SI25959A - Multi-accelerometer system and method for evaluating mechanical stress during walking and running - Google Patents

Multi-accelerometer system and method for evaluating mechanical stress during walking and running Download PDF

Info

Publication number
SI25959A
SI25959A SI202100030A SI202100030A SI25959A SI 25959 A SI25959 A SI 25959A SI 202100030 A SI202100030 A SI 202100030A SI 202100030 A SI202100030 A SI 202100030A SI 25959 A SI25959 A SI 25959A
Authority
SI
Slovenia
Prior art keywords
running
central unit
sensors
accelerometers
accelerometer
Prior art date
Application number
SI202100030A
Other languages
Slovenian (sl)
Inventor
Šarabon Nejc
Pavlović Monika
Trošt Andrej
Babič Jan
Original Assignee
Šarabon Nejc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Šarabon Nejc filed Critical Šarabon Nejc
Priority to SI202100030A priority Critical patent/SI25959A/en
Publication of SI25959A publication Critical patent/SI25959A/en

Links

Abstract

Več-pospeškometrski sistem in metoda za vrednotenje mehanskega stresa med hojo in tekom je sistem v osnovi sestavljen iz šestih tri-osnih pospeškometrov (59), centralne enote (58) in programske opreme za prikaz rezultatov meritev. Centralno enoto (58), ki je sestavljena iz ohišja elektronike (5, 7, 11), računalnika Raspberry Pi 4B (10), napajalnega modula PiJuice (8) z dvema baterijama (6, 9), časovnega modula ChronoPi (12), ventilatorja za hlajenje sistema (15), stikala za vklop/izklop sistema (13) inzajemanja podatkov (14) ter šestih vizualnih kazalnikov delovanja senzorjev (20, 21, 22, 23, 24, 25), nosi merjenec na hrbtu ali na pasu v torbici. Centralna enota (58) je s kabli (4) povezana s pospeškometrskimi senzornimi elementi (3), ki jih ščitita dve polovici ohišja (1, 2). Kabli (4) so izdelani v treh dolžinah, kar omogoča postavitev pospeškometrov na določene dele obeh spodnjih okončin (vrh stopala, vrh golenice in medenica). Sistem vklopimo s preklopom stikala za vklop/izklop (13), s preklopomstikala za zajem podatkov (14) na ON se sproži začetek meritve. Meritev se zaključi s preklopom stikala (14) na OFF, ko se tudi zaključi zapisovanje podatkov na usb ključek, kamor se shrani tekstovna datoteka. Programska oprema Telasi Preview nato opravi hitro analizo podatkov pridobljenih z meritvami in grafično prikaže rezultate vseh treh osi (x, y in z) vseh šestih pospeškometrov (59) posebej v mreži 3x2. Predlagan izum omogoča zajem pospeškov in tako pridobivanje podatkov o biomehaniki in obremenitvahvseh sklepov spodnjih okončin med hojo in tekom.The multi-accelerometer system and method for evaluating mechanical stress during walking and running is a system basically consisting of six three-axis accelerometers (59), a central unit (58) and software for displaying measurement results. A central unit (58) consisting of an electronics housing (5, 7, 11), a Raspberry Pi 4B computer (10), a PiJuice power supply module (8) with two batteries (6, 9), a ChronoPi time module (12), the cooling fan of the system (15), the on / off switches of the data acquisition system (13) (14) and the six visual indicators of the operation of the sensors (20, 21, 22, 23, 24, 25), the subject wears on his back or on his belt handbags. The central unit (58) is connected by cables (4) to the accelerometer sensor elements (3), which are protected by two halves of the housing (1, 2). The cables (4) are made in three lengths, which allows the placement of accelerometers on certain parts of both lower extremities (top of the foot, top of the tibia and pelvis). The system is switched on by switching the on / off switch (13), switching the data acquisition switch (14) to ON triggers the start of the measurement. The measurement is completed by switching the switch (14) to OFF, when the recording of data to the usb key, where the text file is stored, is also completed. The Telasi Preview software then performs a quick analysis of the data obtained from the measurements and graphically displays the results of all three axes (x, y and z) of all six accelerometers (59) separately in the 3x2 grid. The present invention makes it possible to capture accelerations and thus obtain data on biomechanics and loads of all joints of the lower extremities during walking and running.

Description

NASLOVTITLE

Več-pospeškometrski sistem in metoda za vrednotenje mehanskega stresa med hojo in tekomMulti-accelerometer system and method for evaluating mechanical stress during walking and running

