SI26213A - ACTIVE LIQUID CRYSTAL MODULE FOR ADJUSTABLE CAR HEADLIGHTS AND OTHER LIGHTS AND LIGHTS WITH THE MENTIONED MODULE - Google Patents

ACTIVE LIQUID CRYSTAL MODULE FOR ADJUSTABLE CAR HEADLIGHTS AND OTHER LIGHTS AND LIGHTS WITH THE MENTIONED MODULE Download PDF

Info

Publication number
SI26213A
SI26213A SI202100119 SI26213A SI 26213 A SI26213 A SI 26213A SI 202100119 SI202100119 SI 202100119 SI 26213 A SI26213 A SI 26213A
Authority
SI
Slovenia
Prior art keywords
liquid crystal
light
module
active
control unit
Prior art date
Application number
SI202100119
Other languages
Slovenian (sl)
Inventor
David Seč
Miha Ravnik
Urban Mur
Original Assignee
Univerza V Ljubljani
Filing date
Publication date
Application filed by Univerza V Ljubljani filed Critical Univerza V Ljubljani
Publication of SI26213A publication Critical patent/SI26213A/en

Links

Abstract

Izum spada na področje optike, še posebno svetil. Predmet izuma je aktivni tekočekristalni (TK) modul, ki lahko realnočasno spreminja svoje optične lastnosti in s tem omogoča poljubno nastavljivo obliko in intenziteto snopa svetlobe, pri čemer modul vključuje: Izvor svetlobe, ki oddaja svetlobo za osvetlitev; Tekočekristalno celico, ki vsaj delno prekriva izvor svetlobe; Zunanje polje, ki je v, na ali vsaj deloma obdaja tekočekristalno celico, za prilagajanje stanja tekočekristalne celice oziroma lomnega količnika v tekočekristalni celici; Kontrolno enoto, ki omogoča kontrolo zunanjega polja ter je prednostno povezana z izvorom svetlobe ter opcijskimi senzorji, ki zaznavajo okolico aktivnega tekočekristalnega modula, na podlagi česar kontrolna enota prilagaja stanje tekočekristalne celice v skladu z algoritmi strojnega učenja, ki so uporabljeni za programiranje kontrolne enote. Modul ima nedefinirano število stanj, med katerimi se bo preklop zgodil kot odziv na zaznano stanje v okolici svetila z omenjenim modulomThe invention belongs to the field of optics, especially lighting. The subject of the invention is an active liquid crystal (LC) module, which can change its optical properties in real time and thus enables an arbitrarily adjustable shape and intensity of the light beam, whereby the module includes: A light source that emits light for illumination; A liquid crystal cell that at least partially covers the light source; An external field that is in, on or at least partially surrounds the liquid crystal cell, for adjusting the state of the liquid crystal cell or the refractive index in the liquid crystal cell; A control unit that enables control of the external field and is preferably connected to the light source and optional sensors that detect the surroundings of the active liquid crystal module, on the basis of which the control unit adjusts the state of the liquid crystal cell in accordance with the machine learning algorithms used to program the control unit. The module has an undefined number of states, between which the switch will occur in response to the detected state in the surroundings of the lamp with the mentioned module

Description

AKTIVNI TEKOČEKRISTALNI MODUL ZA PRILAGODLJIVE AVTOMOBILSKE ŽAROMETE IN OSTALA SVETILA TER SVETILA Z OMENJENIM MODULOMACTIVE LIQUID CRYSTAL MODULE FOR ADJUSTABLE CAR HEADLIGHTS AND OTHER LIGHTS AND LIGHTS WITH THE MENTIONED MODULE

Področje tehnikeThe field of technology

Izum v okviru fizike spada na področje optike, in sicer k svetilom, pri katerih se svetlobo, ki jo generira svetlobni vir, preusmerja s pomočjo sistema leč in reflektorjev. V kontekstu enega od možnih načinov uporabe se izum uvršča tudi na področje vozil, oz. svetlobne in signalizacijske opreme za vozila, še posebej prednjih žarometov in meglenk. Predmet izuma je aktivni tekočekristalni (TK) modul, ki lahko realnočasno spreminja svoje optične lastnosti in s tem omogoča poljubno nastavljivo obliko in intenziteto snopa svetlobe, ter svetilo z omenjenim tekočekristalnim modulom.In the context of physics, the invention belongs to the field of optics, namely to lamps in which the light generated by the light source is redirected using a system of lenses and reflectors. In the context of one of the possible ways of use, the invention also belongs to the field of vehicles, or lighting and signaling equipment for vehicles, especially headlights and fog lights. The subject of the invention is an active liquid crystal (TL) module, which can change its optical properties in real time and thus enables an arbitrarily adjustable shape and intensity of the light beam, as well as a lamp with the aforementioned liquid crystal module.

Ozadje izuma in tehnični problemBackground of the Invention and Technical Problem

Svetilo motornega vozila tipično sestoji iz svetlobnega vira, vsaj enega reflektorja, ki odseva svetlobo od svetlobnega vira, in sistema leč, ki primerno oblikuje snop. Naprednejši žarometi uporabljajo prilagodljiv snop (AFS - Adaptive Front-Lighting system) in prilagajajo intenziteto ter obliko snopa voznemu režimu: npr. (i) pri nižjih hitrostih je snop širši, da se lažje opazi pešce in druge udeležence v prometu in (ii) pri višjih hitrostih, tipično nad 100 km/h, je snop precej daljši in ožji ter tako bolj primerno osvetli cesto pri vožnjah po avtocesti. AFS sistemi lahko uporabljajo tako klasične, HID (npr. ksenonske sijalke), LED sijalke ali laserske izvore svetlobe. Tipično je prilagajanje izvedeno preko pomikov izvora svetlobe in sistema leč z električnimi aktuatorji, v zadnjem času pa vse več razvoja poteka v smeri selektivnega vklapljanja in izklapljanja delov izvora, kot npr. (i) s selektivnim izklapljanjem posameznih delov izvora svetlobe ali (ii) z napravo, ki deluje kot projektor in z zaslonkami prepušča samo določen del snopa.A motor vehicle light typically consists of a light source, at least one reflector that reflects light from the light source, and a lens system that appropriately shapes the beam. More advanced headlights use an adaptive beam (AFS - Adaptive Front-Lighting system) and adjust the intensity and shape of the beam to the driving regime: e.g. (i) at lower speeds, the beam is wider, so that pedestrians and other road users can be seen more easily, and (ii) at higher speeds, typically above 100 km/h, the beam is much longer and narrower, thus more adequately illuminating the road when driving on highways. AFS systems can use both classic, HID (eg xenon lamps), LED lamps or laser light sources. Typically, the adjustment is made through the displacement of the light source and the lens system with electric actuators, but recently more and more developments are taking place in the direction of selective switching on and off parts of the source, such as e.g. (i) by selectively switching off individual parts of the light source or (ii) by a device that acts as a projector and allows only a certain part of the beam to pass through with shutters.

