SI26054A - Super-saturable oil-free self-nanoemulsifying drug delivery system SNEDDS for poorly water-soluble pharmaceutical composition and procedure of preparation thereof - Google Patents

Super-saturable oil-free self-nanoemulsifying drug delivery system SNEDDS for poorly water-soluble pharmaceutical composition and procedure of preparation thereof Download PDF

Info

Publication number
SI26054A
SI26054A SI202100024A SI202100024A SI26054A SI 26054 A SI26054 A SI 26054A SI 202100024 A SI202100024 A SI 202100024A SI 202100024 A SI202100024 A SI 202100024A SI 26054 A SI26054 A SI 26054A
Authority
SI
Slovenia
Prior art keywords
snedds
super
drug delivery
delivery system
free self
Prior art date
Application number
SI202100024A
Other languages
Slovenian (sl)
Inventor
Bolduev Victor
Morozov Aleksei
Kulevskaia Ekaterina
Original Assignee
Graft Polymer Ip Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graft Polymer Ip Limited filed Critical Graft Polymer Ip Limited
Priority to SI202100024A priority Critical patent/SI26054A/en
Publication of SI26054A publication Critical patent/SI26054A/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

Predstavljeni izum se nanaša na peroralni super-nasičljiv brez olja samo-nanoemulgirni sistem za dovajanje zdravil - SNEDDS za farmacevtske sestavke iz hidrofobnih naravnih aktivnih farmacevtskih sestavin (API), emulgatorjev / sotopila in stabilizirane vodne faze. SNEDDS v predloženem izumu kaže povečano zmožnost nalaganja zdravil, samoemulgacijo, boljšo stabilnost in izboljšano biološko uporabnost. Navedene so tudi metode za pripravo peroralnih super-nasičljivih nano-emulgimih farmacevtskih sestavkov v tekoči in trdni obliki.The present invention relates to an oral super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS for pharmaceutical compositions of hydrophobic natural active pharmaceutical ingredients (APIs), emulsifiers / co-solvents and stabilized aqueous phases. The SNEDDS in the present invention shows increased drug loading capacity, self-emulsification, better stability, and improved bioavailability. Methods for preparing oral super-saturable nano-emulsifier pharmaceutical compositions in liquid and solid form are also described.

Description

Supernasičljiv brez olja samo-nanoemulgirni sistem za dovajanje zdravil - SNEDDS za v vodi slabo topne farmacevtske sestavine in postopek njegove pripraveSupersaturated oil-free self-nanoemulsifying drug delivery system - SNEDDS for poorly water-soluble pharmaceutical ingredients and its preparation process

OpisDescription

Tehnično področjeTechnical field

Predstavljeni izum se nanaša na nov visoko biološko dostopen, v vodi topen, super nasičljiv brez olja samo-nanoemulgirni sistem za dovajanje zdravil (SNEDDS) za farmacevtske sestavke iz hidrofobnih naravnih aktivnih farmacevtskih sestavin (API), emulgatorjev / sotopil / pomožnih snovi in stabilizirane vodne faze.The presented invention relates to a novel highly bioavailable, water-soluble, super-saturated, oil-free self-nanoemulsifying drug delivery system (SNEDDS) for pharmaceutical compositions of hydrophobic natural active pharmaceutical ingredients (APIs), emulsifiers/cosolvents/excipients, and stabilized aqueous phases.

Pričujoče odkritje se nanaša na samo-nanoemulgirni sistem za dovajanje zdravil (SNEDDS), ki vsebuje vse API sestavine kot lipofilno jedro micela in pomožne snovi emulgatorjev / sotopila in stabilizatorja kot lupino micela v vodni fazi, z globulamo velikostjo micela manj kot 50 nm (Slika 1).The present invention relates to a self-nanoemulsifying drug delivery system (SNEDDS) containing all API components as a lipophilic micelle core and emulsifier/cosolvent and stabilizer excipients as a micelle shell in the aqueous phase, with a globular micelle size of less than 50 nm (Fig. 1).

To odkritje se nanaša na metode za izdelavo samo-nanoemulgimega sistema za dovajanje zdravil (SNEDDS), ki vsebuje zgoraj omenjene sestavine v obliki tekočega SNEDDS (za pršilo, kapljice), poltrdnega SNEDDS (gel, kapsule), trdnega SNEDDS (prašek, tablete, zrnca).This disclosure relates to methods for making a self-nanoemulsifying drug delivery system (SNEDDS) containing the above-mentioned components in the form of liquid SNEDDS (for spray, drops), semi-solid SNEDDS (gel, capsules), solid SNEDDS (powder, tablets, granules).

OZADJE IZUMABACKGROUND OF THE INVENTION

Biotska raznovrstnost, ki jo opazimo na planetu Zemlja, ponuja številne sorte rastlin / dreves, ki jih skozi stoletja raziskujejo, da bi razumeli njihovo uporabo v vsakdanjem življenju kot vir hrane in zdravil. Tradicionalni zdravilni sistem je te bogate zeliščne vire uporabljal samostojno ali v kombinaciji z drugimi potrebnimi sestavinami za zdravljenje različnih stanj. Kljub tej uporabi zdravilnih rastlinje v preteklih letih prihajalo do zaostanka pri pridobivanju terapevtsko učinkovitega zdravila / hranilnega sredstva iz rastlinskega vira.The biodiversity observed on planet Earth offers many varieties of plants/trees that have been studied over the centuries to understand their use in everyday life as a source of food and medicine. The traditional medicinal system used these rich herbal resources alone or in combination with other necessary ingredients to treat various conditions. Despite this use of medicinal plants, there has been a backlog in the past years in obtaining a therapeutically effective drug / nutrient from a plant source.

Kljub dolgi zgodovinski uporabi je bilo pri zdravljenju bolezni doseženo le malo. Glavna težava, povezana s hidrofobnimi rastlinskimi spojinami in ekstrakti, je njihova slaba biološka uporabnost, kar vodi do slabe ali zmanjšane učinkovitosti. Večina hidrofobnih spojin, kot so kurkuminoidi, bosvelične kisline, resveratrol, hipericin, bakozidi, črna semena, artemizinin, kanabinoidi, ekstrakt ginsenga in mnoge druge, ima dokazano več terapevtskih koristi, kot so protivnetna, antioksidativna, proti debelosti, za krepitev spomina, protialergijske, protimikrobne, protitumorske in številne druge zdravilne dejavnosti. Toda malo je bilo doseženo v zvezi s temi molekulami za preprečevanje in zdravljenje bolezni ravno zaradi njihove slabe biorazpoložljivosti in pomanjkanja stabilnosti v telesu. V tabeli 1 so prikazani primeri API in njihove terapevtske aplikacijeDespite its long historical use, little has been achieved in the treatment of the disease. A major problem associated with hydrophobic plant compounds and extracts is their poor bioavailability, leading to poor or reduced efficacy. Most hydrophobic compounds such as curcuminoids, boswellic acids, resveratrol, hypericin, bacosides, black seeds, artemisinin, cannabinoids, ginseng extract and many others have been shown to have multiple therapeutic benefits such as anti-inflammatory, antioxidant, anti-obesity, memory-enhancing, anti-allergic , antimicrobial, antitumor and many other medicinal activities. But little has been achieved regarding these molecules for disease prevention and treatment precisely because of their poor bioavailability and lack of stability in the body. Table 1 shows examples of APIs and their therapeutic applications

Tabela 1Table 1

Protimikrobno sredstvo Antimicrobial agent Protivnetno sredstvo Anti-inflammatory agent Nevroprotektivne lastnosti Neuroprotective properties Zaščita srca in ožilja Cardiovascular protection Antioksidanti Antioxidants Zdravila za zdravljenje raka Medicines to treat cancer Artemisinim Artemis's Kapsaicin Capsaicin Bakozid A Bacoside A Berberin Berberine Kurkumin Curcumin Kurkumin Curcumin Kofeinska Caffeinated Kolhicin Colchicine Bilobalid Bilobalide Kurkumin Curcumin Cianidin Cyanidin Kaempferol Kaempferol kislina acid Kurkumin Curcumin Kurkumin Curcumin Dihidrotanšinon Dihydrotanshinone Gingerol Gingerol Paklitaksel Paclitaxel Kapsaicin Kumarin Eugenol Mentol Capsaicin Coumarin Eugenol Menthol Epigalokatehin3-galat kvercetin Quercetin Resveratrol Kanabinoidi Epigallocatechin3-Gallate Quercetin Quercetin Resveratrol Cannabinoids Galantamin Ginenozidi Withaferin A Kanabinoidi Galantamine Ginenosides Withaferin A Cannabinoids Kvercetin Quercetin Ginkgo biloba Glicirizin Kvercetin Ginkgo biloba Glycyrrhizin Quercetin Resveratrol Silamarin Vankristin Kanabinoidi Resveratrol Silamarin Vankristin Cannabinoids

Številne rastlinske molekule, o katerih smo govorili zgoraj, so hidrofobne narave in zato niso topne v vodi. Slaba biološka uporabnost teh molekul odraža pomanjkanje učinkovitih naravnih zdravil na trgu, kljub njihovim tradicionalno znanim prednostim. Po drugi strani pa biofarmacevtski izdelki trpijo zaradi nestabilnosti in biološke razgradnje preden dosežejo ciljno mesto.Many of the plant molecules discussed above are hydrophobic in nature and therefore not soluble in water. The poor bioavailability of these molecules reflects the lack of effective natural drugs on the market, despite their traditionally known benefits. On the other hand, biopharmaceuticals suffer from instability and biodegradation before reaching the target site.

Poleg tega običajne metode in redne tehnike raztapljanja niso dovolj učinkovite, da bi raztopile visoko koncentracijo rastlinskih molekul / izvlečkov in tudi niso uspešne pri samoemulgiranju. Zaradi njihove lipofilne in hidrofobne narave je izbira pravih pomožnih snovi, pravilna kombinacija pomožnih snovi in postopek formuliranja takega izdelka ključnega pomena za doseganje želenega izdelka.Moreover, conventional methods and regular dissolution techniques are not efficient enough to dissolve high concentration of plant molecules/extracts and are also not successful in self-emulsification. Due to their lipophilic and hydrophobic nature, the selection of the right excipients, the correct combination of excipients and the formulation process of such a product is critical to achieving the desired product.

Topnost in raztapljanje je predvsem dejavnik, ki omejuje hitrost peroralne biološke uporabnosti številnih zdravil. V zadnjih dveh desetletjih so bile oblikovane različne strategije formuliranja za izboljšanje topnosti zdravil, za povečanje hitrosti in obsega absorpcije zdravil iz gastrointestinalnega trakta - GIT (Shahba in sodelavci, 2012, 2016, 2017; Devraj in sodelavci, 2013; Mohsin in sodelavci, 2016).Solubility and dissolution is primarily a factor that limits the rate of oral bioavailability of many drugs. In the last two decades, various formulation strategies have been developed to improve drug solubility, to increase the rate and extent of drug absorption from the gastrointestinal tract - GIT (Shahba et al., 2012, 2016, 2017; Devraj et al., 2013; Mohsin et al., 2016). .

Sistemi samoemulgiranja za dajanje zdravil, ki spadajo v lipidne formulacije (LBF), so pokazali, da izboljšujejo počasno in nepopolno raztapljanje zdravila in olajšajo tvorbo visoko solubilizirane faze zdravila za povečano absorpcijo zdravila. Prav tako lahko samoemulgime pripravke enostavno napolnimo v mehke in trde želatinske kapsule zaradi njihove brezvodne narave (Pouton, 1985; Strickley, 2004) (Slika 2).Self-emulsifying drug delivery systems belonging to lipid formulations (LBF) have been shown to improve slow and incomplete drug dissolution and facilitate the formation of a highly solubilized drug phase for enhanced drug absorption. Also, self-emulsifying preparations can be easily filled into soft and hard gelatin capsules due to their anhydrous nature (Pouton, 1985; Strickley, 2004) (Figure 2).

Samo-emulgime formulacije so izotropne mešanice aktivne zdravilne spojine v kombinaciji lipidov, površinsko aktivnih snovi in v vodi topnih sotopil, ki tvorijo ultrafine emulzije ob rahlem mešanju v vodni fazi, kot je zgornja vsebnost Gl lumena (Fatouros in sodelavci, 2007; Kale in Patravale, 2008). Na splošno so samo-emulgime formulacije kategorizirane kot samo-emulgimi (SEDDS), samo-mikro emulgimi (SMEDDS) in samonanoemulgimi sistemi za dovajanje zdravil (SNEDDS). SEDDS, SMEDDS in SNEDDS je mogoče v osnovi razlikovati glede na njihovo velikost globul ob vodni disperziji (Pouton, 2000; Pouton in Porter, 2008) (Slika 2).Self-emulsifying formulations are isotropic mixtures of an active medicinal compound in a combination of lipids, surfactants and water-soluble co-solvents that form ultrafine emulsions upon gentle mixing in the aqueous phase, such as the upper content of the Gl lumen (Fatouros et al., 2007; Kale and Patravale , 2008). Generally, self-emulsifying formulations are categorized as self-emulsifying (SEDDS), self-micro-emulsifying (SMEDDS), and self-nanoemulsifying drug delivery systems (SNEDDS). SEDDS, SMEDDS and SNEDDS can be fundamentally distinguished by their globule size upon aqueous dispersion (Pouton, 2000; Pouton and Porter, 2008) (Figure 2).

MEHANIZEM SAMO-NANOEMULGIRANJAMECHANISM OF SELF-NANOEMULSIFICATION

Po Reissu je energija, potrebna za povečanje površine disperzije za postopek samoemulgiranja, manj pomembna v primerjavi s spremembo entropije, ki daje prednost disperziji. Postopek samonanoemulgiranjaje povezan s prosto energijo. To pomeni, daje prosta energija običajne emulzije neposredna funkcija energije, kije bistvena za ustvarjanje nove površine med oljno in vodno fazo, in jo lahko opišemo z enačbo:According to Reiss, the energy required to increase the dispersion surface area for the self-emulsification process is less important compared to the entropy change that favors dispersion. The process of self-nanoemulsification is related to free energy. This means that the free energy of a conventional emulsion is a direct function of the energy essential for the creation of a new surface between the oil and water phases, and can be described by the equation:

DG = S N p r 2s pri kateri je DG prosta energija, povezana s postopkom, N je število kapljic polmera r, s pa predstavlja medfazno energijo. Emulzija se stabilizira z emulgatorji šele potem, ko se dve fazi emulzije ločita glede na čas, da se zmanjša površina. Emulgirno sredstvo tvori enoslojni delček emulzijskih kapljic in tako zmanjša medfazno energijo ter zagotavlja oviro, da se prepreči spajanje. V primeru mikronskih samo-emulgirnih sistemih je prosta energija, potrebna za tvorbo emulzije, bodisi zelo majhna, bodisi pozitivna ali negativna. Emulgiranje zahteva zelo malo vložene energije, kar vključuje destabilizacijo s krčenjem lokalnega medfaznega področja.DG = S N p r 2s where DG is the free energy associated with the process, N is the number of droplets of radius r, and s represents the interfacial energy. The emulsion is stabilized by emulsifiers only after the two phases of the emulsion have separated with respect to time to reduce the surface area. The emulsifier forms a monolayer particle of emulsion droplets, thus reducing the interfacial energy and providing a barrier to prevent coalescence. In the case of micron self-emulsifying systems, the free energy required to form an emulsion is either very small, positive or negative. Emulsification requires very little energy input, which involves destabilization by shrinking the local interfacial region.

Med emulgiranjem potekajo različni procesi, vključno z razprševanjem kapljic, adsorpcijo molekul površinsko aktivnih snovi in trkom kapljic. Ti procesi se lahko pojavijo hkrati. Razprševanje kapljic je izvedljivo, če deformirajoča sila presega Laplaceov tlak (PL), ki je medfazna sila, ki deluje proti deformaciji kapljic:Various processes take place during emulsification, including droplet spreading, adsorption of surfactant molecules, and droplet collision. These processes can occur simultaneously. Droplet scattering is feasible if the deforming force exceeds the Laplace pressure (PL), which is the interfacial force acting against droplet deformation:

Pl = (1/Λ1 + MR 2) · (1)Pl = (1/Λ1 + MR 2) · (1)

R1 in R2 sta manjši in večji polmer ukrivljenosti deformirane emulzijske kapljice oziroma medfazna sila. Na podlagi Laplaceove enačbe se velikost kapljic zmanjša z zmanjšanjem razmerja olje / površinsko aktivna snov (naraščajoča koncentracija površinsko aktivne snovi). Za tvorbo spontane nanoemulzije ni potrebna le visoka koncentracija površinsko aktivne snovi, temveč tudi površinsko aktivna snov z visoko HLB (hidrofilno in lipofilno ravnovesje) nad 12.R1 and R2 are the smaller and larger radius of curvature of the deformed emulsion droplet, respectively, the interfacial force. Based on Laplace's equation, droplet size decreases with decreasing oil/surfactant ratio (increasing surfactant concentration). The formation of a spontaneous nanoemulsion requires not only a high concentration of surfactant, but also a surfactant with a high HLB (hydrophilic and lipophilic balance) above 12.

