SI24756A - A method and a device for indirect characterization of the damage to the pool for spent nuclear fuel - Google Patents

A method and a device for indirect characterization of the damage to the pool for spent nuclear fuel Download PDF

Info

Publication number
SI24756A
SI24756A SI201400371A SI201400371A SI24756A SI 24756 A SI24756 A SI 24756A SI 201400371 A SI201400371 A SI 201400371A SI 201400371 A SI201400371 A SI 201400371A SI 24756 A SI24756 A SI 24756A
Authority
SI
Slovenia
Prior art keywords
coolant
pool
level
spent fuel
monitoring
Prior art date
Application number
SI201400371A
Other languages
Slovenian (sl)
Inventor
MatkoviÄŤ Marko
Tiselj Iztok
Klenjak Ivo
Prošek Andrej
Leskovar MatjaĹľ
Fabjan Ljubo
Cizelj Leon
Original Assignee
Institut "JoĹľef Stefan"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut "JoĹľef Stefan" filed Critical Institut "JoĹľef Stefan"
Publication of SI24756A publication Critical patent/SI24756A/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/06Magazines for holding fuel elements or control elements
    • G21C19/07Storage racks; Storage pools
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/002Detection of leaks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/035Moderator- or coolant-level detecting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Metoda in naprava za posredno karakterizacijo poškodbe ovoja bazena za izrabljeno jedrsko gorivo omogoča na osnovi spremljanja meritev puščanja hladila iz sistema izvedbo posredne karakterizacije poškodbe ovoja in napoved razvoja izrednega dogodka; torej napoved razvoja višine gladine hladila v bazenu za izrabljeno gorivo in napoved razvoja hitrosti doze v bližini omenjenega bazena. Dodatni parametri, kot so dotok in temperatura svežega hladila, temperatura hladila v bazenu, hitrost doze v bližini omenjenega bazena in nekateri drugi, so prav tako upoštevani pri računski karakterizaciji poškodbe in napovedi razvoja izrednega dogodka vključno z napovedjo skrajnega časa za evakuacijo.The method and apparatus for the indirect characterization of damage to the nuclear fuel pool envelope allows, on the basis of the monitoring of the measurements of the leakage of the coolant from the system, the implementation of the indirect characterization of the damage of the envelope and the forecast of the development of an extraordinary event; that is, the forecast of the development of the height of the coolant level in the spent fuel pool and the forecast of the development of the dose rate near the pool. Additional parameters, such as the inflow and temperature of the coolant, the temperature of the coolant in the pool, the dose rate near the pool and some others, are also taken into account in calculating the damage characterization and the forecast of the development of an emergency, including the announcement of the extreme time for evacuation.

Description

METODA IN NAPRAVA ZA POSREDNO KARAKTERIZACIJO POŠKODBE BAZENA ZA IZRABLJENO JEDRSKO GORIVOMETHOD AND DEVICE FOR INDIRECTLY CHARACTERIZATION OF DAMAGE TO A POOL FOR SPREADED NUCLEAR FUEL

Področje izumaFIELD OF THE INVENTION

Predloženi izum se nanaša na postopek in na napravo za računsko oceno stanja bazena z izrabljenim jedrskim gorivom in na napovedovanje razvoja ekstremnega dogodka.The present invention relates to a process and a device for the computational assessment of a spent fuel pool and the prediction of an extreme event.

Ozadje in znano stanje tehnikeBackground and prior art

Bazeni za izrabljeno gorivo tlačnovodnih jedrskih elektrarn so bili v osnovi predvideni kot prehodna shramba visoko radioaktivnega rabljenega jedrskega goriva, kjer je zagotovljen zanesljiv ponor toplote in zaščita pred ionizirajočim sevanjem. Ti bazeni so pogosto ostali edina skladišča rabljenega goriva. V sled pomanjkanja prostora so operaterji jedrskih elektrarn prestrukturirali mrežo in način shranjevanja svežnjev goriva. Nekateri med njimi že drugič. Možnosti za ponovno strnjevanje primanjkuje. S povečevanjem gostote jedrskega goriva v bazenih pa se porajajo nova vprašanja glede varnosti, ki zadevajo kritičnost in strukturne preobremenitve bazena. Jedrska katastrofa v Fukushimi je obudila prav ta vprašanja, ki so pritegnila veliko pozornosti tako v strokovni kot tudi v splošni javnosti; varnostna vprašanja povezana s skladiščenjem rabljenega goriva v objektih, ki nikoli niso bili zasnovani za dolgotrajno shranjevanje.The spent fuel pools of the pressurized nuclear power plants were basically designed as a transient storage of highly radioactive used nuclear fuel, where reliable heat sinks and protection against ionizing radiation are ensured. These pools often remained the only used fuel storage facilities. In the wake of the lack of space, nuclear power plant operators have restructured the grid and the way the fuel bundles are stored. Some of them for the second time. There is a lack of re-consolidation options. Increasing the density of nuclear fuel in pools, however, raises new safety concerns regarding criticality and structural overload of the pool. The Fukushima nuclear catastrophe has raised precisely these issues, which have attracted a great deal of attention from both the professional and the general public; safety issues related to used fuel storage in facilities that were never designed for long-term storage.