Oba načina nadgradita obstoječo matrično LED tehnologijo, kjer se svetlobni snop prilagaja s pomočjo vklapljanja in izklapljana posameznih LED segmentov. Prvi način s selektivnim izklapljanjem delov izvora je implementacija majhnih »točkovnih« (angl. pixel) LED segmentov, ki se lahko posamično vklapljajo ali izklapljajo. Posebnost tehnologije je velikost izvora, saj je LED čip z na primer 1000 in več točkami na zgolj 4x4 mm2, vsaka točka pa lahko doseže svetilnost kar do 4,6 lumna. Velika prednost pred projektorskimi lučmi je ravno v manjši porabi energije, saj so neuporabljeni deli izvora svetlobe lahko ugasnjeni. Na drugi strani pa projektorske luči ponujajo več fleksibilnosti in možnost prikaza kompleksnih vzorcev, kot npr. navigacijskih simbolov, na površino cestišča. To se lahko doseže z lokalnim senčnenjem svetlobe z uporabo tekočekristalne zaslonke z nekaj tisoč točkami ločljivosti med izvorom svetlobe in lečo.Both modes upgrade the existing matrix LED technology, where the light beam is adjusted by turning individual LED segments on and off. The first method with selective switching off of parts of the source is the implementation of small "pixel" LED segments that can be switched on or off individually. The specialty of the technology is the size of the source, as there is an LED chip with, for example, 1000 or more points on only 4x4 mm 2 , and each point can reach a brightness of up to 4.6 lumens. A big advantage over projector lights is precisely the lower energy consumption, since unused parts of the light source can be switched off. On the other hand, projector lights offer more flexibility and the ability to display complex patterns, such as navigation symbols, on the surface of the road. This can be achieved by local shading of the light using a liquid crystal aperture with several thousand points of resolution between the light source and the lens.

Izum je osnovan na problemu, kako pri svetilu spreminjati svetlobni snop v poljubno prostorsko in časovno modulirano obliko za doseganje želenih optičnih karakteristik, med delovanjem ter glede na določene zunanje pogoje. V ta namen se lahko uporabijo mehanske komponente, kot so gibajoča mehanska zrcala znana iz patentne prijave WO2014121315A1 ali mehansko nastavljive leče opisane v patentni prijavi DE102019103898A1. Take rešitve imajo znano pomanjkljivost, da uporabljajo veliko mehanskih delov. Alternativno se za usmerjanje svetlobe lahko uporabijo tekoči kristali.The invention is based on the problem of how to change the light beam in a lamp into any spatially and temporally modulated shape in order to achieve the desired optical characteristics, during operation and according to certain external conditions. For this purpose, mechanical components can be used, such as moving mechanical mirrors known from patent application WO2014121315A1 or mechanically adjustable lenses described in patent application DE102019103898A1. Such solutions have the well-known drawback of using many mechanical parts. Alternatively, liquid crystals can be used to direct the light.

Tehnični problem, ki doslej še ni bil zadovoljivo rešen, je modulacija svetlobnega snopa v poljubno obliko s pomočjo tekočekristalnega modula, in sicer tako, da se svetlobo preusmeri in ne zasenči.A technical problem that has not yet been satisfactorily solved is the modulation of the light beam into an arbitrary shape with the help of a liquid crystal module, namely in such a way that the light is redirected and not overshadowed.

Stanje tehnikeState of the art

V literaturi je opisanih več načinov usmerjanja svetlobe na podlagi tekočih kristalov. Eden izmed načinov usmerjanja svetlobe s tekočekristalnim modulom v avtomobilskih žarometih je opisan v patentu EP 2 013 536 B1, kjer je opisana posebna enota za žaromet, ki sestoji iz več zaporednih tekočekristalnih celic. Vsaka celica ima dve stanji: prvo, ki čim manj vpliva na snop svetlobe, in drugo stanje, ki lomi žarke svetlobe glede na signal iz kontrolne enote AFS žarometa. Med obema stanjema se preklaplja s pomočjo dveh elektrod. Na ta način se na izsevani svetlobni snop vpliva tako, da se ga prilagodi glede na vnaprej predpisane režime. S tem se doseže nagib svetlobe gor ali dol ter širino izsevanega snopa. Celice tekočih kristalov imajo lahko površinski relief, različne oblike elektrod, lahko so anizotropno sipajoče celice, pri čemer je lahko več celic združenih vzporedno v vrste.Several methods of directing light based on liquid crystals are described in the literature. One of the methods of directing light with a liquid crystal module in car headlights is described in patent EP 2 013 536 B1, where a special unit for a headlight is described, which consists of several consecutive liquid crystal cells. Each cell has two states: the first, which affects the light beam as little as possible, and the second state, which refracts the light beams according to the signal from the AFS headlight control unit. It switches between the two states with the help of two electrodes. In this way, the radiated light beam is influenced by adjusting it according to the predetermined regimes. This achieves the inclination of the light up or down and the width of the radiated beam. Liquid crystal cells can have a surface relief, different electrode shapes, can be anisotropically scattering cells, where several cells can be connected in parallel in rows.

Podobno je v patentni prijavi WO 2018152644 A1 opisana naprava za AFS žaromete, ki temelji na tekočekristalni celici. Glede na kot zasuka volana in zaznavo nasproti vozečih vozil lahko naprava preko električnega polja vpliva na širino izsevanega snopa svetlobe preko tekočekristalne celice , in sicer ločeno za levi in desni žaromet. Več zaporednih celic je lahko združenih za natančnejšo modulacijo svetlobe v dveh ravninah. Glavna pomanjkljivost rešitve opisane v tej patentni prijavi je, da se snop širi simetrično na obe strani in ne spreminja njegove intenzitetne porazdelitve, kar običajno ni zaželeno.Similarly, patent application WO 2018152644 A1 describes a device for AFS headlights based on a liquid crystal cell. Depending on the angle of the steering wheel and the detection of oncoming vehicles, the device can influence the width of the beam of light emitted via the liquid crystal cell via an electric field, separately for the left and right headlights. Several consecutive cells can be combined for more precise light modulation in two planes. The main disadvantage of the solution described in this patent application is that the beam spreads symmetrically on both sides and does not change its intensity distribution, which is usually not desirable.

Patentna prijava DE 102016120222 A1 razkriva svetlobno napravo za avtomobilski žaromet, ki sestoji iz mehanske regulacije in dodatnega svetlobnega upravljalnika. Svetlobni upravljalnik je lahko DMD (mikrozrcala), tekočekristalni zaslon (tipa LCD ali LCoS) ali pa laserski skener. Z uporabo kombinacije mehanske regulacije in svetlobnega upravljalnika se doseže, da svetlobni upravljalnik deluje na manjšem območju in je lahko preprostejši in manjši ter zato cenejši, mehanska regulacija pa se ne uporablja pri pogostejših, hitrih in dinamičnih premikih med vožnjo in se ji zato podaljša življenjska doba. Naprava tukaj zajema tako osnovno mehansko regulacijo kot dodatno fino regulacijo svetlobe. V primeru tekočekristalnega zaslona ta regulacija deluje točkasto in samo spreminja delež prepuščene svetlobe v posamezni točki.Patent application DE 102016120222 A1 discloses a lighting device for a car headlight consisting of a mechanical regulation and an additional light controller. The light controller can be a DMD (micromirrors), a liquid crystal display (LCD or LCoS type) or a laser scanner. By using a combination of mechanical regulation and a light controller, it is achieved that the light controller works in a smaller area and can be simpler and smaller and therefore cheaper, while the mechanical regulation is not used for more frequent, fast and dynamic movements during driving and therefore its service life is extended . The device here includes both basic mechanical regulation and additional fine regulation of light. In the case of a liquid crystal screen, this regulation works point-wise and only changes the proportion of transmitted light in an individual point.