Razvitje bil sistem klasifikacije lipidnih formulacij (LFCS), ki temelji na podlagi sestave, ki je kategoriziral LBF (formulacije na tekoči osnovi) v štiri različne tipe (Pouton, 2000). LFCS na zelo preprost način razlaga nastajanje različnih vrst samoemulgirnih formulacij na podlagi njihovih vrst in sestave. Na kratko, formulacije tipa I predstavljajo 100 % čisto olje (brez površinsko aktivnih snovi) kot komponento. Sistemi tipov II in IIIA vsebujejo v vodi netopne površinsko aktivne snovi (HLB <10) z različnim % olja v formulaciji (tipA development was the composition-based Lipid Formulation Classification System (LFCS), which categorized LBF (liquid-based formulations) into four different types (Pouton, 2000). LFCS explains in a very simple way the formation of different types of self-emulsifying formulations based on their types and composition. Briefly, Type I formulations feature 100% pure oil (surfactant-free) as a component. Type II and IIIA systems contain water-insoluble surfactants (HLB <10) with different % of oil in the formulation (type

II vsebuje 60-80 % olja, tip IIIA pa 40-60 % olja). Formulacije tipa IIIB vsebujejo vodotopno površinsko aktivno snov in olje (20-50 % olja), medtem ko tip IV formulacije vsebujejo samo vodotopno površinsko aktivno snov / sotopilo brez olja. V splošnem formulacije tipa II in / ali tipa IIIA spontano tvorijo emulzije SEDDS (prosojne) z velikostjo kapljic od 250 nm do 1,0 pm. SNEDDS se nanaša na formulacije, ki tvorijo prozorne mikroemulzije (olje v vodi / voda v olju) s premerom delcev 50 nm ali manj, spadajo v tip IIIB in ali tip IV. Po drugi strani pa je SMEDDS razmeroma novejši izraz, ki predstavlja velikost kapljic med 20 in 200 nm, zagotavlja pa tudi prozoren videz. Zdravilo, kapsulirano v tekočih dozirnih oblikah, je lahko v termodinamično in kinetično stabilni obliki kot SNEDDS (Kang in sodelavci, 2004; Elgart in sodelavci, 2013) (Slika 2 in Tabela 2).II contains 60-80% oil and type IIIA 40-60% oil). Type IIIB formulations contain water-soluble surfactant and oil (20-50% oil), while Type IV formulations contain only water-soluble surfactant / co-solvent without oil. In general, Type II and/or Type IIIA formulations spontaneously form SEDDS (transparent) emulsions with droplet sizes from 250 nm to 1.0 pm. SNEDDS refers to formulations that form transparent microemulsions (oil in water / water in oil) with a particle diameter of 50 nm or less, belong to type IIIB and or type IV. SMEDDS, on the other hand, is a relatively newer term that represents droplet sizes between 20 and 200 nm and also provides a transparent appearance. Drug encapsulated in liquid dosage forms can be in a thermodynamically and kinetically stable form as SNEDDS (Kang et al., 2004; Elgart et al., 2013) (Figure 2 and Table 2).

Tabela 2. Tipi peroralnih lipidnih pripravkov LFCS, njihove prednosti in omejitveTable 2. Types of oral LFCS lipid preparations, their advantages and limitations

sestava / pomen composition / meaning tip I type I tip II type II tip IIIA type IIIA tip IIIB type IIIB tip IV type IV % trigliceridov ali mešanih gliceridov % triglycerides or mixed glycerides 100 100 40-80 40-80 20 20 <20 <20 V vodi netopne površinsko aktivne snovi (HLB < 12) Water-insoluble surfactants (HLB < 12) 20-60 20-60 0-20 0-20 V vodi topne površinsko aktivne snovi (HLB > 12) Water-soluble surfactants (HLB > 12) 20-40 20-40 20-50 20-50 30-80 30-80 Hidrofilna sotopila Hydrophilic co-solvents 0—40 0—40 20-50 20-50 0-50 0-50 Velikost delcev disperzije (nm) Dispersion particle size (nm) grobi rough 100-250 100-250 100-250 100-250 50-100 50-100 <50 <50 Pomen redčenja z vodo The importance of diluting with water omejen pomen limited meaning Ne vpliva na kapaciteto topila Does not affect solvent capacity Nekaj izgube kapacitete topila Some loss of solvent capacity Pomembne fazne spremembe in potencialna izguba Significant phase changes and potential loss Pomembne fazne spremembe in potencialna izguba Significant phase changes and potential loss

kapacitete topila solvent capacities kapacitete topila solvent capacities Pomen prebavljivost The meaning of digestibility Ključna zahteva A key requirement Ni ključnega pomena, ampak se verjetno pojavi It's not critical, but it probably comes up Ni ključnega pomena, lahko pa jo zavira It is not vital, but it can inhibit it Ni zahtevano Not required Ni zahtevano Not required

SUPER-NASIČLJIV PRISTOPSUPER-SATISFACTORY APPROACH

Super-nasičljiv pristop je obetaven pristop za uporabo spojin zdravil s slabo topnostjo v vodi. Super-nasičljive formulacije so termodinamično stabilne formulacije, ki lahko povzročijo supemasičeno koncentracijo v vodnem okolju prebavil. Te super-nasičljive formulacije delujejo na vzmetno-padalski mehanizem (Warren in sodelavci, 2010; Bevernage in sodelavci, 2013). Najpogostejši načini za vzpostavitev supernasičenja so soli, ki hitro raztopijo amorfne trdne snovi, sotopila in samo-emulgirne formulacije. Vse te formulacije se imenujejo vzmeti. Vzmet prenese koncentracije raztopljenega zdravila nad nasičeno (ravnotežno) topnost. Pomanjkljivost takih formulacij je, da supernasičene formulacije povzročajo obarjanje, kadar jih dajemo in vivo. Zato je treba super-nasičljive formulacije optimizirati, da se zmanjša spremenljivosti pri uporabi. Komponenta formulacije, ki ovira nukleacijo ali rast kristalov, deluje kot padalo, da stabilizira metastabilne supernasičene formulacije v zadostnem časovnem obdobju, da se absorpcija izvede. »Padalo«, to je polimerni inhibitor (Pl), počasi umiri koncentracijo do nasičenosti (Slika 4). Nastanek supernasičenega stanja in poznejše zaviranje obarjanja se imenuje pristop »vzmet in padalo«. Pomožne snovi, ki lahko vplivajo na supemasičenost, vključujejo celulozni polimer (HPMC, HPC in MC) in druge reološke polimere (PVP), površinsko aktivne snovi (polisorbati, kremofor in TPGS) in ciklodekstrine (Mathews & Sugano, 2010). Celuloze so najpogosteje uporabljeni inhibitorji obarjanja.The super-saturable approach is a promising approach for the use of drug compounds with poor water solubility. Super-saturating formulations are thermodynamically stable formulations capable of producing a supersaturated concentration in the aqueous environment of the gastrointestinal tract. These super-saturated formulations act on a spring-fall mechanism (Warren et al., 2010; Bevernage et al., 2013). The most common ways to achieve supersaturation are salts that rapidly dissolve amorphous solids, co-solvents and self-emulsifying formulations. All these formulations are called springs. The spring carries dissolved drug concentrations above the saturated (equilibrium) solubility. A disadvantage of such formulations is that supersaturated formulations cause precipitation when administered in vivo. Therefore, super-saturated formulations need to be optimized to reduce variability in use. A formulation component that inhibits nucleation or crystal growth acts as a parachute to stabilize metastable supersaturated formulations for a sufficient period of time for absorption to occur. The “parachute”, i.e. the polymeric inhibitor (Pl), slowly moderates the concentration to saturation (Figure 4). The formation of a supersaturated state and the subsequent inhibition of precipitation is called the "spring and parachute" approach. Excipients that can affect supermass include cellulose polymer (HPMC, HPC and MC) and other rheological polymers (PVP), surfactants (polysorbates, cremophor and TPGS) and cyclodextrins (Mathews & Sugano, 2010). Celluloses are the most commonly used precipitation inhibitors.

Super-nasičlivi SNEDDSSuper-satisfying SNEDDS

Super-nasičljivi SNEDDS so zasnovani tako, da zmanjšajo obarjanje zdravila iz SNEDDSov v prebavilih. Super-nasičljivi SNEDDS so termodinamično stabilne formulacije, ki vsebujejo zmanjšano količino površinsko aktivne snovi in polimerni inhibitor obarjanja. SNEDDS preprečujejo obarjanje zdravila z ustvarjanjem in vzdrževanjem supemasičenega stanja in vivo po redčenju z vodo. Super nasičljive formulacije se razlikujejo od supemasičenih formulacij, saj slednje niso termodinamično stabilne, zdravila v supemasičenih formulacijah pa lahko pri skladiščenju kristalizirajo. Zato je fizična stabilnost supemasičenih formulacij v osnovi zahtevna in to omejuje njihovo praktično uporabnost (Gao & Morozowich, 2006; Beverange in sodelavci, 2013).Super-saturable SNEDDS are designed to minimize drug precipitation from SNEDDS in the gastrointestinal tract. Super-saturable SNEDDS are thermodynamically stable formulations containing a reduced amount of surfactant and a polymeric precipitation inhibitor. SNEDDS prevent drug precipitation by creating and maintaining a supermassed state in vivo after dilution with water. Supersaturated formulations differ from supersaturated formulations because the latter are not thermodynamically stable, and drugs in supersaturated formulations can crystallize during storage. Therefore, the physical stability of supermassed formulations is fundamentally challenging and this limits their practical utility (Gao & Morozowich, 2006; Beverange et al., 2013).

Polimerni inhibitorji obarjanja, ki se uporabljajo v super-nasičlivih formulacijah SNEDDS, so v glavnem vodotopni celulozni polimeri, kot so HPMC, PVP, metil celuloza, HPMC ftalat, natrij CMC, ki lahko ohranijo supemasičeno stanje s preprečevanjem obarjanja zdravila (Xu & Dai, 2013). Ugotovljeno je bilo, da imajo trije hidrofilni polimeri sposobnost zaviranja obarjanja v vrstnem redu PVP K17> PEG 4000> HPMC.Polymeric precipitation inhibitors used in super-saturated SNEDDS formulations are mainly water-soluble cellulosic polymers such as HPMC, PVP, methyl cellulose, HPMC phthalate, sodium CMC, which can maintain a supersaturated state by preventing drug precipitation (Xu & Dai, 2013). The three hydrophilic polymers were found to have precipitation inhibition ability in the order of PVP K17 > PEG 4000 > HPMC.

Ugotovljeno je bilo, da PVP KI7 (0,5 %) učinkovito zavira obarjanje. Druga prednost pristopa super-nasičljivih formulacij je zmanjšana količina površinsko aktivne snovi v formulaciji, s čimer se doseže izboljšan toksičnovarnostni profil s formulacijami s supemasičenimi SNEDDS.PVP KI7 (0.5%) was found to effectively inhibit precipitation. Another advantage of the super-saturated formulation approach is the reduced amount of surfactant in the formulation, thereby achieving an improved toxic hazard profile with supersaturated SNEDDS formulations.

PREGLED POVEZANIH PATENTOVREVIEW OF RELATED PATENTS

Obstaja nekaj poskusov uporabe »nanoemulzije tipa IV« za emulgiranje slabo topnih zdravil, predstavljenih v literaturi o patentih:There are some attempts to use "type IV nanoemulsion" to emulsify poorly soluble drugs presented in the patent literature:

V US2010/0196456A1, US2010/0129453Al Strasser (MiVital, SWISS) navajajo arabski gumi ali / in kolofonijo kot naravna emulgatorja za emulgiranje slabo topnih zdravil, vključno s Q10. A pomanjkanje stabilne kakovosti naravnih pomožnih snovi je očitno. In te emulzije so lahko uporabljene samo kot prehransko dopolnilo.In US2010/0196456A1, US2010/0129453 Al Strasser (MiVital, SWISS) mentions gum arabic and/or rosin as natural emulsifiers for emulsifying poorly soluble drugs, including Q10. But the lack of stable quality of natural excipients is obvious. And these emulsions can only be used as a food supplement.

V US2015/0072012A1 Sripathy in sodelavci, v US2011/0229532A1 Nair in sodelavci (Laila Pharmaceuticals Pvt, IN) so navajali nanoformulacije hidrofobnih spojin, ki jih je mogoče uporabljati kot ajurvedske / dietetične sestavine farmacevtskih zdravil in prehranskih dodatkov. Toda te emulzije se nanašajo na mikroemulzije ločenih solubiliziranih srednjih vrednosti 200 nm in z zelo visoko prednostnimi 80 % emulgatorji. Poleg tega se sproščanje API v več kot 24 urah po prejemu ne nanaša na spontano »samoemulgiranje« v smislu metode predloženega izuma.In US2015/0072012A1 Sripathy et al., in US2011/0229532A1 Nair et al. (Laila Pharmaceuticals Pvt, IN) disclosed nanoformulations of hydrophobic compounds that can be used as ayurvedic / dietetic ingredients of pharmaceutical drugs and nutritional supplements. But these emulsions refer to microemulsions of separate solubilized mean values of 200 nm and with a very high preference of 80% emulsifiers. Furthermore, releasing the API more than 24 hours after receipt does not refer to spontaneous "self-emulsification" within the meaning of the method of the present invention.

V seriji patentov US2008/022.0102A1, US 2016/0128939 A9, US2004 / 0192768A1,In patent series US2008/022.0102A1, US 2016/0128939 A9, US2004/0192768A1,

US 20200129452 avtorja Behnama, Dariusha z Aquanove AG (Darmstadt, DE) so trditve, da so raztopljene ločene aktivne kemikalije, ki temeljijo večinoma na precej velikem deležu neionskih površinsko aktivnih snovi, zlasti polisorbata20 / polisorbata80 in pogosto etanolskih topil, in nimajo nič skupnega s SNEDDS.US 20200129452 by Behnam, Dariush of Aquanove AG (Darmstadt, DE) claims to be dissolved separate active chemicals based mostly on a rather large proportion of nonionic surfactants, especially polysorbate20 / polysorbate80 and often ethanolic solvents, and have nothing to do with SNEDDS.

V US2018/0071210A1, PCT/GB20 19/050009 so avtorji Wilkhu in sodelavci iz družbe GW Research Limited, Cambridge (GB) izpostavili bistvene formulacije kanabinoidov brez olja v trdni obliki in obliki gela s pomožnimi snovmi in s poloksamerjem kot emulgatorji. Topilo je mogoče izločiti iz skupine, ki jo sestavljajo diacetin, propilen glikol, triacetin, monoacetin, propilenglikol diacetat, trietil citrat in njihove mešanice. Peroralna farmacevtska formulacija tipa IV (OPF), ki vsebuje vsaj en kanabinoid, vsaj eno topilo in vsaj en poloksamer, se lahko rehidrira z dodajanjem 20 ml vode za injiciranje pri sobni temperaturi ali z dodajanjem 20 ml vode za injiciranje pri 37 °C. Formulacija je lahko brez vode, brez alkohola in / ali brez olja, vendar ta izum ne zahteva nobenega spontanega samonanoemulgiranja zgoraj omenjenih formulacij.In US2018/0071210A1, PCT/GB20 19/050009, authors Wilkhu and co-workers from GW Research Limited, Cambridge (GB) disclosed essential oil-free cannabinoid formulations in solid and gel form with excipients and with poloxamer as emulsifiers. The solvent can be selected from the group consisting of diacetin, propylene glycol, triacetin, monoacetin, propylene glycol diacetate, triethyl citrate and mixtures thereof. A type IV oral pharmaceutical formulation (OPF) containing at least one cannabinoid, at least one solvent, and at least one poloxamer can be rehydrated by adding 20 mL of water for injection at room temperature or by adding 20 mL of water for injection at 37°C. The formulation may be water-free, alcohol-free and/or oil-free, but this invention does not require any spontaneous self-nanoemulsification of the aforementioned formulations.

V US205/0232952A1, W02003074027A2 Lamberta in sodelavcev iz Novagali Pharma SA (FR), je opisal sistem za dovajanje zdravil, ki obsega: eno ali več terapevtskih sredstev, ki so slabo topna v vodi ali so v vodi netopna, vitamin E, eno sotopilo, pridobljeno iz propilen glikola in etanola, eno ali več žolčnih soli, TPGS in še eno površinsko aktivno snov, pridobljeno iz tiloksapol in polioksil hidrogeniranega ricinusovega olja. Na žalost se je iz nastalih mikroemulzij, ko je bila koncentracija zdravil višja od 1,5 % w/w, le-to zlahka oborilo. Čas obarjanja je bil približno 2 uri, saj je bila koncentracija povišana na 2,5 % w/w.In US205/0232952A1, WO2003074027A2 Lambert et al of Novagali Pharma SA (FR) described a drug delivery system comprising: one or more poorly water soluble or water insoluble therapeutic agents, vitamin E, one cosolvent , derived from propylene glycol and ethanol, one or more bile salts, TPGS and another surfactant derived from tyloxapol and polyoxyl hydrogenated castor oil. Unfortunately, from the resulting microemulsions, when the drug concentration was higher than 1.5% w/w, it easily precipitated. The precipitation time was approximately 2 hours as the concentration was increased to 2.5% w/w.

V WO2012/033478 so Murty in sodelavci iz Murty Pharmaceuticals, Inc., 518 Codell Drive, Lexington, KY 40509 (US) uporabili formulacije kanabinoidov SEDDS na osnovi tipa I, tipa II in tipa III.In WO2012/033478, Murty et al of Murty Pharmaceuticals, Inc., 518 Codell Drive, Lexington, KY 40509 (US) used SEDDS cannabinoid formulations based on type I, type II and type III.

Trenutno številni slabo topni izdelki na trgu trdijo, da imajo visoko biološko uporabnost, ki je dosežena z uporabo fosfolipidov ali olj rastlinskega izvora itd. Vendar nobeno od že znanih metod ne razkriva supemasičene samo-nanoemulgime formulacije (SNEDDS), ki vsebuje edinstven delež (mešanico) rastlinskih hidrofobnih aktivnih spojin v fazi emulgatorja / sotopila in stabilizirane vodne faze, da dosežemo spontano samo-emulgacijo API v enem micelu brez oljne faze.Currently, many poorly soluble products on the market claim to have high bioavailability, which is achieved by using phospholipids or vegetable oils, etc. However, none of the previously known methods reveal a supermassed self-nanoemulsifying formulation (SNEDDS) containing a unique proportion (mixture) of plant hydrophobic active compounds in an emulsifier/cosolvent phase and a stabilized aqueous phase to achieve spontaneous self-emulsification of the API in one micelle without oil phases.

CILJ IZUMAOBJECTIVE OF THE INVENTION

Zato pa predloženo odkritje super-nasičljivega SNEDDS tipa IV zagotavlja edinstven delež rastlinskih hidrofobnih aktivnih spojin v fazi emulgatorja / sotopila in vodni stabilizirani fazi, da se zagotovi večja učinkovitost in spontana samo-emulgacija API v enem micelu z globularno velikostjo pod 50 nm, brez oljne faze, izdelanem v različnih oblikah: tekoči SNEDDS (za pršilo, kapljice), poltrden SNEDDS (gel, kapsule), trden SNEDDS (prašek, tablete, granule).Therefore, the presented discovery of type IV super-saturable SNEDDS provides a unique proportion of plant-based hydrophobic active compounds in the emulsifier/cosolvent phase and aqueous stabilized phase to ensure higher efficiency and spontaneous self-emulsification of APIs in a single micelle with sub-50 nm globular size, without oily phase, produced in different forms: liquid SNEDDS (for spray, drops), semi-solid SNEDDS (gel, capsules), solid SNEDDS (powder, tablets, granules).