Prekinitev hlajenja v času ekstremnega dogodka, kot je potres, bi lahko privedla do nesprejemljivo visoke in morda usodnih ravni sevanja v bližini objekta z izrabljenim gorivom. Ugotovljena poškodba bazena z rabljenim gorivom bi zahtevale takojšen odziv operaterjev, ki bi v danih razmerah morali ukrepati v pomanjkanju zanesljivih podatkov potrebnih za določitev optimalne strategije intervencije. To bi lahko privedlo do prejetih odmerkov sevanja, ki bi močno presegali zakonsko dovoljene omejitve, odlog popravil, nepopolno opravljene naloge in zamude pri evakuaciji, kar bi lahko vodilo do usodnih in nepopravljivih posledic za ljudi in okolje.Interruption of cooling during an extreme event such as an earthquake could lead to unacceptably high and possibly fatal levels of radiation near the spent fuel facility. The identified damage to the used fuel pool would require an immediate response from operators who, in the circumstances, would have to act in the absence of reliable data needed to determine the optimal intervention strategy. This could lead to radiation doses received, far exceeding the statutory limits, delaying repairs, incompletely completed tasks and delays in evacuation, which could lead to fatal and irreparable consequences for humans and the environment.

Glede na razsežnost omenjenega tveganja, se vse več pozornosti usmerja v oblikovanje sistemov spremljanja stanja bazena za izrabljeno gorivo, ki na osnovi zgodovine merljivih kazalcev omogočajo zgodnje odkrivanje nevarnih dogodkov in morebitne poškodbe bazena z gorivom. Tovrstni sistemi bi mogli napovedati razvoj izrednega dogodka, kar bi omogočilo pravočasno izvajanje ukrepov, kot sta sanacija in evakuacija, predno bi raven sevanja postala kritična.Given the magnitude of the aforementioned risk, increasing attention is being paid to the development of spent fuel pool monitoring systems that, based on a history of measurable indicators, allow the early detection of hazardous events and possible damage to the fuel tank. Such systems could predict the development of an emergency, allowing measures such as remediation and evacuation to be implemented in a timely manner before radiation levels become critical.

V raziskovalnem članku Characterization of a spent-fuel-pit rupture based on water-level monitoring, Annals of Nuclear Energy 63 (2014), str. 674-679, M. Matkovič et al., so avtorji opisali metodo, ki omogoča karakterizacijo poškodbe bazena za rabljeno gorivo in napoved razvoja nivoja hladila v bazenu za rabljeno gorivo. Metoda temelji na spremljanju zgodovine nivoja hladila v bazenu, rezultate metode pa zaznamuje relativno velika negotovost napovedanih vrednosti.In a research paper Characterization of spent-fuel-pit rupture based on water-level monitoring, Annals of Nuclear Energy 63 (2014), p. 674-679, M. Matkovič et al., The authors described a method that allows characterization of the damage to the used fuel pool and the prediction of the development of the coolant level in the used fuel pool. The method is based on monitoring the history of the refrigerant level in the pool, and the results of the method are characterized by a relatively large uncertainty of the predicted values.

R. Bizjak in S. Slavič sta septembra 2013, v prispevku Time to Boil na mednarodni konferenci Neclear Energy for New Europe predstavila pristop in računalniški program, ki izračunava čas, potreben za vodo, da doseže želeni nivo hladila v bazenu. Upad nivoja hladilne vode v bazenu sta avtorja pripisala izhlapevanju in puščanju bazena za rabljeno gorivo. Avtorja predpostavita znano velikost in lokacijo idealizirane poškodbe bazena. V primeru izrednega dogodka bi bilo iskanje lokacije in merjenje velikosti zloma zelo verjetno onemogočeno zaradi nedostopnosti prizadetih mest in drugih težkih okoliščin vključno z visokimi hitrostmi doze sevanja, ki bi spremljale dogodek.In September 2013, R. Bizjak and S. Slavic presented an approach and a computer program that computes the time it takes for water to reach the desired level of coolant in the pool, in a paper by Time to Boil at the Neclear Energy for New Europe International Conference. The authors attributed the decline in the level of cooling water in the pool to the evaporation and leakage of the pool for used fuel. The authors assume the known size and location of idealized pool damage. In the event of an emergency, finding the location and measuring the fracture size would very likely be impeded by the inaccessibility of the affected sites and other difficult circumstances, including high radiation dose rates to accompany the event.

Glede na znano stanje tehnike obstaja potreba po metodi in napravi, ki bi omogočala zanesljivo oceno stanja bazena za izrabljeno gorivo in napovedati razvoja nivoja hladila v bazenu.Depending on the prior art, there is a need for a method and apparatus that would allow a reliable assessment of the condition of the spent fuel pool and to predict the development of the coolant level in the pool.

Pregled predloženega izumaOverview of the present invention

Ta cilj se doseže z metodo in z napravo za računsko oceno stanja objekta izrabljenega goriva po neodvisnih patentnih zahtevkih 1 in 14. Relevantni zahtevki se nanašajo na prednostne izvedbe metode in naprave.This objective is achieved by the method and the apparatus for calculating the condition of the spent fuel facility according to independent claims 1 and 14. The relevant claims relate to preferred embodiments of the method and apparatus.

Postopek za računsko oceno stanja bazena za izrabljeno gorivo po predloženem izumu obsega korake merjenja puščanja hladila iz omenjenega bazena in napovedovanje razvoja nivoja hladila v omenjenem bazenu.The method for computationally assessing the condition of a spent fuel tank according to the present invention comprises the steps of measuring a coolant leak from said pool and predicting the development of a coolant level in said pool.