V patentni prijavi EP 3 501 896 A1 razkriva napravo s tekočekristalno celico, ki nemoteno prepušča svetlobni snop kratkih luči in modulira samo svetlobni snop dolgih luči, kar poteka z določanjem transmitivnosti delov tekočekristalne celice s pomočjo električnega polja. S senčenjem posameznih točk (pikslov) celice se izgubi precej svetlobnega toka dolgega snopa, kratki snop pa ostane nespremenjen in fiksen. Na ta način se izgublja precej svetlobnega toka in zgolj grobo preoblikuje izsevan snop svetlobe.In the patent application EP 3 501 896 A1, he discloses a device with a liquid crystal cell that transmits the light beam of the dipped beam without interruption and modulates only the light beam of the high beam, which is done by determining the transmissivity of parts of the liquid crystal cell with the help of an electric field. By shading individual points (pixels) of the cell, a significant amount of the luminous flux of the long beam is lost, while the short beam remains unchanged and fixed. In this way, a considerable amount of luminous flux is lost and the emitted beam of light is only roughly transformed.

Vse zgoraj opisane rešitve so omejene na nekaj vnaprej definiranih stanj, pri čemer ne morejo naenkrat vplivati na celotni snop svetlobe, ali za doseganje tega potrebujejo več zaporednih celic, kar dodatno zmanjšuje jakost svetlobe in poveča kompleksnost same naprave. Tudi modulacija svetilnosti izvora zmanjša celotno intenziteto svetila, kar ni zaželeno.All the solutions described above are limited to a few predefined states, where they cannot affect the entire beam of light at once, or to achieve this they need several consecutive cells, which further reduces the light intensity and increases the complexity of the device itself. The modulation of the luminance of the source also reduces the overall intensity of the light, which is not desirable.

Opis rešitve tehničnega problemaDescription of the solution to the technical problem

Naloga in cilj izuma je konstrukcija aktivnega tekočekristalnega modula, ki omogoča poljubno in natančno vodenje snopa svetlobe, pri čemer bo imel modul nedefinirano število stanj, med katerimi se bo preklop zgodil kot odziv na zaznano stanje v okolici svetila z omenjenim modulom. Aktivni tekočekristalni modul vključuje:The task and goal of the invention is the construction of an active liquid crystal module, which allows arbitrary and precise guidance of the light beam, whereby the module will have an undefined number of states, between which the switch will occur in response to the detected state in the surroundings of the lamp with the mentioned module. Active liquid crystal module includes:

- Izvor svetlobe, ki oddaja svetlobo za osvetlitev,- A light source that emits light for illumination,

- vsaj eno tekočekristalno celico, ki vsaj delno prekriva izvor svetlobe, pri čemer lahko oddano svetlobo iz izvora svetlobe spremeni v poljubno obliko s poljubnim profilom intenzitete,- at least one liquid crystal cell that at least partially covers the light source, whereby it can change the emitted light from the light source into any shape with any intensity profile,

- Zunanje polje, ki je v, na, okoli ali vsaj deloma obdaja tekočekristalno celico, za prilagajanje stanja tekočekristalne celice oziroma lomnega količnika v tekočekristalni celici,- An external field that is in, on, around or at least partially surrounds the liquid crystal cell, for adjusting the state of the liquid crystal cell or the refractive index in the liquid crystal cell,

Kontrolno enoto, ki omogoča kontrolo zunanjega polja ter je prednostno povezana z izvorom svetlobe ter opcijskimi senzorji, ki zaznavajo okolico aktivnega tekočekristalnega modula, na podlagi česar kontrolna enota prilagaja stanje tekočekristalne celice v skladu z algoritmi strojnega učenja, ki so uporabljeni za programiranje kontrolne enote.A control unit that enables control of the external field and is preferably connected to the light source and optional sensors that detect the surroundings of the active liquid crystal module, on the basis of which the control unit adjusts the state of the liquid crystal cell in accordance with the machine learning algorithms used to program the control unit.

Kontrolna enota je sestavljena iz računske procesorske enote, pomnilnika ter vhodnih in izhodnih modulov in je prilagojena, da aktivno realnočasno (i) bere in obdeluje električni signal s senzorjev in nastavitev osvetljevanja s strani uporabnika, (ii) preračunava nastavitve zunanjih polj, ki vplivajo na tekočekristalne celice, in (iii) pošilja ustrezne električne signale na sistem elektrod in/ali vodnikov in/ali tuljav in/ali obsevalnih laserjev zunanjega polja.The control unit consists of a computational processing unit, memory and input and output modules and is adapted to actively real-time (i) read and process the electrical signal from the sensors and lighting settings by the user, (ii) recalculate the settings of the external fields affecting the liquid crystal cells, and (iii) sends appropriate electrical signals to a system of electrodes and/or conductors and/or coils and/or external field irradiating lasers.

Izvor svetlobe je lahko katerikoli primeren, prednostno pa oddaja belo, monokromatsko ali polikromatsko svetlobo, ki je lahko nekoherentna, delno koherentna ali koherentna (laserska). Tekočekristalna celica vsaj delno prekriva izvor svetlobe, lahko pa ga prekriva v celoti. Možno jo je izvesti tudi v premični obliki, tako da se mehansko premika glede na izvor svetlobe na znane načine. Izvor svetlobe je vsaj en, lahko pa jih je več, pri čemer so v tem primeru izvori lahko enaki ali pa različni.The light source can be any suitable, but preferably emits white, monochromatic or polychromatic light, which can be incoherent, partially coherent or coherent (laser). A liquid crystal cell at least partially covers the light source, but it can cover it completely. It is also possible to implement it in a movable form, so that it mechanically moves with respect to the light source in known ways. There is at least one source of light, but there may be several, in which case the sources may be the same or different.

Tekočekristalna celica je lahko izvedena na različne načine glede na najbolj smotrno uporabo. Celica je prednostno oblikovana kot steklena planparalelna celica, lahko pa je ravna, ukrivljena, različnih debelin, izplasti, ali iz emulzije tekočih kristalov v gostiteljskem mediju. Celica je lahko tudi klinasta, iz več plasti, lahko ima profilirano površino ali površine, ali celica z več “čašami” (ang. celi with wells). Površina celic je lahko poljubna, gladka ali z vzorcem. Površine celic in koloidnih delcev ali dispergiranih komponent lahko vsiljujejo poljubno površinsko orientacijsko ureditev molekul tekočega kristala. Ureditev je lahko pravokotna, planarna, degenerirano planarna, nagnjena in degenerirano nagnjena. Ta orientacijska ureditev sovpada z lokalno optično osjo tekočega kristala in vpliva na [prehod] svetlobo[e]. Celica lahko vsebuje različne tipe dvolomnih tekočih kristalov, ki omogočajo nadzorovano vodenje, modulacijo in sipanje svetlobe, pri čemer je tekoči kristal izbran v skupini nematskih tekočih kristalov, holesteričnih tekočih kristalov, smektičnih tekočih kristalov, kiralnih nematikov, disperzij tekočih kristalov s polimeri ali kombinacije naštetih. Tekoči kristali so lahko tudi v kapljicah ali v emulziji.A liquid crystal cell can be implemented in different ways depending on the most efficient use. The cell is preferably designed as a glass plano-parallel cell, but it can be flat, curved, of different thicknesses, layers, or from an emulsion of liquid crystals in the host medium. The cell can also be wedge-shaped, from several layers, it can have a profiled surface or surfaces, or a cell with several "glasses" (cells with wells). The surface of the cells can be arbitrary, smooth or with a pattern. The surfaces of cells and colloidal particles or dispersed components can impose an arbitrary surface orientational arrangement of liquid crystal molecules. The arrangement can be rectangular, planar, degenerate planar, inclined and degenerate inclined. This orientational arrangement coincides with the local optical axis of the liquid crystal and affects the [transition of] light[s]. The cell may contain various types of birefringent liquid crystals that enable controlled guidance, modulation and scattering of light, wherein the liquid crystal is selected from the group of nematic liquid crystals, cholesteric liquid crystals, smectic liquid crystals, chiral nematics, liquid crystal dispersions with polymers, or combinations thereof . Liquid crystals can also be in droplets or in an emulsion.