PRESTAVITEV PROBLEMAPROBLEM REMOVAL

Tek je eden izmed osnovnih načinov gibanja človeka. Za razumevanje biomehanike teka, moramo najprej razumeti potek hoje. Cikel hoje lahko opišemo kot zaporedje gibanja spodnjih okončin med začetnim stikom stopala s podlago in ponovnim stikom s podlago na koncu parnega cikla dveh korakov. Tega delimo na dve glavni fazi: faza opore (60 % cikla) in faza zamaha (40 % cikla). Faza opore predstavlja stik stopala s podlago, medtem ko je ta pri fazi zamaha odsoten. Ko je ena spodnja okončina v fazi opore, je druga v fazi zamaha. Sprememba iz hoje v tek se zgodi približno pri hitrosti 2 m/s. Za razliko od hoje, ko je vedno vsaj ena spodnja okončina v stiku s podlago, je pri teku faza opore krajša in predstavlja manj kot 50 % cikla. Večja kot je hitrost gibanja, krajša je faza opore. Posledično daljša faza zamaha, ki pri teku traja več kot 50 % celotnega cikla, v določenem delu cikla povzroči istočasno fazo zamaha za obe spodnji okončini. To je faza, ki jo imenujemo faza leta in loči hojo od teka. Kljub temu, da se tek morda, v primerjavi z drugimi, kompleksnejšimi športnimi disciplinami/gibanji zdi enostavno gibanje, predstavlja visoke fiziološke in biomehanske zahteve za človeško telo. Posledično se pri tekačih pogosto pojavljajo mišično-skeletne poškodbe. Najpogosteje so to poškodbe kolen (28 %), gležnjev ali stopal (26 %) in goleni (16%) oziroma patelofemoralni sindrom (17%), tendinopatija Ahilove tetive (10%) in medialni tibialni stresni sindrom (8%). Eden potencialnih dejavnikov tveganja za poškodbe je nepravilna biomehanika teka, ki se iz različnih razlogov pojavi pri kar 80 % tekačev. Številni raziskovalci na tem področju so na osnovi biomehanskih analiz predlagali možne dejavnike tveganja za poškodbe, kot so povečana navpična obremenitev in sile, ki delujejo na golenico, povečan primik kolka ali everzija stopala, zmanjšan obseg gibljivosti kolena in zmanjšana predaktivacija nekaterih mišic.Running is one of the basic ways of moving a person. To understand the biomechanics of running, we must first understand the course of walking. The walking cycle can be described as the sequence of movement of the lower extremities between the initial contact of the foot with the ground and the re-contact with the ground at the end of the pair cycle of two steps. This is divided into two main phases: the support phase (60% of the cycle) and the swing phase (40% of the cycle). The support phase represents the contact of the foot with the ground, while this is absent during the swing phase. When one lower limb is in the support phase, the other is in the swing phase. The change from walking to running occurs at a speed of about 2 m / s. Unlike walking, when at least one lower limb is always in contact with the ground, the running phase is shorter during running and represents less than 50% of the cycle. The higher the speed of movement, the shorter the support phase. As a result, a longer swing phase, lasting more than 50% of the entire cycle, results in a simultaneous swing phase for both lower extremities in a given part of the cycle. This is the phase we call the flight phase and separates walking from running. Although running may seem like a simple movement compared to other, more complex sports / movements, it represents high physiological and biomechanical requirements for the human body. As a result, runners often experience musculoskeletal injuries. The most common are injuries to the knees (28%), ankles or feet (26%) and shins (16%) or patellofemoral syndrome (17%), Achilles tendon tendinopathy (10%) and medial tibial stress syndrome (8%). One of the potential risk factors for injuries is incorrect running biomechanics, which occurs in as many as 80% of runners for various reasons. Based on biomechanical analyzes, many researchers in this field have suggested possible risk factors for injury, such as increased vertical load and forces acting on the tibia, increased hip or foot eversion, decreased knee mobility, and decreased preactivation of some muscles.

Dandanes je tek ena najbolj razširjenih gibalnih/športnih aktivnosti tako pri rekreativcih kot pri profesionalnih športnikih. V Sloveniji se letno izvede več kot 450 tekaških prireditev kot so Maraton treh src Radenci, Istrski maraton, Soča outdoor festival, Tek Trojk, Ljubljanski maraton in drugi. Število sodelujočih narašča iz leta v leto. Denimo, leta 1996 seje Ljubljanskega maratona udeležilo 673 tekačev, leta 2019 kar 19.592. Zaradi vse večje priljubljenosti teka med prebivalstvom, je ta tema zelo pogosto obravnavana tudi na znanstveno-raziskovalnem področju. Izbira metode za analizo teka je odvisna od raziskovalnega vprašanja oziroma problema, predmeta in namena raziskave ali praktične strokovne uporabe. Zlati standard za vrednotenje tako hoje kot teka predstavlja optični kinematični sistem. Cilj kinematičnih študij je oceniti gibanje posameznih telesnih segmentov ali telesa kot celote vključujoč opis položaja, hitrosti, pospeškov in vrtilnih parametrov (orientacijski kot in kotna hitrost) v prostoru in času neodvisno od sil, ki predstavljajo vzrok gibanja. Na tem področju je še posebej veliko zanimanje raziskovalcev namenjeno položaju in orientaciji spodnjih okončin ter stopalu kot edinemu segmentu, ki je v stiku s podlago. Opravljenih je bilo že kar nekaj študij o položaju stopala v bočni in čelni ravnini oziroma o vzorcu teka. Poleg tega so vrednotili tudi stopnjo pronacije/supinacije stopala, različne premike zgornjih okončin, položaj trupa v bočni ravnini in položaj oziroma nagib medenice med tekom. Najpogosteje vrednoteni biomehanski parametri teka so hitrost, tempo, frekvenca in dolžina korakov, dolžina dvojnega koraka, trajanje posameznih faz hoje, moč, šok, tako navpične kot vodoravne sile pri različnih delih tekaškega koraka, obseg pronacije oziroma supinacije stopala in kotne hitrosti. Nadalje so pomemben vidik, tako za nastanek oziroma preprečevanje poškodb kot tudi za tekaško učinkovitost, asimetrije med levo in desno spodnjo okončino med tekom.Nowadays, running is one of the most widespread physical / sports activities for both recreational and professional athletes. In Slovenia, more than 450 running events are held annually, such as the Three Hearts Marathon Radenci, the Istrian Marathon, the Soča Outdoor Festival, the Trojk Run, the Ljubljana Marathon and others. The number of participants is growing from year to year. For example, in 1996 the Ljubljana Marathon session was attended by 673 runners, in 2019 as many as 19,592. Due to the growing popularity of running among the population, this topic is very often discussed in the field of scientific research. The choice of method for running analysis depends on the research question or problem, the subject and purpose of the research or practical professional use. The gold standard for evaluating both walking and running is the optical kinematic system. The aim of kinematic studies is to assess the motion of individual body segments or the body as a whole including a description of position, velocity, acceleration and rotational parameters (orientation angle and angular velocity) in space and time independently of the forces representing the cause of motion. In this field, researchers are particularly interested in the position and orientation of the lower extremities and the foot as the only segment in contact with the ground. Several studies have already been performed on the position of the foot in the lateral and frontal planes or on the running pattern. In addition, the degree of pronation / supination of the foot, various movements of the upper extremities, the position of the torso in the lateral plane and the position or inclination of the pelvis during the run were also evaluated. The most commonly evaluated biomechanical parameters of running are speed, pace, frequency and length of steps, length of double step, duration of individual phases of walking, strength, shock, both vertical and horizontal forces in different parts of running, extent of pronation or supination of foot and angular speed. Furthermore, asymmetries between the left and right lower extremities during running are an important aspect, both for the occurrence or prevention of injuries as well as for running efficiency.