Avtorji izuma so pokazali, da je napoved razvoja višine nivoja hladila, ki temelji na merjenju puščanja hladilnega sredstva iz omenjenega bazena, zanesljiva in natančna. Izum zagotavlja boljšo natančnost nad obstoječimi tehnikami, ki se zanašajo na spremljanje višine gladine hladilne vode. Posledično je mogoče bolj zanesljivo napovedati kritični upad nivoja hladila v omenjenem bazenu in pravočasno predvideti evakuacijo, kar izboljšuje splošno varnost v času ekstremnega dogodka.The inventors have shown that the prediction of the development of a level of coolant level based on the measurement of refrigerant leakage from said pool is reliable and accurate. The invention provides better accuracy over existing techniques that rely on monitoring the height of the cooling water surface. As a result, it is possible to more reliably predict a critical drop in the refrigerant level in said pool and predict evacuation in a timely manner, which improves overall safety during an extreme event.

Bazeni za rabljeno gorivo so običajno opremljeni z zbiralno stekališčem, ki se nahaja pod bazenom. Obstoječa stekališča imajo že možnost merjenja puščanja, tako da bi bila lahko z minimalnim infrastrukturnim posegom v sistem rutinsko opremljena še z natančnimi merilniki pretoka. Ti podatki bi se nato po predloženem izumu uporabljali pri oceni stanja bazena z rabljenim gorivom.Used fuel pools are typically equipped with a collecting area under the pool. Existing stairwells already have the ability to measure leaks, so that with minimal infrastructure intervention the system could be routinely equipped with accurate flow meters. This data would then be used in the present invention to evaluate the condition of a used fuel pool.

Sistem za izrabljeno gorivo praviloma obsega bazen za izrabljeno gorivo, ki je povezan s prenosnim kanalom in prostorom za manevriranje z gorivom. Prenosni kanal služi za transport goriva med omenjenim bazenom in poplavljeno reaktorsko votlino. V primeru izrednega dogodka lahko poškodba ovoja omenjenega sistema nastane bodisi v bazenu bodisi v prenosnem kanalu ali pa v prostoru za manevriranje z gorivom. Večina ali vse izrabljeno gorivo je običajno shranjeno v omenjenem bazenu, zato je višina nivoja hladilne tekočine v bazenu ključnega pomena za ugotavljanje in napovedovanje stanja omenjenega sistema. V kontekstu predloženega izuma razumemo napovedovanje razvoja nivoja hladila v sistemu za izrabljeno gorivo kot napovedovanje nivoja hladila v bazenu za izrabljeno gorivo.The spent fuel system typically comprises a spent fuel pool connected to a transmission channel and a space for maneuvering the fuel. The transfer channel serves to transport fuel between said pool and the flooded reactor cavity. In the event of an emergency, damage to the envelope of said system can occur either in the pool or in the transmission channel or in the fuel maneuvering room. Most or all of the spent fuel is typically stored in said pool, so the height of the coolant level in the pool is critical to determine and predict the condition of the system. In the context of the present invention we understand the prediction of the development of a coolant level in a spent fuel system as the prediction of a coolant level in a spent fuel tank.

Metoda za posredno karakterizacijo poškodbe bazena za izrabljeno jedrsko gorivo in napoved razvoja nivoja hladila v omenjenem sistemu more upoštevati geometrijo omenjenega sistema vključno z gorivnimi svežnji in/ali značilnosti omenjena hladila in/ali karakteristike jedrskega goriva. Metoda po izumu v prednostni izvedbi vključuje večkratno/kontinuirano merjenje omenjenega puščanja hladila iz sistema in sprotno posodabljanje omenjene napovedi nivoja hladila v bazenu, ki temelji na omenjenih kontinuiranih meritvah.A method for indirectly characterizing a spent fuel pool damage and predicting the development of a coolant level in said system may take into account the geometry of said system including fuel bundles and / or the characteristics of said coolant and / or nuclear fuel characteristics. The method according to the invention in a preferred embodiment involves repeatedly / continuously measuring said coolant leakage from the system and updating said coolant level prediction in the pool on an ongoing basis based on said continuous measurements.

Ponavljajoče meritve v času izboljšujejo zanesljivost in natančnost napovedi razvoja nivoja hladila v omenjenem bazenu.Repeated measurements over time improve the reliability and accuracy of the prediction of the development of the refrigerant level in the pool.

Omenjena metoda lahko v prednostni izvedbi obsega korak napovedovanja razvoja ravni sevanja, zlasti napovedovanje razvoja hitrosti doze v bližini omenjenega bazena za izrabljeno gorivo, ki temelji na omenjeni napovedi nivoja hladila v bazenu.Said method may, in a preferred embodiment, comprise a step of predicting the development of a radiation level, in particular a prediction of the development of a dose rate near said spent fuel pool, based on said prediction of the coolant level in the pool.

Na osnovi znane višine nivoja hladila v bazenu, karakteristike rabljenega goriva in ščitnih lastnosti hladila lahko določimo pričakovano stopnjo sevanja oziroma hitrost doze v bližini omenjenega bazena za izrabljeno gorivo. Na podlagi projiciranih vrednosti prejetih doz, se lahko sprejmejo ukrepi za zaščito in pravočasno evakuacijo osebje, preden so izpostavljeni nevarnim stopnjam sevanja.Based on the known level of the coolant in the pool, the characteristics of the fuel used and the shielding properties of the coolant, it is possible to determine the expected radiation level or dose rate near said spent fuel pool. Based on the projected dose values, measures can be taken to protect and evacuate personnel before being exposed to hazardous radiation levels.

Metoda lahko napoveduje skrajni čas evakuacije, ki temelji na napovedi razvoja nivoja hladila v bazenu za izrabljeno gorivo in napovedani hitrosti doze v bližini omenjenega bazena.The method can predict the maximum evacuation time based on the prediction of the development of the coolant level in the spent fuel pool and the predicted dose rate near said pool.

