SI24863A - Process and device for improvment of operation of silicon photomultipliers in the regime of piled-up pulses of light - Google Patents

Process and device for improvment of operation of silicon photomultipliers in the regime of piled-up pulses of light Download PDF

Info

Publication number
SI24863A
SI24863A SI201400380A SI201400380A SI24863A SI 24863 A SI24863 A SI 24863A SI 201400380 A SI201400380 A SI 201400380A SI 201400380 A SI201400380 A SI 201400380A SI 24863 A SI24863 A SI 24863A
Authority
SI
Slovenia
Prior art keywords
sensor
flash
estimate
correction
list
Prior art date
Application number
SI201400380A
Other languages
Slovenian (sl)
Inventor
Matjaž Vencelj
Miha Cankar
Andrej Likar
Original Assignee
Institut "Jožef Stefan"
Beyond Semiconductor D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut "Jožef Stefan", Beyond Semiconductor D.O.O. filed Critical Institut "Jožef Stefan"
Priority to SI201400380A priority Critical patent/SI24863A/en
Priority to PCT/SI2015/000033 priority patent/WO2016060622A1/en
Publication of SI24863A publication Critical patent/SI24863A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

Predmet izuma sodi v področje senzorskih sistemov, ki temeljijo na silicijevih fotopomnoževalkah, bolj natančno v področje postopkov za razširjanje uporabnosti senzorskih sistemov s silicijevimi fotopomnoževalkami v režim nakopičenih bliskov svetlobe, in naprava, ki temelji na tem postopku. Razširitev delovanja silicijevih fotopomnoževalk v režim nakopičenih bliskov je izvedena tako, da je v postopek obdelave meritev svetlobnega toka dodan korak, ki upošteva lastnosti omenjenega senzorja in temu ustrezno dinamično prilagaja oceno za zmanjšanje občutljivosti senzorja zaradi začasne hromitve proženih senzorskih mikrocelic. Na osnovi te ocene sistem poroča numerično modificirane ocene za svetlost bliskov.The object of the invention belongs to the field of sensor systems based on silicon photomultipliers, more precisely in the scope of procedures for expanding the usability of the sensor systems with silicon photoconductors in the regime of accumulated flashlights of light, and a device based on this process. The expansion of the action of silicon photomultipliers in the mode of accumulated flashlights is carried out in such a way that the process of processing of the light current measurements is accompanied by a step which takes into account the properties of said sensor and accordingly dynamically adjusts the evaluation to reduce sensitivity of the sensor due to the temporary chromosome of the sensed microcell sensors. Based on this assessment, the system reports numerically modified estimates for the brightness of the flash.

Description

Postopek za izboljšanje delovanja silicijevih fotopomnoževalk v režimu nakopičenih bliskov in napravaProcedure for improving the performance of silicon photomultipliers in cumulative flash mode and device

Predmet izuma sodi v področje senzorskih sistemov, ki temeljijo na silicijevih fotopomnoževalkah, bolj natančno v področje postopkov za razširjanje uporabnosti senzorskih sistemov s silicijevimi fotopomnoževalkami v režim nakopičenih bliskov svetlobe, in naprava, ki temelji na tem postopku.The subject of the invention belongs to the field of sensor systems based on silicon photomultipliers, more precisely to the field of methods for extending the applicability of sensor systems with silicon photomultipliers to the mode of accumulated flashes of light, and a device based on this method.

Tehnični problem je, kako minimizirati posledice nasičenja detektorja s silicijevimi fotopomnoževalkami. Pri silicijevih fotopomnoževalkah v režimu nakopičenih bliskov svetlobe senzor zaradi visoke pogostosti bliskov svetlobe le-te ne more pravilno zaznati, kar ima za posledico sistematične merske napake.The technical problem is how to minimize the consequences of saturating the detector with silicon photomultipliers. In the case of silicon photomultipliers in the mode of accumulated flashes of light, the sensor cannot detect them correctly due to the high frequency of flashes of light, which results in a systematic measurement error.

Na področju detekcije posamičnih fotonov vidne svetlobe se je okoli leta 2001 pojavila tehnologija, imenovana silicijeve fotopomnoževalke (SiPM). V dobrih desetih letih od odkritja je sledila intenzivna industrializacija tehnologije in zlasti prodor na področje medicinske diagnostične opreme (pozitronska tomografija), letalske ter vesoljske tehnologije (LIDAR) in biotehnologije (analitske metode z bioluminiscenco), kjer SiPM postopno izpodriva starejšo tehnologijo steklenih fotopomnoževalk.In the field of detection of individual photons of visible light, a technology called silicon photomultipliers (SiPM) appeared around 2001. In the ten years since its discovery, intensive industrialization of technology has followed, especially the penetration of medical diagnostic equipment (positron tomography), aerospace technology (LIDAR) and biotechnology (analytical methods with bioluminescence), where SiPM is gradually displacing older glass photomultiplier technology.

