enote 8 s pomočjo zunanje, komunikacijskoobdelovalne enote 9. Dalje omenjena povezava omogoča prenos podatkov v omenjeno zunanjo, komunikacijsko-obdelovalno enoto 9 naprave po izumu.[0014] Said internal, sleeve-shaped measuring unit 8 of the device according to the invention can be tightly inserted inside the central tube 6, and comprises at least one measuring electrode 10; 10', which is in direct contact with the fluid, the parameters of which are measured, and the internal inductive element 11, for example a coil, which is tightly arranged around the outer circumference of the said measuring unit 8, which is designed as a sleeve, and is isolated from the fluid, whose parameters is measured. Said internal unit 8 further comprises a processor 12, which is connected to the first measuring electrode 10 via the excitation circuit 13 and which generates a sinusoidal signal on said first measuring electrode 10, an analog-to-digital converter 14 for receiving the analog signal captured on the second measuring electrode 10' , and converting said analog signal into a digital signal suitable for digital processing and transmission, and at least one sensor 15, for example a sensor of temperature, flow, pressure, pH value and the like, for measuring at least one parameter of the fluid in which it is inserted said at least one electrode 10; 10'. The aforementioned internal inductive element 11 is connected to the processor 12 via the power supply module 16 and the communication module 17, whereby this connection enables the supply of energy as well as the destruction of resonant conditions or. frequencies of the mentioned internal unit 8 with the help of the external, communication processing unit 9. The further mentioned connection enables the transfer of data to the mentioned external, communication-processing unit 9 of the device according to the invention.
[0015] Kot že omenjeno, je omenjena notranja, merilna enota 8 naprave po izumu vstavljena v osrednjo cev 6, pri čemer je v celoti obdana s fluidom, katerega parametre se meri, na primer plinom, paro, tekočino. V neposrednem galvanskem stiku s fluidom, katerega parametre se meri, je samo omenjena vsaj ena merilna elektroda 10; 10’, medtem ko so ostale elektronske komponente omenjene merilne enote 8 nepredušno izolirane od omenjenega fluida.[0015] As already mentioned, the aforementioned internal measuring unit 8 of the device according to the invention is inserted into the central tube 6, whereby it is completely surrounded by the fluid whose parameters are measured, for example gas, steam, liquid. In direct galvanic contact with the fluid whose parameters are measured, only one measuring electrode 10 is mentioned; 10', while the other electronic components of the mentioned measuring unit 8 are hermetically isolated from the mentioned fluid.
[0016] V prvem koraku postopka po izumu se vklopi napajanje omenjene zunanje, komunikacijsko-obdelovalne enote 9, katera na osnovi brezžičnega sodelovanja, konkretno na osnovi induktivne sklopitve enot 8; 9, zbudi omenjeno merilno enoto 8, ki tedaj prične z meritvijo prevodnosti fluida, s katerim je v neposrednem stiku vsaj ena omenjena elektroda 10; 10'. Tako pridobljene izmerjene podatke omenjena merilna enota 8 na osnovi brezžičnega sodelovanja posreduje omenjeni zunanji, komunikacijsko-obdelovalni enoti 9 naprave po izumu, ki omenjene pridobljene izmerjene podatke obdela in posreduje naprej.[0016] In the first step of the procedure according to the invention, the power supply of the mentioned external, communication-processing unit 9 is turned on, which is based on wireless cooperation, specifically on the basis of inductive coupling of the units 8; 9, wakes up the mentioned measuring unit 8, which then starts measuring the conductivity of the fluid with which at least one mentioned electrode 10 is in direct contact; 10'. The measured data obtained in this way is forwarded by the said measurement unit 8 on the basis of wireless cooperation to the said external, communication-processing unit 9 of the device according to the invention, which processes and forwards the said obtained measured data.
[0017] Vsakokratna notranja, merilna enota 8 naprave po izumu ima svojo pripadajočo zunanjo, komunikacijsko-obdelovalno enoto 9 naprave, ki skupaj tvorita induktivni sklop, pri čemer omenjeno brezžično sodelovanje poteka obojestransko.[0017] Each internal, measuring unit 8 of the device according to the invention has its corresponding external, communication-processing unit 9 of the device, which together form an inductive assembly, whereby the mentioned wireless cooperation takes place bilaterally.