Metoda omogoča karakterizacijo ovoja bazena za rabljeno gorivo; določa velikosti in lokacije poškodbe ovoja omenjenega sistema na osnovi spremljanja zgodovine puščanj hladila iz bazena.The method makes it possible to characterize the pool cover for used fuel; determines the sizes and locations of damage to the envelope of said system based on the monitoring of the history of pool coolant leaks.

Avtorji izuma so pokazali, da je velikost in lokacijo poškodbe ovoja bazena mogoče določiti na podlagi spremljanja zgodovine puščanja hladila. Takšen je pristop predstavlja pomembno prednost pred obstoječimi tehnikami, ki temeljijo na znani/predpostavljeni velikosti in lokaciji poškodbe ovoja.The inventors have shown that the size and location of damage to the pool envelope can be determined by monitoring the history of refrigerant leakage. Such an approach represents a significant advantage over existing techniques based on the known / assumed size and location of the sheath damage.

Tukaj, napovedovanje lokacije poškodbe ovoja predstavlja določevanje njene vertikalne pozicije nad tlemi oziroma nad dnom bazena za izrabljeno gorivo.Here, predicting the location of a sheath damage represents determining its vertical position above the ground or above the bottom of the spent fuel tank.

V prednostni izvedbi sistem za izrabljeno gorivo praviloma obsega bazen za izrabljeno gorivo, ki je povezan s prenosnim kanalom in prostorom za manevriranje z gorivom, pri čemer omenjena metoda upošteva različnih mest puščanja v sistemu; puščanje iz bazena rabljenega goriva, puščanje iz prenosnega kanala in puščanje iz prostora za manevriranje z gorivom.In a preferred embodiment, the spent fuel system typically comprises a spent fuel pool connected to the transmission channel and the fuel maneuvering space, said method taking into account the various leak points in the system; leakage from the used fuel pool, leakage from the transmission channel and leakage from the fuel maneuvering room.

Upoštevanje različnih mest puščanja omogoča bolj ciljno in zanesljivejšo napoved poteka višine nivoja hladilne tekočine bazenu z omenjenim gorivom in hitrosti doze v bližini bazena.Taking into account the different leakage sites allows for a more targeted and reliable prediction of the flow rate of the coolant level of the pool with said fuel and the dose rate near the pool.

V prednostni izvedbi metoda vključuje spremljanje ravni sevanja v bližini omenjenega objekta in napovedovanje razvoja nivoja hladila v bazenu za izrabljeno gorivo in napovedovanje hitrosti doze v bližini omenjenega bazena, ki temeljita na omenjenem spremljanju ravni sevanja.In a preferred embodiment, the method includes monitoring radiation levels near said facility and predicting the development of a refrigerant level in a spent fuel pool and predicting dose rates near said pool based on said monitoring of radiation levels.

Spremljanje ravni sevanja lahko obsega spremljanje hitrosti doze v omenjeni bližini bazena z rabljenim gorivom.Monitoring radiation levels may include monitoring the dose rate in said vicinity of a used fuel pool.

Avtorji izuma so ugotovili, da spremljanje nivoja sevanja skupaj s sledenjem zgodovine puščanja hladila iz bazena znatno izboljša zanesljivost napovedi. Poleg tega lahko meritev nivoja sevanja služi kot »back-up« v primeru ugotovljene nezanesljivosti vrednosti signala puščanja; na primer zaradi poškodb merilne infrastrukture, ki so posledica izrednega dogodka.The inventors have found that monitoring the radiation level, along with tracking the history of coolant leakage from the pool, significantly improves the reliability of the prediction. In addition, the measurement of the radiation level can serve as a "back-up" in the event of an uncertainty in the value of the leakage signal; for example, damage to the measurement infrastructure resulting from an emergency.

V prednostni izvedbi metoda vključuje kontinuirano merjenje dotoka svežega hladila v sistem z rabljenim gorivom, spremljanje temperature svežega hladila in hladila v bazenu, spremljanje višine nivoja hladila ter napoved razvoja nivoja hladilne tekočine v bazenu z rabljenim gorivom, ki temelji na kontinuiranem merjenju dotoka svežega hladila v sistem z rabljenim gorivom, spremljanju temperature svežega hladila in hladila v bazenu ter spremljanju zgodovine višine nivoja hladila v omenjenem bazenu z rabljenim gorivom.In a preferred embodiment, the method includes the continuous measurement of fresh coolant flow into a used fuel system, the monitoring of the fresh coolant and coolant temperature in the pool, the monitoring of the coolant level, and the prediction of the development of a coolant level in a used fuel pool based on the continuous measurement of the fresh coolant flow in the used fuel system, monitoring the temperature of the fresh coolant and coolant in the pool and monitoring the history of the height of the coolant level in said used fuel pool.

Avtorji izuma so ugotovili, da sočasno spremljanje večjega števila omenjenih veličin poleg spremljanja intenzitete puščanja znatno izboljša zanesljivost in natančnost napovedi poškodbe ovoja bazena za izrabljeno gorivo in razvoj nivoja hladila v omenjenem bazenu. Sprotno spremljanje omenjenih veličin nudi vpogled v potek izrednega dogodka, ko spremljanje vrednosti intenzitete puščanja in ravni sevanja nista zanesljiva oziroma nista dostopna.The inventors have found that the simultaneous monitoring of a large number of said quantities, in addition to monitoring the leakage intensity, significantly improves the reliability and accuracy of predicting damage to the spent fuel tank pool and developing coolant levels in said pool. Continuous monitoring of the aforementioned quantities provides an insight into the occurrence of an emergency when monitoring the values of leakage intensity and radiation level are not reliable or not available.