Silicijeva fotopomnoževalka je senzor svetlobe, občutljiv na posamične fotone in narejen kot tesno zloženo polje večjega števila drobnih plazovnih fotodiod na skupnem silicijevem substratu. V kontekstu SiPM delujejo posamične fotodiode v Geigerjevem načinu, kar pomeni, da v vsaki fotodiodi lahko pride do plazovne razelektritve, če nanjo vpade en ali več fotonov svetlobe. Naboj, ki ob razelektritvi preteče, ni odvisen od števila fotonov, ki so fotodiodo vzbudili, torej se vsaka zase diode binarno odzivajo na svetlobne dražljaje. Posamično fotodiodo v režim pripravljenosti vsakič znova vrne zaporedno vezani upor ali pa temu namenjeno tranzistorsko stikalo. Ta proces traja navadno 100ns ali manj, mikrocelica pa medtem ni občutljiva na fotone. Sklop fotodiode in upora ali tranzistorskega stikala oz. mehanizma za ugašanje toka se imenuje mikrocelica. Tokovni signal celotnega senzorja je vsota signalov s posamičnih mikrocelic in je zato približno sorazmeren s številom osvetljenih mikrocelic.The silicon photomultiplier is a light sensor sensitive to individual photons and made as a tightly stacked field of a large number of tiny avalanche photodiodes on a common silicon substrate. In the context of SiPM, individual photodiodes operate in the Geiger mode, which means that an avalanche discharge can occur in each photodiode if one or more photons of light fall on it. The charge that elapses when discharged does not depend on the number of photons that excited the photodiode, so each diode responds binary to light stimuli. The individual photodiode is returned to standby mode each time by a series-connected resistor or a dedicated transistor switch. This process usually takes 100ns or less, while the microcell is not sensitive to photons. Photodiode and resistor assembly or transistor switch or. the current-quenching mechanism is called a microcell. The current signal of the entire sensor is the sum of the signals from the individual microcells and is therefore approximately proportional to the number of illuminated microcells.

Tipična raba tovrstnega senzorja je v scintilacijskih detektorskih sistemih, kjer visokoenergijski delec v scintilatorju izgubi določeno količino kinetične energije in s tem inducira scintilacijo, to je blisk vidne svetlobe, ki navadno traja od nekaj ns do nekaj ps. Na blisk vidne svetlobe senzor SiPM reagira s sunkom električnega toka. Časovni potek tokovnega sunka je podoba časovnega poteka svetlosti v merjenjem scintilacijskem blisku, iz amplitude tokovnega sunka pa se oceni količina energije, ki jo je vpadni delec odložil v scintilacijskem detektorju.A typical use of this type of sensor is in scintillation detector systems, where a high-energy particle in the scintillator loses a certain amount of kinetic energy and thus induces scintillation, ie a flash of visible light that usually lasts from a few ns to a few ps. The SiPM sensor responds to a flash of visible light with an electric shock. The time course of the current shock is an image of the time course of light in the measurement of the scintillation flash, and the amount of energy deposited by the incident particle in the scintillation detector is estimated from the amplitude of the current shock.

Zaradi zgoraj opisane narave senzorja SiPM lahko pride pri merjenju svetlobnih bliskov do razmer, ko se v senzorju v kratkem času sproži znaten delež mikrocelic. Te so nato začasno ohromljene in senzor je tedaj bistveno manj občutljiv na nadaljnji vpad svetlobe, kar je znano kot binomsko zasičenje silicijeve fotopomnoževalke. Prva očitna posledica je, da ima senzor tem manjše ojačenje za merjenje svetlosti bliska, čim svetlejši je blisk. To vodi v nelinearen odziv tovrstnega senzorja in mu omejuje dinamični obseg. Druga posledica se izrazi v režimu delovanja, ko je pogostost merjenih bliskov tako velika, da se nekateri bliski delno prekrivajo v času. Takrat na ojačenje senzorja za meritev posamičnega bliska vplivajo tudi časovna dinamika in amplitude predhodnih bliskov. Na sliki 3 sta prikazana simbolična grafa razvoja intenzitete vpadle svetlobe in izmerjenega toka, kar poenostavljeno ilustrira, da je pri posameznem blisku rezultat meritve svetlosti sistematično podcenjen, kadar prejšnji blisk še ni izzvenel. Odprava te sistemske napake pri merjenju oz. zaznavanju bliskov svetlobe je naloga pričujočega izuma.Due to the nature of the SiPM sensor described above, the measurement of light flashes can lead to situations where a significant proportion of microcells are triggered in the sensor in a short time. These are then temporarily paralyzed and the sensor is then significantly less sensitive to further light intrusion, known as binomial saturation of the silicon photomultiplier. The first obvious consequence is that the darker the flash, the lower the gain for measuring the brightness of the flash. This leads to a nonlinear response of this type of sensor and limits its dynamic range. Another consequence is expressed in the mode of operation, when the frequency of the measured flashes is so high that some flashes partially overlap over time. At that time, the gain of the sensor for measuring a single flash is also influenced by the time dynamics and amplitudes of the previous flashes. Figure 3 shows the symbolic graphs of the development of the incident light intensity and the measured current, which simply illustrates that in a single flash the result of the brightness measurement is systematically underestimated when the previous flash has not yet disappeared. Elimination of this system error in measuring or. the detection of light flashes is an object of the present invention.