Kinematična analiza se lahko opravlja dvo- ali tro-dimenzionalno z aktivnimi ali pasivnimi markerji nameščenimi na kostno-anatomskih točkah telesa ali brez, ko so le-te prepoznane s pomočjo programske opreme. Točnost meritev je odvisna od postavitve in števila kamer, razdalje med kamerami in markerji, števila in vrste markerjev ter gibanja le-teh znotraj območja zajemanja podatkov. Kompleksnost in visoka cena opreme potrebne za izvedbo meritev le-to omejuje na uporabo v znanosti oziroma v vrhunskem športu. Ker optični kinematični sistemi temeljijo na statičnih kamerah, je zajem podatkov omejen na določeno območje. Ob zavedanju dejstva, da se tek dandanes izvaja v različnih okoljih od mestnih parkov, gozdov, gorskih poti do atletskih stadionov in tekaških stez, ugotovimo, da uporaba optičnih kinematičnih sistemov ni vedno možna. Ta je dokaj zapletena, dolgotrajna in omejena na laboratorijsko okolje; oprema pa draga. Zato so začeli raziskovalci razvijati in se poleg optičnega kinematičnega sistema posluževati tudi drugih sistemov, ki omogočajo izvedbo meritev v nekontroliranem/realnem okolju oziroma izven laboratorija. Splošno znani so globalni sistemi pozicioniranja (Global positioning system - GPS). Ti delujejo na podlagi elektromagnetnih in radijskih valov, ki potujejo od oddajne do ocentralne enote. GPS se uporabljajo v športnih urah, najpogosteje za merjenje razdalj in hitrosti. Poleg tega, drugi pogosto uporabljen nosljivi sistem je inercijska merilna enota merilna naprava sestavljena iz pospeškometra in žiroskopa. Zaradi popolnosti pridobljenih podatkov, se lahko tem merilnim enotam dodajo drugi senzorji gibanja kot so barometri in magnetometri in jih nato imenujemo magnetno-inercijske merilne enote. Magnetometer se uporablja za ugotavljanje položaja severa in na ta način določanje položaja naprave. Z intenzivnim razvojem v zadnjih časih postajajo nosljivi sistemi za analizo teka vse manjši, učinkovitejši glede porabe energije in cenovno dostopnejši. Zato se tudi število strokovnih in znanstvenih prispevkov, ki poročajo o športni uspešnosti na podlagi inercijskih merilnih enot, v zadnjem desetletju postopno povečuje.Kinematic analysis can be performed two- or three-dimensionally with or without active or passive markers placed on the bone-anatomical points of the body when they are identified by software. The accuracy of the measurements depends on the location and number of cameras, the distance between the cameras and the markers, the number and type of markers and their movement within the data acquisition area. The complexity and high price of the equipment needed to perform measurements limits it to use in science or in top sports. Because optical kinematic systems are based on static cameras, data capture is limited to a specific area. Aware of the fact that running today is carried out in a variety of environments from city parks, forests, mountain trails to athletic stadiums and running tracks, we find that the use of optical kinematic systems is not always possible. This is quite complex, time consuming and limited to the laboratory environment; equipment is expensive. Therefore, the researchers began to develop and, in addition to the optical kinematic system, also use other systems that enable the performance of measurements in an uncontrolled / real environment or outside the laboratory. Global positioning systems (GPS) are widely known. These operate on the basis of electromagnetic and radio waves traveling from the transmitting to the central unit. GPS is used in sports watches, most commonly to measure distances and speeds. In addition, another commonly used support system is an inertial measuring unit measuring device consisting of an accelerometer and a gyroscope. Due to the completeness of the obtained data, other motion sensors such as barometers and magnetometers can be added to these measuring units and then called magneto-inertial measuring units. A magnetometer is used to determine the position of the north and thus determine the position of the device. With intensive development in recent times, wearable systems for running analysis are becoming smaller, more energy efficient and more affordable. Therefore, the number of professional and scientific contributions reporting on sports performance based on inertial measurement units has been gradually increasing over the last decade.