Dodatno je lahko za izboljšanje optičnih lastnosti ali odzivnosti na zunanje polje tekoči kristal dopiran z delci ali nanodelci različnih dimenzij, oblik in optično materialnih lastnosti, kot so dielektrik, prevodnik, feromagnet. Koloidni delci, ki se lahko uporabijo za dopiranje tekočih kristalov so lahko različnih velikosti, na primer od 1 nm do 10 um, m oblik, kot npr. kroglasti, valjasti, elipsoidni, toroidni z režo ali brez, ploščati, stožčasti in njihove izpeljanke.In addition, to improve the optical properties or response to the external field, the liquid crystal can be doped with particles or nanoparticles of different dimensions, shapes and optical material properties, such as dielectric, conductor, ferromagnet. Colloidal particles that can be used to dope liquid crystals can be of different sizes, for example from 1 nm to 10 um, m shapes, such as spherical, cylindrical, ellipsoidal, toroidal with or without slot, flat, conical and their derivatives.

Za doseganje različnih kompleksnih vzorcev v tekočem kristalu, ki bi vplivali na vodenje svetlobe, je celica lahko opremljena z ustrezno črpalko, ki omogoča ustvarjanje toka tekočega kristala v celici, kar pa se alternativno lahko doseže tudi s pomočjo zunanjega polja, ki povzroči premik delcev s katerim je dopiran tekoči kristal.In order to achieve various complex patterns in the liquid crystal that would affect the conduction of light, the cell can be equipped with a suitable pump that allows the creation of a liquid crystal current in the cell, which can alternatively be achieved with the help of an external field that causes the particles to move with with which the liquid crystal is doped.

Lastnosti tekočega kristala v celici se spreminjajo preko zunanjega polja, ki je del modula po izumu. Zunanje polje namreč vpliva na orientacijo tekočega kristala v celici in s tem na usmerjanje svetlobe, ki jo oddaja izvor. Zunanje polje je lahko električno, magnetno ali lasersko, ki je kombinacija električnega in magnetnega zunanjega polja, lahko pa se uporabi tudi kombinacija omenjenih. Zunanje električno polje se aplicira preko poljubno razporejenih elektrod zunaj, na površini in/ali znotraj tekočekristalne celice. Elektrode so lahko na eni ali na več površinah celice in lahko tvorijo različne geometrijske vzorce, kot so črte, mrežo in podobno. Možni tipi elektrod vključujejo (i) za svetlobo prosojne ali neprosojne elektrode, ali (ii) sistem elektrod, v katerem so lahko elektrode individualno krmiljene. Zunanje magnetno polje se aplicira preko tokovnih vodnikov različnih oblik, ko so na primer ravni vodniki, žice, tuljave, in sicer zunaj, na površini ali znotraj celice. Tipi vodnikov vključujejo (i) za svetlobo prosojne ali neprosojne vodnike, (ii) sisteme vodnikov, v katerem so lahko vodniki individualno krmiljeni. Kombinirano električno in magnetno polje pa se lahko ustvari med drugim tudi z obsevanjem celice z lasersko svetlobo z zunanjega laserja. Zunanji laser mora svetiti v tekočekristalno celico, da lahko EM polje spreminja TK ureditev in s tem lokalni lomni količnik. Laserska svetloba je lahko linearno, cirkularno ali drugače polarizirana. Fokus laserja se lahko nastavlja glede na celico, enako tudi optična apertura in intenzitetni presek laserskega snopa. Kontrolna enota je ustrezno povezana z zunanjim poljem, tako da lahko zunanje polje vpliva na tekočekristalno celico glede na želeno osvetlitev, t.j. porazdelitev svetlobe, tako da se lokalno zmanjša jakost svetlobe na nekem mestu s preusmerjanjem na drugo mesto.The properties of the liquid crystal in the cell are changed via an external field, which is part of the module according to the invention. The external field affects the orientation of the liquid crystal in the cell and thus the direction of the light emitted by the source. The external field can be electric, magnetic or laser, which is a combination of an electric and magnetic external field, but a combination of the aforementioned can also be used. The external electric field is applied via randomly arranged electrodes outside, on the surface and/or inside the liquid crystal cell. The electrodes can be on one or more surfaces of the cell and can form different geometric patterns, such as lines, a grid, and the like. Possible electrode types include (i) light transparent or opaque electrodes, or (ii) an electrode system in which the electrodes can be individually controlled. The external magnetic field is applied via current conductors of various shapes, when, for example, straight conductors, wires, coils are outside, on the surface or inside the cell. Conductor types include (i) light transparent or opaque conductors, (ii) conductor systems in which the conductors can be individually controlled. A combined electric and magnetic field can be created, among other things, by irradiating the cell with laser light from an external laser. The external laser must shine into the liquid crystal cell so that the EM field can change the TK arrangement and thus the local refractive index. Laser light can be linearly, circularly, or otherwise polarized. The focus of the laser can be adjusted depending on the cell, as well as the optical aperture and intensity cross-section of the laser beam. The control unit is properly connected to the external field so that the external field can influence the liquid crystal cell according to the desired illumination, i.e. distribution of light, so that the intensity of light in one place is locally reduced by redirecting it to another place.

Kontrolna enota sestoji iz računske procesorske enote, pomnilnika ter vhodnih in izhodnih modulov. Ta kontrolna enota aktivno v realnem času (i) bere in obdeluje električni signal iz vsaj enega senzorja, prednostno več senzorjev in nastavitev osvetljevanja s strani uporabnika, (ii) nato preračunava nastavitve zunanjih polj, ki vplivajo na tekočekristalne celice, in (iii) pošlje ustrezne električne signale na sistem elektrod in vodnikov ter obsevalnih laserjev. Tako kontrolna enota preko zunanjih polj ustvari kompleksne vzorce orientacije tekočega kristala v celici in vpliva na optične lastnosti celice. Kontrolna enota lahko izhodni intenzitetni profil modificira tudi preko spreminjanja svetilnosti izvora. V primeru električnega ali magnetnega polja je npr. preko analognih napetostnih ali tokovnih izhodov povezana z elektrodami.The control unit consists of a calculation processor unit, memory and input and output modules. This control unit actively in real time (i) reads and processes the electrical signal from at least one sensor, preferably several sensors and lighting settings by the user, (ii) then recalculates the settings of the external fields affecting the liquid crystal cells, and (iii) sends appropriate electrical signals to the system of electrodes and conductors and irradiating lasers. Thus, the control unit creates complex orientation patterns of the liquid crystal in the cell through external fields and affects the optical properties of the cell. The control unit can also modify the output intensity profile by changing the brightness of the source. In the case of an electric or magnetic field, e.g. connected to the electrodes via analog voltage or current outputs.