Izum z vstavitvijo vmesnega koraka manipulacije merjenega signala v sistem odpravi sistematično mersko napako pri določanju svetlosti pogostih bliskov svetlobe, kakršni se pojavijo na primer v scintilacijskih detektorjih pri visokih števnih hitrostih.The invention, by inserting an intermediate step of manipulating the measured signal into the system, eliminates a systematic measurement error in determining the brightness of frequent flashes of light, such as occur, for example, in scintillation detectors at high counting speeds.

Patent US8476571B2 in patentna prijava EP2428820A2 opisujeta različne izvedbe silicijeve fotopomnoževalke kot take. Patenta EP2487704A3 in EP2530490A2, razkrivata specifične aplikacije tovrstnega senzorja. EP2376942B1 rešuje problem kompenzacije temperaturne odvisnosti lastnosti senzorjev SiPM. Problema nakopičenja bliskov se dotakneta dve rešitvi, ena opisana v JP2012251999A, kjer opišejo samodejno prilagajanje hitrosti vzorčenja glede na stopnjo kopičenja, s čimer znižajo povprečno električno moč sistema za zajem, ne odpravijo pa prej omenjene sistematične merske napake, in druga v US2013/0009267A1, ki predlaga sočasno rabo različno velikih senzorskih celic, glede na povprečno osvetlitev delov občutljive površine, kar pa predstavlja znatno komplikacijo pri proizvodnji senzorjev.U.S. Pat. No. 8,876,571B2 and patent application EP2428820A2 describe various embodiments of a silicon photomultiplier as such. Patents EP2487704A3 and EP2530490A2 disclose specific applications of such a sensor. EP2376942B1 solves the problem of compensating for the temperature dependence of the properties of SiPM sensors. The problem of flash accumulation is touched upon by two solutions, one described in JP2012251999A, which describes the automatic adjustment of the sampling rate according to the accumulation rate, thus reducing the average electrical power of the capture system but not eliminating the aforementioned systematic measurement error, and the other in US2013 / 0009267A1 which proposes the simultaneous use of sensor cells of different sizes, depending on the average illumination of parts of the sensitive surface, which, however, represents a significant complication in the production of sensors.

Bistvo postopka za izboljšanje delovanja silicijevih fotopomnoževalk v režimu nakopičenih bliskov je v tem, da se izmerjeni električni signal mikrocelic po blisku svetlobe pretvori v digitalni signal, ki je v korekcijskem procesorju korigiran skladno z vnaprej pripravljeno oceno za trenutno občutljivost detektorja.The essence of the process for improving the performance of silicon photomultipliers in the mode of accumulated flashes is that the measured electrical signal of microcells after light flash is converted into a digital signal, which is corrected in the correction processor according to a pre-prepared estimate for current detector sensitivity.

Postopek za izboljšanje delovanja silicijevih fotopomnoževalk v režimu nakopičenih bliskov in senzor po tem postopku bo v nadaljevanju podrobneje opisan s pomočjo slik, ki prikazujejo:The procedure for improving the performance of silicon photomultipliers in the cumulative flash mode and the sensor after this procedure will be described in more detail below with the help of images showing:

Slika 1 Silicijeva fotopomnoževaIka - stanje tehnikeFigure 1 Silicon photomultiplier - state of the art

Slika 2 Tipična raba silicijeve fotopomnoževalke v scintilacijskih detektorskih sistemih - stanje tehnikeFigure 2 Typical use of silicon photomultiplier in scintillation detector systems - state of the art

Slika 3 Simbolična grafa razvoja intenzitete vpadle svetlobe in izmerjenega tokaFigure 3 Symbolic graph of the development of the incident light intensity and the measured current

Slika 4 Blok shema izvedbenega primera I po izumuFigure 4 Block diagram of embodiment I according to the invention

Slika 5 Blok shema izvedbenega primera II po izumuFigure 5 Block diagram of embodiment II according to the invention

Silicijeva fotopomnoževalka je senzor svetlobe, občutljiv na posamične fotone 1 in narejen kot tesno zloženo polje večjega števila drobnih plazovnih fotodiod 2 na skupnem silicijevem substratu. V kontekstu SiPM delujejo posamične fotodiode v Geigerjevem načinu, kar pomeni, da v vsaki fotodiodi lahko pride do plazovne razelektritve, če nanjo vpade en ali več fotonov svetlobe. Naboj, ki ob razelektritvi preteče, ni odvisen od števila fotonov, ki so fotodiodo vzbudili, torej se vsaka zase diode binarno odzivajo na svetlobne dražljaje. Posamično fotodiodo v režim pripravljenosti vsakič znova vrne zaporedno vezani upor 3 ali pa temu namenjeno tranzistorsko stikalo. Ta proces traja navadno 100ns ali manj, mikrocelica 4 pa medtem ni občutljiva na fotone. Mikrocelica 4 je sklop fotodiode 2 in upora 3 ali tranzistorskega stikala oz. mehanizma za ugašanje toka. Tokovni signal celotnega senzorja je vsota signalov s posamičnih mikrocelic in je zato približno sorazmeren s številom osvetljenih mikrocelic.The silicon photomultiplier is a light sensor sensitive to individual photons 1 and made as a tightly stacked field of a large number of tiny avalanche photodiodes 2 on a common silicon substrate. In the context of SiPM, individual photodiodes operate in the Geiger mode, which means that an avalanche discharge can occur in each photodiode if one or more photons of light fall on it. The charge that elapses when discharged does not depend on the number of photons that excited the photodiode, so each diode responds binary to light stimuli. The individual photodiode is returned to standby mode each time by a series-connected resistor 3 or a dedicated transistor switch. This process usually takes 100ns or less, and microcell 4, meanwhile, is not sensitive to photons. Microcell 4 is an assembly of a photodiode 2 and a resistor 3 or a transistor switch or. flow quenching mechanism. The current signal of the entire sensor is the sum of the signals from the individual microcells and is therefore approximately proportional to the number of illuminated microcells.