STANJE TEHNIKEBACKGROUND OF THE INVENTION

Znanih rešitev za meritve telesne aktivnosti je veliko. Naprave kot so ActivPAL, ActiGraph in podobne, ki jih namestimo na zapestje, pas ali stegno, s pomočjo pospeškometrov določajo položaja telesa oziroma stanje aktivnosti posameznika. Naprava ActiGraph na osnovi telesne aktivnosti podaja podatke o času budnosti oziroma spanja, activPAL meri čas ležanja, sedenja, stoje in hoje. Za vrednotenje različnih parametrov teka je komercialno dostopnih kar nekaj naprav. Bolj enostavni so različni pedometri (RealAlt TriSport 3D Pedometer, Pingko Walking Pedometer, Omron Walking Style IV Pedoometer, Nevvfeel onwalk 500 ipd.), ki omogočajo merjenje korakov, razdalje in nekateri poročajo tudi porabo kalorij. Tudi večina pametnih telefonov vsebuje pospeškometre, ki omogočajo določanje telesne aktivnosti posameznika in štetje korakov. Kompleksnejše naprave so zapestnice in športne ure kot so Nike+ Sportband, Adidas miCocach Zone in Pacer, Suunto in Polar, ki vsebujejo pospeškometre in so ustvarjene primarno za merjenje hitrosti teka. Poleg tega večina omogoča tudi meritve srčnega utripa. Po drugi strani obstajajo naprave (Polar G3, Apple watch, različne Garmin ure ipd.) in aplikacije za pametne telefone kot so Sports Tracker, Runkeeper - GPS Running Tracker in Map my run, ki uporabljajo GPS za sledenje poti in izračun razdalje. Tudi najenostavnejše športne ure merijo srčni utrip, sledijo poti in podajajo informacije o pretečeni razdalji, hitrosti in tempu teka, dolžini ter kadenci korakov (število korakov na minuto).There are many known solutions for physical activity measurements. Devices such as ActivPAL, ActiGraph and the like, which are placed on the wrist, waist or thigh, determine the position of the body or the state of activity of the individual with the help of accelerometers. The ActiGraph device provides data on the time of waking or sleeping on the basis of physical activity, activPAL measures the time of lying, sitting, standing and walking. Quite a few devices are commercially available for evaluating various running parameters. Different pedometers (RealAlt TriSport 3D Pedometer, Pingko Walking Pedometer, Omron Walking Style IV Pedometer, Newfel onwalk 500, etc.) are simpler, which allow measuring steps, distances and some also report calorie consumption. Most smartphones also contain accelerometers that allow you to determine an individual's physical activity and count steps. More complex devices are bracelets and sports watches such as the Nike + Sportband, Adidas miCocach Zone and Pacer, Suunto and Polar, which contain accelerometers and are created primarily to measure running speed. In addition, most also allow heart rate measurements. On the other hand, there are devices (Polar G3, Apple watch, various Garmin watches, etc.) and applications for smartphones such as Sports Tracker, Runkeeper - GPS Running Tracker and Map my run, which use GPS to track the route and calculate the distance. Even the simplest sports watches measure the heart rate, follow the route and give information about the distance traveled, the speed and pace of the run, the length and cadence of the steps (number of steps per minute).

Pomanjkljivost omenjenih sistemov je, da ne omogočajo meritev orientacije telesnih segmentov (npr. pronacija/supinacija stopala) niti obremenitev posameznih delov telesa oziroma sil, ki na njih delujejo med tekom. Za optimalno vrednotenje učinkovitosti in biomehanke teka v realnem okolju z namenom določanja in odpravljanja dejavnikov tveganja za nastanek tekaških poškodb, je potrebna merilna oprema, ki analizira gibanje in obremeitve spodnjih okončin. Nadalje je potrebna metoda, ki omogoča preprosto analizo podatkov pridobljenih z neposrednimi meritvami teka in sistem, ki omogoča enostavno in razumljivo poročanje teh podatkov uporabniku. Potrebno je tudi preprosto nameščanje, ki bo istočasno zagotovilo dobro stabilnost senzorja in udobje ter enostavno uporabo za tekače.The disadvantage of these systems is that they do not allow measurements of the orientation of body segments (eg pronation / supination of the foot) or the load on individual parts of the body or the forces acting on them during running. For optimal evaluation of the efficiency and biomechanics of running in a real environment in order to determine and eliminate risk factors for running injuries, measuring equipment that analyzes the movement and loads of the lower extremities is needed. Furthermore, a method is needed that allows easy analysis of data obtained by direct running measurements and a system that allows easy and understandable reporting of this data to the user. It also requires easy installation, which will at the same time ensure good sensor stability and comfort, as well as ease of use for runners.

Sistemi 3-osnih pospeškometrov opisanih v patentih US20150335280A1 in US9514625B2, ki se jih namesti na sedmo vratno vretence in na križnico, vrednotijo držo in podajajo povratno informacijo (zvočno ali taktilno) o neželenih spremembah. Patenta US9824265B2 in US9811720B2 razkrivata inercijske merilne sisteme, ki se jih namesti na križnico in metodo, ki omogoča prepoznavanje posameznikov glede na njihovo dinamiko gibanja. Po patentu EP2924675A1 je znana rešitev za izboljšavo tehnike izvedbe telesne vadbe sestavljena iz vsaj enega pospeškometra (ki mora biti nameščen na zgornjem delu telesa - glava, prsni koš, zgornji del hrbta ali ramenski obroč), centralne in spominske enote. Ta sistem podaja povratne informacije v realnem času glede skladnosti izvedenega gibanja s prej nastavljenimi (referenčnimi) vrednostmi. Pospeškometrski sistemi se uporabljajo tudi za vrednotenje učinkvitosti medicinsko-tehničnih pripomočkov kot so ortoze in proteze. Patent US20140343460A1 razkriva sistem namenjen za ugotavljanje asimetrij gibanja spodnjih okončin pri posameznikih s protezo, medtem ko sta v patentu CA2592042C predstavljena sistem in metoda, ki na osnovi meritev opravljenih s pospeškometri omogočata spremljanje gibanja pripomočkov (ortoze ali proteze).The 3-axis accelerometer systems described in U.S. Patent Nos. 2,20150335280A1 and US9514625B2, which are mounted on the seventh cervical vertebra and on the sacrum, evaluate posture and provide feedback (acoustic or tactile) on adverse changes. U.S. Pat. Nos. 2,99824265B2 and US 9,811,720B2 disclose inertial measurement systems that are mounted on a crosshair and a method that allows individuals to be identified by their movement dynamics. According to patent EP2924675A1, a known solution for improving the technique of performing physical exercise consists of at least one accelerometer (which must be placed on the upper body - head, chest, upper back or shoulder ring), central and memory units. This system provides real-time feedback on the compliance of the performed movement with the previously set (reference) values. Accelerometer systems are also used to evaluate the effectiveness of medical devices such as orthoses and prostheses. US20140343460A1 discloses a system for determining asymmetries of movement of the lower extremities in individuals with prostheses, while CA2592042C presents a system and method that allows monitoring the movement of devices (orthoses or prostheses) based on measurements made with accelerometers.