[0018] Omenjena zunanja, komunikacijsko-obdelovalna enota 9 naprave po izumu obsega procesor 18, ki je preko vzbujalnega vezja 19 povezan z zunanjim induktivnim elementom 20, na primer tuljavo, za omenjeno brezžično sodelovanje z omenjeno notranjo, merilno enoto 8 naprave po izumu, pri čemer je omenjeni zunanji induktivni element 20 preko prvega komunikacijskega modula 21 povratno povezan z omenjenim procesorjem 18. Dalje je omenjeni zunanji induktivni element 20 predviden za brezžično sodelovanje z omenjeno zunanjo, komunikacijsko-obdelovalno enoto 9 naprave po izumu. Še dalje je predvideno, da zunanja, komunikacijsko-obdelovalna enota 9 naprave po izumu obsega drugi komunikacijski modul 22 za sprejem z notranjo, merilno enoto 8 izmerjenih in pridobljenih podatkov, ki jih je obdelal procesor 18, za prenos s procesorjem 18 obdelanih podatkov do podatkovnega vozlišča 23 in za posredovanje ukazov od podatkovnega vozlišča 23 nazaj do procesorja 18.[0018] Said external, communication-processing unit 9 of the device according to the invention comprises a processor 18, which is connected via an excitation circuit 19 to an external inductive element 20, for example a coil, for said wireless cooperation with said internal, measuring unit 8 of the device according to the invention, wherein said external inductive element 20 is connected back to said processor 18 via the first communication module 21. Furthermore, said external inductive element 20 is intended for wireless cooperation with said external, communication-processing unit 9 of the device according to the invention. It is further provided that the external, communication-processing unit 9 of the device according to the invention comprises a second communication module 22 for receiving with the internal, measuring unit 8, the measured and obtained data, which has been processed by the processor 18, for the transfer of the data processed by the processor 18 to the data node 23 and to forward commands from the data node 23 back to the processor 18.
[0019] Omenjena zunanja, komunikacijsko-obdelovalna enota 9 naprave po izumu, ki se jo z energijo napaja preko vhodnega napajalnega mesta 24, ni v stiku s fluidom, katerega parametre se meri, in je tipično razporejena na zunanjem obodu visokotlačne cevi 2 tako, da omenjena enota 9 na način prstana obdaja visokotlačno cev 2 in je, gledano v prečni ravnini glede na potek cevi 2, razporejena v območju neposredno nad oz. okoli notranje, merilne enote 8 naprave po izumu. Glavne naloge zunanje, komunikacijsko-obdelovalne enote 9 so, da na zahtevo podatkovnega vozlišča 23 na osnovi induktivne sklopitve aktivira notranjo, merilno enoto 8 naprave, sprejme podatke, ki jih je pridobila notranja, merilna enota 8, jih obdela in obdelane podatke posreduje podatkovnemu vozlišču 23. Zunanjo, komunikacijsko-obdelovalno enoto 9 se napaja z energijo, na primer žično ali baterijsko, in komunicira, na primer preko protokola RS485 ali CAN, s podatkovnim vozliščem 23, ki upravlja celotno baterijo 3 visokotlačnih cevi 2. Podatkovno vozlišče 23 deluje kot upravljalnik baterije 3 visokotlačnih cevi 2, na katerega so povezane vse merilne naprave po izumu. Podatkovno vozlišče 23 v odvisnosti od prednastavljenega časa vklaplja izbrane merilne naprave v bateriji, na primer na način, da se sočasno ne vklopita dve istoležni merilni napravi, s čimer se prepreči interferenco med sosednjimi napravami.[0019] Said external, communication-processing unit 9 of the device according to the invention, which is supplied with energy via the input supply point 24, is not in contact with the fluid, the parameters of which are measured, and is typically arranged on the outer circumference of the high-pressure pipe 2 in such a way that that the mentioned unit 9 surrounds the high-pressure pipe 2 in the manner of a ring and, viewed in the transverse plane with respect to the course of the pipe 2, is arranged in the area directly above or around the internal measuring unit 8 of the device according to the invention. The main tasks of the external, communication-processing unit 9 are to activate the internal, measuring unit 8 of the device at the request of the data node 23 based on inductive coupling, receive the data obtained by the internal, measuring unit 8, process them and forward the processed data to the data node 23. The external, communication-processing unit 9 is supplied with energy, for example wired or battery, and communicates, for example via the RS485 or CAN protocol, with the data node 23, which manages the entire battery 3 of high-pressure pipes 2. The data node 23 acts as battery manager 3 high-pressure pipes 2, to which all measuring devices according to the invention are connected. The data node 23 turns on the selected measuring devices in the battery depending on the preset time, for example in such a way that two identical measuring devices are not switched on at the same time, thereby preventing interference between neighboring devices.