Tipična raba senzorja SiPM je v scintilacijskih detektorskih sistemih, kjer visokoenergijski delec 5 v scintilatorju 6 izgubi določeno količino kinetične energije in s tem inducira scintilacijo, to je blisk vidne svetlobe 7, ki navadno traja od nekaj ns do nekaj us. Na blisk vidne svetlobe 7 senzor SiPM 8 reagira s sunkom električnega toka 9. Časovni potek sunka električnega toka 5 je podoba časovnega poteka svetlosti v merjenjem scintilacijskem blisku, iz amplitude tokovnega sunka pa se oceni količina energije, ki jo je vpadni delec odložil v scintilacijskem detektorju.A typical use of the SiPM sensor is in scintillation detector systems, where the high energy particle 5 in the scintillator 6 loses a certain amount of kinetic energy and thus induces scintillation, i.e. a flash of visible light 7, which usually lasts from a few ns to a few us. The SiPM sensor 8 reacts to the visible light flash with a shock of the electric current 9. The time course of the electric shock 5 is the image of the time course of light in the scintillation flash measurement, and the amount of energy deposited by the incident particle in the scintillation detector is estimated from the current shock amplitude. .

Ker imajo tipični senzorji SiPM po več tisoč mikrocelic, gre pri binomskem zasičenju za statističen proces z razmeroma majhno relativno negotovostjo števila ohromljenih mikrocelic. Tedaj je proces zasičenja v dobrem približku določljiv iz izmerjenega signala. Senzorski sistem je zato lahko nadgrajen z dodatno fazo obdelave merjenega signala, ki sistem tehnično izboljša tako, da v izhodnem signalu ni več sistematičnih merskih napak, nastalih zaradi zasičenja senzorja.Because typical SiPM sensors have thousands of microcells each, binomial saturation is a statistical process with relatively little relative uncertainty in the number of paralyzed microcells. Then the saturation process is in good approximation determinable from the measured signal. The sensor system can therefore be upgraded with an additional phase of processing of the measured signal, which technically improves the system so that there are no more systematic measurement errors in the output signal caused by sensor saturation.

Nadgradnja senzorskega sistema temelji na spoznanju, da omenjeno binomsko zasičenje merilna naprava lahko kompenzira tako, da v vsakem od primerno izbranih dovolj kratkih zaporednih časovnih intervalov izvede naslednje ključne korake:The upgrade of the sensor system is based on the recognition that said binomial saturation can be compensated by the measuring device by performing the following key steps in each of the suitably selected sufficiently short consecutive time intervals:

- Iz ocen za hromljenje mikrocelic, pripravljenih v predhodnih časovnih intervalih, in iz znanih lastnosti senzorja pripravi oceno za število trenutno še ohromljenih mikrocelic,- Prepare an estimate for the number of currently paralyzed microcells from the estimates for the paralysis of microcells prepared in previous time intervals and from the known properties of the sensor,

- iz tako pripravljene ocene za število trenutno ohromljenih mikrocelic pripravi oceno za trenutno občutljivost detektorja, ki je sorazmerna številu trenutno aktivnih mikrocelic,- from the estimate prepared for the number of currently paralyzed microcells, prepare an estimate for the current sensitivity of the detector, which is proportional to the number of currently active microcells,

- iz trenutnega električno izmerjenega senzorskega signala pripravi oceno za dejanski trenutni vpadni svetlobni tok na senzor tako, da pri tem upošteva zmanjšano občutljivost senzorja zaradi ohromljenega deleža mikrocelic,- from the current electrically measured sensor signal, make an estimate of the actual current incident luminous flux per sensor, taking into account the reduced sensitivity of the sensor due to the paralyzed proportion of microcells,

- tako ocenjeni dejanski vpadni svetlobni tok poroča nadaljnjim podsklopom senzorskega sistema,- the actual incident luminous flux thus estimated shall be reported to the subassemblies of the sensor system,

- iz zgoraj pridobljenih ocen pripravi oceno za število na novo ohromljenih mikrocelic.- from the above obtained estimates, prepare an estimate for the number of newly paralyzed microcells.