Metoda v prednostni izvedbi vključuje tudi merjenje seizmičnih aktivnosti, katerim je objekt podvržen, merjenje naklona omenjenega sistema in napovedovanje razvoja višine nivoja hladila v omenjenem bazenu, ki temelji na merjenju omenjenih seizmičnih aktivnosti in omenjenega naklona.The method of the preferred embodiment also includes measuring the seismic activities to which the object is subjected, measuring the slope of said system and predicting the development of a coolant level in said basin based on the measurement of said seismic activities and said slope.

Izumitelji so ugotovili, da spremljanje seizmične aktivnosti objekta in naklona strukture, v kombinaciji s spremljanjem puščanja hladila omogoča zanesljivejšo oceno poškodbe bazena za rabljeno gorivo, in se nadalje lahko kombinirajo z drugimi, zgoraj navedenimi meritvami, kar dodatno izboljša natančnost napovedi razvoja višino nivoja hladila v omenjenem bazenu.The inventors have found that monitoring the seismic activity of the object and the slope of the structure, in combination with monitoring the leakage of the cooler, enables a more reliable assessment of the damage to the used fuel pool, and can further be combined with the other measurements mentioned above, which further improves the accuracy of the prediction of the development of the coolant level in to the said pool.

Naklon strukture se lahko določi z meritvijo višine nivoja hladila na vsaj treh nekolinearnih lokacijah omenjenega bazena.The slope of the structure can be determined by measuring the height of the coolant level in at least three non-collinear locations of said basin.

Računska ocena poškodbe bazena za izrabljeno gorivo in napoved razvoja višine nivoja hladila v omenjenem bazenu se po prednostni izvedbi lahko izvede s postopkom v treh korakih. V prvem koraku se okarakterizira izredni dogodek.The computational assessment of the damage to the spent fuel pool and the prediction of the development of the level of the coolant level in said pool can preferably be performed by a three-step procedure. In the first step, an emergency is characterized.

Izredni dogodek v okviru predloženega izuma razumemo kot katerikoli dogodek, ki lahko ogrozi varno obratovanje oziroma strukturno celovitost sistema za izrabljeno gorivo, kot je potres, nekontroliran vnos materiala v bazen z izrabljenim gorivom in nekontrolirano puščanje hladila iz sistema.An emergency in the context of the present invention is understood as any event that may compromise the safe operation or structural integrity of a spent fuel system, such as an earthquake, uncontrolled input of material into a spent fuel pool, and uncontrolled refrigerant leakage from the system.

V drugem koraku se poda računska ocena poškodbe ovoja bazena za izrabljeno gorivo. Na osnovi spremljanja omenjenih veličin se izračuna velikost in lokacija poškodbe v ovoju.In the second step, a calculated estimate of the damage to the spent fuel tank pool is given. The size and location of the damage in the envelope is calculated on the basis of monitoring the aforementioned sizes.

V tretjem koraku na podlagi karakterizacije izrednega dogodka in računske ocene poškodbe ovoja sistema z izrabljenim gorivom napovemo razvoj višine nivoja hladila v omenjenem bazenu.In the third step, based on the characterization of the emergency and the computational assessment of the damage of the spent fuel system envelope, we predict the development of the level of the coolant level in the said pool.

V tej konfiguraciji, lahko izum vključuje merjenje seizmične aktivnosti objekta in/ali naklon sistema za izrabljeno gorivo, karakterizacijo izrednega dogodka, ki temelji na omenjenem merjenju puščanju hladila iz bazena in/ali merjenju seizmične aktivnosti objekta in/ali merjenju naklona omenjenega sistema in znani geometriji omenjenega sistema za izrabljeno gorivo.In this configuration, the invention may include measuring the seismic activity of an object and / or the slope of a spent fuel system, characterizing an emergency based on said measurement of coolant leakage from a pool, and / or measuring the seismic activity of an object and / or measuring the slope of said system and known geometry of the said spent fuel system.

Metoda nadalje v prednostni izvedbi vključuje korak računske ocene velikosti in lokacije poškodbe ovoja sistema z izrabljenim gorivom, ki temelji na spremljanju puščanja hladila iz sistema in karakterizaciji izrednega dogodka.The method further comprises, in the preferred embodiment, a step of computationally estimating the size and location of damage to the spent fuel system jacket based on monitoring the coolant leakage from the system and characterizing the emergency.

Poleg tega lahko metoda vključuje merjenje dotoka svežega hladila in/ali merjenje temperature svežega hladila in hladila v bazenu in/ali merjenje višine nivoja hladila v omenjenem bazenu, pri čemer je velikost in lokacija poškodbe določena na osnovi omenjenega spremljanja puščanja hladila iz sistema in/ali merjenja dotoka svežega hladila in/ali merjenja temperature svežega hladila in hladila v bazenu in/ali merjenja višine nivoja hladila v omenjenem bazenu.In addition, the method may include measuring the fresh coolant flow and / or measuring the fresh coolant and coolant temperature in the pool and / or measuring the coolant level in said pool, the size and location of the damage being determined on the basis of said monitoring of coolant leakage from the system and / or measuring the flow of fresh coolant and / or measuring the temperature of fresh coolant and coolant in the pool and / or measuring the height of the coolant level in said pool.