Modul po izumu nima prednastavljenih stanj, med katerimi bi preklapljalo zunanje polje, temveč prilagaja svetilnost, obliko osvetlitve in porazdelitev intenzitete glede na zaznano zunanjost modula, kar omogoča kontrolna enota. V ta namen so prednostno uporabljeni ustrezni senzorji, ki so povezani oz. priključeni na kontrolno enoto, in se uporabljajo za zaznavanje okolice, na primer obliko in potek cestišča, preostale deležnike prometa in ostale posebnosti, kot so prometni znaki, poškodbe cestišča, živali in podobno. Senzorji med drugim lahko vključujejo foto detektorje, radarske senzorje, TOF kamere, foto kamere, termovizijske kamere, žiroskope in akcelerometre, merilce hitrosti, GPS senzorje, senzorje za povezavo z internetom in podobno ali katerokoli kombinacijo omenjenih. Kontrolna enota lahko bere podatke tudi iz drugih senzorjev v vozilu ali zunanje podatke, pridobljene preko omrežja in drugih vozil. Nastavitve osvetljevanja s strani uporabnika pa določajo vhodni signal za kontrolno enoto, ki ustreza zahtevanim intenzitetnim profilom osvetljevanja, kot so npr. profil zasenčene luči, dolge luči ali meglenke, ali kombinacija dveh ali kombinacija vseh treh. Kontrolna enota glede na električni signal s senzorjev in vnaprej določenih parametrov zunanjih polj za doseganje standardnih intenzitetnih profilov sproti izračuna potrebno zunanje polje in s tem ustvari želeni izhodni intenzitetni profil glede na stanje okolice (npr. naklon in potek ceste, drugi udeleženci v prometu).According to the invention, the module does not have preset states between which the external field would switch, but instead adjusts the luminance, the shape of the illumination and the intensity distribution according to the perceived exterior of the module, which is enabled by the control unit. For this purpose, the appropriate sensors are preferably used, which are connected or connected to the control unit, and are used to detect the surroundings, for example the shape and course of the road, other traffic participants and other peculiarities, such as traffic signs, damage to the road, animals and the like. Sensors may include, but are not limited to, photo detectors, radar sensors, TOF cameras, photo cameras, thermal imaging cameras, gyroscopes and accelerometers, speedometers, GPS sensors, internet connection sensors and the like or any combination thereof. The control unit can also read data from other sensors in the vehicle or external data obtained via the network and other vehicles. The lighting settings by the user determine the input signal for the control unit that corresponds to the required lighting intensity profiles, such as e.g. dipped beam, main beam or fog beam profile, or a combination of the two, or a combination of all three. Based on the electric signal from the sensors and predetermined parameters of the external fields, the control unit calculates the required external field on the fly to achieve standard intensity profiles and thereby creates the desired output intensity profile based on the surrounding conditions (e.g. the slope and course of the road, other road users).

Aktivni tekočekristalni modul po izumu ima prednostno vzpostavljeno povratno zanko, in sicer ima senzor za zaznavanje porazdelitve svetlobe, ki je povezan s kontrolno enoto, ki preverja, če je osvetlitev ustrezna glede na želeno osvetlitev. V kolikor kontrolna enota zazna, da osvetlitev ni ustrezna, kontrolna enota preračuna potrebne spremembe in preuredi nastavitve zunanjega polja, ki vpliva na tekočekristalno celico. Kontrolna enota še dodatno popravlja in modificira zunanja polja tako, lahko tudi preko interakcije z dopanti in tokom, da preusmeri svetlobo iz območij, kjer je dejanska intenziteta večja od želene v območja, kjer je dejanska intenziteta manjša od želene in s tem približa dejansko intenzitetno porazdelitev želeni. Modifikacije se izvedejo tako, da se različne elektrode, tuljave, vodniki ali druge komponente zunanjega polja različno vklapljajo in izklapljajo, s čemer se vpliva na lokalni lomni količnik tekočega kristala.The active liquid crystal module according to the invention preferably has a feedback loop established, namely it has a sensor for detecting the distribution of light, which is connected to a control unit that checks whether the illumination is adequate with respect to the desired illumination. If the control unit detects that the lighting is not adequate, the control unit calculates the necessary changes and rearranges the settings of the external field affecting the liquid crystal cell. The control unit additionally corrects and modifies the external fields in such a way that, through interaction with dopants and current, it can redirect the light from areas where the actual intensity is greater than desired to areas where the actual intensity is less than desired and thereby approximates the actual intensity distribution desired. Modifications are made by switching different electrodes, coils, conductors or other components of the external field on and off differently, thus affecting the local refractive index of the liquid crystal.

Procesna računska enota za določanje zunanjih polj uporablja algoritme strojnega učenja in umetne inteligence, med drugim lahko uporablja algoritme nevronskih mrež in njihov izpeljank in posplošitev, s katerimi se izvede računsko zahtevne operacije izračuna porazdelitve zunanjih polj, potrebnih za dosego želenega profila orientacije tekočega kristala v celici. Metode strojnega učenja in umetne inteligence za učenje uporabijo modelske sintetične in realno zajete podatke. V postopku strojnega učenja se generira set polj s pravimi modeli, kjer se na podlagi električnega polja izračuna direktorsko polje ter ustvari optično polje. Električno polje in optična slika sta nato vhodna podatka za nevronsko mrežo, pri čemer se procesna računska enota nato z množico tako generiranih vhodnih podatkov nauči, kako je potrebno prilagoditi zunanje polje, da se doseže želena oblika osvetlitve. Ko se osvetlitev prilagodi glede na situacijo, se lahko preko povratne zanke še dodatno optimizira. Algoritme v kontrolni enoti se lahko po potrebi nadgrajuje v obdobju uporabe.The process computing unit for determining the external fields uses machine learning and artificial intelligence algorithms, among other things, it can use neural network algorithms and their derivative and generalization, which perform computationally demanding operations of calculating the distribution of the external fields necessary to achieve the desired orientation profile of the liquid crystal in the cell . Machine learning and artificial intelligence methods use model synthetic and real data for learning. In the machine learning process, a set of fields with real models is generated, where the director field is calculated based on the electric field and the optical field is created. The electric field and the optical image are then input data for the neural network, whereby the processing computing unit then learns with the multitude of input data generated in this way how to adjust the external field in order to achieve the desired form of illumination. When the lighting is adapted to the situation, it can be further optimized via a feedback loop. Algorithms in the control unit can be upgraded if necessary during the period of use.

Kontrolna enota preko zgoraj omenjenih senzorjev prepozna situacijo, ki jo poveže z naučenimi vzorci s pomočjo algoritmov strojnega učenja, tako da lahko zaznava in prepoznava okolico in ustrezno preusmerja svetlobo oz. prilagaja porazdelitev intenzitete svetlobe, tako da osvetli ali zasenči določene predele, npr. nasproti vozeča vozila, pešce in prometne znake. Osvetlitev prilagodi z ustrezno nastavitvijo zunanjega polja, ki se izračuna na podlagi naučenih situacij. Kontrolna enota lahko dodatno komunicira z voznikom in ostalimi deležniki v prometu, tako da preusmeri del svetlobe z večjo ali manjšo intenziteto ali drugačno barvo ali projicira poljuben svetlobni vzorec na površino pred vozilom. Preusmerjeni del svetlobe lahko tudi označuje s kontrolno enoto napovedano gibanje deležnikov prometa.The control unit recognizes the situation via the above-mentioned sensors, which it connects to the learned patterns with the help of machine learning algorithms, so that it can detect and recognize the surroundings and redirect the light accordingly. adjusts the distribution of light intensity by illuminating or shading certain areas, e.g. oncoming vehicles, pedestrians and traffic signs. It adjusts the lighting by adjusting the external field accordingly, which is calculated based on learned situations. The control unit can additionally communicate with the driver and other stakeholders in the traffic by redirecting part of the light with greater or lesser intensity or a different color or by projecting any light pattern onto the surface in front of the vehicle. The redirected part of the light can also indicate the movement of traffic participants predicted by the control unit.