[0020] Po vzpostavitvi stabilne napajalne električne napetosti v notranji, merilni enoti 8 naprave le-ta samodejno izvede meritev vsaj enega parametra fluida, na primer prevodnosti, temperature, pretoka, Ph vrednosti in podobnega. V odvisnosti od nastavljenega časovnega obdobja ali od trenutne zahteve komunikacijsko-obdelovalna enota 9 naprave po izumu z aktiviranjem zunanjega induktivnega elementa 20 pri določeni frekvenci, na primer 133 kHz, sproži brezžično napajanje notranje, merilne enote 8 naprave. Za karseda velik prenos moči med komunikacijsko-obdelovalno enoto in notranjo, merilno enoto 8 naprave po izumu, skrbi vzbujalno vezje 19 komunikacijsko-obdelovalne enote 9, ki na osnovi primerjave faze med vzbujalnim signalom zunanje, komunikacijsko-obdelovalne enote 9 in signalom na zunanjem induktivnem elementu 20, sekvenčno uglasi nihajni krog in s tem zagotovi resonančno vzbujanje notranjega induktivnega elementa 11 notranje, merilne enote 8 naprave. Meritev se prične z vzbujanjem sinusnega signala na prvi elektrodi 10, kar zaradi prevodnosti fluida povzroči odziv na drugi elektrodi 10’, na kateri se odčita signal. Razlika med amplitudo in fazo generiranega signala na prvi elektrodi 10 ter amplitudo in fazo izmerjenega signala na drugi elektrodi 10', ki nastane kot posledica kompleksne upornosti, to je impedance, fluida pove, kakšna je prevodnost fluida v katerem se nahajata elektrodi 10;10'. Poleg meritve prevodnosti fluida se sočasno izvaja tudi meritev temperature fluida. Končni podatek o prevodnosti fluida se preračuna na prevodnost fluida pri 25 °C.[0020] After establishing a stable supply voltage in the internal measuring unit 8 of the device, it automatically measures at least one parameter of the fluid, for example conductivity, temperature, flow rate, Ph value and the like. Depending on the set time period or on the current request, the communication-processing unit 9 of the device according to the invention by activating the external inductive element 20 at a certain frequency, for example 133 kHz, initiates the wireless power supply of the internal measuring unit 8 of the device. The extremely large power transfer between the communication-processing unit and the internal measuring unit 8 of the device according to the invention is ensured by the excitation circuit 19 of the communication-processing unit 9, which, based on phase comparison between the excitation signal of the external communication-processing unit 9 and the signal on the external inductive element 20, sequentially tunes the oscillating circuit and thereby provides resonant excitation of the internal inductive element 11 of the internal measuring unit 8 of the device. The measurement begins with the excitation of a sinusoidal signal on the first electrode 10, which, due to the conductivity of the fluid, causes a response on the second electrode 10', on which the signal is read. The difference between the amplitude and phase of the generated signal on the first electrode 10 and the amplitude and phase of the measured signal on the second electrode 10', which occurs as a result of the complex resistance, i.e. the impedance, of the fluid indicates the conductivity of the fluid in which the electrodes 10; 10' are located. . In addition to the measurement of the conductivity of the fluid, the temperature of the fluid is also measured simultaneously. The final data on the conductivity of the fluid is converted to the conductivity of the fluid at 25 °C.