To odkritje je potencialni naslednik na področju zdravil, biofarmacevtskih izdelkov, prehranskih dopolnil za uporabo pri ljudeh in / ali živalih z novim super-nasičljivim SNEDDS tipa IV nano-emulgirnim sestavkom s povečano biološko uporabnostjo in stabilnostjo.This discovery is a potential successor in the field of drugs, biopharmaceuticals, nutritional supplements for human and/or animal use with a new super-saturated SNEDDS type IV nano-emulsifying composition with increased bioavailability and stability.

KRATEK OPIS SLIKBRIEF DESCRIPTION OF IMAGES

Slika 1: Nanomiceli SNEDDS tipa IV brez oljaFigure 1: Oil-free SNEDDS type IV nanomicelles

Slika 2: Vrste peroralnih lipidnih formulacij po klasifikaciji LFCS, njihove prednosti in omejitveFigure 2: Types of oral lipid formulations according to the LFCS classification, their advantages and limitations

Slika 3: Pretvorba tekočega SNEDDS (L-SNEDDS) v trden SNEDDS (S-SNEDDS)Figure 3: Conversion of liquid SNEDDS (L-SNEDDS) to solid SNEDDS (S-SNEDDS)

Slika 4: Super-nasičljiv pristop {»vzmet in padalo«)Figure 4: Super-saturating approach {"spring and parachute")

Slika 5: Metoda vizualne ocene formulacij CBD tipa I-IV LBFFigure 5: Visual evaluation method of CBD type I-IV LBF formulations

Slika 6: Vpliv hidrofilnih sestavkov na velikost delcev in PDI formulacij na osnovi lipidov (LBF) za CBDFigure 6: Effect of hydrophilic compositions on particle size and PDI of lipid-based formulations (LBF) for CBD

Slika 7 Kriotransmisijsko elektronsko mikroskopsko (krio-TEM) opazovanje prazne nanoemulzije po dolgem obdobju shranjevanja (devet mesecev) pri sobni temperaturi (10.000 kratna povečava)Figure 7 Cryo-transmission electron microscopy (cryo-TEM) observation of a blank nanoemulsion after a long period of storage (nine months) at room temperature (10,000x magnification)

Slika 8: Porazdelitev velikosti globul prazne nanoemulzije po devetmesečnem skladiščenju pri sobni temperaturiFigure 8: The globule size distribution of the empty nanoemulsion after nine months of storage at room temperature

Slika 9: Razporeditev velikosti globul prazne nanoemulzije (levo), prazne nanoemulzije po inkubaciji z 0,1 N HC1 1:1 v/v (sredina) in prazne nanoemulzije po inkubiranju s fosfatnim pufrom (pH 6,8) 1:1 v/v (desno). Inkubacijo smo izvedli pri 37 °C Slika 10: Citotoksični učinek na različne celične linijeFigure 9: Globule size distribution of blank nanoemulsion (left), blank nanoemulsion after incubation with 0.1 N HC1 1:1 v/v (middle), and blank nanoemulsion after incubation with phosphate buffer (pH 6.8) 1:1 v/v in (right). Incubation was carried out at 37 °C Figure 10: Cytotoxic effect on different cell lines

Slika 11: Pseudo-ternami diagram za SNEDDS CimetrAFigure 11: Pseudo-ternami plot for SNEDDS CimetrA

Slika 12: Površinska morfologija adsorbenta Aerosil 200 in SNEDDS CimetrA v trdni obliki (Razmerje 50/50)Figure 12: Surface morphology of adsorbent Aerosil 200 and SNEDDS CimetrA in solid form (Ratio 50/50)

Slika 13: Diagram poteka sinteze CimetrAFigure 13: Synthesis flow diagram of CimetrA

POVZETEK IZUMASUMMARY OF THE INVENTION

Predloženi izum razkriva nov, visoko biološko dostopen, v vodi topen, super-nasičljiv brez olja tip IV samo-nanoemulgimi sistem za dovajanje zdravil (SNEDDS) za farmacevtske sestavke hidrofobnih naravnih aktivnih farmacevtskih sestavin (API), emulgatorjev / sotopil / pomožnih snovi in stabilizirane vodne faze.The present invention discloses a novel, highly bioavailable, water-soluble, super-saturated, oil-free type IV self-nanoemulsifying drug delivery system (SNEDDS) for pharmaceutical formulations of hydrophobic natural active pharmaceutical ingredients (APIs), emulsifiers/cosolvents/excipients, and stabilized aqueous phase.

Predloženi izum razkriva super-nasičljiv samo-nanoemulgimi sistem za dovajanje zdravil (SNEDDS), ki vsebuje vse API sestavine kot lipofilno (hidrofobno) jedro micela in emulgatorje / sotopilo in pomožne snovi stabilizatorje kot lupino (hidrirana lupina) micela v vodni fazi z globularno velikostjo micela manj kot 50 nm (Slika 1).The present invention discloses a super-saturable self-nanoemulsifying drug delivery system (SNEDDS) containing all API components as a lipophilic (hydrophobic) micelle core and emulsifiers/cosolvent and stabilizer excipients as a shell (hydrated shell) of a micelle in an aqueous phase with globular size micelles less than 50 nm (Figure 1).

Predloženo odkritje se nanaša na metode izdelave samo-nanoemulgimega sistema za dovajanje zdravil (SNEDDS), ki vsebuje zgoraj omenjene sestavine kot tekoči SNEDDS (za pršilo, kapljice), poltrden SNEDDS (gel, kapsule), trden SNEDDS (prašek, tablete, granule).The present invention relates to methods of manufacturing a self-nanoemulsifying drug delivery system (SNEDDS) containing the above-mentioned components as liquid SNEDDS (for spray, drops), semi-solid SNEDDS (gel, capsules), solid SNEDDS (powder, tablets, granules). .

PODROBEN OPIS IZUMADETAILED DESCRIPTION OF THE INVENTION

To razkritje ponuja nov peroralen super-nasičljiv brez olja (tip IV po klasifikaciji LFCS) samo-nanoemulgimi sistem (SNEDDS) oziroma formulacijo za dovajanje zdravil z edinstvenim deležem rastlinskih hidrofobnih aktivnih spojin / ekstraktov v fazi emulgator / sotopilo in stabilizirane vodne faze z globulamo velikostjo micela pod 50 nm.This disclosure provides a novel oral super-saturable oil-free (LFCS type IV) self-nanoemulsifying system (SNEDDS) or drug delivery formulation with a unique proportion of plant hydrophobic active compounds/extracts in the emulsifier/cosolvent phase and stabilized aqueous phase with globule size micelles below 50 nm.

V še enem vidiku razkritje podaja super-nasičljive samo-nanoemulgime (SNEDDS) formulacije, ki vsebujejo eno in / ali kombinacije rastlinskih hidrofobnih aktivnih spojin / izvlečkov v fazi emulgator / sotopilo in stabilizirano vodno fazo za dobro obstojnost kot zaščito pred možnim obarjanjem in biološko razgradnjo.In yet another aspect, the disclosure provides super-saturating self-nanoemulsifying (SNEDDS) formulations containing single and/or combinations of plant hydrophobic active compounds/extracts in an emulsifier/cosolvent phase and a stabilized aqueous phase for good stability as protection against possible precipitation and biodegradation .

V še enem vidiku razkritje podaja super-nasičlijve samo-nanoemulgime (SNEDDS) formulacije, ki vsebujejo eno in / ali kombinacije rastlinskih hidrofobnih aktivnih spojin / izvlečkov v fazi emulgator / sotopilo in stabilizirano vodno fazo za različne terapevtske, preventivne in splošnozdravstvene dopolnilne aplikacije za živali in ljudi.In yet another aspect, the disclosure provides super-saturable self-nanoemulsifying (SNEDDS) formulations containing single and/or combinations of plant hydrophobic active compounds/extracts in an emulsifier/cosolvent phase and a stabilized aqueous phase for various therapeutic, preventive and general health supplement applications for animals and people.

V še enem vidiku razkritje podaja super-nasičljive samo-nanoemulgime (SNEDDS) formulacije, ki vsebujejo eno in / ali kombinacije rastlinskih hidrofobnih aktivnih spojin / izvlečkov v fazi emulgator / sotopilo in stabilizirano vodno fazo za uporabo kot prehranska dopolnila ali nutraceutiki / dodatki za zdravje / splošni dodatki / zdravila brez recepta.In yet another aspect, the disclosure provides super-saturable self-nanoemulsifying (SNEDDS) formulations containing single and/or combinations of plant hydrophobic active compounds/extracts in an emulsifier/cosolvent phase and a stabilized aqueous phase for use as dietary supplements or nutraceuticals/health supplements / general supplements / non-prescription drugs.

V še enem vidiku razkritje podaja super-nasičljive samo-nanoemulgime (SNEDDS) formulacije, ki vsebujejo eno in / ali kombinacije rastlinskih hidrofobnih aktivnih spojin / izvlečkov v fazi emulgator / sotopilo in stabilizirano vodno fazo v tekoči, poltrdni ali trdni dozirni obliki.In yet another aspect, the disclosure provides super-saturable self-nanoemulsifying (SNEDDS) formulations containing single and/or combinations of plant hydrophobic active compounds/extracts in an emulsifier/cosolvent phase and a stabilized aqueous phase in a liquid, semi-solid or solid dosage form.

Različne izvedbe, ki so razkrite v tem dokumentu, se nanašajo na super-nasičljive samonanoemulgime (SNEDDS) sisteme oziroma formulacije, ki vsebujejo dispergirano fazo v količini 10-95 % glede na maso formulacije, in vodno fazo v količini 5-70%, glede na težo formulacije. Dispergirana faza obsega delce z emulgatorjem, ki vsebuje neionsko površinsko aktivno snov z vrednostjo HLB 15 do 18, sotopilo in hidrofobni farmacevtsko / biološko aktivni material v količini 0,0001 do 10 %, ki temelji na teži formulacije. Opcijsko se lahko vključi pomožne snovi za stabilizacijo - stabilizatorje (regulator pH, antioksidanti, zaviralci obarjanja itd.) v količini 0,001-10 %.Various embodiments disclosed herein relate to super-saturable self-nanoemulsifying systems (SNEDDS) or formulations containing a dispersed phase in the amount of 10-95% by weight of the formulation, and an aqueous phase in the amount of 5-70%, by to the weight of the formulation. The dispersed phase comprises particles with an emulsifier containing a nonionic surfactant with an HLB value of 15 to 18, a cosolvent, and a hydrophobic pharmaceutical/biologically active material in an amount of 0.0001 to 10% based on the weight of the formulation. Optionally, auxiliary substances for stabilization can be included - stabilizers (pH regulator, antioxidants, precipitation inhibitors, etc.) in the amount of 0.001-10%.

V različnih izvedbah se med 75 % in 90 % hidrofobnega biološko aktivnega materiala takoj samo-emulgira, ko se ga doda vodi, oziroma spontano sprosti iz nanoformulacije, ko nanoformulacijo dodamo vodi.In various embodiments, between 75% and 90% of the hydrophobic biologically active material is immediately self-emulsified when added to water, or spontaneously released from the nanoformulation when the nanoformulation is added to water.

Poleg tega v različnih izvedbah, ki so razkrite v tem dokumentu, super-nasičljiv samonanoemulgirni sistem za dovajanje zdravila (SNEDDS) vsebuje hidrofobni biološko aktivni material, kije naravni proizvod, sintetično pridobljen izdelek ali njihova zmes. Hidrofobni biološko aktivni material je lahko ekstrakt ali fitokemikalija, pridobljena iz vsaj ene rastline, izbrane iz skupine, ki jo sestavljajo kurkumin, ženšen, ginkgo biloba, garcinia mangostana, ocimum basilicum, zingiber officinale, tribulus terrestris, sphaeranthus indeks, annona squamosa, moringa oleifera, murraya koenigii in njihove mešanice. Hidrofobni biološko aktivni material je lahko spojina, izbrana iz skupine, ki jo sestavlja vsaj en kurkuminoid, izbran iz skupine, ki jo sestavljajo kurkumin, demetoksikurkumin, bisdemetoksikurkumin in bis-o-demetil kurkumin; vsaj ena spojina artemisinin, spojina Boswellove kisline; kanabinoidi; črno seme; resveratrol; hipericin; bakozid (i); ksantorhizol; pepperin, luteolin; pirogalol; genistein; wogonin; morin; kaempferol; in njihove mešanice (Slika 6)Additionally, in various embodiments disclosed herein, a super-saturable self-nanoemulsifying drug delivery system (SNEDDS) comprises a hydrophobic biologically active material that is a natural product, a synthetically derived product, or a mixture thereof. The hydrophobic biologically active material can be an extract or phytochemical obtained from at least one plant selected from the group consisting of curcumin, ginseng, ginkgo biloba, garcinia mangostana, ocimum basilicum, zingiber officinale, tribulus terrestris, sphaeranthus index, annona squamosa, moringa oleifera , murraya koenigii and their mixtures. The hydrophobic biologically active material may be a compound selected from the group consisting of at least one curcuminoid selected from the group consisting of curcumin, demethoxycurcumin, bisdemethoxycurcumin and bis-o-demethyl curcumin; at least one artemisinin compound, a Boswell acid compound; cannabinoids; black seed; resveratrol; hypericin; bacoside (i); xanthorhizol; pepperin, luteolin; pyrogallol; genistein; wogonin; morin; kaempferol; and their mixtures (Figure 6)

V različnih izvedbah, predstavljenih v tem dokumentu, predloženi izum SNEDDS supernasičliva samo-nano formulacija vsebuje dispergirano fazo, ki obsega delce, ki vsebujejo neionsko površinsko aktivno snov (emulgator), izbrano iz skupine, ki jo sestavljajo polisorbati, polietilen glikoli, polietilenglikol estri, estri glicerola in mešanice tega.In various embodiments presented herein, the presented invention SNEDDS supersaturable self-nano formulation contains a dispersed phase comprising particles containing a nonionic surfactant (emulsifier) selected from the group consisting of polysorbates, polyethylene glycols, polyethylene glycol esters, glycerol esters and mixtures thereof.

V prednostni izvedbi površinsko aktivne snovi, uporabljene v pričujočem izumu, vsebujejo neionske površinsko aktivne snovi. V še eni izvedbi so neionske površinsko aktivne snovi izbrane iz skupine, ki jo sestavljajo polioksietilenski produkti hidrogeniranih rastlinskih olj, polietoksilirano ricinusovo olje, estri polioksietilensorbitan-maščobnih kislin, derivati polioksietilen ricinusovega olja ali njihova kombinacija. Na voljo so v prodaji kot CREMOPHOR® (iz družbe BASF) kot je CREMOPHOR® EL (ricinusovo olje PEG-35), EMOPHOR®RH40 (hidrogenirano ricinusovo olje PEG-40), CREMOPHOR®RH60 (hidrogenirano ricinusovo olje PEG-60), LABRASOL® (PEG-8 kaprilni / kaprini gliceridi), GELUCIRE® (stearoil polioksil gliceridi), polisorbati, PLURONIC®L-64 in L-127 (blok kopolimeri na osnovi etilen oksida in propilen oksida), TRITON™ X 100 (polietilen glikol terc-oktilfenil eter), SIMULSOL™ (polioksietilirani izdelki, ki vsebujejo polioksietilirani lavrinski alkohol, polioksietiliran četo stearil alkohol, polioksietil kislin in podobno) NIKKOL™ HCO-50 (polioksietilen (50) hidrogenirano ricinusovo olje), NIKKOL™ HCO35 (polioksietilen (35) hidrogenirano ricinusovo olje), NIKKOL™ HCO-40 (polioksietilen (40) hidrogenirano ricinusovo olje), NIKKOL™ HCO-60 polioksietilen (60) hidrogenirano ricinusovo olje) (iz družbe Nikko Chemicals Co. Ltd.) in TWEENS® (Polisorbati) (iz družbe ICI Chemicals). V prednostni izvedbi je površinsko aktivna snov CREMOPHOR ® EL.In a preferred embodiment, the surfactants used in the present invention comprise nonionic surfactants. In another embodiment, the nonionic surfactants are selected from the group consisting of polyoxyethylene products of hydrogenated vegetable oils, polyethoxylated castor oil, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene castor oil derivatives, or a combination thereof. They are commercially available as CREMOPHOR® (from BASF) such as CREMOPHOR® EL (castor oil PEG-35), EMOPHOR®RH40 (hydrogenated castor oil PEG-40), CREMOPHOR®RH60 (hydrogenated castor oil PEG-60), LABRASOL® (PEG-8 caprylic / capric glycerides), GELUCIRE® (stearoyl polyoxyl glycerides), polysorbates, PLURONIC® L-64 and L-127 (block copolymers based on ethylene oxide and propylene oxide), TRITON™ X 100 (polyethylene glycol tert-octylphenyl ether), SIMULSOL™ (polyoxyethylated products containing polyoxyethylated lauric alcohol, polyoxyethylated stearyl alcohol, polyoxyethyl acids and the like) NIKKOL™ HCO-50 (polyoxyethylene (50) hydrogenated castor oil), NIKKOL™ HCO35 (polyoxyethylene (35 ) hydrogenated castor oil), NIKKOL™ HCO-40 (polyoxyethylene (40) hydrogenated castor oil), NIKKOL™ HCO-60 polyoxyethylene (60) hydrogenated castor oil) (from Nikko Chemicals Co. Ltd.) and TWEENS® (Polysorbates) (from ICI Chemicals). In a preferred embodiment, the surfactant is CREMOPHOR ® EL.

Prednostni emulgator je CREMOPHOR®RH40 (hidrogenirano ricinusovo olje PEG-40). Površinsko aktivna snov lahko tvori stabilno emulzijo, po možnosti fino SNEDDS emulzijo, ko pride v stik z vodno tekočino, na primer v prebavilih (Slika 3). Površinsko aktivna snov v smislu predloženega izuma ne obori aktivnih farmacevtskih sestavin iz emulzije in zato nudi boljšo stabilnost formulacije kot že do sedaj obstoječe tehnike. Prav tako odpravlja uporabo polimernih zaviralcev molekularne agregacije in preprečuje nastanek oborine API.The preferred emulsifier is CREMOPHOR®RH40 (hydrogenated castor oil PEG-40). The surfactant can form a stable emulsion, preferably a fine SNEDDS emulsion, when in contact with an aqueous fluid, for example in the gastrointestinal tract (Figure 3). The surface-active substance in the sense of the present invention does not precipitate active pharmaceutical ingredients from the emulsion and therefore offers better stability of the formulation than the existing techniques. It also eliminates the use of polymeric molecular aggregation inhibitors and prevents API precipitation.