Kontrolna enota je nadalje lahko povezana in komunicira z drugimi omrežji, kot so omrežja za določanje pozicije vozila in na enak način na površino pred vozilom projicira npr. navodila za pot. Dodatno kontrolna enota povezavo z omrežji za določanje pozicije vozila lahko izkoristi za predvidevanje poti vozila (npr. cesta zavije v ovinek). Tudi takšno prilagajanje je strojno naučeno, kot je bilo opisano zgoraj.The control unit can also be connected to and communicate with other networks, such as networks for determining the position of the vehicle, and in the same way projects e.g. directions for travel. In addition, the control unit can use the connection to the networks for determining the vehicle's position to predict the vehicle's path (eg the road turns into a curve). Such adaptation is also machine-learned, as described above.

Opcijsko ima modul tudi dodatne optične elemente, ki dodatno pasivno vplivajo na porazdelitev svetlobe brez aktivnega nastavljanja preko kontrolne enote. Dodatni optični elementi vključujejo leče, zrcala, polprepustna zrcala in leče, polarizatorje, fazne ploščice, optična vlakna in valovode.Optionally, the module also has additional optical elements that additionally passively influence the distribution of light without active adjustment via the control unit. Additional optical elements include lenses, mirrors, semitransparent mirrors and lenses, polarizers, phase plates, optical fibers and waveguides.

Modul, kot je bil opisan zgoraj, se lahko vgradi v nova svetila ali v že obstoječa, tako da je le dodan k že obstoječemu svetilu ali pa je uporabljen kot zamenjava za dele svetila (npr. leča). Dodatni optični elementi so lahko del že obstoječega žarometa, v katerega se vgradi modul po izumu.The module, as described above, can be installed in new luminaires or in existing ones, so that it is only added to an already existing luminaire or used as a replacement for parts of the luminaire (e.g. lens). Additional optical elements can be part of an already existing headlight, into which the module according to the invention is installed.

Aktivni tekočekristalni modul po izumu in svetilo z le-tem omogoča ustvarjanje poljubne oblike snopa brez vnaprej določenih diskretnih stanj, zvezno preklapljanje med stanji in realnočasno spreminjanje snopa glede na zaznane zunanje pogoje ter nastavitve uporabnika. To je še posebej primerno za osvetljevanje različnih scenarijev med vožnjo, npr. drugih vozil in udeležencev v prometu z namenom ali zmanjšati slepljenje drugih ali pritegniti pozornost voznika, in tudi prikaza kompleksnih vzorcev na površino cestišča, na primer navigacijskih simbolov.The active liquid crystal module according to the invention and the lamp with it enables the creation of an arbitrary beam shape without predetermined discrete states, continuous switching between states and real-time changing of the beam according to detected external conditions and user settings. This is particularly suitable for lighting various driving scenarios, e.g. of other vehicles and road users with the aim of either reducing the blinding of others or attracting the driver's attention, and also displaying complex patterns on the road surface, such as navigation symbols.

Aktivni tekočekristalni modul za prilagodljive avtomobilske žaromete in ostala svetila ter svetila z omenjenim modulom bo v nadaljevanju opisan s pomočjo izvedbenega primera in slik, ki prikazujeta:The active liquid crystal module for adaptive car headlights and other lamps and lamps with the mentioned module will be described below with the help of an implementation example and pictures that show:

Slika 1 Aktivni tekočekristalni modul po možnem izvedbenem primeruFigure 1 Active liquid crystal module according to a possible implementation example

Slika 2 Prikaz treh primerov osvetlitve z aktivnim tekočekristalnim modulom, in sicer v primeru a) kombinacije dolgih in zasenčenih luči, b) kombinacije dolgih luči in dodatno skrajšanega snopa na nasprotnem voznem pasu, kjer se približuje drugo vozilo, in c) prikaz opozorilnih znakov ob zaznanem prometnem znaku in pešcu, ki hodi ob cestišču.Figure 2 Illustration of three examples of lighting with an active liquid crystal module, namely in the case of a) a combination of high beams and shaded lights, b) a combination of high beams and an additionally shortened beam in the opposite lane where another vehicle is approaching, and c) display of warning signs at a detected traffic sign and a pedestrian walking along the road.

Aktivni tekočekristalni modul po izvedbenem primeru prikazanem na sliki 1 vključuje: - Izvor 4 svetlobe, ki oddaja svetlobo za osvetlitev, aktivni tekočekristalni element 1, ki je sestavljen iz tekočekristalne celice, ki prekriva izvor 4 svetlobe, pri čemer lahko oddano svetlobo iz izvora 4 svetlobe spremeni v poljubno obliko s poljubnim profilom intenzitete, in zunanjega polja, ki vsaj deloma obdaja tekočekristalno celico, za prilagajanje stanja tekočekristalne celice oziroma lomnega količnika v tekočekristalni celici,According to the embodiment shown in Figure 1, the active liquid crystal module includes: - A light source 4 that emits light for illumination, an active liquid crystal element 1, which consists of a liquid crystal cell that covers the light source 4, whereby the emitted light from the light source 4 can change into an arbitrary shape with an arbitrary intensity profile, and the external field, which at least partially surrounds the liquid crystal cell, to adjust the state of the liquid crystal cell or the refractive index in the liquid crystal cell,

- Kontrolno enoto 2, ki omogoča kontrolo zunanjega polja ter je povezana z izvorom 4 svetlobe, aktivnim tekočekristalnim elementom 1 oz. njegovim zunanjim poljem ter opcijskimi senzorji 6, ki zaznavajo okolico aktivnega tekočekristalnega modula, na podlagi česar kontrolna enota 2 prilagaja stanje tekočekristalne celice v skladu z algoritmi strojnega učenja 5, ki so uporabljeni za programiranje kontrolne enote 2.Algoritmi strojnega učenja vključujejo vhodne podatke za oblikovanje snopa, na primer dnevne luči, meglenke, dolge luči, in podobno.- Control unit 2, which enables control of the external field and is connected to light source 4, active liquid crystal element 1 or its external field and optional sensors 6 that detect the surroundings of the active liquid crystal module, based on which the control unit 2 adjusts the state of the liquid crystal cell in accordance with the machine learning algorithms 5 that are used to program the control unit 2. The machine learning algorithms include input data for the design beam, for example daytime running lights, fog lights, high beams, etc.

Zunanje polje je prednostno električno polje, ki je definirano z elektrodami razporejenimi v, na ali okoli tekočekristalne celice. Elektrode so lahko na eni ali na več površinah celice in lahko tvorijo različne geometrijske vzorce, kot so črte, mreža in podobno.The external field is preferably an electric field defined by electrodes disposed in, on, or around the liquid crystal cell. The electrodes can be on one or more surfaces of the cell and can form different geometric patterns, such as lines, a grid, and the like.

Aktivni tekočekristalni element 1 poljubno usmerja svetlobo z izvora 4. Osnovno stanje tekočekristalne celice je lahko tako, da pri izklopljenem zunanjem polju oblikuje svetlobni snop v obliko kot pri zasenčenih lučeh. Tako se v primeru odpovedi sistema še vedno varno uporablja tak žaromet tudi v cestnem prometu, v primeru uporabe zgolj zasenčenih luči pa se ne troši energije.The active liquid crystal element 1 arbitrarily directs the light from the source 4. The basic state of the liquid crystal cell can be such that, when the external field is switched off, it forms the light beam in the shape of the shaded lights. Thus, in the event of a system failure, such a headlight can still be used safely even in road traffic, and in the case of using only shaded lights, no energy is consumed.