Postopek po izumu vključuje meritev vpadnega svetlobnega toka v senzorju 12, katerega sestavni del je polje plazovnih fotodiod v geigerskem režimu, ter korekcijo nastale merske napake na osnovi tega,The method according to the invention includes the measurement of the incident luminous flux in the sensor 12, an integral part of which is the field of avalanche photodiodes in the Geiger mode, and the correction of the resulting measurement error based on this,

- da omenjena merska napaka pri meritvi vpadnega svetlobnega toka nastane, ker vsak detektirani foton začasno ohromi eno od fotodiod omenjenega senzorja,- that said measurement error in measuring the incident luminous flux occurs because each photon detected temporarily paralyzes one of the photodiodes of said sensor,

- da se iz merjenega električnega signala 13 iz senzorja 12 v realnem času ocenjuje aktualno število ohromljenih diod,- that the actual number of paralyzed diodes is estimated in real time from the measured electrical signal 13 from the sensor 12,

- da se slednjo oceno za število ohromljenih diod uporabi pri izračunu korekcijskega faktorja za trenutno občutljivost detektorja.- the latter estimate for the number of paralyzed diodes is used in the calculation of the correction factor for the current sensitivity of the detector.

Postopek po izumu, ki vključuje meritev amplitude svetlobnega bliska v senzorju 20, katerega sestavni del je polje plazovnih fotodiod v geigerskem režimu, ter korekcijo nastale merske napake na osnovi tega,The method according to the invention, which includes measuring the amplitude of the light flash in the sensor 20, an integral part of which is the field of avalanche photodiodes in the Geiger mode, and correcting the resulting measurement error based on this,

- da omenjena napaka pri meritvi amplitude omenjenega bliska nastane, ker ob vsaj enem drugem skoraj sočasnem blisku detekcija slednjega sočasnega bliska ohromi vsaj eno fotodiodo omenjenega senzorja,- that said error in measuring the amplitude of said flash occurs because at least one other nearly simultaneous flash detects the last simultaneous flash paralyzing at least one photodiode of said sensor,

- da se zaporedje bliskov upodobi v procesnem delu 22 naprave s seznamom zapisov 23, kjer vsak zapis tvorita vsaj ocena svetlosti bliska in ocena časovne značke istega bliska,- the sequence of flashes is represented in the process part 22 of the device with a list of records 23, where each record consists of at least an estimate of the brightness of the flash and an estimate of the timestamp of the same flash,

- da omenjena korekcija popravi oceno svetlosti vsaj enemu blisku iz omenjenega seznama,- that said correction corrects the assessment of the brightness of at least one flash from said list,

- da se omenjeno korigirano oceno 25 svetlosti bliska izračuna v korekcijski procesni enoti 24 iz ocene 23 svetlosti in časovne značke vsaj enega od ostalih bliskov,- that said corrected flash brightness estimate 25 is calculated in the correction process unit 24 from the brightness estimate 23 and the timestamp of at least one of the other flashes,

- da so korekcijski parametri pripravljeni vnaprej in tabelirani za različne kombinacije izmerjenih amplitud in časovnih značk,- that the correction parameters are prepared in advance and tabulated for different combinations of measured amplitudes and time marks,

- da izmerjene amplitude korigira kjerkoli v verigi za zajem podatkov v realnem času,- to correct the measured amplitudes anywhere in the real-time data acquisition circuit,

- da izmerjene podatke, shranjene na spominskem mediju v obliki seznama zapisov, kjer vsak omenjeni zapis vključuje vsaj amplitudo in časovno oznako dogodka, korigira naknadno,- that the measured data stored on the storage medium in the form of a list of records, where each said record includes at least the amplitude and time code of the event, is subsequently corrected,

- da se izvede korekcija amplitudne ocene za posamični detektirani sunek, na osnovi vrednosti enega ali več korekcijskih parametrov, ki jih postopek dinamično prilagaja glede na izmerjene lastnosti doslej detektiranih sunkov.- to perform an amplitude estimation correction for an individual detected shock, based on the values of one or more correction parameters, which are dynamically adjusted by the procedure according to the measured properties of the detected shocks so far.

V izvedbenem primeru I (glej sliko 4) je problem rešen tako, da se električni signal 13 iz senzorja 12 neprestano vzorči s hitrim analogno-digitalnim pretvornikom (ADC) 14, kjer se analogni signal 13 pretvori v neprekinjen niz števil 15. V korekcijskem procesorju 16 se niz števil 15 korigira in pretvori v berljiv niz števil 17, ki je popravljen na takšne vrednosti, kot bi jih bili pridobili iz senzorja brez binomskega zasičenja mikrocelic; je torej proporcionalna podoba dejanskega vpadlega toka svetlobe. Tak niz števil 17 se nato navadno obdela v večkanalnem analizatorju (MCA) 18, ki pripravi seznam 19 opisov amplitud sunkov. Seznam 19 je neposredno uporaben za nadaljnjo obdelavo v raziskovalnih in industrijskih merilnih sistemih, medicinskih diagnostičnih napravah in kamerah, varnostnih sistemih ter ostalih sistemih, ki imajo vgrajene silicijeve fotopomnoževalke. V tem primeru je tipična izvedba korekcijskega procesorja v programabilnem polju logičnih vrat (Field-programmable gate array, FPGA).In embodiment I (see Figure 4) the problem is solved by continuously sampling the electrical signal 13 from the sensor 12 with a fast analog-to-digital converter (ADC) 14, where the analog signal 13 is converted into a continuous series of numbers 15. In the correction processor 16, the set of numbers 15 is corrected and converted into a readable set of numbers 17, which is corrected to such values as would be obtained from the sensor without binomial saturation of microcells; it is therefore a proportional image of the actual incident light flux. Such a set of numbers 17 is then typically processed in a multi-channel analyzer (MCA) 18, which prepares a list 19 of descriptions of the amplitudes of the shocks. List 19 is directly applicable for further processing in research and industrial measuring systems, medical diagnostic devices and cameras, security systems and other systems incorporating silicon photomultipliers. In this case, a typical implementation of the correction processor is in the Field-programmable gate array (FPGA).