V eni izvedbi so sotopila v predstavljenem izumu izbrana iz skupine, ki jo sestavljajo dolžine verig polietilen glikola (po možnosti z molekulsko maso od 200 do 600), derivati propilen glikola in komercialno dostopni izdelki, kot je TRANSCUTOL® (dietilen glikol monoetil eter), CAPRYOL™ (propilen glikol monokaprilat tipa I), CAPRYOL™ 90 (propilenglikol monokaprilat tipa II), CAPMUL® (gliceril kaprilat), TETRAGLYCOL™ (tetrahidrofurfuril dietilen glikol eter), LABRAFIL® (poliglikozil gliceridi), LUTROL® F68 (polaksomer 188), CARBITOL™ (dietilen glikol monoetil eter) in podobno. V prednostni izvedbi je sotopilo polietilen glikol (PEG) z molekulsko maso 200^100, splošno znano kot PEG-200-400. Pri izvedbi sotopila v predstavljenem izumu delujejo tudi kot solubilizatorji v nastali sestavi.In one embodiment, the co-solvents in the present invention are selected from the group consisting of polyethylene glycol chain lengths (preferably with a molecular weight of 200 to 600), propylene glycol derivatives, and commercially available products such as TRANSCUTOL® (diethylene glycol monoethyl ether), CAPRYOL™ (propylene glycol monocaprylate type I), CAPRYOL™ 90 (propylene glycol monocaprylate type II), CAPMUL® (glyceryl caprylate), TETRAGLYCOL™ (tetrahydrofurfuryl diethylene glycol ether), LABRAFIL® (polyglycosyl glycerides), LUTROL® F68 (polaxomer 188) , CARBITOL™ (diethylene glycol monoethyl ether) and the like. In a preferred embodiment, the co-solvent is polyethylene glycol (PEG) with a molecular weight of 200^100, commonly known as PEG-200-400. In the embodiment of the presented invention, the co-solvents also act as solubilizers in the resulting composition.

Prednostno je sotopilo PEG-400 (polietilen glikol).A preferred cosolvent is PEG-400 (polyethylene glycol).

V eni izvedbi lahko sestavek pričujočega izuma vsebuje dodatke, ki se običajno uporabljajo za pripravo farmacevtskih formulacij. Ti dodatki so stabilizatorji. Stabilizatorji lahko vključujejo antioksidante in regulatorje pH, želime snovi, zaviralce obarjanja in stabilizacijske komponente.In one embodiment, the composition of the present invention may contain additives commonly used to prepare pharmaceutical formulations. These additives are stabilizers. Stabilizers may include antioxidants and pH regulators, desirable substances, precipitation inhibitors and stabilizing components.

V eni izvedbi je antioksidant in regulator pHizbran iz skupine, ki jo sestavljajo ocetna kislina, ledena ocetna kislina, mlečna kislina, citronska kislina, fosforjeva kislina, ogljikova kislina, histidin, glicin, barbital, ftalna kislina, adipinska kislina, askorbinska kislina (vitamin C), maleinska kislina, jantarna kislina, vinska kislina, glutaminska kislina, benzojska kislina, asparaginska kislina in soli (npr. kalij, natrij itd.) ali njihove kombinacije. Antioksidant je vgrajen v primerni količini za oksidacijo odvečnih ionov v formulaciji. V prednostni formulaciji antioksidant obsega manj kot približno 10 % mase celotne formulacije in, še bolje, od približno 0,05 % mase do približno 6 % mase celotne formulacije.In one embodiment, the antioxidant and pH regulator is selected from the group consisting of acetic acid, glacial acetic acid, lactic acid, citric acid, phosphoric acid, carbonic acid, histidine, glycine, barbital, phthalic acid, adipic acid, ascorbic acid (vitamin C ), maleic acid, succinic acid, tartaric acid, glutamic acid, benzoic acid, aspartic acid and salts (eg potassium, sodium, etc.) or combinations thereof. The antioxidant is incorporated in a suitable amount to oxidize excess ions in the formulation. In a preferred formulation, the antioxidant comprises less than about 10% by weight of the total formulation and, more preferably, from about 0.05% by weight to about 6% by weight of the total formulation.

V eni izvedbi je sredstvo za želiranje izbrano iz skupine, ki jo sestavljajo ksantan gumi, karagenan, gumi rožičevca, guar gumi, modificirane celuloze, nizko esterificirani pektini in koloidni silicijev dioksid. V prednostni izvedbi je želimo sredstvo koloidni silicijev dioksid, ki je na voljo kot AEROSIL 200.In one embodiment, the gelling agent is selected from the group consisting of xanthan gum, carrageenan, locust bean gum, guar gum, modified celluloses, low esterified pectins, and colloidal silica. In a preferred embodiment, the desired agent is colloidal silica, which is available as AEROSIL 200.

V eni izvedbi je stabilizirajoča komponenta formulacije izbrana iz skupine, ki jo sestavljajo vitamin-E α-tokoferol, askorbil palmitat, BHT (butil hidroksitoluen), BHA (butil hidroksi anizol), propil galat ali jabolčna kislina.In one embodiment, the stabilizing component of the formulation is selected from the group consisting of vitamin-E α-tocopherol, ascorbyl palmitate, BHT (butyl hydroxytoluene), BHA (butyl hydroxy anisole), propyl gallate, or malic acid.

Po želji lahko formulacija nadalje vključuje običajne farmacevtske dodatke. Primeri farmacevtskih dodatkov, ki pa niso omejeni le na te, vključujejo površinsko aktivne snovi (na primer natrijev lavril sulfat), barvila, arome, konzervanse, stabilizatorje in / ali sredstva za zgoščevanje. Formulacija ima lahko tekočo ali poltrdno obliko in jo po želji napolnimo v želatinsko kapsulo. Po zaužitju kapsula poči in sprosti formulacijo. Ko formulacija pride v stik z vodnim okoljem, na primer v prebavilih, formulacija spontano tvori emulzijo. Ena od prednosti izuma je, da se aktivna sredstva s slabo topnostjo v vodi lahko raztopijo in oblikujejo v koristno terapevtsko formulacijo.If desired, the formulation may further include conventional pharmaceutical additives. Examples of pharmaceutical additives include, but are not limited to, surfactants (eg, sodium lauryl sulfate), colorants, flavors, preservatives, stabilizers, and/or thickeners. The formulation can have a liquid or semi-solid form and can be filled into a gelatin capsule if desired. After ingestion, the capsule bursts and releases the formulation. When the formulation comes into contact with an aqueous environment, for example in the gastrointestinal tract, the formulation spontaneously forms an emulsion. One advantage of the invention is that active agents with poor water solubility can be dissolved and formulated into a useful therapeutic formulation.

Prednostni polimerni inhibitor obarjanja za SNEDDS je PVP (polivinilpirolidon), sintetični polimer, tvorjen iz linearnih 1-vinil-2-pirolidinonskih skupin. Uporaba polivinilpirolidona še ni bila opisana kot pomožna snov, uporabna v samoemulgirajočih hidrofobnih formulacijah. Stopnja polimerizacije polimera daje polimere z različno težo, s katerimi je mogoče karakterizirati polivinilpirolidon. Polivinilpirolidon, uporabljen v tem izumu, ima lahko molekulsko maso od približno 2.500 do približno 100.000. Naraščajoča molekulska masa polivinilpirolidonskega polimera je povezana z naraščajočo viskoznostjo, ki je izražena kot vrednost K. Polimeri polivinilpirolidona so v prodaji pri podjetju BASF Corporation (Parsippany, New Jersey, ZDA) pod blagovno znamko KOLLIDON™, na splošno pa jih je mogoče dobiti v vrednostih K 12, 15, 17, 25, 30, 60 in 90. Prednostni polimeri imajo molekulsko maso od približno 2.500 do približno 20.000, kar ustreza nižjim vrednostim K, kot sta K12 in K25. Za raztapljanje želene količine aktivne snovi uporabimo zadostno količino polivinilpirolidona. Da bi dosegli popolno prednost predstavljenega izuma, aktivno sredstvo raztopimo v nosilcu, ki vsebuje polivinilpirolidon. Izum ima edinstveno prednost v tem, da lahko polivinilpirolidon, ki se običajno uporablja za pripravo trdnih formulacij, kot so tablete ali peleti, raztopi v vodi ekstremno netopno lipofilno aktivno sredstvo. Prednostna količina polivinilpirolidona v formulaciji je približno 0,1 % mase do približno 10 % mase celotne formulacije. Bolj želena količina polivinilpirolidona v formulaciji je približno 0,1 % mase do približno 3 % mase in še bolj prednostno približno 0,1 % mase do približno 2 % mase.The preferred polymeric precipitation inhibitor for SNEDDS is PVP (polyvinylpyrrolidone), a synthetic polymer formed from linear 1-vinyl-2-pyrrolidinone groups. The use of polyvinylpyrrolidone as an excipient useful in self-emulsifying hydrophobic formulations has not yet been described. The degree of polymerisation of the polymer gives polymers of different weights with which polyvinylpyrrolidone can be characterized. The polyvinylpyrrolidone used in this invention can have a molecular weight of from about 2,500 to about 100,000. Increasing molecular weight of the polyvinylpyrrolidone polymer is associated with increasing viscosity, which is expressed as a K value. Polyvinylpyrrolidone polymers are commercially available from BASF Corporation (Parsippany, New Jersey, USA) under the trade name KOLLIDON™ and are generally available in K 12, 15, 17, 25, 30, 60 and 90. Preferred polymers have molecular weights from about 2,500 to about 20,000, corresponding to lower K values such as K12 and K25. A sufficient amount of polyvinylpyrrolidone is used to dissolve the desired amount of active substance. In order to take full advantage of the present invention, the active agent is dissolved in a carrier containing polyvinylpyrrolidone. The invention has the unique advantage that polyvinylpyrrolidone, which is commonly used to prepare solid formulations such as tablets or pellets, can dissolve an extremely water-insoluble lipophilic active agent. A preferred amount of polyvinylpyrrolidone in the formulation is about 0.1% by weight to about 10% by weight of the total formulation. A more preferred amount of polyvinylpyrrolidone in the formulation is about 0.1% by weight to about 3% by weight, and more preferably about 0.1% by weight to about 2% by weight.

Nekatere izvedbe, predstavljene v tem dokumentu, se nanašajo na prosto tekoče trdne praške, pripravljene iz SNEDDS samo-nano-formulacije po izumu. Praški se lahko pripravijo tako, da se nano-formulacija (super-nasičljiv brez olja samo-nanoemulgirni sistem za dovajanje zdravil - SNEDDS po izumu) podvrže kapsuliranju, sušenju z nanobrizganjem, tankoslojnemu sušenju ali liofiliziranju; ali s kombiniranjem nano-formulacije z nosilcem, izbranim iz skupine, ki jo sestavljajo mikrokristalna celuloza, oborjeni kremen, brezvodni dvobazni kalcijev fosfat, manitol, hidroksipropil metilceluloza, celuloza in njihove mešanice.Certain embodiments presented herein relate to free-flowing solid powders prepared from SNEDDS self-nano-formulations of the invention. Powders can be prepared by subjecting the nano-formulation (super-saturated oil-free self-nano-emulsifying drug delivery system - SNEDDS according to the invention) to encapsulation, nano-spray drying, thin-layer drying or lyophilization; or by combining the nano-formulation with a carrier selected from the group consisting of microcrystalline cellulose, precipitated silica, anhydrous dibasic calcium phosphate, mannitol, hydroxypropyl methylcellulose, cellulose, and mixtures thereof.

Druge tukaj opisane izvedbe se nanašajo na tekoče nutracevtske sestavke, pripravljene z dispergiranjem nano-formulacije v vodnem mediju. Nadaljnje izvedbe se nanašajo na gele ali kreme, pripravljene s kombiniranjem nano-formulacije z voskom ali polimerom. Primerni voski ali polimeri vključujejo hidroksipropil metilcelulozo, izopropil miristat, kolagen, cetilni alkohol, kovinske soli stearinske kisline in karbopol.Other embodiments described herein relate to liquid nutraceutical compositions prepared by dispersing the nano-formulation in an aqueous medium. Further embodiments relate to gels or creams prepared by combining the nano-formulation with a wax or polymer. Suitable waxes or polymers include hydroxypropyl methylcellulose, isopropyl myristate, collagen, cetyl alcohol, metal salts of stearic acid and carbopol.

Različne izvedbe, opisane v tem dokumentu, se nanašajo na postopek za pripravo supernasičljivega brez olja samo-nanoemulgimega sistema za dovajanje zdravil - SNEDDS po izumu v tekoči obliki, ki obsega hidrofobni biološko aktivni material, pri čemer postopek obsega naslednje korake:The various embodiments described herein relate to a process for preparing a supersaturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to the invention in liquid form comprising a hydrophobic biologically active material, the process comprising the following steps:

a) predsegrevanje emulgatorja, ki obsega neionsko površinsko aktivno snov z vrednostjo HLB 15 do 18 in sotopilo na temperaturo nad tališčem hidrofobne biološko aktivne snovi;a) preheating the emulsifier, which comprises a nonionic surfactant with an HLB value of 15 to 18 and a co-solvent to a temperature above the melting point of the hydrophobic biologically active substance;

b) dodajanje hidrofobne biološko aktivne snovi predhodno segretemu emulgatorju / sotopilu / stabilizatorju, in raztapljanje hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju, da nastane mešanica;b) adding the hydrophobic biologically active material to the preheated emulsifier/cosolvent/stabilizer, and dissolving the hydrophobic biologically active material in the emulsifier/cosolvent/stabilizer to form a mixture;

c) hlajenje mešanice na 50 °C ali na sobno temperaturo inc) cooling the mixture to 50 °C or to room temperature and

d) dodajanje želene količine vodne faze, čemur sledi mešanje, da dobimo nanoemulgirano formulacijo hidrofobnega aktivnega sistema, ki vsebuje delce z velikostjo delcev manj kot 50 nm.d) adding the desired amount of aqueous phase followed by mixing to obtain a nanoemulsified formulation of the hydrophobic active system containing particles with a particle size of less than 50 nm.

Mešanico iz koraka (b) segrevamo pri temperaturi v razponu 50-200 °C, da dobimo solubilizacijo hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju.The mixture from step (b) is heated at a temperature in the range of 50-200 °C to obtain solubilization of the hydrophobic biologically active material in the emulsifier / co-solvent / stabilizer.

Mešanico iz koraka (b) podvržemo ultrazvočni obdelavi, da dobimo solubilizacijo hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju.The mixture from step (b) is sonicated to obtain solubilization of the hydrophobic biologically active material in the emulsifier/cosolvent/stabilizer.

Mešanico iz koraka (b) izpostavimo verteksiranju, da dobimo solubilizacijo hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju.The mixture from step (b) is subjected to vortexing to obtain solubilization of the hydrophobic biologically active material in the emulsifier / cosolvent / stabilizer.

Mešanico iz koraka (b) izpostavimo ultravisokotlačni homogenizaciji, da dobimo solubilizacijo hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju.The mixture from step (b) is subjected to ultra-high pressure homogenization to obtain solubilization of the hydrophobic biologically active material in the emulsifier / co-solvent / stabilizer.

Podroben opis postopka:Detailed description of the process:

1) Pripravimo in steriliziramo steklovino za mešanje sestavin (2 posodi) za emulgirano in vodno fazo1) Prepare and sterilize the glassware for mixing the ingredients (2 containers) for the emulsified and aqueous phases

V posodi 1:In container 1:

• Pri sobni temperaturi 22-25 °C zmešamo emulgatorje / sotopila / stabilizator. Mešamo 15 minut. Mešanico segrejemo na 60-200 °C.• Mix the emulsifiers / co-solvents / stabilizer at a room temperature of 22-25 °C. Mix for 15 minutes. The mixture is heated to 60-200 °C.

• V segreto mešanico zaporedno dodamo vsako komponento API, med mešanjem se vsaka komponenta raztopi v 15-30 minutah. Mešanico vsakokrat segrejemo nad temperaturo tališča posamezne komponente API.• Add each API component sequentially to the heated mixture, while mixing each component dissolves in 15-30 minutes. The mixture is always heated above the melting temperature of the individual API component.

• Izklopimo segrevanje. Med mešanjem pustimo, da se zmes ohladi na temperaturo 50 °C.• Turn off the heating. While stirring, let the mixture cool down to a temperature of 50 °C.

V posodi 2:In container 2:

• Razplinimo destilirano vodo (odsesavanje s pomočjo vakuuma).• We degas the distilled water (extraction with the help of a vacuum).

• V posodo 2 nalijemo določen % razplinjene destilirane vode. Segrejemo na 50 °C.• Pour a certain % of degassed distilled water into container 2. Heat to 50 °C.

• V segreto destilirano vodo pri stalnem mešanju in vzdrževanju temperature 50 °C dodamo določen % pomožne snovi za stabilizacijo (regulator pH, antioksidanti, zaviralci obarjanja itd.).• Add a certain % of auxiliary substance for stabilization (pH regulator, antioxidants, precipitation inhibitors, etc.) to the heated distilled water while constantly stirring and maintaining the temperature at 50 °C.

2) Dodajanje želene količine vodne faze, čemur sledi mešanje, da dobimo nanoemulgirano formulacijo hidrofobnih farmacevtsko aktivnih sestavin, ki vsebuje micele z globulamo velikostjo med približno 10 nm in približno 50 nm. V posodo 1 počasi vlivamo vsebino posode 2. 30 minut temeljito mešamo in vzdržujemo temperaturo 50 °C.2) Adding the desired amount of aqueous phase followed by mixing to obtain a nanoemulsified formulation of hydrophobic pharmaceutically active ingredients containing micelles with globule sizes between about 10 nm and about 50 nm. Slowly pour the contents of container 2 into container 1. Stir thoroughly for 30 minutes and maintain the temperature at 50 °C.

3) Finalizacija emulgiranja z 10-minutno ultrazvočno obdelavo.3) Finalization of the emulsification with a 10-minute ultrasonic treatment.

4) Nastalo emulzijo 10 minut vakuumiramo, čemur sledi filtracija emulzije, da odstranimo peno.4) The resulting emulsion is vacuumed for 10 minutes, followed by filtration of the emulsion to remove foam.

5) Dobljeno nanoemulzijo SNEDDS vlijemo v pripravljeno posodo za shranjevanje.5) Pour the obtained SNEDDS nanoemulsion into the prepared container for storage.