Patenti CN208876547U, CN102824177B in US9307932B2 razkrivajo naprave, ki temeljijo na inercijskih merilnih enotah in se namestijo na stopala bodisi na nart bodisi na peto. Uporabljajo se za vrednotenje časovno-prostorskih parametrov teka. Podobna rešitev je predstavljena v patentu US20190150793A1, le da je senzor nameščen pod zunanjim gležnjem. Patent JP6037183B2 predstavlja senzorje v vložkih za čevlje in metodo za analizo tehnike teka. Ta sistem potem s pomočjo ure podaja povratne informacije tekačem. Pospeškometrski sistem so v patentuPatents CN208876547U, CN102824177B and US9307932B2 disclose devices based on inertial measurement units and mounted on the feet either on the instep or on the heel. They are used to evaluate the temporal-spatial parameters of running. A similar solution is presented in US20190150793A1, except that the sensor is located below the outer ankle. Patent JP6037183B2 presents sensors in shoe insoles and a method for analyzing running technique. This system then uses the clock to give feedback to the runners. The accelerometer system is patented

US8744783B2 nadgradili z enim senzorjem sile in centralno enoto za analizo podatkov. Nato so predstavili metodo, ki na osnovi teh meritev omogoča izračun moči, ki jo telo ustvari med gibanjem.US8744783B2 upgraded with one force sensor and a central data analysis unit. They then presented a method that, based on these measurements, allows the calculation of the power generated by the body during movement.

Te rešitve ponujajo dobro osnovo za preučevanje gibanja, vendar se v večini primerov osredotočajo oziroma omogočajo uporabo le na enem telesnem segmentu (stopalo). V primeru želje ali potrebe po vrednotenju večjega dela telesa (npr. spodnjih okončin) in odnosov med posameznimi sklepi, je potrebna drugačna rešitev. Najbližje temmu je izum CN103505219A, ki razkriva sistem in metodo za ocenjevanje gibanja človeškega telesa temelječ na signalih pospeškometrov nameščenih na obeh stopalih in na pasu. Sistem je brezžičen in poleg pospeškometrov vsebuje še centralno enoto za shranjevanje in analizo podatkov. Kljub temu, da je v tem primeru pospeškometer poleg stopal nameščen še na pas, vseeno ne omogoča pridobivanja podatkov o gibanju in obremenitvah kolen in kolkov.These solutions offer a good basis for studying movement, but in most cases they focus or allow use on only one body segment (foot). In case of desire or need to evaluate a larger part of the body (eg lower extremities) and relationships between individual joints, a different solution is needed. Closest to the subject is the invention CN103505219A, which discloses a system and method for estimating the movement of the human body based on the signals of accelerometers placed on both feet and on the belt. The system is wireless and, in addition to accelerometers, also contains a central unit for data storage and analysis. Despite the fact that in this case the accelerometer is placed on the belt in addition to the feet, it still does not allow obtaining data on the movement and loads of the knees and hips.

V znanstvenih raziskavah na tem področju so bile doslej že uporabljene različne inercijske oziroma magnetno-inercijske merilne enote kot so RunScribe, Styrd, ETHOS, Garmin Footpood, FWIS Physiolog in DeltaTron. Te so bile v večini primerov nameščene na stopala oziroma v eni raziskavi na gležnju in kolenu, v drugi na stegnu in golenici in v tretji na mečni mišici (m. gastrocnemius). Večsegmentnost bi v tem primeru dala pomemben vpogled v, za mišično-skeletno varnost, ključne biomehanske tehnične značilnosti teka. Kolikor je nam znano so le v treh raziskavah senzorje namestili na več različnih delov telesa. V dveh raziskavah so bila področja namestitve senzorjev spodji del hrbta, stegno, golen in stopalo, vendar so avtorji vrednotili le hojo pri posameznikih z osteoartritisom kolena. Zato ostaja odprto vprašanje o aplikativnosti takšnega načina vrednotenja pri teku. V zadnji raziskavi so namestili 12 ETHOS senzorjev z namenom spremljanja gibanja celega telesa med tekom. Avtorji te študije sklepajo, da so najpomembnejša področja namstitve na trupu in stopalih. Sklepajo, da bi manj senzorjev omogočilo hitrejše in enostavnejše nameščanje ter povzročilo manj motenj oziroma omejitev med tekom.Various inertial or magneto-inertial measuring units such as RunScribe, Styrd, ETHOS, Garmin Footpood, FWIS Physiolog and DeltaTron have been used in scientific research in this field. These were in most cases placed on the feet or in one study on the ankle and knee, in another on the thigh and tibia, and in the third on the soft muscle (m. Gastrocnemius). Multisegmentality in this case would provide important insight into, for musculoskeletal safety, the key biomechanical technical characteristics of running. As far as we know, only three studies have installed sensors on several different parts of the body. In two studies, the areas of sensor placement were the lower back, thigh, shin, and foot, but the authors evaluated only walking in individuals with osteoarthritis of the knee. Therefore, the question of the applicability of such a method of evaluation in progress remains open. In the latest study, 12 ETHOS sensors were installed to monitor whole body movement while running. The authors of this study conclude that the most important areas of placement are on the torso and feet. They conclude that fewer sensors would allow for faster and easier installation and cause fewer disturbances or restrictions during the run.