V izvedbenem primeru II (glej sliko 5), ki je posebno primeren za scintilacijske detekcijske sisteme in ga poleg tega odlikuje znatno manjša procesna zahtevnost v primerjavi z izvedbenim primerom I, je problem rešen tako, da se že pred aplikacijo korekcijskega procesiranja analogni električni signal 21 iz senzorja 20 analizira v večkanalnem analizatorju (MCA) 22, nastali seznam 23 opisov posamičnih električnih sunkov iz signala 21 pa je takšen, da vsak opis tvorita vsaj ocena amplitude sunka in časovna značka trenutka sunka. Seznam opisov 23 se korigira v procesni enoti 24, kjer se korigirane zapise novega seznama 25 pridobi iz vnaprej pripravljenih tabel glede na amplitude in časovne značke časovno bližnjih skupin sunkov. Omenjene korekcijske tabele so pripravljene bodisi s sistematičnim prečesavanjem parametričnega prostora svetlosti in časovnih značk, bodisi na drug način, ki vodi v tabelirane vrednosti, numerično ekvivalentne zgornjim. Slednji seznam 25 je prav tako neposredno uporaben v enakih aplikacijah kot v izvedbenem primeru I.In embodiment II (see Figure 5), which is particularly suitable for scintillation detection systems and is also characterized by significantly lower process complexity compared to embodiment I, the problem is solved by applying an analog electrical signal 21 before the application of correction processing. from the sensor 20 is analyzed in a multi-channel analyzer (MCA) 22, and the resulting list 23 of descriptions of individual electric shocks from signal 21 is such that each description consists of at least an estimate of the amplitude of the shock and the timestamp of the moment of shock. The list of descriptions 23 is corrected in the processing unit 24, where the corrected records of the new list 25 are obtained from pre-prepared tables with respect to the amplitudes and timestamps of the time-close groups of shocks. Said correction tables are prepared either by systematic combing of the parametric brightness space and time icons, or in another way that leads to tabulated values, numerically equivalent to the above. The latter list 25 is also directly applicable in the same applications as in embodiment I.

Razširitev delovanja silicijevih fotopomnoževalk v režim nakopičenih bliskov je izvedena tako, da je v postopek obdelave meritev svetlobnega toka dodan korak, ki upošteva lastnosti senzorja SiPM in temu ustrezno dinamično prilagaja oceno za zmanjšanje občutljivosti senzorja zaradi začasne hromitve proženih senzorskih mikrocelic. Na osnovi te ocene sistem poroča numerično modificirane ocene za svetlost bliskov.The extension of the operation of silicon photomultipliers in the accumulated flash mode is performed by adding a step to the processing of luminous flux measurements, which takes into account the properties of the SiPM sensor and accordingly dynamically adjusts the estimate to reduce sensor sensitivity due to temporary paralysis of triggered sensor microcells. Based on this rating, the system reports numerically modified estimates for flash brightness.

S postopkom po izumu in izvedbenimi primeri je zagotovljena uporaba silicijevih fotopomnoževalk za različne aplikacije, pri čemer je minimiziran vpliv napak zaradi fizikalnih lastnosti senzorjev na delovanje takih naprav.The method according to the invention and the embodiments ensures the use of silicon photomultipliers for various applications, while minimizing the impact of errors due to the physical properties of the sensors on the operation of such devices.

Claims (10)