Različne izvedbe se nanašajo na zdravljenje bolezni, izbranih iz skupine, v kateri so različni virusi, vnetja, imunske modulacije, osteoartritis, alergija, debelost, nevrodegenerativne motnje, diabetes, rak, kardiovaskularne motnje in mikrobiološke motnje z dovajanjem naštetih samo-nanoemulgirnih (SNEDDS) formulacij subjektu, ki to potrebuje.Various embodiments relate to the treatment of diseases selected from the group consisting of various viruses, inflammation, immune modulation, osteoarthritis, allergy, obesity, neurodegenerative disorders, diabetes, cancer, cardiovascular disorders and microbiological disorders by delivering the listed self-nanoemulsifiers (SNEDDS). formulations to the entity that needs it.

Razvite so bile različne formulacije z uporabo ene ali s kombinacijo hidrofobnih spojin skupaj z enojnimi ali kombinacijami površinsko aktivnih snovi, ki so omenjene v tem dokumentu. Po opisu razkrite vsebine s sklicevanjem na nekatere izvedbe bodo drugi izvedbeni primeri strokovnjaku postali očitni iz upoštevanja specifikacije.Various formulations have been developed using single or combination of hydrophobic compounds along with single or combinations of surfactants mentioned herein. After describing the disclosed subject matter by reference to certain embodiments, other embodiments will become apparent to one skilled in the art from consideration of the specification.

Izum je nadalje opisana s sklicevanjem na naslednje primere. Strokovnjakom bo razumljivo, da se lahko izvajajo številne modifikacije materialov in metod, ne da bi pri tem odstopali od obsega razkrite teme.The invention is further described with reference to the following examples. Those skilled in the art will appreciate that many modifications to the materials and methods may be made without departing from the scope of the subject matter disclosed.

PRIMERIEXAMPLES

Predloženi izum je nadalje razložen v obliki naslednjih primerov. Vendar je treba razumeti, da so zgornji primeri zgolj ilustrativni in jih ni treba jemati kot omejitve obsega izuma. Različne spremembe in modifikacije razkritih izvedb bodo strokovnjakom razumljive. Takšne spremembe in modifikacije se lahko izvedejo, ne da bi se odstopalo od obsega izuma.The present invention is further explained in the form of the following examples. However, it should be understood that the above examples are merely illustrative and should not be taken as limiting the scope of the invention. Various changes and modifications of the disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications may be made without departing from the scope of the invention.

Primer 1 (Primerjalno)Example 1 (Comparative)

Oblikovanje samo-nanoemulgirnih formulacij (SNEDDS) na osnovi CBD (kanabidiol) modelnega zdravilaDesign of self-nanoemulsifying formulations (SNEDDS) based on CBD (cannabidiol) model drug

Materiali: CBD izolat (čistost > 99,2 %) iz DB Labs (ZDA). MCT Neobee (srednjeverižni triglicerid, MCT), Stepan Company (ZDA). CH-40 (hidrogenirano ricinusovo olje, HLB = 15) in ΡΟΕ-6-sorbitan monooleat (TO-106V, HLB = 10,5) podjetja Nikko Chemicals (Tokio, Japonska). Maščobna kislina kokosovega olja (COFA) podjetja Cremer oleo GmbH & Co. Hamburg, Nemčija. PEG-400 proizvajalca Evonik (Nemčija).Materials: CBD isolate (purity > 99.2%) from DB Labs (USA). MCT Neobee (medium-chain triglyceride, MCT), Stepan Company (USA). CH-40 (hydrogenated castor oil, HLB = 15) and ΡΕΕ-6-sorbitan monooleate (TO-106V, HLB = 10.5) from Nikko Chemicals (Tokyo, Japan). Coconut oil fatty acid (COFA) from Cremer oleo GmbH & Co. Hamburg, Germany. PEG-400 manufactured by Evonik (Germany).

Samo-emulgirna narava različnih formulacij po dispergiranju v vodi je pokazala različne stopnje prosojnosti, od bistre do belkasto mlečne suspenzije formulacij. Formulacije so bile optimizirane na podlagi njihove učinkovitosti samo-emulgiranja. Sestave formulacij in videz pri vodnih disperzijah so predstavljeni v Tabeli 3. Najbolj zanimivi formulacijski sistemi, ki so lahko proizvajali nano-emulzije (SNEDDS), spadajo v vrste LFCS tipa IIIB in IV. Te komponente SNEDDS (Tabela 3) so bile razvite z uporabo polarnih gliceridov in v vodi topnih površinsko aktivnih snovi in sotopila.The self-emulsifying nature of the various formulations after dispersion in water showed varying degrees of transparency, from clear to whitish milky suspension of the formulations. Formulations were optimized based on their self-emulsifying performance. Formulation compositions and appearance in aqueous dispersions are presented in Table 3. The most interesting formulation systems that were able to produce nano-emulsions (SNEDDS) belong to LFCS types IIIB and IV. These SNEDDS components (Table 3) were developed using polar glycerides and water-soluble surfactants and cosolvents.

Tabela 3. Vizualna ocena različnih formulacij znotraj sistemov za klasifikacijo lipidnih formulacij (LFCS) pod določenimi pogoji samoemulgiranja.Table 3. Visual evaluation of different formulations within the Lipid Formulation Classification Systems (LFCS) under certain self-emulsification conditions.

LFCS LFCS Št. No. Sestava Composition Videz Appearance Primerno kot SNEDDS Suitable as SNEDDS Tipi Guys F1 F1 COFA ali MCT COFA or MCT Motno in nerazpršeno Dull and undispersed Neuspešno Unsuccessful Tip II Type II F2 F2 COFA:MCT(7:3)/TO106V(l/l) COFA:MCT(7:3)/TO106V(l/l) Mlečno / motno Milky / cloudy Neuspešno Unsuccessful Tip lila Lilac type F3a F3a CoFA:MCT(7:3)/CH-40(l/l) CoFA:MCT(7:3)/CH-40(l/l) Modra Blue Opravljeno Done Tip Illb Type Illb F3b F3b MCT:PEG400( 1:1 )/CH-40( 1 /1) MCT:PEG400(1:1)/CH-40(1/1) Prosojno Translucent Opravljeno Done Tip IV Type IV F4 F4 CH-40:: PEG400 (3:1) CH-40:: PEG400 (3:1) Prosojno Translucent Opravljeno Done

Primer 2 (Primerjalno)Example 2 (Comparative)

Metoda vizualne ocene formulacij CBDA method of visual evaluation of CBD formulations

Za določitev samo-emulgimih lastnosti formulacije je bila uporabljena metoda vizualne ocene (Craig in sodelavci, 1995; Kommuru in sodelavci, 2001). Za pripravo vzorca smo 100 μΐ vsake formulacije razredčili z 10 ml vode v 20-mililitrski stekleni fioli (koncentracija raztopine 1:100) in 1 minuto nežno mešali pri sobni temperaturi. Za učinkovitost samo-emulgiranja metoda vizualne ocene na začetku lahko zmanjša prekomerno uporabo kemikalij. Vizualno oceno za vsak vzorec je smo opazovali / beležili takoj po pripravi in nato več mesecev.A visual evaluation method was used to determine the self-emulsifying properties of the formulation (Craig et al., 1995; Kommuru et al., 2001). To prepare the sample, 100 μΐ of each formulation was diluted with 10 mL of water in a 20 mL glass vial (solution concentration 1:100) and mixed gently for 1 minute at room temperature. For the efficiency of self-emulsification, the method of visual assessment at the beginning can reduce the excessive use of chemicals. The visual assessment for each sample was observed/recorded immediately after preparation and then for several months.

Kot smernica za oceno mešljivosti, homogenosti in videza formulacij je bila uporabljena metoda vizualne ocene. Vizualna ocena formulacij tipa III - IV (F3b- F4) je potrdila, da je bila emulzija, ki je nastala ob redčenju z vodo, fizično stabilna več mesecev. Tako lipofilne kot hidrofilne površinsko aktivne snovi s HLB 10-15 so lahko spodbudile samoemulgacijo čistega olja. Vendar pa so nastale emulzije (F2, tip II) izgledale surove (vizualno motne / mlečne, večje velikosti kapljic, z lipofilno površinsko aktivno snovjo TO106V) (številka HLB 10.5) (medtem ko je bil izgled s hidrofilnimi površinsko aktivnimi snovmi HC-40 (številka HLB 15) za tipe ΠΙΑ, IIIB in IV mnogo boljši). Zagotovili so fine (modrikaste / prozorne sisteme brez vidnih delcev), enakomerne emulzijske kapljice, ki se zaradi svojih drobnih delcev ob disperziji bolj verjetno izpraznijo iz želodca. Čista maščobna kislina in gliceridna olja (npr. COFA ali MCT) so pokazala zelo slabe samo-emulgime lastnosti in niso tvorila SNEDDS. Oblikovali so oljne kroglice, ki niso razpršene v vodnih medijih, skupaj z motnimi videzi. Formulacije (tip II), ki vsebujejo lipofilne sestavine (COFA:MCT7:3) /TO106V (1/1), tj. F2 je bil po vodni disperziji mlečen in moten na videz, prav tako pa niso bile primerne kot formulacija SNEDDS (Neuspešno kot SNEDDS). Ko pa so bila gliceridna olja pomešana z vodotopno površinsko aktivno snovjo (površinsko aktivno snovjo hidrogeniranega ricinusovega olja) in sotopilom, so reprezentativne formulacije veljale za SNEDDS (opravljeno kot SNEDDS, njihov izgled pa je bil ali prozoren ali modrikasti s homogeno disperzijo (npr. F3a-F4). Celotna študija o vizualni oceni formulacij kaže, da izbira pomožnih snovi med študijo razvoja formulacije vpliva na učinkovitost farmacevtskega zdravila, kot so stabilnost, biološka uporabnost in izdelanost (Craig in sodelavci, 1995) (Slika 5).A visual evaluation method was used as a guideline for evaluating the mixability, homogeneity and appearance of the formulations. Visual evaluation of type III-IV formulations (F3b-F4) confirmed that the emulsion formed when diluted with water was physically stable for several months. Both lipophilic and hydrophilic surfactants with HLB 10-15 were able to promote self-emulsification of pure oil. However, the resulting emulsions (F2, type II) appeared crude (visually cloudy/milky, larger droplet sizes, with lipophilic surfactant TO106V) (HLB number 10.5) (while the appearance with hydrophilic surfactant HC-40 ( HLB number 15) for types ΠΙΑ, IIIB and IV much better). They provided fine (bluish / transparent systems with no visible particles), uniform emulsion droplets, which, due to their fine particles, are more likely to empty from the stomach upon dispersion. Pure fatty acid and glyceride oils (eg COFA or MCT) showed very poor self-emulsifying properties and did not form SNEDDS. They formed oil globules that did not disperse in aqueous media, along with cloudy appearances. Formulations (type II) containing lipophilic ingredients (COFA:MCT7:3) /TO106V (1/1), i.e. F2 were milky and cloudy in appearance after aqueous dispersion and were also not suitable as a SNEDDS formulation (Fail as SNEDDS). However, when the glyceride oils were mixed with a water-soluble surfactant (hydrogenated castor oil surfactant) and a co-solvent, representative formulations were considered SNEDDS (done as SNEDDS, and their appearance was either clear or bluish with a homogeneous dispersion (e.g., F3a -F4).A comprehensive study on visual evaluation of formulations shows that the choice of excipients during a formulation development study affects the efficacy of the pharmaceutical drug such as stability, bioavailability and manufacturability (Craig et al., 1995) (Figure 5).

Primer 3 (Primerjalno)Example 3 (Comparative)

Določanje topnosti, velikosti kapljic, indeksa polidisperznosti (PDI) in zeta potencialnih vrednostiDetermination of solubility, droplet size, polydispersity index (PDI) and zeta potential values

Velikost kapljic, indeks polidisperznosti (PDI) in zetapotencial (površinski naboj) vseh reprezentativnih razredčenih sistemov »F« so bili izmerjeni z lasersko tehniko analize motenja svetlobe z uporabo Zetasizer Nano (Model ZEN3600, Malvem, Združeno kraljestvo) sistemov za določanje velikosti delcev. Formulacije so bile razredčene v razmerju 1:1000 v/v z vodo in dobro mešane 1 minuto. Razredčene vzorce smo prenesli v kivete in za vsak vzorec izvedli 10 ponovljenih odčitkov. Za določitev velikosti kapljic in vrednosti zetapotenciala smo uporabili vzorce iz vsake od treh (3) ločenih serij formulacije.The droplet size, polydispersity index (PDI) and zeta potential (surface charge) of all representative diluted “F” systems were measured by laser light interference analysis technique using Zetasizer Nano (Model ZEN3600, Malvem, UK) particle sizing systems. Formulations were diluted 1:1000 v/v with water and mixed well for 1 minute. Diluted samples were transferred to cuvettes and 10 replicate readings were performed for each sample. Samples from each of three (3) separate batches of the formulation were used to determine droplet size and zeta potential values.

Učinek vodotopnih komponent v različnih formulacijah »F« na spremembo velikosti kapljic in PDI je jasno prikazan na Sliki 6. Na Sliki 6 je os Y predstavljena v log 10, rezultati predstavljano povprečje ± SD (n = 3). Formulacij a tipa IV, kije vsebovala najvišjo koncentracijo v vodi topnih komponent, je po razredčenju z vodo ustvarila najmanjše kapljice (F5, 15.27 nm). Največje velikosti kapljic so nastale s formulacijo tipa I (Fl, 1274 nm, PDI-0,88), saj je vsebovala 100 % olja in je bila formulacija slabo razpršena v vodi. Ker je formulacija tipa II (F2) vsebovala 0-20 % v vodi topnih materialov, so se velikosti kapljic znatno zmanjšale na 235,27 nm (p < 0,005) z nižjo vrednostjo PDI 0.22 (monodisperziran). Zaradi povečanega števila v vodi topnih materialov (40-80 %) v formulacijah tipov IIIA in IIIB pa so se velikosti kapljic znatno zmanjšale na območja 8535 nm (p < 0,005). Ugotovljeno je bilo, da je bil med vsemi formulacijskimi sistemi primerljivo F5 najbolj stabilen sistem z majhno velikostjo kapljic (15,27 nm) in nižjo vrednostjo PDI (0.18) za CBD ob redčenju z vodo (Slika 6).The effect of the water-soluble components in the different "F" formulations on the change in droplet size and PDI is clearly shown in Figure 6. In Figure 6, the Y-axis is represented in log 10, the results are represented as mean ± SD (n = 3). Formulation a type IV, which contained the highest concentration of water-soluble components, produced the smallest droplets after dilution with water (F5, 15.27 nm). The largest droplet sizes were produced with formulation type I (Fl, 1274 nm, PDI-0.88) as it contained 100% oil and the formulation was poorly dispersed in water. As the type II (F2) formulation contained 0-20% water soluble materials, the droplet sizes were significantly reduced to 235.27 nm (p < 0.005) with a lower PDI value of 0.22 (monodispersed). However, due to the increased number of water-soluble materials (40-80%) in the formulations of types IIIA and IIIB, the droplet sizes were significantly reduced in the 8535 nm region (p < 0.005). It was found that among all the formulation systems, comparatively F5 was the most stable system with small droplet size (15.27 nm) and lower PDI value (0.18) for CBD when diluted with water (Figure 6).

Poleg tega so bile vrednosti zetapotenciala vseh formulacij CBD ugotovljene med 1.0 in 44.0 mV. Vendar pa naj bi bile vrednosti zetapotenciala (površinskega naboja) v formulacijah od 15.0 do 32.0 zelo stabilne brez agregacije kapljic v neprekinjeni fazi (Tabela 3). To je lahko posledica večje koncentracije neionske površinsko aktivne snovi, ki lahko povzroči boljše samo-emulgirne sisteme, ki povzročajo negativno nabit vmesnik okoli kapljic olja in s tem povečajo stabilnost formulacij. Ta rezultat se sklada s prejšnjimi poročili (Mohsin in sodelavci, 2016). Zmanjšanje velikosti kapljic je lahko posledica več površinsko aktivnih snovi, ki so na voljo za stabilizacijo vmesnega razmerja olje-voda. Pri formulacijah SNEDDS je bolj verjetno, da večja kot je površina, hitrejša in popolnejša je hitrost absorpcije zdravil (Mohsin in sodelavci, 2016). Poleg tega zmanjšanje velikosti kapljic predstavlja nastanek edinstvenega tesno zaprtega površinsko aktivnega filma na vmesniku olje-voda (Tabela 4), saj stabilizira oljne kapljice (Gershanik in Benita, 2000; Pouton, 2000).In addition, the zeta potential values of all CBD formulations were found to be between 1.0 and 44.0 mV. However, zeta potential (surface charge) values in formulations from 15.0 to 32.0 were reported to be very stable without droplet aggregation in the continuous phase (Table 3). This may be due to a higher concentration of nonionic surfactant, which may result in better self-emulsifying systems, causing a negatively charged interface around the oil droplets and thereby increasing the stability of the formulations. This result is consistent with previous reports (Mohsin et al., 2016). The reduction in droplet size may be due to more surfactants being available to stabilize the oil-water interface. In SNEDDS formulations, it is more likely that the larger the surface area, the faster and more complete the rate of drug absorption (Mohsin et al., 2016). In addition, the droplet size reduction represents the formation of a unique tightly closed surfactant film at the oil-water interface (Table 4), as it stabilizes the oil droplets (Gershanik and Benita, 2000; Pouton, 2000).

Tabela 4. Vizualna ocena različnih formulacij CBD znotraj sistemov za razvrščanje lipidnih formulacij (LFCS) v posebnih pogojih samoemulgiranja. (Slika 5, 6)Table 4. Visual evaluation of different CBD formulations within lipid formulation sorting systems (LFCS) under specific self-emulsification conditions. (Figure 5, 6)

LFCS LFCS Št. No. Sestava Composition Velikost nm Size nm Zeta Zeta Tipi Guys F1 F1 COFA ali MCT COFA or MCT 1274,45 ± 350 1274.45 ± 350 17.73 ±5.86 17.73 ±5.86 Tip II Type II F2 F2 COFA:MCT(7:3)/TO106V(l/l) COFA:MCT(7:3)/TO106V(l/l) 235,27 ±34.43 235.27 ±34.43 34.20 ± 1.6 34.20 ± 1.6 Tip lila Lilac type F3a F3a COF A: MCT(7:3 )/CH-40( 1 /1) COF A: MCT(7:3)/CH-40(1/1) 155,27 ±3.89 155.27 ±3.89 44.27 ±3.53 44.27 ±3.53 Tip Hib Type Hib F3b F3b MCT:PEG400( 1:1 )/CH-40( 1 /1) MCT:PEG400(1:1)/CH-40(1/1) 35,25 ±4.40 35.25 ±4.40 22.90 ± 0.44 22.90 ± 0.44 Tip IV Type IV F4 F4 CH-40:PEG400(3:l) CH-40:PEG400(3:1) 15,27 ±4.43 15.27 ±4.43 19.55 ±6.42 19.55 ±6.42

Formulacije smo razpršili v vodi pri koncentraciji 1:1000 (% m/v). Podatki so predstavljeni kot povprečje ± SD n 3-6.The formulations were dispersed in water at a concentration of 1:1000 (% w/v). Data are presented as mean ± SD of n 3-6.