Nadaljnji razvoja višine nivoja hladila v omenjenem bazenu lahko napovemo na osnovi omenjene karakterizacije izrednega dogodka in/ali na osnovi računske ocene velikosti in lokacije poškodbe ovoja sistema z izrabljenim gorivom.Further development of the level of the coolant level in the said pool can be predicted on the basis of the aforementioned emergency characterization and / or on the basis of a calculated estimate of the size and location of damage to the spent fuel system envelope.

Korak napovedovanja razvoja višine nivoja hladilne vode v omenjenem bazenu v prednostni izvedbi upošteva »izgubo« masnega toka hladila na račun uparjanja iz bazena.The step of predicting the development of the height of the cooling water level in said pool in the preferred embodiment takes into account the "loss" of the coolant mass flow due to evaporation from the pool.

Upoštevanje izgube masnega toka zaradi uparjanja hladila iz bazena za izrabljeno gorivo omogoča bolj zanesljivo napoved razvoja višine nivoja hladila v omenjenem bazenu.Considering the loss of mass flow due to the evaporation of the coolant from the spent fuel pool allows a more reliable prediction of the development of the level of the coolant level in the said pool.

Navedeno izparevanje hladila lahko pri znani toplotni moči zaostale toplote in toplotnih izgubah ocenimo s pomočjo merjenja dotoka svežega hladila, temperature svežega hladila in hladila v bazenu in spremljanju višine nivoja hladila v omenjenem bazenu.Given the known heat output of the residual heat and the heat losses, said evaporation of the coolant can be estimated by measuring the flow of fresh coolant, the temperature of the fresh coolant and the coolant in the pool and monitoring the height of the coolant level in said pool.

Izum se nadalje navezuje na napravo za računsko oceno stanja ovoja sistema za izrabljeno jedrsko gorivo, ki obsega merilnik pretoka za merjenje puščanja hladila iz omenjenega sistema in računski sklop, ki omogoča napoved razvoja izrednega dogodka.The invention further relates to a device for the computational evaluation of the condition of a spent fuel system, comprising a flowmeter for measuring coolant leakage from said system and a computational assembly for predicting the occurrence of an emergency.

Merilni sklop v prednostni izvedbi vključuje merilnik pretoka. Omenjeni merilnik pretoka je lahko nameščen na iztoku iz zbiralnika, ki se nahaja pod omenjenim sistemom za izrabljeno gorivo.The measuring assembly in a preferred embodiment includes a flowmeter. Said flowmeter may be located at the outlet of the sump located under said spent fuel system.

Merilni sklop je v prednostni izvedbi namenjen spremljanju intenzitete puščanja hladila iz omenjenega sistema.In a preferred embodiment, the measuring assembly is intended to monitor the intensity of coolant leakage from said system.

Računski sklop je v prednostni izvedbi namenjen računski napovedi razvoja izrednega dogodka, ki temelji na znani geometriji omenjenega sistema vključno z gorivnimi svežnji in/ali značilnosti omenjena hladila in/ali karakteristike jedrskega goriva.In the preferred embodiment, the computational assembly is intended to provide a computational prediction of an emergency occurrence based on the known geometry of said system including fuel bundles and / or the characteristics of said coolant and / or the characteristics of nuclear fuel.

Omenjena naprava v prednostni izvedbi vključuje večkratno/kontinuirano merjenje omenjenega puščanja hladila iz sistema in sprotno posodabljanje omenjene napovedi nivoja hladila v bazenu, ki temelji na omenjenih kontinuiranih meritvah.Said device in a preferred embodiment includes repeatedly / continuously measuring said coolant leakage from the system and updating said coolant level prediction in the pool on an ongoing basis based on said continuous measurements.

Računski sklop v prednostni izvedbi obsega korak napovedovanja razvoja hitrosti doze v bližini omenjenega bazena za izrabljeno gorivo, ki temelji na omenjeni napovedi nivoja hladila v bazenu.The computational assembly in a preferred embodiment comprises the step of predicting the development of a dose rate near said spent fuel pool based on said prediction of the pool coolant level.

Računski sklop lahko napoveduje skrajni čas evakuacije, ki temelji na napovedi razvoja nivoja hladila v bazenu za izrabljeno gorivo in/ali napovedani hitrosti doze v bližini omenjenega bazena.The computational set may predict an evacuation end time based on a prediction of the development of a refrigerant level in a spent fuel pool and / or a predicted dose rate near said pool.

Računski sklop v prednostni izvedbi omogoča karakterizacijo ovoja bazena za rabljeno gorivo; določa velikosti in lokacije poškodbe na osnovi spremljanja zgodovine puščanj hladila iz bazena.The computational assembly in the preferred embodiment enables the characterization of the pool cover for used fuel; determines the sizes and locations of damage based on monitoring the history of pool coolant leaks.

Sistem za izrabljeno gorivo praviloma obsega bazen za izrabljeno gorivo, ki je povezan s prenosnim kanalom in prostorom za manevriranje z gorivom, pri čemer omenjeni računski sklop dopušča možnost različnih mest puščanja v sistemu; puščanje iz bazena rabljenega goriva, puščanje iz prenosnega kanala in puščanje iz prostora za manevriranje z gorivom.The spent fuel system generally comprises a spent fuel pool connected to the transmission channel and the fuel maneuvering space, said computational assembly allowing for different leakage points within the system; leakage from the used fuel pool, leakage from the transmission channel and leakage from the fuel maneuvering room.