Izum opisan v tej vlogi sta več-pospeškometrski sistem in metoda za vrednotenje mehanskega stresa med hojo in tekom. Predstavljena rešitev prinaša možnost vrednotenja mehanskega stresa vseh sklepov spodnjih okončin med gibanjem. Izum je namenjen pridobivanju pomembnih podatkov o biomehaniki hoje pri posameznikih, ki se srečujejo z različnimi gibalnimi težavami (npr. po možganski kapi) in teka pri rekreativnih in profesionalnih športnikih. Izum omogoča zajem pospeškov na vseh sklepih obeh spodnjih okončin (stopalo, koleno in kolk) med hojo ali tekom. Sistem deluje tako, da ko zaženemo meritev ustvari tekstovno datoteko, kamor se shranjujejo podatki vseh šestih pospeškometrov in trajanje meritve. Ko je meritev zaključena, je omogočen ogled grafov vsakega senzorja posebej v mreži 3x2, kjer je vsaka izmed treh osi (x, y in z) prikazana z drugo barvo.The invention described in this application is a multi-accelerometer system and a method for evaluating mechanical stress during walking and running. The presented solution brings the possibility of evaluating the mechanical stress of all joints of the lower extremities during movement. The invention is intended to obtain important data on the biomechanics of walking in individuals experiencing various movement problems (eg after a stroke) and running in recreational and professional athletes. The invention makes it possible to capture accelerations at all joints of both lower extremities (foot, knee and hip) during walking or running. The system works by creating a text file when the measurement is started, where the data of all six accelerometers and the duration of the measurement are stored. When the measurement is completed, it is possible to view the graphs of each sensor separately in the 3x2 grid, where each of the three axes (x, y and z) is shown in a different color.

PREDSTAVITEV TEHNIČNE REŠITVEPRESENTATION OF THE TECHNICAL SOLUTION

Prenosni sistem merjenja pospeškov je v osnovi sestavljen iz centralne enote 58, šestih tri-osnih pospeškometrov 59, ki so preko kablov 4 povezani s centralno enoto 58 ter računalniškega programa za izris grafov vsakega senzorja posebej. Centralno enoto 58 nosi merjenec ali na hrbtu (Slika 1) ali na pasu v torbici. Senzorji 59 se pritrdijo, glede na dolžino kablov 4, na spodnje ude obojestransko: vrh stopala (baza druge stopalnice), vrh golenice (golenična grčevina) in medenica (zgornji sprednji črevnični trn). Kot prikazuje Slika 2 je centralna enota 58 sestavljena iz ohišja elektronike iz elementov 5, 7 in 11, računalnika Raspberry Pi 4B 10, napajalnega modula PiJuice 8 z baterijo 9, dodatne baterije 6, časovnega modula ChronoPi 12, ventilatorja za hlajenje sistema 15 z vijaki 16, 17, 18 in 19 ter maticami M3 26, 27, 28, in 29 za pritrditev na ohišje, stikala za vklop/izklop sistema 13, stikala za vklop/izklop zajemanja podatkov 14, šestih vizualnih kazalnikov (LED) delovanja senzorjev 20, 21, 22, 23, 24 in 25, matice M3 30, 31,32, 33 in vijakov M3 34, 35, 36 in 37 za pritrditev spodnjega dela ohišja elektronike na centralni del ohišja elektronike, vijaki M3 38, 39, 40 in 41 za pritrditev Raspberry Pi 4B na spodnji del ohišja elektronike, matice M3 42, 43, 44, 45, 46, 47, 48 in 49 ter vijaki M3 50, 51, 52, 53, 54, 55, 56 in 57 za pritrditev pokrova ohišja elektronike na centralni del ohišja elektronike. Vsak senzor (podrobnosti prikazane na Sliki 3) je sestavljen iz dveh polovic zaščitnega ohišja 1 oziroma 2, kabla 4, ki povezuje senzorje 59 s centralno enoto 58, in tiskano vezje s pospeškometrskim senzornim elementom 3. Vsak par senzorjev (en senzor za levo in drugi za desno spodnjo okončino) ima enako dolžino kablov 4. Tri različne dolžine kablov 4 omogočajo postavitev senzorjev 59 na določene dele spodnjih okončin.The portable acceleration measuring system basically consists of a central unit 58, six three-axis accelerometers 59, which are connected to the central unit 58 via cables 4, and a computer program for plotting each sensor separately. The central unit 58 is carried by the subject either on the back (Figure 1) or on a belt in a purse. The sensors 59 are attached, depending on the length of the cables 4, to the lower limbs on both sides: the top of the foot (base of the second foot), the top of the tibia (tibial spasm) and the pelvis (upper anterior intestinal thorn). As shown in Figure 2, the central unit 58 consists of an electronics housing made of elements 5, 7 and 11, a Raspberry Pi 4B 10 computer, a PiJuice 8 power supply module with battery 9, an additional battery 6, a ChronoPi time module 12, a system cooling fan 15 with screws 16, 17, 18 and 19 and nuts M3 26, 27, 28, and 29 for mounting on the housing, on / off switches of the system 13, on / off switches for data acquisition 14, six visual indicators (LEDs) of sensor operation 20, 21, 22, 23, 24 and 25, nuts M3 30, 31,32, 33 and screws M3 34, 35, 36 and 37 for attaching the lower part of the electronics housing to the central part of the electronics housing, screws M3 38, 39, 40 and 41 for attaching the Raspberry Pi 4B to the lower part of the electronics housing, nuts M3 42, 43, 44, 45, 46, 47, 48 and 49 and screws M3 50, 51, 52, 53, 54, 55, 56 and 57 for attaching the housing cover electronics to the central part of the electronics housing. Each sensor (details shown in Figure 3) consists of two halves of a protective housing 1 and 2, a cable 4 connecting the sensors 59 to the central unit 58, and a printed circuit board with an accelerometer sensor element 3. Each pair of sensors (one sensor for the left and the second for the right lower limb) has the same length of cables 4. Three different lengths of cables 4 allow the placement of sensors 59 on certain parts of the lower extremities.