Primer 4Example 4

Potrditev varnosti in vitro - in vivo hidrogeniranega ricinusovega olja PEG-40 kot emulgatorja in PEG-400 kot sotopila za peroralne nano-emulzijske formulacijeIn vitro - in vivo safety validation of hydrogenated castor oil PEG-40 as emulsifier and PEG-400 as co-solvent for oral nano-emulsion formulations

Primer 4.1 Priprava „ prazne nano-emulzije“Example 4.1 Preparation of "empty nano-emulsion"

Prazna nano-emulzija je bila sestavljena iz oljne faze GMO, hidrogeniranega ricinusovega olja PEG-40 in PEG-400 (1:8:1), pripravljene z uporabo naše uveljavljene formule. Mešanico olja, površinsko aktivne snovi in so-površinsko aktivne snovi smo mešali pri 100 vrt/min 2 uri. Nadaljnje ultrazvočno razbijanje za 10 minut z uporabo soničnega aparata za kopel (ultrazvočni čistilec reaktorja AMM, Šanghaj, Kitajska) je bilo uporabljeno za dokončanje postopka mešanja. Za pridobitev nano-emulzije smo oljni fazi dodali deionizirano vodo v razmerju 5:1 in nežno mešali. Po tem protokolu je spontano nastala prazna nano-emulzija.The blank nano-emulsion consisted of an oil phase of GMO, hydrogenated castor oil PEG-40 and PEG-400 (1:8:1) prepared using our established formula. The mixture of oil, surfactant and co-surfactant was stirred at 100 rpm for 2 hours. Further sonication for 10 min using a sonic bath apparatus (AMM Reactor Ultrasonic Cleaner, Shanghai, China) was used to complete the mixing process. To obtain a nano-emulsion, deionized water was added to the oil phase in a ratio of 5:1 and mixed gently. Following this protocol, an empty nano-emulsion was spontaneously formed.

Znanstvene raziskave Heni Rachmawati in sodelavcev (Raziskovalni center za nanoznanosti in nanotehnologijo, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonezija), opravljene s »prazno nano-emulzijo« s sistemom emulgiranja HC40 in PEG-400, so jasno potrdile naše rezultate, predstavljene v Primerih 1, 2, 3, tj.: nano-emulzija je ustvarila prozorno disperzijo zaradi manjših kapljic olja, razpršenih v vodni fazi, kar je bilo potrjeno z merjenjem velikosti delcev (Tabela 5) in mikroskopskim opazovanjem.Scientific research by Heni Rachmawati and co-workers (Nanoscience and Nanotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia) conducted with a “blank nano-emulsion” with HC40 and PEG-400 emulsification system clearly confirmed our results , presented in Examples 1, 2, 3, i.e.: the nano-emulsion produced a transparent dispersion due to smaller oil droplets dispersed in the aqueous phase, which was confirmed by particle size measurement (Table 5) and microscopic observation.

Tabela 5. Fizični parametri prazne nanoemulzije.Table 5. Physical parameters of blank nanoemulsion.

Parametri Parameters Vrednost* Value* Velikost delcev (nm) Particle size (nm) 21.4 ±5.8 21.4 ±5.8 Indeks polidisperznosti Polydispersity index 0.245 ±0.177 0.245 ±0.177 Zeta (ζ) potencial (mV) Zeta (ζ) potential (mV) -10.6 ± 1.12 -10.6 ± 1.12

* Vsak parameter Je bil določen v trikratniku.* Each parameter was specified in triplicate.

Primer 4.2 Študija stabilnosti prazne nano-emulzije v tekočinah za simulacijo prebavilExample 4.2 Stability study of empty nano-emulsion in gastrointestinal simulation fluids

Predlagani sistem dovajanja te nano-emulzije je za peroralno uporabo. Da bi zagotovili fizično stabilnost nano-emulzije, smo vpliv na stanje prebavil (GIT) ocenili z uporabo želodčne simulacijske tekočine (0.1 N HC1) in črevesne simulacijske tekočine (fosfatni pufer pri pH 6.8) pri 37 °C za 3 h. Zmešali smo enako volumsko razmerje nano-emulzije in simulacijske tekočine GIT ter opazovali vizualno in z merjenjem velikosti delcev, kot je bilo prej opisano.The proposed delivery system of this nano-emulsion is for oral administration. In order to ensure the physical stability of the nano-emulsion, the effect on the state of the gastrointestinal tract (GIT) was evaluated using gastric simulating fluid (0.1 N HC1) and intestinal simulating fluid (phosphate buffer at pH 6.8) at 37 °C for 3 h. An equal volume ratio of nano-emulsion and GIT simulation fluid was mixed and observed visually and by particle size measurement as previously described.

Primer 4.3 Študija stabilnosti prazne nano-emulzije med skladiščenjemExample 4.3 Stability study of empty nano-emulsion during storage

Fizično stabilnost prazne nano-emulzije smo izvedli tako, da smo vzorec hranili devet mesecev pri sobni temperaturi. Opazovanje je bilo izvedeno vizualno in z merjenjem velikosti delcev, kot je bilo prej opisano. Prikazanje bil tudi stabilen disperzijski sistem, ki ga tvori ta uveljavljena formula (Slika 14), ko smo nano-emulzijo devet mesecev hranili na sobni temperaturi. Prav tako ni bila zaznana obsežna koalescenca, ki bi jo pokazala prosojnost pripravka, kar so potrdili tudi podatki PSA (premer globule 25.1 nm, Pl 0.079) (Slika 7, 8).The physical stability of the empty nano-emulsion was performed by keeping the sample for nine months at room temperature. Observation was performed visually and by particle size measurement as previously described. A stable dispersion system formed by this established formula (Figure 14) was also demonstrated when the nano-emulsion was kept at room temperature for nine months. Also, extensive coalescence, which would be indicated by the transparency of the preparation, was not detected, which was also confirmed by the PSA data (globule diameter 25.1 nm, Pl 0.079) (Figure 7, 8).

Primer 4.4 Analiza citotoksičnosti in vitroExample 4.4 Cytotoxicity assay in vitro

Citotoksični učinek prazne nano-emulzije na več celičnih linij, vključno z NIH/3T3, 3T3SA, RSC-96, RAW 264.7, RBL-2H3, CHO-K1, Caco-2 in NCI-H292, je bil določen z uporabo MTS testa v skladu s proizvajalčevim protokolom (Promega). Na kratko, celice smo tripsinizirali in nanesli na ploščo z 96 jamicami pri gostoti 104 celic/jamico. Celice smo gojili čez noč pri 37 °C s 5 % CO2. Celice smo dodali z 20 mg / ml prazne nano-emulzije. Nadalje so bile celice inkubirane preko noči in takoj dodane z 20 pL MTS v vsako jamico. Celice smo ponovno inkubirali za 2 uri pri 37 °C s 5 % CO2. Absorbanco smo izmerili pri 490 nm z uporabo čitalca mikroplošč z encimskim imunskim testom (ELISA) (Biorad, Hercules, CA, ZDA) Rezultat je bil predstavljen kot odstotek preživetja celic v primerjavi z neobdelanimi kontrolami (Slika 9, 10).The cytotoxic effect of blank nano-emulsion on several cell lines including NIH/3T3, 3T3SA, RSC-96, RAW 264.7, RBL-2H3, CHO-K1, Caco-2 and NCI-H292 was determined using the MTS assay in according to the manufacturer's protocol (Promega). Briefly, cells were trypsinized and plated in a 96-well plate at a density of 104 cells/well. Cells were grown overnight at 37 °C with 5% CO2. Cells were added with 20 mg/ml blank nano-emulsion. Next, cells were incubated overnight and immediately added with 20 µL of MTS to each well. Cells were re-incubated for 2 h at 37 °C with 5% CO2. Absorbance was measured at 490 nm using an enzyme-linked immunosorbent assay (ELISA) microplate reader (Biorad, Hercules, CA, USA). The result was presented as a percentage of cell survival compared to untreated controls (Figure 9, 10).

Primer 4.5 Analiza citotoksičnosti in analiza akutne toksičnostiExample 4.5 Cytotoxicity assay and acute toxicity assay

Prazna nano-emulzija ni pokazala nobenega citotoksičnega učinka (Slika 10).Blank nano-emulsion did not show any cytotoxic effect (Figure 10).

V prvih 24 urah po dovajanju preskusne snovi niso opazili znakov strauba, piloerekcije, ptoze, katalepsije, solzenja, vokalizacije, slinjenja, tresenja, krčev ali zvijanja. To dokazuje, da preskusna snov ni povzročila toksičnega učinka na centralni živčni sistem. Motorična aktivnost kot tudi drža telesa, dihanje, uriniranje in iztrebljanje so bili normalni. Poleg tega so vse miši pokazale normalne reflekse, kar kaže, da preskusna snov ni vplivala na integriteto hrbtenice v centralnem živčnem sistemu.No signs of straub, piloerection, ptosis, catalepsy, lacrimation, vocalization, salivation, tremors, convulsions or writhing were observed during the first 24 hours after administration of the test substance. This proves that the test substance did not cause a toxic effect on the central nervous system. Motor activity as well as body posture, breathing, urination and defecation were normal. In addition, all mice showed normal reflexes, indicating that the test substance did not affect the integrity of the spinal cord in the central nervous system.

ZaključkiConclusions

Prazna nano-emulzija, sestavljena iz sestavine oljne faze GSO (glicerol monooleat), hidrogeniranega ricinusovega olja PEG-40 kot površinsko aktivne snovi in PEG 400 kot so-površinsko aktivne snovi (1:8:1), ne kaže negativnega odziva, ko je inkubirana v različnih vrstah celičnih linij. Ti in vitro podatki se in vivo potrdijo po 14-dnevnem peroralnem dajanju enkratnega odmerka. Zdi se, da je uporaba visoke koncentracije hidrogeniranega ricinusovega olja PEG-40 za oblikovanje bistrih spontanih in stabilnih kapljic olja, kadar jih izzovemo v simulacijskih tekočinah GIT, sprejemljiva za peroralno dovajanje takih aktivnih spojin, naloženih v razvito nano-emulzijo.A blank nano-emulsion consisting of the oil phase component GSO (glycerol monooleate), hydrogenated castor oil PEG-40 as a surfactant and PEG 400 as a co-surfactant (1:8:1) shows no negative response when incubated in different types of cell lines. These in vitro data are confirmed in vivo after 14 days of single-dose oral administration. The use of high concentration of hydrogenated castor oil PEG-40 to form clear spontaneous and stable oil droplets when challenged in simulating GIT fluids appears to be acceptable for oral delivery of such active compounds loaded into the developed nano-emulsion.

Primer 5Example 5

Metode formulacije in priprave lastniškega naravnega farmacevtskega izdelka “CimetrA ”, usmerjenega na simptome COVID-19 na osnovi peroralnih SNEDDS v obliki pršila in praška,Methods of formulation and preparation of the proprietary natural pharmaceutical product “CimetrA”, targeting the symptoms of COVID-19 based on oral SNEDDS in the form of spray and powder,

CimetrA je peroralni sistem za samo-nanoemulgiranje zdravila (SNEDDS) v skladu s tem izumom, ki vsebuje vse sestavine API (kurkumin, bosvelija, artemisinin) kot lipofilno jedro micela in emulgatorje kot lupino micela ter vitamin C kot stabilizator SNEDDS in regulator pH vodne faze.CimetrA is an oral self-nanoemulsifying drug system (SNEDDS) according to the present invention, which contains all API components (curcumin, boswellia, artemisinin) as a lipophilic micelle core and emulsifiers as a micelle shell, and vitamin C as a SNEDDS stabilizer and aqueous phase pH regulator .

Tabela 6. Formulacija CimetrATable 6. Formulation of CimetrA

Formulacija CimetrA CimetrA formulation w/w% vsebnosti w/w% content Artemisinin Artemisinin 0.6% 0.6% API API Bosvelija Boswellia 1.5% 1.5% API API Kurkumin 95% Curcumin 95% 2.0% 2.0% API API Askorbinska kislina Ascorbic acid 6.0% 6.0% Pomožna snov Excipient Kremafor CH-40 Cremaphor CH-40 20% 20% Emulgator Emulsifier PEG-400 PEG-400 5% 5% Sotopilo Sotopil

Drugo neobvezno Pomožna snovOther optional Excipient

Destilirana voda 64.9%Distilled water 64.9%

Kurkumin·. Uporabljeni kurkuminski izdelek je bil izdelek »Turmeric Oleoresin Curcumin Powder 95 %« s kodo EP-5001 podjetja Green Leaf Extraction Pvt Limited, Kerala, Indija. Kurkumin v prahu je CAS št. 458-37-7 in je naravni izdelek, ki ga dobimo z ekstrakcijo korenike Curcuma Longa s topilom. Vsebnost kurkumina v prahu je po navedbah proizvajalca najmanj 95 %. Ta vsebnost kurkumina se določi po metodi ASTA 18.0.Curcumin·. The curcumin product used was “Turmeric Oleoresin Curcumin Powder 95%” code EP-5001 from Green Leaf Extraction Pvt Limited, Kerala, India. Curcumin powder is CAS no. 458-37-7 and is a natural product obtained by solvent extraction of the rhizome of Curcuma Longa. According to the manufacturer, the curcumin content in the powder is at least 95%. This curcumin content is determined according to the ASTA 18.0 method.

Bosvelija·. Izraz »Bosvelija« se nanaša zlasti na izvleček smole rastline za kadila. Upoštevajo se lahko zlasti: alfa-bosvelična kislina (številka CAS 471-66-9), betabosvelična kislina (številka CAS 631-69-6) in njihovi derivati, 3-O-acetil-alfa-bosvelična kislina šŠtevilka CAS 89913-60-0), 3-O-acetil-beta-bosvelična kislina (številka CAS 596870-7), 11-keto-beta-bosvelična kislina (KBA, številka CAS 17019-92-0), in 3-O-acetil-l 1keto-beta-bosvelična kislina (AKBA, številka CAS 67416-61-9).Boswellia·. The term "Boswellia" refers specifically to the resin extract of the plant for incense. In particular: alpha-boswellic acid (CAS number 471-66-9), beta-boswellic acid (CAS number 631-69-6) and their derivatives, 3-O-acetyl-alpha-boswellic acid CAS number 89913-60- 0), 3-O-acetyl-beta-boswellic acid (CAS number 596870-7), 11-keto-beta-boswellic acid (KBA, CAS number 17019-92-0), and 3-O-acetyl-l 1keto -beta-boswellic acid (AKBA, CAS number 67416-61-9).

Artemisinin, Artemisinin, imenovan tudi qinghaosu, je antimalarično zdravilo, pridobljeno iz rastline sladkega pelina, Artemisia annua. Artemisinin je seskviterpenski lakton (spojina, sestavljena iz treh izoprenskih enot, vezanih na ciklične organske estre) in se destilira iz posušenih listov ali cvetnih grozdov Artemisia annua.Artemisinin, Artemisinin, also called qinghaosu, is an antimalarial drug obtained from the sweet wormwood plant, Artemisia annua. Artemisinin is a sesquiterpene lactone (a compound consisting of three isoprene units attached to cyclic organic esters) and is distilled from the dried leaves or flower clusters of Artemisia annua.

Samo-emulgacija je odvisna od narave para olje / površinsko aktivna snov, koncentracije površinsko aktivne snovi in razmerja olje / površinsko aktivna snov ter temperature, pri kateri pride do samo-emulgiranja. Le zelo specifične kombinacije pomožnih snovi vodijo do učinkovitih samo-emulgirajočih sistemov (SNEDDS). Učinkovitost vključitve zdravila v SNEDDS je odvisna od posebne fizikalno-kemijske združljivosti zdravila / sistema. Torej so za pridobitev optimalne zasnove formulacije potrebne študije topnosti in faznega diagrama pred formulacijo.Self-emulsification depends on the nature of the oil/surfactant pair, the surfactant concentration and oil/surfactant ratio, and the temperature at which self-emulsification occurs. Only very specific combinations of excipients lead to effective self-emulsifying systems (SNEDDS). The effectiveness of drug inclusion in SNEDDS depends on the specific physico-chemical compatibility of the drug / system. So, pre-formulation solubility and phase diagram studies are required to obtain an optimal formulation design.

Priprava SNEDDS CimetrA (Slika 13)Preparation of SNEDDS CimetrA (Figure 13)

1. Pripravimo in steriliziramo stekleno posodo za mešanje sestavin (2 posodi) in za shranjevanje končnega izdelka.1. Prepare and sterilize a glass container for mixing the ingredients (2 containers) and for storing the finished product.

2. Posoda št. 12. Container no. 1

2.1 . Pri sobni temperaturi 22-25 °C zmešamo 20 % Cremaphor Tagat CH-40 in 5 % PEG 400. Mešamo 15 minut. Mešanico segrejemo na 60 °C.2.1. At a room temperature of 22-25 °C, mix 20% Cremaphor Tagat CH-40 and 5% PEG 400. Mix for 15 minutes. The mixture is heated to 60 °C.

Vizualni pregled kvalitete. Rezultat: svetlo rumena homogena prozorna zmes.Visual inspection of quality. Result: light yellow homogeneous transparent mixture.

2.2 . V segreto zmes dodamo 0,6 % artemisinina. Med 15-minutnim mešanjem popolnoma raztopimo artemisinin. Mešanico segrejemo na 80 °C.2.2. Add 0.6% artemisinin to the heated mixture. During 15 minutes of mixing, artemisinin is completely dissolved. The mixture is heated to 80 °C.

Vizualni pregled kvalitete. Rezultat: svetlo rumena, homogena prozorna zmes.Visual inspection of quality. Result: light yellow, homogeneous transparent mixture.

2.3 Injiciramo 1,5 % bosvelije. Bosvelijo med 15-minutnim mešanjem popolnoma raztopimo. Mešanico segrejemo na 90 °C.2.3 We inject 1.5% boswellia. Boswellia is completely dissolved during 15 minutes of mixing. The mixture is heated to 90 °C.