Patentni zahtevkiPatent claims 1. Postopek za izboljšanje delovanja silicijevih fotopomnoževalk v režimu nakopičenih bliskov, značilen po tem, da vključuje meritev vpadnega svetlobnega toka v senzorju (12), katerega sestavni del je polje plazovnih fotodiod v geigerskem režimu, ter korekcijo nastale merske napake na osnovi tega,A method for improving the performance of silicon photomultipliers in the mode of accumulated flashes, characterized in that it includes measuring the incident luminous flux in the sensor (12), an integral part of which is the field of avalanche photodiodes in the Geiger mode, and correcting the resulting measurement error. - da omenjena merska napaka pri meritvi vpadnega svetlobnega toka nastane, ker vsak detektirani foton začasno ohromi eno od fotodiod omenjenega senzorja,- that said measurement error in measuring the incident luminous flux occurs because each photon detected temporarily paralyzes one of the photodiodes of said sensor, - da se iz merjenega električnega signala (13) iz senzorja (12) v realnem času ocenjuje aktualno število ohromljenih diod,- that the actual number of paralyzed diodes is estimated in real time from the measured electrical signal (13) from the sensor (12), - da se slednjo oceno za število ohromljenih diod uporabi pri izračunu korekcijskega faktorja za trenutno občutljivost detektorja.- the latter estimate for the number of paralyzed diodes is used in the calculation of the correction factor for the current sensitivity of the detector. 2. Postopek za izboljšanje delovanja silicijevih fotopomnoževalk v režimu nakopičenih bliskov, značilen po tem, da vključuje meritev amplitude svetlobnega bliska v senzorju (20), katerega sestavni del je polje plazovnih fotodiod v geigerskem režimu, ter korekcijo nastale merske napake na osnovi tega,A method for improving the performance of silicon photomultipliers in the mode of accumulated flashes, characterized in that it includes measuring the amplitude of the light flash in the sensor (20), which includes an avalanche photodiode array in the Geiger mode, and correcting the resulting measurement error based thereon, - da omenjena napaka pri meritvi amplitude omenjenega bliska nastane, ker ob vsaj enem drugem skoraj sočasnem blisku detekcija slednjega sočasnega bliska ohromi vsaj eno fotodiodo omenjenega senzorja,- that said error in measuring the amplitude of said flash occurs because at least one other nearly simultaneous flash detects the last simultaneous flash paralyzing at least one photodiode of said sensor, - da se zaporedje bliskov upodobi v procesnem delu (22) naprave s seznamom zapisov (23), kjer vsak zapis tvorita vsaj ocena svetlosti bliska in ocena časovne značke istega bliska,- that the sequence of flashes is represented in the process part (22) of the device with a list of records (23), where each record consists of at least an estimate of the brightness of the flash and an estimate of the timestamp of the same flash, - da omenjena korekcija popravi oceno svetlosti vsaj enemu blisku iz omenjenega seznama,- that said correction corrects the assessment of the brightness of at least one flash from said list, - da se omenjeno korigirano oceno (25) svetlosti bliska izračuna v korekcijski procesni enoti (24) iz ocene (23) svetlosti in časovne značke vsaj enega od ostalih bliskov.- that said corrected flash brightness estimate (25) is calculated in the correction process unit (24) from the brightness estimate (23) and the timestamp of at least one of the other flashes. 3. Postopek po zahtevku 2, značilen po tem, da so korekcijski parametri pripravljeni vnaprej in tabelirani za različne kombinacije izmerjenih amplitud in časovnih značk.Method according to Claim 2, characterized in that the correction parameters are prepared in advance and tabulated for different combinations of measured amplitudes and time marks. 4. Postopek po zahtevku 2, značilen po tem, da izmerjene amplitude korigira kjerkoli v verigi za zajem podatkov v realnem času.Method according to claim 2, characterized in that the measured amplitudes are corrected anywhere in the real-time data acquisition circuit. 5. Postopek po zahtevku 2, značilen po tem, da izmerjene podatke, shranjene na spominskem mediju v obliki seznama zapisov, kjer vsak omenjeni zapis vključuje vsaj amplitudo in časovno oznako dogodka, korigira naknadno.The method according to claim 2, characterized in that the measured data stored on the storage medium in the form of a list of records, where each said record includes at least the amplitude and time code of the event, is subsequently corrected. 6. Postopek po zahtevku 2, značilen po tem, da se izvede korekcija amplitudne ocene za posamični detektirani sunek, na osnovi vrednosti enega ali več korekcijskih parametrov, ki jih postopek dinamično prilagaja glede na izmerjene lastnosti doslej detektiranih sunkov.Method according to Claim 2, characterized in that an amplitude estimate correction is performed for the individual detected shock, based on the values of one or more correction parameters which the method dynamically adjusts according to the measured properties of the detected shocks so far. 7. Naprava, značilna po tem, da vključuje postopek po kateremkoli izmed zahtevkov od 1 do 6.Device, characterized in that it comprises a method according to any one of claims 1 to 6. 8. Naprava po zahtevku 7, značilna po tem, da se električni signal (13) iz senzorja (12) neprestano vzorči s hitrim analogno-digitalnim pretvornikom (ADC) (14), kjer se analogni signal (13) pretvori v neprekinjen niz števil (15); da se v korekcijskem procesorju (16) niz števil (15) korigira in pretvori v berljiv niz števil (17), ki je proporcionalna podoba dejanskega vpadlega toka svetlobe; da se niz števil (17) nato obdela v večkanalnem analizatorju (18), ki pripravi seznam (19) opisov amplitud sunkov.Device according to claim 7, characterized in that the electrical signal (13) from the sensor (12) is continuously sampled by a fast analog-to-digital converter (ADC) (14), where the analog signal (13) is converted into a continuous sequence of numbers. (15); that in the correction processor (16), the set of numbers (15) is corrected and converted into a readable set of numbers (17), which is a proportional image of the actual incident light flux; that the set of numbers (17) is then processed in a multi-channel analyzer (18), which prepares a list (19) of descriptions of the amplitudes of the shocks. 9. Naprava po zahtevku 7, značilna po tem, da se že pred aplikacijo korekcijskega procesiranja analogni električni signal (21) iz senzorja (20) analizira v večkanalnem analizatorju (22), nastali seznam (23) opisov posamičnih električnih sunkov iz signala (21) pa je takšen, da vsak opis tvorita vsaj ocena amplitude sunka in časovna značka trenutka sunka; da se seznam opisov (23) korigira v procesni enoti (24), kjer se korigirane zapise novega seznama (25) pridobi iz vnaprej pripravljenih tabel glede na amplitude in časovne značke časovno bližnjih skupin sunkov.Device according to claim 7, characterized in that the analog electrical signal (21) from the sensor (20) is analyzed in a multi-channel analyzer (22) before the correction processing application, the resulting list (23) of descriptions of individual electric shocks from the signal (21). ) is such that each description consists of at least an estimate of the amplitude of the shock and the timestamp of the moment of the shock; that the list of descriptions (23) is corrected in the processing unit (24), where the corrected records of the new list (25) are obtained from pre-prepared tables with respect to the amplitudes and timestamps of the time-close groups of shocks. 10. Naprava po kateremkoli od zahtevkov od 7 do 9, značilna po tem, da je vgrajena v raziskovalne in industrijske merilne sisteme, medicinske diagnostične naprave in kamere, varnostne sisteme in ostale sisteme, ki imajo vgrajene silicijeve fotopom noževa I ke.Device according to any one of claims 7 to 9, characterized in that it is integrated into research and industrial measuring systems, medical diagnostic devices and cameras, security systems and other systems having silicon photovoltaic knives.
SI201400380A 2014-10-17 2014-10-17 Process and device for improvment of operation of silicon photomultipliers in the regime of piled-up pulses of light SI24863A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201400380A SI24863A (en) 2014-10-17 2014-10-17 Process and device for improvment of operation of silicon photomultipliers in the regime of piled-up pulses of light
PCT/SI2015/000033 WO2016060622A1 (en) 2014-10-17 2015-10-16 Process and a device for improvement of operation of silicon photomultipliers in the regime of piled-up pulses of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201400380A SI24863A (en) 2014-10-17 2014-10-17 Process and device for improvment of operation of silicon photomultipliers in the regime of piled-up pulses of light