Ob ustrezni spremembi zunanjosti modul poskrbi tako za zasenčene luči, dolge luči in lahko tudi meglenke v samo eni napravi, tako da ustvari vzorce, ki so na eni strani enaki dolgim lučem, na drugi strani zasenčenim lučem, tako da je vozni pas osvetljen mnogo dlje kot pa nasprotni pas, po katerem lahko pripelje kakšno drugo vozilo (slikaWith a suitable exterior modification, the module takes care of both low beam, high beam and possibly fog lights in just one device, creating patterns that are the same as high beam on one side and low beam on the other, so that the lane is illuminated for much longer than the opposite lane through which another vehicle can drive (fig

2a). Ker lahko tekočekristalni modul prilagodi način osvetljevanja, svetilo s takim modulom ne potrebuje ločenega sestava za dolge, zasenčene luči ali meglenke, kar pripomore k izvedbi preprostejših svetlobnih elementov na vozilu.2a). Since the liquid crystal module can adjust the way of lighting, a lamp with such a module does not need a separate assembly for long, shaded lights or fog lights, which helps to implement simpler lighting elements on the vehicle.

Poleg tega modul omogoča preusmerjanje svetlobe z določenih območij npr. v primeru nasproti vozečih vozil (slika 2b) ali preusmerjanje v določena območja, npr. pešcev ali prometnih znakov ter projekciji poljubnih simbolov (2c), s čimer pripomore tudi k povečanju pasivne varnosti udeležencev v prometu. Ko senzorji zaznajo bližajoče se vozilo na nasprotnem pasu, kontrolna enota izračuna potrebne spremembe zunanjega polja na podlagi vzorcev naučenih tekom strojnega učenja, tako da se snop svetlobe na voznem pasu dodatno skrajša, s čemer se ne zaslepi voznika nasproti vozečega vozila, kot je to prikazano na sliki 2b.In addition, the module allows the redirection of light from certain areas, e.g. in the case of oncoming vehicles (Figure 2b) or redirection to certain areas, e.g. pedestrians or traffic signs and the projection of arbitrary symbols (2c), which also helps to increase the passive safety of road users. When the sensors detect an approaching vehicle in the opposite lane, the control unit calculates the necessary changes to the external field based on patterns learned during machine learning, so that the beam of light in the lane is further shortened, thereby not blinding the driver of the oncoming vehicle, as shown in Figure 2b.

Kontrolna enota lahko ustvari tudi takšno zunanje polje, da lahko pred vozilom prikazuje različne znake, in sicer na primer simbol trikotnika za zaznani prometni znak in/ali simbol pešca ob zaznanem pešcu, ki hodi ob cestišču, kot je to prikazano na sliki 2c. V kolikor je zaznan pešec ob cestišču, se svetloba delno preusmeri nanj, tako da ga voznik vozila dobro vidi. Osvetli se ga z zasenčenimi lučmi, da se pešca ne zaslepi. Dodatno se osvetli tudi zaznani prometni znak na drugi strani cestišča, tako da lahko voznik lažje razbere kaj znak prikazuje in v skladu s tem prilagodi vožnjo vozila. Takšna stanja niso vnaprej sprogramirana, ampak se prilagajajo sproti s kontrolno enoto oz. zunanjim poljem. Ko je pešec in/ali znak izven polja zaznavanja, se snop svetlobe ponovno spremeni, tako da je osvetlitev kar se da optimalna glede na situacijo med vožnjo.The control unit can also create such an external field that it can display different symbols in front of the vehicle, namely, for example, a triangle symbol for a detected traffic sign and/or a pedestrian symbol next to a detected pedestrian walking on the road, as shown in Figure 2c. If a pedestrian is detected on the road, the light is partially redirected to him, so that the driver of the vehicle can see him clearly. It is illuminated with shaded lights so that pedestrians are not blinded. The detected traffic sign on the other side of the road is additionally illuminated, so that the driver can more easily understand what the sign is showing and adjust the vehicle's driving accordingly. Such states are not programmed in advance, but are adjusted on the fly with the control unit or external fields. When the pedestrian and/or the sign is out of the detection field, the light beam changes again so that the lighting is as optimal as possible according to the driving situation.

Claims (15)