Vizualni pregled kvalitete. Rezultat: temno rumena homogena prozorna zmes.Visual inspection of quality. Result: dark yellow homogeneous transparent mixture.

2.4 Injiciramo 2,0 % kurkumina. Kurkumin med 15-minutnim mešanjem popolnoma raztopimo. Mešanico segrejemo na 95-98 °C.2.4 Inject 2.0% curcumin. Curcumin is completely dissolved during 15 minutes of mixing. The mixture is heated to 95-98 °C.

Vizualni pregled kvalitete. Rezultat: temno rdeča (skoraj črna) homogena prozorna zmes.Visual inspection of quality. Result: dark red (almost black) homogeneous transparent mixture.

2.5 Izklopimo segrevanje. Med mešanjem pustimo, da se zmes ohladi na temperaturo 50 °C.2.5 Turn off the heating. While stirring, let the mixture cool down to a temperature of 50 °C.

3. Posoda št. 23. Container no. 2

3.1 Razplinimo destilirano vodo (odsesavanje s pomočjo vakuuma).3.1 Degas the distilled water (vacuum extraction).

3.2 V posodo št. 2 nalijemo 64,9 % razplinjeno destilirano vode. Segrejemo na 50 °C.3.2 In container no. 2 pour 64.9% degassed distilled water. Heat to 50 °C.

3.3 . V segreto destilirano vodo dodamo 6 % askorbinske kisline. Askorbinsko kislino raztapljamo 10 minut pri stalnem mešanju in vzdrževanju temperature 50 °C.3.3. Add 6% ascorbic acid to heated distilled water. Dissolve the ascorbic acid for 10 minutes with constant stirring and maintaining the temperature at 50 °C.

Vizualni pregled kvalitete. Rezultat: bistra zmesVisual inspection of quality. The result: a clear mixture

4. V posodo št. 1 počasi vlivamo vsebino posode št. 2. 30 minut temeljito mešamo in vzdržujemo temperaturo 50 °C.4. In container no. 1 slowly pour the contents of container no. 2. Stir thoroughly for 30 minutes and maintain the temperature at 50 °C.

Vizualni pregled kvalitete. Rezultat: temno rdeča homogena ne viskozna prozorna zmes.Visual inspection of quality. Result: dark red homogeneous non-viscous transparent mixture.

5. Finalizacija emulgiranja z 10-minutno ultrazvočno obdelavo.5. Finalization of emulsification with a 10-minute ultrasonic treatment.

Vizualni pregled kvalitete. Rezultat: temno rdeča homogena ne viskozna prozorna zmes.Visual inspection of quality. Result: dark red homogeneous non-viscous transparent mixture.

6. Nastalo emulzijo vakuumiramo 10 minut, nato pa filtriramo emulzijo, da odstranimo peno.6. Vacuum the resulting emulsion for 10 minutes, then filter the emulsion to remove foam.

7. Dobljeno nano-emulzijo vlijemo v pripravljeno posodo za shranjevanje.7. Pour the resulting nano-emulsion into a prepared container for storage.

Nastala emulzija vsebuje naslednje API-je:The resulting emulsion contains the following APIs:

• Artemisinin - 0,6 % • Bosvelija - 1,5 % • Kurkumin - 2,0 % • Askorbinska kislina - 6,0 % • Voda-64,9%• Artemisinin - 0.6% • Boswellia - 1.5% • Curcumin - 2.0% • Ascorbic acid - 6.0% • Water - 64.9%

Značilnosti emulzije:Characteristics of the emulsion:

• topnost v vodi (tehnologija SNEDDS) • prosojnost (velikost micela manj kot 50 nm) • nizka viskoznost, visoka pretočnost (zelo primerna za uporabo v razpršilih) • stabilnost med skladiščenjem (ohranjanje vseh lastnosti, vključno brez nastanka usedline, motnosti ali ločevanja faz sestavin)• solubility in water (SNEDDS technology) • transparency (micelle size less than 50 nm) • low viscosity, high fluidity (very suitable for use in sprays) • stability during storage (maintenance of all properties, including no formation of sediment, turbidity or phase separation ingredients)

Diagram poteka za proizvodnjo CimetrA je prikazan na shemi (Slika 13).The flow chart for the production of CimetrA is shown in the schematic (Figure 13).

Primer 6Example 6

Trdni samo-emulgirni / mikro-emulgirni sistemi za dovajanje zdravilSolid self-emulsifying / micro-emulsifying drug delivery systems

Sistemi za samo-emulgiranje / mikro-emulgiranje zdravil zahtevajo vgradnjo v kapsule neposredno ali pretvorbo v zrnca, pelete in praške za suho napolnjene kapsule, pa tudi pripravke tablet. Slednje so možne z inovativnimi prilagoditvami običajne opreme s sorazmerno lahkoto in preprostostjo postopkov, z uporabo metod, kot so granulacija taline, ekstruzija taline, adsorpcija na trdni podlagi, hlajenje z razprševanjem, sušenje z razprševanjem, superkritične metode na osnovi tekočine in visokotlačna homogenizacija. Pred kratkim so pelete, ki vsebujejo samo-emulgime mešanice, pripravljali s tehniko ekstruzij e-sferonizacij e.Self-emulsifying / micro-emulsifying drug systems require incorporation into capsules directly or conversion into granules, pellets and powders for dry-filled capsules as well as tablet preparations. The latter are possible through innovative adaptations of conventional equipment with relative ease and simplicity of procedures, using methods such as melt granulation, melt extrusion, solid support adsorption, spray cooling, spray drying, liquid-based supercritical methods, and high-pressure homogenization. Recently, pellets containing self-emulsifying mixtures were prepared using the technique of extrusion e-spheronization e.

Na primer iz tekoče SNEDDS se lahko pripravi trdne SNEDDS z dodajanjem utrjevalcev, in sicer se s fizično absorpcijo s poroznimi nosilci pridobi praške, z neposrednim stiskanjem tablete, z ekstruzijsko sferonizacijo granule in z ekstrudiranjem taline pelete.For example, solid SNEDDS can be prepared from liquid SNEDDS by adding hardeners, namely by physical absorption with porous supports to obtain powders, by direct tablet compression, by extrusion spheronization of granules and by melt extrusion of pellets.

Visoko vsebnost tekoče formulacije lahko naložimo (do 70 %) na nosilec, ki ne samo ohranja dobro pretočnost, temveč omogoča tudi izdelavo tablet z dobrimi kohezivnimi lastnostmi in dobro enakomernostjo vsebnosti tako v kapsulah kot v tabletah. To očitno poveča možnosti, ki jih ima formulator. Poleg zagotavljanja očitnih koristi in vivo sistema za dovajanje odmerkov v obliki tablet (izboljšana absorpcija zdravila itd.), so prednosti razvoja trdnih dozirnih oblik tudi v tem, da se na nosilec lahko naloži visoka vsebnost tekoče formulacije in postopek daje dobro vsebinsko enakomernost. Kar zadeva funkcionalnost in učinkovitost, lastnosti topnosti končne trdne dozirne oblike ne bi smele vplivati ne na adsorpcijo tekoče formulacije ne na nosilec ter tudi ne na stanje zdravila v lipidni formulaciji.A high content of liquid formulation can be loaded (up to 70%) on the carrier, which not only maintains good flowability, but also enables the production of tablets with good cohesive properties and good content uniformity in both capsules and tablets. This obviously increases the options available to the formulator. In addition to providing the obvious benefits of the in vivo tablet dosage delivery system (improved drug absorption, etc.), the advantages of developing solid dosage forms are that a high content of liquid formulation can be loaded onto the carrier and the process gives good content uniformity. In terms of functionality and efficacy, the solubility properties of the final solid dosage form should not affect either the adsorption of the liquid formulation to the carrier, nor the state of the drug in the lipid formulation.

Samo-emulgiranje je odvisno od narave para olje / površinsko aktivna snov, koncentracije površinsko aktivne snovi in razmerja olje / površinsko aktivna snov ter temperature, pri kateri pride do samo-emulgiranja. Le zelo specifične kombinacije pomožnih snovi vodijo do učinkovitih samo-emulgirnih sistemov (SES). Učinkovitost vključevanja zdravil v SEDDS je odvisna od posebne fizikalno-kemijske združljivosti zdravila / sistema. Torej so za pridobitev optimalne zasnove formulacije potrebne študije topnosti in faznega diagrama pred formulacijo.Self-emulsification depends on the nature of the oil/surfactant pair, the surfactant concentration and oil/surfactant ratio, and the temperature at which self-emulsification occurs. Only very specific combinations of excipients lead to effective self-emulsifying systems (SES). The effectiveness of the inclusion of drugs in SEDDS depends on the specific physicochemical compatibility of the drug / system. So, pre-formulation solubility and phase diagram studies are required to obtain an optimal formulation design.

Razvoj in karakterizacija trdnih SNEDDS CimetrADevelopment and characterization of CimetrA solid SNEDDS

Razmerje adsorbenta in SNEDDSThe ratio of adsorbent and SNEDDS

Pravilno razmerje adsorbenta Aerosil 200 s tekočim SNEDDS CimetrA lahko ustvari prosto tekoče lastnosti trdnega SNEDDS. V tem primeru sta enaki količini Aerosila 200 in tekočega SNEDDS CimetrA (50/50 % m/m) proizvedli prosto tekoče praške, primerne za takojšnje stiskanje tablet. Po drugi strani pa sta večja in manjša količina Aerosil 200 s tekočim SNEDDS CimetrA (33/67 % m/m) ustvarili pomembne prašne in mastne lastnosti prahu.The proper ratio of Aerosil 200 adsorbent to CimetrA liquid SNEDDS can produce the free-flowing properties of solid SNEDDS. In this case, equal amounts of Aerosil 200 and CimetrA liquid SNEDDS (50/50% w/w) produced free-flowing powders suitable for immediate tablet compression. On the other hand, higher and lower amounts of Aerosil 200 with liquid SNEDDS CimetrA (33/67% w/w) produced significant dusting and greasy dust properties.

Prosto tekoče praške je mogoče pridobiti na preprost način z dodajanjem optimalne količine tekoče lipidne formulacije na izbrani nosilec. V primeru so razmerja med »tekočimFree-flowing powders can be obtained in a simple way by adding an optimal amount of liquid lipid formulation to the selected carrier. In the example, the relationships between “liquid

SNEDDS« in »Aerosil 200« 50/50 (% m/m) proizvedla suh prosto tekoč prah. Med temi razmerji ni bilo opaženih bistvenih sprememb zaradi visoke adsorpcijske sposobnosti adsorbenta (Aerosil 200) in zadrževanja tekočih SNEDDS v njihovih notranjih porah. Pri vizualnem pregledu so bili vsi praški SNEDDS na tej točki suhi in prosto tekoči, kar kaže na idealno izbiro razmerja 50/50 (% m/m) (Slika 12).SNEDDS" and "Aerosil 200" 50/50 (% w/w) produced a dry free-flowing powder. No significant changes were observed between these ratios due to the high adsorption capacity of the adsorbent (Aerosil 200) and the retention of liquid SNEDDS in their internal pores. Upon visual inspection, all SNEDDS powders were dry and free-flowing at this point, indicating an ideal choice of 50/50 (% w/w) ratio (Figure 12).

LiteraturaLiterature

1. Bevemage J, Brouwers J, Brewster ME, Augustijns P. (2013). Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm 453:25-35.1. Bevemage J, Brouwers J, Brewster ME, Augustijns P. (2013). Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm 453:25-35.

2. Colin W. Pouton, Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification, International Journal of Pharmaceutics, Volume 27, Issues 2-3, 1985, Pages 335-348, ISSN 0378-5173, https://doi.org/10.1016/03785173(85)90081-Χ.2. Colin W. Pouton, Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification, International Journal of Pharmaceutics, Volume 27, Issues 2-3, 1985, Pages 335-348, ISSN 0378-5173, https:// doi.org/10.1016/03785173(85)90081-Χ.

3. Craig D. Q. M., Barker S. A., Banning D., Booth S. W. (1995). An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int. J. Pharm. 114 103-110. 10.1016/0378-5173(94)00222q3. Craig D.Q.M., Barker S.A., Banning D., Booth S.W. (1995). An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int. J. Pharm. 114 103-110. 10.1016/0378-5173(94)00222q

4. Elgart A., Chemiakov L, Aldouby Y., Domb A. J., Hoffman A. (2013). Improved oral bioavailability of BCS class 2 compounds by self-nano-emulsifying drug delivery systems. (SNEDDS): the underlying mechanisms for amiodarone and talinolol. Pharm. Res. 30 3029-3044. 10.1007/sl 1095-013-1063-y4. Elgart A., Chemiakov L, Aldouby Y., Domb A. J., Hoffman A. (2013). Improved oral bioavailability of BCS class 2 compounds by self-nano-emulsifying drug delivery systems. (SNEDDS): the underlying mechanisms for amiodarone and talinolol. Pharm. Really. 30 3029-3044. 10.1007/en 1095-013-1063-y

5. Fatouros, Dimitris & Karpf, Ditte & Nielsen, Flemming & Mullertz, Anette. (2007). Clinical studies with oral lipid-based formulations of poorly soluble compounds. Therapeutics and clinical risk management. 3. 591-604.5. Fatouros, Dimitris & Karpf, Ditte & Nielsen, Flemming & Mullertz, Anette. (2007). Clinical studies with oral lipid-based formulations of poorly soluble compounds. Therapeutics and clinical risk management. 3. 591-604.

6. Gao P, Morozowich W. (2006). Development of supersaturable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv 3:97-110.6. Gao P, Morozowich W. (2006). Development of supersaturable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv 3:97-110.

7. Gershanik T., Benita S. (2000). Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 50 179-188. 10.1016/s0939-6411(00)00089-87. Gershanik T., Benita S. (2000). Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 50 179-188. 10.1016/s0939-6411(00)00089-8

8. Heni Rachmawati et al. (Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia) The In Vitro-In Vivo Safety Confirmation of PEG-40 Hydrogenated Castor Oil as a Surfactant for Oral Nanoemulsion Formulation.8. Heni Rachmawati et al. (Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia) The In Vitro-In Vivo Safety Confirmation of PEG-40 Hydrogenated Castor Oil as a Surfactant for Oral Nanoemulsion Formulation.

9. Kale A. A., Patravale V. B. (2008). Design and evaluation of self-emulsifying drug delivery systems. (SEDDS) of nimodipine. AAPS PharmSciTech 9 191-196. 10.1208/s 12249-008-9037-9.9. Kale A. A., Patravale V. B. (2008). Design and evaluation of self-emulsifying drug delivery systems. (SEDDS) of nimodipine. AAPS PharmSciTech 9 191-196. 10.1208/s 12249-008-9037-9.

10. Kang B. K., Lee J. S., Chon S. K., Jeong S. Y„ Yuk S. H., Khang G., et al. (2004). Development of self-microemulsifying drug delivery systems. (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 274 65-73. 10.1016/j.ijpharm.2003.12.02810. Kang B.K., Lee J.S., Chon S.K., Jeong S.Y, Yuk S.H., Khang G., et al. (2004). Development of self-microemulsifying drug delivery systems. (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 274 65-73. 10.1016/j.ijpharm.2003.12.028

11. Kazi M, Al-Swairi M, Ahmad A, Raish M, Alanazi FK, Badran MM, Khan AA, Alanazi AM, Hussain MD. Evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Poorly Water-Soluble Talinolol: Preparation, in vitro and in vivo Assessment. Front Pharmacol. 2019 May 2; 10: 459. doi: 10.3389/fphar.2019.00459. PMID: 31118895; PMCID: PMC6507620.11. Kazi M, Al-Swairi M, Ahmad A, Raish M, Alanazi FK, Badran MM, Khan AA, Alanazi AM, Hussain MD. Evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Poorly Water-Soluble Talinolol: Preparation, in vitro and in vivo Assessment. Front Pharmacol. 2019 May 2; 10: 459. doi: 10.3389/fphar.2019.00459. PMID: 31118895; PMCID: PMC6507620.

12. Kommuru T. R., Gurley B., Khan M. A., Reddy I. K. (2001). Self-emulsifying drug delivery systems. (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 212 233-246. 10.1016/s03785173(00)00614-112. Kommuru TR, Gurley B, Khan MA, Reddy IK (2001). Self-emulsifying drug delivery systems. (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 212 233-246. 10.1016/s03785173(00)00614-1

13. Mathews C, Sugano K. (2010). Supersaturable formulations. Drug Deliv Sys 254:371-4.13. Mathews C, Sugano K. (2010). Supersaturable formulations. Drug Deliv Sys 254:371-4.

14. Mohsin K., Alamri R., Ahmad A., Raish M., Alanazi F. K., Hussain M. D. (2016). Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water-soluble drug. Int. J. Nanomed. 11 2829-2838. 10.2147/IJN.S10418714. Mohsin K., Alamri R., Ahmad A., Raish M., Alanazi F.K., Hussain M.D. (2016). Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water-soluble drug. Int. J. Nanomed. 11 2829-2838. 10.2147/IJN.S104187

15. Pouton CW. (2000). Lipid formulations for oral administration of drugs: nonemulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci, 11: S93-S98.15. Pouton CW. (2000). Lipid formulations for oral administration of drugs: nonemulsifying, self-emulsifying and 'self-microemulsifying' drug delivery systems. Eur J Pharm Sci, 11: S93-S98.

16. Pouton, C., and Porter, C. (2008). Formulation of lipid-based delivery systems for oral administration: materials, methods and strategiesa t. Adv. Drug Deliv. Rev. 60, 625-637. doi: 10.1016/j.addr.2007.10.01016. Pouton, C., and Porter, C. (2008). Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies t. Adv. Another Deliv. Rev. 60, 625-637. doi: 10.1016/j.addr.2007.10.010

17. Ravi Devraj, Hywel D. Williams, Dallas B. Warren, Anette Mullertz, Christopher J.H. Porter, Colin W. Pouton. In vitro digestion testing of lipid-based delivery systems: Calcium ions combine with fatty acids liberated from triglyceride rich lipid Solutions to form soaps and reduce the solubilization capacity of colloidal digestion Products. International Journal of Pharmaceutics, Volume 441, Issues 1-2, 2013, Pages 323-333, ISSN 0378-5173, https://doi.Org/10.1016/j.ijpharm.2012.ll.024.17. Ravi Devraj, Hywel D. Williams, Dallas B. Warren, Anette Mullertz, Christopher J.H. Porter, Colin W. Pouton. In vitro digestion testing of lipid-based delivery systems: Calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products. International Journal of Pharmaceutics, Volume 441, Issues 1-2, 2013, Pages 323-333, ISSN 0378-5173, https://doi.Org/10.1016/j.ijpharm.2012.ll.024.