Merilni sklop v prednostni izvedbi vključuje merilnik ravni sevanja, ki je nameščen v bližini omenjenega objekta. Merilnik omogoča spremljanje ravni sevanja v omenjeni bližini sistema za izrabljeno gorivo. Računski sklop omogoča napovedovanje razvoja višine nivoja hladila v bazenu za izrabljeno gorivo in napovedovanje hitrosti doze v bližini omenjenega bazena, ki temeljita na omenjenem spremljanju puščanja hladila in/ali spremljanju ravni sevanja.The measuring assembly in a preferred embodiment includes a radiation level meter located near said object. The meter allows monitoring the radiation level in the vicinity of the spent fuel system. The computational set allows predicting the development of the level of coolant in the spent fuel pool and predicting the dose rate near said pool based on said monitoring of coolant leakage and / or monitoring of radiation levels.

• ·• ·

Merilni sklop v prednostni izvedbi vključuje kontinuirano merjenje dotoka svežega hladila v sistem z rabljenim gorivom, spremljanje temperature svežega hladila in hladila v bazenu ter spremljanje višine nivoja hladila v bazenu z rabljenim gorivom. Računski sklop omogoča napoved razvoja višine nivoja hladila v sistemu za izrabljeno gorivo, ki temelji na kontinuiranem merjenju dotoka svežega hladila v sistem z rabljenim gorivom in puščanju, spremljanju temperature svežega hladila in hladila v bazenu ter spremljanju višine nivoja hladila v omenjenem bazenu z rabljenim gorivom.The measurement assembly in the preferred embodiment includes continuous measurement of the fresh coolant flow into the used fuel system, monitoring the temperature of the fresh coolant and coolant in the pool, and monitoring the level of the coolant level in the used fuel pool. The computational set enables the prediction of the level of the coolant level in the spent fuel system, based on the continuous measurement of the fresh coolant flow into the system with used fuel and leakage, the monitoring of the temperature of the fresh coolant and coolant in the pool, and the monitoring of the level of the coolant level in said used fuel pool.

Merilni sklop v prednostni izvedbi vključuje tudi merjenje seizmičnih aktivnosti, katerim je objekt podvržen in/ali merjenje naklona omenjenega sistema. Računski sklop omogoča napovedovanje razvoja višine nivoja hladila v omenjenem bazenu, ki temelji na spremljanju omenjenih seizmičnih aktivnostih in merjenju naklona sistema skupaj s spremljanjem puščanja hladila iz sistema.The measuring assembly in a preferred embodiment also includes measuring the seismic activities to which the object is subjected and / or measuring the slope of said system. The computational set enables the prediction of the development of the level of the coolant level in the said basin, based on the monitoring of the said seismic activities and the measurement of the slope of the system together with the monitoring of the coolant leakage from the system.

Merilni sklop v prednostni izvedbi vključuje merjenje seizmičnih aktivnosti, katerim je objekt podvržen in/ali merjenje naklona omenjenega sistema, ker računski sklop omogoča napovedovanje razvoja izrednega dogodka, ki ob znani geometriji sistema za izrabljeno gorivo temelji na spremljanju intenzitete puščanja hladila iz omenjenega sistema in/ali merjenju seizmičnih aktivnosti in/ali merjenju naklona sistema.The measuring assembly in the preferred embodiment includes measuring the seismic activities to which the object is subjected and / or measuring the slope of said system, since the computational assembly allows the prediction of the occurrence of an emergency, based on the known geometry of the spent fuel system, based on monitoring the coolant leakage intensity from said system and / or measuring seismic activity and / or measuring the slope of the system.

Omenjeni računski sklop omogoča karakterizacijo poškodbe ovoja bazena za rabljeno gorivo; določa velikosti in lokacije poškodbe na osnovi spremljanja puščanja hladila iz omenjenega bazena in karakterizacije izrednega dogodka.The aforementioned computational assembly allows characterization of the damage to the pool envelope for used fuel; determines the magnitudes and locations of damage based on the monitoring of the coolant leakage from said pool and the characterization of an emergency.

Merilni sklop prednostno vključuje kontinuirano merjenje dotoka svežega hladila v sistem z rabljenim gorivom, spremljanje temperature svežega hladila in hladila v bazenu ter spremljanje višine nivoja hladila v bazenu z rabljenim gorivom. Omenjeni računski sklop omogoča računsko oceno velikosti in lokacije poškodbe ovoja omenjenega sistema na osnovi spremljanja zgodovine puščanj hladila iz bazena, izmerjene ali izračunane zaostale toplotne moči izrabljenega goriva in toplotnih izgub sistema, na osnovi kontinuiranega merjenja dotoka svežega hladila v omenjeni sistem, na osnovi spremljanja temperature svežega hladila in hladila v bazenu ter spremljanja višine nivoja hladila v omenjenem bazenu z rabljenim gorivomThe measuring set preferably includes continuous measurement of the fresh coolant flow into the used fuel system, monitoring the temperature of the fresh coolant and coolant in the pool, and monitoring the level of the coolant level in the used fuel pool. The said computational assembly enables the computational assessment of the size and location of damage to the envelope of said system based on monitoring of the history of pool coolant leaks, measured or calculated residual heat power of spent fuel and thermal losses of the system, based on continuous measurement of fresh coolant flow into said system, based on temperature monitoring fresh coolant and coolant in the pool and monitoring of the level of coolant level in said pool with used fuel

Računski sklop v prednostni izvedbi omogoča napoved razvoja višine hladila v bazenu za izrabljeno gorivo, ki temelji na karakterizaciji izrednega dogodka in/ali karakterizaciji poškodbe ovoja omenjenega sistema.The computational assembly in the preferred embodiment allows the prediction of the development of the coolant height in the spent fuel pool, based on the characterization of the emergency and / or the characterization of the damage to the wrapper of said system.