Sistem se zažene s preklopom stikala 13 za vklop. Konstantno svetenje LED 20, 21, 22, 23, 24 in 25 nakazuje, da je sistem pripravljen za zajem podatkov. S preklopom stikala 14 za zajem podatkov na ON se začne izvajati meritev, na USB ključku se ustvari tekstovna datoteka, v katero se shranjujejo vrednosti pospeškov vseh šestih senzorjev in relativen čas meritve. Med izvajanjem meritve LED kazalniki 20, 21,22, 23, 24 in 25 utripajo enkrat na sekundo. V primeru težav s katerim od šestih senzorjev se, po preklopu stikala, meritev ne začne izvajati, LED kazalnik nedelujočega senzorja oziroma več njih začne utripati petkrat na sekundo. Meritev se zaključi s preklopom stikala 14 na OFF in na USB ključku se zaključi zapisovanje podatkov v tekstovno datoteko. Ime datoteke s podatki je sestavljeno iz leta, meseca, dneva, ure, minute in sekunde začetka izvajanja meritve. USB ključek se po meritvi lahko vstavi v računalnik, na katerem je nameščen Telasi Preview, kar omogoča hitro analizo rezultatov meritev.The system is started by switching the power switch 13. The constant illumination of LEDs 20, 21, 22, 23, 24 and 25 indicates that the system is ready to capture data. By switching the data acquisition switch 14 to ON, the measurement is started, a text file is created on the USB stick, in which the acceleration values of all six sensors and the relative measurement time are stored. During the measurement, the LEDs 20, 21,22, 23, 24 and 25 flash once per second. In case of problems with any of the six sensors, after switching the switch, the measurement does not start, the LED indicator of the non-functioning sensor or several of them starts flashing five times per second. The measurement is completed by switching switch 14 to OFF and the USB stick ends writing data to a text file. The data file name consists of the year, month, day, hour, minute, and second of the measurement start. After the measurement, the USB stick can be inserted into the computer on which Telasi Preview is installed, which enables quick analysis of measurement results.

Računalnik nima vgrajene pomožne gumbne baterije, s katero bi sistem ohranjal točen datum in čas, kadar je računalnik brez napajanja. V ta namen časovni modul računalniku zagotavlja točen čas tudi takrat, ko je brez glavnega napajanja. Računalniški program za izris grafov (Telasi Preview) je zasnovan v programskem okolju Matlab (The Math Works Inc., Natick, Massachussets, ZDA) in se ga kot samostojni program lahko namesti na poljuben računalnik. V programu izberemo tekstovno datoteko meritve in program naredi za vsak senzor posebej svoj graf, katere razporedi na zaslon v mrežo 3x2 za hitrejši pregled podatkov. Vsaka izmed X, Y in Z osi na posameznem grafu je prikazana v svoji barvi.The computer does not have a built-in auxiliary button battery that allows the system to maintain the correct date and time when the computer is without power. For this purpose, the time module provides the computer with the exact time even when it is without the main power supply. The computer program for plotting graphs (Telasi Preview) is designed in the Matlab software environment (The Math Works Inc., Natick, Massachusetts, USA) and can be installed as a standalone program on any computer. In the program, we select a text file of the measurement and the program makes its own graph for each sensor, which it arranges on the screen in a 3x2 grid for faster data review. Each of the X, Y, and Z axes on each graph is shown in its own color.