18. Shahba, Ahmad & Ahmed, A & Kazi, Mohsin & Abdel-Rahman, S & Alanazi, Fars. (2017). Solidification of cinnarizine self-nanoemulsifying drug delivery systems by fluid bed coating: Optimization of the process and formulation variables. Die Pharmazie. 72. 143-151. 10.1691/ph.2017.6089.18. Shahba, Ahmad & Ahmed, A & Kazi, Mohsin & Abdel-Rahman, S & Alanazi, Fars. (2017). Solidification of cinnarizine self-nanoemulsifying drug delivery systems by fluid bed coating: Optimization of the process and formulation variables. Die Pharmazie. 72. 143-151. 10.1691/ph.2017.6089.

19. Strickley, R.G. Solubilizing Excipients in Oral and Injectable Formulations. Pharm Res 21, 201-230 (2004). https://doi.Org/10.1023/B:PHAM.0000016235.32639.2319. Strickley, R.G. Solubilizing Excipients in Oral and Injectable Formulations. Pharm Res 21, 201-230 (2004). https://doi.Org/10.1023/B:PHAM.0000016235.32639.23

20. Warren DB, Benameur H, Porter CJH, Pouton CV. (2010). Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target 18: 704-31.20. Warren DB, Benameur H, Porter CJH, Pouton CV. (2010). Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target 18: 704-31.

21. Xu S, Dai, WG. (2013). Drug precipitation inhibitors in supersaturable formulations. Int J Pharm 453:36^43.21. Xu S, Dai, WG. (2013). Other precipitation inhibitors in supersaturable formulations. Int J Pharm 453:36^43.

Claims (20)

1. Super-nasičljiv brez olja samo-nanoemulgirni sistem za dovajanje zdravil - SNEDDS za v vodi slabo topne farmacevtske sestavine, ki vključuje:1. Super-saturated oil-free self-nano-emulsifying drug delivery system - SNEDDS for poorly water-soluble pharmaceutical ingredients, which includes: a) dispergirano fazo v količini 10-95 % glede na težo formulacije, omenjena dispergirana faza vključuje delce z velikostjo delcev manj kot približno 50 nm, pri čemer omenjena dispergirana faza obsega:a) a dispersed phase in an amount of 10-95% by weight of the formulation, said dispersed phase including particles with a particle size of less than about 50 nm, said dispersed phase comprising: a. delce z emulgatorjem, ki vsebuje neionsko površinsko aktivno snov z vrednostjo HLB 15 do 18, sotopilo ina. particles with an emulsifier containing a nonionic surfactant with an HLB value of 15 to 18, a cosolvent and b. hidrofobni biološko aktivni material v količini 0.0001 do 10 % glede na težo formulacije inb. hydrophobic biologically active material in the amount of 0.0001 to 10% based on the weight of the formulation and b) vodno fazo v količini 5-70 %, glede na težo formulacije, pri čemer se med 70 do 95 % hidrofobnega biološko aktivnega materiala spontano sprosti iz nanoformulacije, ko nanoformulacijo dodamo vodi.b) an aqueous phase in an amount of 5-70%, based on the weight of the formulation, whereby between 70 and 95% of the hydrophobic biologically active material is spontaneously released from the nanoformulation when the nanoformulation is added to water. 2. Super-nasičljiv brez olja samo-nanoemulgimi sistem za dovajanje zdravil - SNEDDS po zahtevku 1, kjer je hidrofobni biološko aktiven material naravni proizvod, sintetično pridobljen izdelek ali njihova zmes.2. Super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1, where the hydrophobic biologically active material is a natural product, a synthetically obtained product or a mixture thereof. 3. Super-nasičljiv brez olja samo-nanoemulgirni sistem za dovajanje zdravil - SNEDDS po zahtevku 1, kjer je hidrofobni biološko aktivni material izbran iz skupine, ki jo sestavljajo: vsaj en kurkuminoid, izbran iz skupine, ki jo sestavljajo kurkumin, demetoksicurcumin, bisdemethoxycurcumin in bis-o-demethyl curcumin; vsaj ena spojina bosvelične kisline; resveratrol; hipericin; bakozid(i); ksantorhizol; luteolin; pirogalol; genistein; wogonin; morin; kaempferol; in njihove mešanice.3. Super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1, wherein the hydrophobic biologically active material is selected from the group consisting of: at least one curcuminoid selected from the group consisting of curcumin, demethoxycurcumin, bisdemethoxycurcumin and bis-o-demethyl curcumin; at least one boswellic acid compound; resveratrol; hypericin; bacoside(s); xanthorhizol; luteolin; pyrogallol; genistein; wogonin; morin; kaempferol; and mixtures thereof. 4. Super-nasičljiv brez olja samo-nanoemulgimi sistem za dovajanje zdravil - SNEDDS, po zahtevku 1, kjer je hidrofobna biološko aktivna snov ekstrakt ali fitokemikalija, pridobljena iz vsaj ene rastline, izbrane iz skupine, ki jo sestavljajo curcuma longa, črno seme, artemisinin, bosvelija, kanabinoidi, ginseng, ginkgo biloba, garcinia mangostana, ocimum basilicum, zingiber officinale, tribulus terrestris, indeksi sphaeranthus, annona squamosa, moringa oleifera, murraya koenigii in njihove mešanice.4. Super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS, according to claim 1, where the hydrophobic biologically active substance is an extract or phytochemical obtained from at least one plant selected from the group consisting of curcuma longa, black seed, artemisinin, boswellia, cannabinoids, ginseng, ginkgo biloba, garcinia mangostana, ocimum basilicum, zingiber officinale, tribulus terrestris, sphaeranthus indices, annona squamosa, moringa oleifera, murraya koenigii and their mixtures. 5. Super-nasičljiv brez olja samo-nanoemulgimi sistem za dovajanje zdravil - SNEDDS po zahtevku 1, kjer je emulgator izbran iz skupine, ki jo sestavljajo hidrogenirano ricinusovo olje, polisorbati, polietilen glikoli, polietilen glikol estri, estri glicerola, polivinilpirolidon in njihove mešanice s HLB 15-18.5. Super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1, where the emulsifier is selected from the group consisting of hydrogenated castor oil, polysorbates, polyethylene glycols, polyethylene glycol esters, glycerol esters, polyvinylpyrrolidone and mixtures thereof with HLB 15-18. 6. Super-nasičljiv brez olja samo-nanoemulgirni sistem za dovajanje zdravil - SNEDDS po zahtevku 5, kjer je prednostni emulgator izbran iz skupine, ki vključuje hidrogenirano ricinusovo olje, prednostno Cremophor HC-40.6. Super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 5, wherein the preferred emulsifier is selected from the group including hydrogenated castor oil, preferably Cremophor HC-40. 7. Super-nasičljiv brez olja samo-nanoemulgimi sistem za dovajanje zdravil - SNEDDS po zahtevku 1, kjer je prednostno sotopilo izbrano iz skupine, ki jo sestavlja polietilen glikol, prednostno PEG-400.7. Super-saturable oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1, wherein the preferred co-solvent is selected from the group consisting of polyethylene glycol, preferably PEG-400. 8. Super-nasičljiv brez olja samo-nanoemulgimi sistem za dovajanje zdravil - SNEDDS po zahtevku 1, pri čemer opcijsko vključuje stabilizatorje, ki vključujejo antioksidante, regulatorje pH, želime snovi, zaviralce obarjanja in stabilizacijske komponente.8. A super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1, optionally including stabilizers including antioxidants, pH regulators, desired substances, precipitation inhibitors and stabilizing components. 9. Super-nasičljiv brez olja samo-nanoemulgimi sistem za dovajanje zdravil - SNEDDS po zahtevku 8, kjer je prednostni antioksidant in regulator pH izbran iz skupine, ki jo sestavljajo askorbinska kislina, prednostno vitamin C.9. Super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 8, wherein the preferred antioxidant and pH regulator is selected from the group consisting of ascorbic acid, preferably vitamin C. 10. Super-nasičljiv brez olja samo-nanoemulgimi sistem za dovajanje zdravil - SNEDDS po zahtevku 8, kjer je prednostni zaviralec obarjanja izbran iz skupine, ki jo sestavljajo polivinilpirolidon, prednostno Kollidon K 17.10. Super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 8, wherein the preferred precipitation inhibitor is selected from the group consisting of polyvinylpyrrolidone, preferably Kollidon K 17. 11. Prosto tekoč trden prašek pripravljen z izpostavitvijo super-nasičljivega brez olja samonanoemulgimega sistema za dovajanje zdravil - SNEDDS po zahtevku 1 enkapsulaciji, sušenju z nano- brizganjem, sušenju s tanko plastjo ali liofilizaciji.11. A free-flowing solid powder prepared by subjecting the super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1 to encapsulation, nano-spray drying, thin-layer drying or lyophilization. 12. Prosto tekoč trden prašek, pripravljen s kombiniranjem super-nasičljivega brez olja samo-nanoemulgirnega sistema za dovajanje zdravil - SNEDDS po zahtevku 1 z nosilcem, izbranim iz skupine, ki jo sestavljajo mikrokristalna celuloza, oborjeni kremen, brezvodni dvobazni kalcijev fosfat, manitol, hidroksipropil metilceluloza, celuloza in njihove mešanice.12. A free-flowing solid powder prepared by combining the super-saturated oil-free self-nano-emulsifying drug delivery system - SNEDDS according to claim 1 with a carrier selected from the group consisting of microcrystalline cellulose, precipitated silica, anhydrous dibasic calcium phosphate, mannitol, hydroxypropyl methylcellulose, cellulose and their mixtures. 13. Tekoča nutracevtska sestava, pripravljena z razprševanjem super-nasičljivega brez olja samo-nanoemulgimega sistema za dovajanje zdravil - SNEDDS po zahtevku 1 v vodnem mediju.13. A liquid nutraceutical composition prepared by dispersing a super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1 in an aqueous medium. 14. Sestavek v obliki gela ali kreme, ki vsebuje super-nasičljiv brez olja samonanoemulgimi sistem za dovajanje zdravil - SNEDDS po zahtevku 1 in vosek ali polimer, pri čemer je omenjeni vosek ali polimer izbran iz skupine, ki jo sestavljajo hidroksipropil metilceluloza, izopropil miristat, kolagen, cetilni alkohol, kovinske soli stearinske kisline in karbopol.14. A composition in the form of a gel or cream containing a super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1 and a wax or polymer, wherein said wax or polymer is selected from the group consisting of hydroxypropyl methylcellulose, isopropyl myristate , collagen, cetyl alcohol, metal salts of stearic acid and carbopol. 15. Postopek za pripravo super-nasičljivega brez olja samo-nanoemulgimega sistema za dovajanje zdravil - SNEDDS v tekoči obliki, ki obsega hidrofobni biološko aktivni material, pri čemer postopek obsega naslednje korake:15. A process for the preparation of a super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS in liquid form comprising a hydrophobic biologically active material, the process comprising the following steps: a) predsegrevanje emulgatorja, ki obsega neionsko površinsko aktivno snov z vrednostjo HLB 15 do 18 in sotopilo na temperaturo nad tališčem hidrofobne biološko aktivne snovi;a) preheating the emulsifier, which comprises a nonionic surfactant with an HLB value of 15 to 18 and a co-solvent to a temperature above the melting point of the hydrophobic biologically active substance; b) dodajanje hidrofobne biološko aktivne snovi predhodno segretemu emulgatorju / sotopilu / stabilizatorju in raztapljanje hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju, da nastane mešanica;b) adding the hydrophobic biologically active material to the preheated emulsifier/cosolvent/stabilizer and dissolving the hydrophobic biologically active material in the emulsifier/cosolvent/stabilizer to form a mixture; c) hlajenje mešanice na 50 °C ali na sobno temperaturo inc) cooling the mixture to 50 °C or to room temperature and d) dodajanje želene količine vodne faze, čemur sledi mešanje, da dobimo nanoemulgirano formulacijo hidrofobnega aktivnega sistema, ki vsebuje delce z velikostjo delcev manj kot 50 nm.d) adding the desired amount of aqueous phase followed by mixing to obtain a nanoemulsified formulation of the hydrophobic active system containing particles with a particle size of less than 50 nm. 16. Postopek po zahtevku 15, v katerem mešanico iz koraka (b) segrevamo pri temperaturi v razponu 50-200 °C, da dobimo solubilizacijo hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju.16. The process according to claim 15, in which the mixture from step (b) is heated at a temperature in the range of 50-200 °C to obtain the solubilization of the hydrophobic biologically active material in the emulsifier / co-solvent / stabilizer. 17. Postopek po zahtevku 15, v katerem mešanico iz koraka (b) podvržemo ultrazvočni obdelavi, da dobimo solubilizacijo hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju.17. The method according to claim 15, in which the mixture from step (b) is subjected to ultrasonic treatment to obtain solubilization of the hydrophobic biologically active material in the emulsifier / co-solvent / stabilizer. 18. Postopek po zahtevku 15, v katerem mešanico iz koraka (b) izpostavimo verteksiranju, da dobimo solubilizacijo hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju.18. The process according to claim 15, in which the mixture from step (b) is subjected to vortexing to obtain solubilization of the hydrophobic biologically active material in the emulsifier / cosolvent / stabilizer. 19. Postopek po zahtevku 15, v katerem mešanico iz koraka (b) izpostavimo ultravisokotlačni homogenizaciji, da dobimo solubilizacijo hidrofobnega biološko aktivnega materiala v emulgatorju / sotopilu / stabilizatorju.19. The method according to claim 15, in which the mixture from step (b) is subjected to ultra-high pressure homogenization to obtain the solubilization of the hydrophobic biologically active material in the emulsifier/cosolvent/stabilizer. 20. Super-nasičljiv brez olja samo-nanoemulgimi sistem za dovajanje zdravil - SNEDDS po zahtevku 1 za zdravljenje vnetja, osteoartritisa, alergije, debelosti, nevrodegenerativnih motenj, diabetesa, virusnih okužb, raka, srčno-žilnih motenj in mikrobnih motenj.20. Super-saturated oil-free self-nanoemulsifying drug delivery system - SNEDDS according to claim 1 for the treatment of inflammation, osteoarthritis, allergy, obesity, neurodegenerative disorders, diabetes, viral infections, cancer, cardiovascular disorders and microbial disorders.
SI202100024A 2021-02-22 2021-02-22 Super-saturable oil-free self-nanoemulsifying drug delivery system SNEDDS for poorly water-soluble pharmaceutical composition and procedure of preparation thereof SI26054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI202100024A SI26054A (en) 2021-02-22 2021-02-22 Super-saturable oil-free self-nanoemulsifying drug delivery system SNEDDS for poorly water-soluble pharmaceutical composition and procedure of preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI202100024A SI26054A (en) 2021-02-22 2021-02-22 Super-saturable oil-free self-nanoemulsifying drug delivery system SNEDDS for poorly water-soluble pharmaceutical composition and procedure of preparation thereof

Publications (1)

Publication Number Publication Date
SI26054A true SI26054A (en) 2022-03-31

Family

ID=80934414

Family Applications (1)

Application Number Title Priority Date Filing Date
SI202100024A SI26054A (en) 2021-02-22 2021-02-22 Super-saturable oil-free self-nanoemulsifying drug delivery system SNEDDS for poorly water-soluble pharmaceutical composition and procedure of preparation thereof

Country Status (1)

Country Link
SI (1) SI26054A (en)

Similar Documents

Publication Publication Date Title
US20240091192A1 (en) Dilutable formulations of cannabinoids and processes for their preparation
US11260033B2 (en) Compositions for the delivery of therapeutic agents and methods of use and making thereof
ES2968011T3 (en) New cannabinoid formulations
DK2600838T3 (en) PHARMACEUTICAL DOSAGE FORM CONTAINING 6&#39;-FLUORO- (N-METHYL- OR N, N-DIMETHYL-) - 4-PHENYL-4 &#39;, 9&#39;-DIHYDRO-3&#39;H-SPIRO [CYCLOHEXAN-1,1&#39;-PYRANO [3 , 4, b] indole] -4-amine.
US8835509B2 (en) Self emulsifying drug delivery system for a curcuminoid based composition
JP2012528804A (en) Method for producing drug-loaded emulsion
JP2002509877A (en) Anticancer composition
JP2009514890A (en) Improved delivery of tetrahydrocannabinol
CN101627969B (en) Novel curcumin self-emulsifying drug delivery system and preparation method thereof
EP1249230B1 (en) Microemulsion-preconcentrates and microemulsions comprising coenzyme Q10
AU2007333355B2 (en) Microemulsion dosage forms of valsartan and methods of making the same
Abdelhakeem et al. Lipid-based nano-formulation platform for eplerenone oral delivery as a potential treatment of chronic central serous chorioretinopathy: in-vitro optimization and ex-vivo assessment
US20200215024A1 (en) Cannabinoid formulations for treating alcohol hangover
WO2015022454A1 (en) Novel self-emulsifying instant solid system made from cyclodextrins and oil(s) for oral administration
Das et al. Application of QbD framework for development of self-emulsifying drug delivery systems
SI26054A (en) Super-saturable oil-free self-nanoemulsifying drug delivery system SNEDDS for poorly water-soluble pharmaceutical composition and procedure of preparation thereof
RU2765946C1 (en) Supersaturated self-nanoemulsifiable drug delivery system (snedds) for poorly water-soluble pharmaceutical compositions and method for preparing thereof
CN1717219B (en) Microemulsion composition for oral administration of biphenyldimethyldicarboxylate
Garg et al. Application of self-emulsifying delivery systems for effective delivery of nutraceuticals
KR101058860B1 (en) Self-emulsifying nanoemulsion composition of poorly soluble drug using hydrogenated coco-glyceride
KR101279568B1 (en) Oral Pharmaceutical Composition Containing Megestrol Acetate
Azman et al. Formulation screening of palm-based nanoemulsion for an oral drug vehicle of phyllanthin
Nandal et al. Novel Approaches of Self Emulsifying Drug Delivery Systems and Recent Patents: A Comprehensive Review
JP4734909B2 (en) Solubilizer composition for poorly water-soluble drugs
MADDELA et al. Supersaturable Self-nanoemulsifying Drug Delivery System of Irinotecan–preparation and In-vivo Evaluation

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20220408