[0021] Dalje se izmerjene podatke zapakira v podatkovni paket, ki ga notranja, merilna enota 8 s pomočjo omenjenega induktivnega sodelovanja enot 8; 9 pošlje komunikacijsko-obdelovalni enoti 9. Komunikacija med notranjo, merilno enoto 8 in komunikacijsko-obdelovalno enoto 9 naprave poteka s pomočjo rušenja resonančnih pogojev v oz. s pomočjo razglaševanja notranje, merilne enote 8 naprave. Pri tem zunanja, komunikacijsko-obdelovalna enota 9 omenjeno rušenje resonančnih pogojev zazna kot odstopanje faze oz. fazno modulacijo ali kot nihanje toka na zunanji, merilni enoti 9, kar ima za posledico ustrezno dekodiranje omenjenih podatkov. Brezžično napajanje z energijo notranje, merilne enote 8 s pomočjo omenjenega induktivnega sodelovanja enot 8; 9 se prekine po uspešnem sprejemu izmerjenih podatkov ali po določenem pretečenem času.[0021] Further, the measured data is packed into a data package, which the internal measuring unit 8 uses the mentioned inductive cooperation of the units 8; 9 sends to the communication-processing unit 9. The communication between the internal, measuring unit 8 and the communication-processing unit 9 of the device takes place with the help of breaking the resonance conditions in or by means of announcing the internal, measuring unit 8 of the device. In this case, the external, communication-processing unit 9 detects the mentioned destruction of resonant conditions as a phase deviation or phase modulation or as a current fluctuation on the external measuring unit 9, which results in the corresponding decoding of the mentioned data. Wireless power supply of the internal, measuring unit 8 with the help of the mentioned inductive cooperation of the units 8; 9 is terminated after successful reception of measured data or after a certain elapsed time.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI202200054A SI26349A (en) | 2022-04-11 | 2022-04-11 | Method for measuring various fluid parameters and a device for performing the method |
PCT/IB2023/052146 WO2023199126A1 (en) | 2022-04-11 | 2023-03-07 | Method for measuring various parameters in fluids and device for carrying out said method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI202200054A SI26349A (en) | 2022-04-11 | 2022-04-11 | Method for measuring various fluid parameters and a device for performing the method |
Publications (1)
Publication Number | Publication Date |
---|---|
SI26349A true SI26349A (en) | 2023-10-30 |
Family
ID=85724826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI202200054A SI26349A (en) | 2022-04-11 | 2022-04-11 | Method for measuring various fluid parameters and a device for performing the method |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI26349A (en) |
WO (1) | WO2023199126A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101389389B (en) | 2005-09-07 | 2012-10-24 | 美国海德能公司 | Reverse osmosis filtration devices with rfid tag-powered flow and conductivity meters |
EP2233198A4 (en) | 2007-12-17 | 2012-09-05 | Nitto Denko Corp | Spiral type film filtering device and mounting member, and film filtering device managing system and film filtering device managing method using the same |
EP2295134A4 (en) * | 2008-06-06 | 2012-08-08 | Nitto Denko Corp | Membrane filtration equipment management system and membrane filtration equipment for use therein, and membrane filtration equipment management method |
JP5473482B2 (en) | 2009-08-27 | 2014-04-16 | 日東電工株式会社 | Membrane filtration device |
US9709429B2 (en) | 2012-12-21 | 2017-07-18 | General Electric Company | MEMS based membrane sensor system and method of use |
US20200197869A1 (en) * | 2017-05-11 | 2020-06-25 | Cms Interests Pty Ltd | Monitoring of membrane modules |
-
2022
- 2022-04-11 SI SI202200054A patent/SI26349A/en active IP Right Grant
-
2023
- 2023-03-07 WO PCT/IB2023/052146 patent/WO2023199126A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2023199126A1 (en) | 2023-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5578783B2 (en) | Spiral membrane filtration device, mounting member, membrane filtration device management system and membrane filtration device management method using the same | |
US8519559B2 (en) | Spiral type membrane element, and spiral type membrane filtering device having the same | |
US11061057B2 (en) | Non-contact type measuring apparatus for conductivity and permittivity of non-conductive fluid using RF signal | |
CN102794108A (en) | Reverse osmosis assembly | |
CN106558924A (en) | A kind of wireless charger and wireless charging control method | |
US10781115B2 (en) | Apparatus and method for generating metal ions in a fluid stream | |
SI26349A (en) | Method for measuring various fluid parameters and a device for performing the method | |
JPH10296058A (en) | Hollow fiber type permselective membrane module | |
RU2478943C2 (en) | Measurement device and method of water content and salt concentration in multiphase fluid flow | |
CN105073649A (en) | Mems based membrane sensor system and method of use | |
CN102908687A (en) | Combination of a single point RO device with a haemo-dialysis device | |
KR101601835B1 (en) | Sea water desalting apparatus capable of physical removal of scale | |
US20200197869A1 (en) | Monitoring of membrane modules | |
AU2012204637A1 (en) | Membrane filtration device and operating method for membrane filtration device | |
CN111817450B (en) | Underwater communication power supply system based on magnetic communication | |
TW201524587A (en) | Operating method for membrane separation device, and membrane separation system | |
CN105417811A (en) | Tube type waste water treatment device and waste water treatment method | |
US20220008869A1 (en) | Electrically conductive membrane assembly and related systems and methods | |
US20130334124A1 (en) | Separation membrane module | |
CN211718773U (en) | Constant temperature water purifier | |
JPWO2014126156A1 (en) | Membrane separation treatment method and membrane separation treatment system | |
RU2132721C1 (en) | Multi-section electrodialyzer | |
CN105571682A (en) | Tank liquid level detection system | |
CN208310835U (en) | Spraying apparatus start stop apparatus and spraying apparatus external member | |
CN205635201U (en) | Tubular effluent treatment plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20231113 |