Publications (1)

Publication Number Publication Date
SI24863A true SI24863A (en) 2016-04-29

Family

ID=55070113

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201400380A SI24863A (en) 2014-10-17 2014-10-17 Process and device for improvment of operation of silicon photomultipliers in the regime of piled-up pulses of light

Country Status (2)

Country Link
SI (1) SI24863A (en)
WO (1) WO2016060622A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133710B (en) * 2019-04-24 2021-02-26 苏州瑞派宁科技有限公司 Signal correction method and device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476594B2 (en) 2008-12-15 2013-07-02 Koninklijke Philips Electronics N.V. Temperature compensation circuit for silicon photomultipliers and other single photon counters
US8476571B2 (en) 2009-12-22 2013-07-02 Siemens Aktiengesellschaft SiPM photosensor with early signal digitization
EP2428820A3 (en) 2010-09-13 2012-05-09 Siemens Aktiengesellschaft Silicon photomultiplier and radiation detector
EP2487703A1 (en) 2011-02-14 2012-08-15 Fei Company Detector for use in charged-particle microscopy
US8309933B1 (en) 2011-06-03 2012-11-13 Kabushiki Kaisha Toshiba Count rate adaptive filter for medical imaging systems
EP2530490B1 (en) 2011-06-03 2019-02-27 Toshiba Medical Systems Corporation Device for radiation detection, radiation detection system and radiation detection method
US8791514B2 (en) 2011-07-06 2014-07-29 Siemens Medical Solutions Usa, Inc. Providing variable cell density and sizes in a radiation detector

Also Published As

Publication number Publication date
WO2016060622A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
US10585174B2 (en) LiDAR readout circuit
Cates et al. Improved single photon time resolution for analog SiPMs with front end readout that reduces influence of electronic noise
US10852183B2 (en) Optical pulse detection device, optical pulse detection method, radiation counter device, and biological testing device
US9677931B2 (en) Detection of radiation quanta using an optical detector pixel array and pixel cell trigger state sensing circuits
US10578752B2 (en) Multiple energy detector
US9442201B2 (en) CMOS SPAD array with mixed timing pick-off for time-of-flight positron emission tomography
US9057789B2 (en) Radiation measuring device
JP2017053833A (en) Correction device, correction method, and distance measuring device
US11994586B2 (en) Using time-of-flight and pseudo-random bit sequences to measure distance to object
US8969814B2 (en) System and method of determining timing triggers for detecting gamma events for nuclear imaging
EP3158363A2 (en) X-ray detector operable in a mixed photon-counting/analog output mode
US9817135B2 (en) Performance stabilization for scintillator-based radiation detectors
JP2014228464A (en) Radiation measuring device and radiation measuring method
US9945962B2 (en) Signal processor and radiation detection device
WO2010052674A2 (en) Analog silicon photomultiplier using phase detection
US10660589B2 (en) Baseline shift determination for a photon detector
US7638760B1 (en) Method for tracking and correcting the baseline of a radiation detector
US11041965B2 (en) Radiation-detecting device
US20200386616A1 (en) Method for counting photons by means of a photomultiplier
US11047996B2 (en) Photodetector
SI24863A (en) Process and device for improvment of operation of silicon photomultipliers in the regime of piled-up pulses of light
JP2016016130A (en) Photon counting CT apparatus
US8957362B2 (en) Determining relative timing offset in different electronic pathways using internal signals
Gamal et al. Silicon photomultiplier timing performance study
Vinke et al. Timing performance comparison of P-on-N and N-on-P silicon photomultipliers

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20160525