Patentni zahtevkiPatent claims 1. Aktivni tekočekristalni (TK) modul za prilagodljive avtomobilske žaromete in ostala svetila, značilen po tem, da vključuje:1. An active liquid crystal (TL) module for adaptive automotive headlights and other lights, characterized in that it includes: - Izvor svetlobe, ki oddaja svetlobo za osvetlitev,- A light source that emits light for illumination, - vsaj eno tekočekristalno celico, ki vsaj delno prekriva izvor svetlobe, pri čemer lahko oddano svetlobo iz izvora svetlobe spremeni v poljubno obliko s poljubnim profilom intenzitete,- at least one liquid crystal cell that at least partially covers the light source, whereby it can change the emitted light from the light source into any shape with any intensity profile, - Zunanje polje, ki je v, na ali vsaj deloma obdaja tekočekristalno celico, za prilagajanje stanja tekočekristalne celice oziroma lomnega količnika v tekočekristalni celici,- An external field that is in, on or at least partially surrounds the liquid crystal cell, for adjusting the state of the liquid crystal cell or the refractive index in the liquid crystal cell, - Kontrolno enoto, ki omogoča kontrolo zunanjega polja ter je prednostno povezana z izvorom svetlobe ter opcijskimi senzorji, ki zaznavajo okolico aktivnega tekočekristalnega modula, na podlagi česar kontrolna enota prilagaja stanje tekočekristalne celice v skladu z algoritmi strojnega učenja, ki so uporabljeni za programiranje kontrolne enote, pri čemer ima modul nedefinirano število stanj, med katerimi se bo preklop zgodil kot odziv na zaznano stanje v okolici svetila z omenjenim modulom.- A control unit that enables control of the external field and is preferably connected to the light source and optional sensors that detect the surroundings of the active liquid crystal module, on the basis of which the control unit adjusts the state of the liquid crystal cell in accordance with the machine learning algorithms used to program the control unit , where the module has an undefined number of states, between which the switch will occur in response to the detected state in the surroundings of the lamp with the mentioned module. 2. Aktivni TK modul po zahtevku 1, značilen po tem, da je kontrolna enota sestavljena iz računske procesorske enote, pomnilnika ter vhodnih in izhodnih modulov in je prilagojena, da aktivno realnočasno:2. Active TK module according to claim 1, characterized in that the control unit consists of a calculation processor unit, memory and input and output modules and is adapted to actively real-time: (i) bere in obdeluje električni signal s senzorjev in nastavitev osvetljevanja s strani uporabnika, (ii) preračunava nastavitve zunanjih polj, ki vplivajo na tekočekristalne celice, in (iii) pošilja ustrezne električne signale na sistem elektrod in/ali vodnikov in/ali tuljav in/ali obsevalnih laserjev zunanjega polja.(i) reads and processes the electrical signal from the sensors and lighting settings by the user, (ii) calculates the settings of the external fields affecting the liquid crystal cells, and (iii) sends the appropriate electrical signals to the system of electrodes and/or conductors and/or coils and/or external field irradiation lasers. 3. Aktivni TK modul po zahtevku 1 ali 2, značilen po tem, da je zunanje polje lahko električno, magnetno in/ali lasersko polje ali kombinacije le-teh, ki zvezno spreminja TK ureditev in svetlobe ne zasenči, ampak lokalno preusmerja.3. Active TK module according to claim 1 or 2, characterized by the fact that the external field can be an electric, magnetic and/or laser field or a combination thereof, which continuously changes the TK arrangement and does not shade the light, but redirects it locally. 4. Aktivni TK modul po zahtevku 3, značilen po tem, da zunanje polje tvorijo elektrode, vodniki, laserski izvori, tuljave, ki so lahko nameščeni v TK celici, na površini TK celice ali v bližini TK celice.4. Active TK module according to claim 3, characterized in that the external field is formed by electrodes, conductors, laser sources, coils, which can be placed in the TK cell, on the surface of the TK cell or near the TK cell. 5. Aktivni TK modul po zahtevku 4, značilen po tem, da so uporabljene elektrode in električni vodniki za generacijo zunanjih polj lahko poljubnih oblik in so optično prosojni ali neprosojni in skupinsko ali individualno krmiljeni.5. Active TK module according to claim 4, characterized in that the used electrodes and electrical conductors for the generation of external fields can be of any shape and are optically transparent or opaque and group or individually controlled. 6. Aktivni TK modul po kateremkoli izmed predhodnih zahtevkov, ki je označen s tem, da ima integrirano povratno zanko, ki vključuje senzorje za zaznavanje porazdelitve intenzitete svetlobe izsevane preko TK celice, pri čemer so senzorji povezani na kontrolno enoto, tako da povratna zanka deluje tako, da se po izsevanju svetlobe preko TK celice s senzorji zaznava porazdelitev intenzitete svetlobe, ki potem informacijo posredujejo na kontrolno enoto, ki je prilagojena tako, da lahko po potrebi prilagodi zunanje polje, da TK celica spremeni porazdelitev intenzitete izsevane svetlobe.6. An active TK module according to any one of the preceding claims, characterized in that it has an integrated feedback loop that includes sensors for detecting the distribution of the intensity of light emitted by the TK cell, the sensors being connected to the control unit so that the feedback loop operates so that after light is emitted through the TK cell, the distribution of light intensity is detected by sensors, which then transmit the information to the control unit, which is adapted so that it can adjust the external field, if necessary, so that the TK cell changes the distribution of the intensity of the emitted light. 7. Aktivni TK modul po kateremkoli izmed predhodnih zahtevkov, ki je označen s tem, da senzorji zaznavajo obliko in potek cestišča, preostale deležnike prometa in ostale posebnosti, kot so prometni znaki, poškodbe cestišča, živali in podobno, ter je senzor lahko foto detektor, radarski senzor, TOF kamera, foto kamera, termovizijska kamera, žiroskop in akceleromeer, merilec hitrosti, GPS senzor, senzor za povezavo z internetom ali katerokoli kombinacija omenjenih.7. An active TK module according to any of the previous claims, which is characterized by the fact that the sensors detect the shape and course of the road, other traffic participants and other special features, such as traffic signs, damage to the road, animals and the like, and the sensor can be a photo detector , radar sensor, TOF camera, photo camera, thermal imaging camera, gyroscope and accelerometer, speedometer, GPS sensor, internet connection sensor, or any combination of these. 8. Aktivni TK modul po kateremkoli izmed predhodnih zahtevkov, značilen po tem, da je tekoči kristal izbran v skupini, v kateri so nematik, kiralni nematik, smektik, mešanica, in polimerno-tekočekristalna disperzija.8. Active TK module according to any of the preceding claims, characterized in that the liquid crystal is selected from the group consisting of nematic, chiral nematic, smectic, mixture, and polymer-liquid crystal dispersion. 9. Aktivni TK modul po predhodnem zahtevku, označen s tem, da je tekoči kristal dopiran, na primer z nanodelci.9. Active TK module according to the previous claim, characterized in that the liquid crystal is doped, for example with nanoparticles. 10. Aktivni TK modul po kateremkoli izmed predhodnih zahtevkov, značilen po tem, da ima več različnih izvorov svetlobe z različnimi valovnimi dolžinami in se z večjo intenziteto ali drugačno barvo projicira poljuben svetlobni vzorec na površino pred vozilom.10. An active TK module according to any of the previous claims, characterized in that it has several different light sources with different wavelengths and any light pattern is projected onto the surface in front of the vehicle with greater intensity or a different color. 11 .Aktivni TK modul po kateremkoli izmed predhodnih zahtevkov, značilen po tem, da dodatno vključuje modul za brezžično povezavo s spletom.11. Active TK module according to any of the preceding claims, characterized in that it additionally includes a module for wireless connection to the Internet. 12. Svetilo, ki vključuje aktivni TK modul po kateremkoli izmed predhodnih zahtevkov.12. A lamp including an active TK module according to any of the preceding claims. 13. Svetilo po predhodnem zahtevku, ki je avtomobilski žaromet ali projektor.13. A lamp according to the previous claim, which is a car headlight or projector. 14. Svetilo po predhodnem zahtevku, kjer je svetilo avtomobilski žaromet nadgrajen z aktivnim TK modulom po kateremkoli izmed zahtevkov od 1 do 10 kot dodatnim optičnim elementom za preusmerjanje svetlobe.14. Lamp according to the preceding claim, where the lamp is a car headlight upgraded with an active TK module according to any one of claims 1 to 10 as an additional optical element for redirecting light. 15. Svetilo po zahtevku 12 ali 13, kjer je osnovno stanje TK modula tako, da je izsevana intenziteta svetlobe enaka običajnemu zasenčenemu žarometu.15. Lamp according to claim 12 or 13, where the basic state of the TK module is such that the emitted light intensity is the same as a normal shaded headlight.
SI202100119 2021-06-11 ACTIVE LIQUID CRYSTAL MODULE FOR ADJUSTABLE CAR HEADLIGHTS AND OTHER LIGHTS AND LIGHTS WITH THE MENTIONED MODULE SI26213A (en)

Publications (1)

Publication Number Publication Date
SI26213A true SI26213A (en) 2022-12-30

Family

ID=

Similar Documents

Publication Publication Date Title
US9855887B1 (en) Dynamic control of projected light relative to a scene
CN110641354B (en) Vehicle with a steering wheel
US10286835B2 (en) Vehicle headlight device and vehicle
JP5287121B2 (en) Vehicle lighting device
JP7357116B2 (en) Vehicle lighting systems, vehicle systems, light units and vehicle lights
US9677736B2 (en) Adaptive lighting system for an automobile vehicle
CN108290514B (en) Headlamp device, headlamp control method, and headlamp control program
CN109131041A (en) A kind of vehicle self-adapting illumination device and lighting system
JP2004231178A (en) Method of modulation illuminating road and vehicular headlight for executing the same
US10507759B2 (en) Adaptive lighting system for an automobile vehicle
JP2020055351A (en) Head lamps for vehicle
US11161450B2 (en) Autonomous headlight control based on elevation profile
SI26213A (en) ACTIVE LIQUID CRYSTAL MODULE FOR ADJUSTABLE CAR HEADLIGHTS AND OTHER LIGHTS AND LIGHTS WITH THE MENTIONED MODULE
WO1998054030A1 (en) A lighting device having a controllable lighting pattern
WO2022260603A1 (en) Active module based on liquid crystals for adjustable car headlights and other lamps and a lamp with said module
EP3401161B1 (en) Road surface drawing system, lighting tool for vehicle and method of road surface drawing
KR20170080240A (en) The Lamp For Vehicle
CN115899609A (en) Adaptive light source with spatial light modulator
JP7219085B2 (en) Lamp units, vehicle lighting systems
Hoshino et al. Challenges for the laser scanning headlamps to realize safe driving experience
JP6293542B2 (en) Lamp
JP2022002933A (en) Headlamp for vehicle
CN112140983A (en) Method for controlling cut-off line, vehicle lamp and vehicle
CN115190848A (en) Vehicle headlamp