Claims (11)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Več-pospeškometrski sistem in metoda za vrednotenje mehanskega stresa med hojo in tekom.1. Multi-accelerometer system and method for evaluating mechanical stress during walking and running. označena s tem, da sta sestavljena iz šestih tri-osnih pospeškometrov (59), ki so s kabli (4) povezani s centralno enoto (58) in računalniškega programa (Telasi Preview) za izris grafov z rezultati meritev;characterized in that they consist of six three-axis accelerometers (59) connected by cables (4) to a central unit (58) and a computer program (Telasi Preview) for plotting graphs with measurement results; 2. Sistem po zahtevku 1, označen s tem, da ima tiskano vezje s pospeškometrskim senzornim elementom (3), ki ga ščitita dve polovici zaščitnega ohišja (1,2) in je s kabli (4) povezan s centralno enoto (58);The system according to claim 1, characterized in that it has a printed circuit board with an accelerometer sensor element (3), which is protected by two halves of the protective housing (1,2) and is connected to the central unit (58) by cables (4); 3. Sistem po zahtevku 1, označen s tem, da je način postavitve sistema tak, da merjenec nosi centralno enoto (58) na hrbtu ali na pasu v torbici in pospeškometri (59) so nameščeni na obeh spodnjih udih na vrhu stopala (baza druge stopalnice), vrhu golenice (golenična grčevina) in na medenici (zgornji sprednji črevnični trn);System according to claim 1, characterized in that the method of positioning the system is such that the subject carries a central unit (58) on the back or on a belt in a bag and accelerometers (59) are mounted on both lower limbs at the top of the foot feet), the top of the tibia (tibial spasm) and on the pelvis (upper anterior intestinal thorn); 4. Sistem po zahtevku 1, označen s tem, da so kabli (4) izdelani enake dolžine za vsak par pospeškometrskih senzornih elementov (3), kar omogoča postavitev pospeškometrov (59) na določene dele obeh spodnjih okončin (navedeno pod zahtevkom 3);System according to claim 1, characterized in that the cables (4) are made of the same length for each pair of accelerometer sensor elements (3), which allows the accelerometers (59) to be placed on certain parts of both lower extremities (mentioned under claim 3); 5. Sistem po zahtevku 3, označen s tem, da je centralna enota (58) sestavljena iz iz ohišja elektronike (5, 7, 11), računalnika Raspberry Pi 4B (10), napajalnega modula PiJuice (8) z baterijo (9), dodatne baterije (6), časovnega modula ChronoPi (12), ventilatorja za hlajenje sistema (15), stikala za vklop/izklop sistema (13), stikala za vklop/izklop zajemanja podatkov (14) ter šestih vizualnih (LED) kazalnikov delovanja senzorjev (20, 21,22, 23, 24, 25);System according to claim 3, characterized in that the central unit (58) consists of an electronics housing (5, 7, 11), a Raspberry Pi 4B computer (10), a PiJuice power supply module (8) with a battery (9). , additional batteries (6), ChronoPi time module (12), system cooling fan (15), system on / off switches (13), data capture on / off switches (14) and six visual (LED) operation indicators sensors (20, 21,22, 23, 24, 25); 6. Sistem po zahtevku 5, označen s tem, da stikalo za vklop/izklop sistema (13) omogoča vklop in izklop sistema;System according to claim 5, characterized in that the system on / off switch (13) enables the system to be switched on and off; 7. Sistem po zahtevku 5, označen s tem, da stikalo za vlop/izklop zajemanja podatkov omogoča začetek in zaključek zajemanja podatkov;The system according to claim 5, characterized in that the on / off switch of data acquisition enables the start and end of data acquisition; 8. Sistem po zahtevku 5, označen s tem, da imajo vizualni kazalniki delovanja senzorjev (20, 21, 22, 23, 24, 25) vsak svoj pripadajoči LED kazalnik;The system according to claim 5, characterized in that the visual indicators of the operation of the sensors (20, 21, 22, 23, 24, 25) each have their own corresponding LED indicator; 9. Sistem po zahtevku 5, označen s tem, da vizualni kazalniki delovanja senzorjev (20, 21, 22, 23, 24, 25), s konstantnim svetenjem obveščajo o pripravljenosti sistema za zajem podatkov;The system according to claim 5, characterized in that the visual indicators of the operation of the sensors (20, 21, 22, 23, 24, 25), with a constant light, inform about the readiness of the system for data acquisition; 10. Sistem po zahtevku 5, označen s tem, da vizualni kazalniki delovanja senzorjev (20, 21, 22, 23, 24, 25), med izvajanjem meritve utripajo enkrat na sekundo, a v primeru težav s senzorji, kazalniki nedelujočega senzorja ali več njih začnejo utripati petkrat na sekundo;System according to Claim 5, characterized in that the visual indicators of the operation of the sensors (20, 21, 22, 23, 24, 25) flash once per second during the measurement, but in the case of problems with the sensors, the indicators of the inoperative sensor or more they start flashing five times per second; 11. Sistem po zahtevku 1, označen s tem, da računalniški program za izris grafov (Telasi Preview) na osnovi tekstovne datoteke pripravi grafe vseh treh osi (x, y in z), ki so obarvane vsaka s svojo barvo, za vsak pospeškometer posebej v mreži 3x2.System according to claim 1, characterized in that the computer program for plotting graphs (Telasi Preview) prepares graphs of all three axes (x, y and z) on the basis of a text file, each colored with its own color, for each accelerometer separately in a 3x2 network.
SI202100030A 2021-03-03 2021-03-03 Multi-accelerometer system and method for evaluating mechanical stress during walking and running SI25959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI202100030A SI25959A (en) 2021-03-03 2021-03-03 Multi-accelerometer system and method for evaluating mechanical stress during walking and running

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI202100030A SI25959A (en) 2021-03-03 2021-03-03 Multi-accelerometer system and method for evaluating mechanical stress during walking and running

Publications (1)

Publication Number Publication Date
SI25959A true SI25959A (en) 2021-07-30

Family

ID=77050358

Family Applications (1)

Application Number Title Priority Date Filing Date
SI202100030A SI25959A (en) 2021-03-03 2021-03-03 Multi-accelerometer system and method for evaluating mechanical stress during walking and running

Country Status (1)

Country Link
SI (1) SI25959A (en)

Similar Documents

Publication Publication Date Title
US10105571B2 (en) Systems and methods for sensing balanced-action for improving mammal work-track efficiency
US10194837B2 (en) Devices for measuring human gait and related methods of use
CA2794245C (en) Systems and methods for measuring balance and track motion in mammals
CN107920782B (en) Walking analysis method and walking analysis system
Najafi et al. Laboratory in a box: wearable sensors and its advantages for gait analysis
US20200008745A1 (en) Wearable Flexible Sensor Motion Capture System
CN105688396A (en) Exercise information display system and exercise information display method
KR20190014641A (en) System and method for Gait analysis
US20200315497A1 (en) Electronic equipment for the treatment and care of living beings
WO2017081497A1 (en) Device for digitizing and evaluating movement
WO2013023004A2 (en) Systems and methods for sensing balanced-action for improving mammal work-track efficiency
SI25959A (en) Multi-accelerometer system and method for evaluating mechanical stress during walking and running
Park et al. Design of the wearable device for hemiplegic gait detection using an accelerometer and a gyroscope
Rosso et al. Gait measurements in the transverse plane using a wearable system: An experimental study of test-retest reliability
Chanchotisatien et al. An IoT-based controlled ankle motion boot for foot and ankle monitoring during the recovery phase
Avvari et al. Gait analysis: an effective tool to measure human performance
GB2556888A (en) Smart apparel
AU2011219024B9 (en) Systems and methods for measuring balance and track motion in mammals
Wåhlin et al. Development of techniques for measuring the mobility of knee joints in children with cerebral palsy
Kishan et al. Preliminary Study: Bilateral Gait Symmetrical Validation for Different Genders
Karmakar et al. A Wearable Accelerometer-Based System for Knee Angle Monitoring During Physiotherapy
ES2796977A1 (en) METHOD FOR POSTURE CORRECTION AND STATISTICAL MEASURING DEVICE USED (Machine-translation by Google Translate, not legally binding)
Boucher et al. Gait analysis and spinal rotation
Bhamare et al. Wireless Intelligent Pedometer for elderly patients using ARM10
Tang Consultant, Nantwich, UK

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20210805