• · • ·• · · ·

Računski sklop prednostno upošteva uparjanje hladila iz sistema za izrabljeno gorivo.The computing set prioritizes the evaporation of the coolant from the spent fuel system.

Omenjeni računski sklop lahko poda računsko oceno navedenega izparevanja hladila, ki temelji na izmerjeni/izračunani vrednosti zaostale toplote moči in toplotnih izgubah, izmerjenem dotoku svežega hladila, temperaturah svežega hladila in hladila v bazenu ter spremljanju višine nivoja hladila v omenjenem bazenu.Said computational assembly may provide a computational estimate of said refrigerant evaporation based on the measured / calculated value of residual heat output and heat losses, measured fresh coolant inflow, fresh coolant and pool coolant temperatures, and monitoring of the coolant level in said pool.

Izum se nadalje nanaša na računalniški program za karakterizacijo poškodbe ovoja sistema za shranjevanje izrabljenega jedrskega goriva, pri čemer omenjeni računalniški program sprejema računalniško berljiva navodila tako, da program, ki se izvaja na računalniku, implementira metodo, ki vključuje in vrši vse zgoraj opisane operacije.The invention further relates to a computer program for characterizing the damage of a spent fuel storage system envelope, said computer program receiving computer-readable instructions so that the program running on the computer implements a method that includes and performs all the operations described above.

Opis prednostnih izvedbDescription of preferred embodiments

Značilnosti in številne prednosti predloženega izuma so ponazorjene v podrobnem opisu prednostnih izvedb s sklicevanjem na priložene slike, v katerih:The features and numerous advantages of the present invention are illustrated in the detailed description of preferred embodiments with reference to the accompanying drawings in which:

Slika 1: prikazuje shemo prereza sistema za izrabljeno gorivo po eni od izvedbi predloženega izuma;Figure 1: shows a cross-sectional view of a spent fuel system according to one embodiment of the present invention;

Slika 2: prikazuje diagram toka podatkov, ki ponazarja metodo po eni od izvedb predloženega izuma; inFigure 2: shows a flow chart illustrating a method according to one embodiment of the present invention; and

Slika 3: prikazuje primer karakterizacije poškodbe ovoja sistema za izrabljeno gorivo in napoved razvoja izrednega dogodka za dve različni moči zaostale toplote in dve različni mesti poškodbe ovoja; ena poškodba, se nahaja v bazenu za izrabljeno gorivo,medtem ko druga ponazarja puščanje, bodisi na področju prostora za manevriranje z gorivom, bodisi v prenosnem kanalu.Figure 3: shows an example of characterization of a spent fuel system wrap injury and an emergency development forecast for two different residual heat outputs and two different sites of damage to the wrap; one damage, located in the spent fuel pool, while the other illustrates the leak, either in the fuel maneuver area or in the transmission channel.

Slika 1 prikazuje shemo prečnega prereza sistema za izrabljeno gorivo 10, v katerem je predmetni izum lahko uporabljen. Sistem za izrabljeno gorivo 10 obsega bazen za izrabljeno gorivo 12 v katerem je v hladilu 16, kot je voda, shranjeno večje število gorivnih svežnjev 14.Figure 1 shows a cross-sectional view of a spent fuel system 10 in which the present invention can be used. The spent fuel system 10 comprises a spent fuel pool 12 in which a large number of fuel bundles 14 are stored in the cooler 16, such as water.

Kot je razvidno iz slike 1, je bazen za izrabljeno gorivo 12 povezan s prostorom za manevriranje z gorivom 18 in s prenosnim kanalom 20 preko plitvih prehodov oziroma vrat. Prostor za manevriranje z gorivom 18 služi za nakladanje ali razkladanje gorivnih elementov 14, prenosni kanal 20 pa služi za prenos goriva 14 med reaktorsko votlino (ni prikazano) in bazenom za izrabljeno gorivo 12. Hladilo 16 • · zapolnjuje prost volumen bazena z rabljenim gorivom 12, volumen prenosnega kanala 20 in prostora za manevriranje s hladilom 18. Velikost in globina, kot tudi kompozicija bazena za izrabljeno gorivo 12, volumna za manevriranje z gorivom in prenosnega kanala 20 se lahko razlikuje. Ozka prehoda, ki povezujeta omenjeni bazen 12 s prenosnim kanalom 20 in s prostorom za manevriranje z gorivom 18 sta veliko plitvejša od omenjenega bazena 12, prenosnega kanala 20 in prostora za manevriranje z gorivom 18, kar je shematsko prikazano na sliki 1.As can be seen from Figure 1, the spent fuel pool 12 is connected to the fuel maneuvering space 18 and to the transmission channel 20 via shallow passageways or doors. The fuel maneuvering compartment 18 is used to load or unload fuel elements 14, and the transmission channel 20 serves to transfer fuel 14 between the reactor cavity (not shown) and the spent fuel pool 12. Coolant 16 • Fills the free volume of the used fuel pool 12 , transmission duct volume 20 and coolant maneuver space 18. The size and depth, as well as the composition of the spent fuel pool 12, the fuel maneuvering volume, and the transmission duct 20 may vary. The narrow aisles connecting said pool 12 to the transmission channel 20 and the fuel maneuver space 18 are much shallower than said pool 12, the transmission channel 20 and the fuel maneuvering space 18, which is shown schematically in Figure 1.

Na sliki 1, h0 označuje največjo višino hladilne tekočine v bazenu za izrabljeno gorivo 12, medtem ko h(t) označuje nivo hladila v bazenu 12 v nekem določenem času t. Parameter hOo označuje mesto poškodbe ovoja bazena; višino poškodbe (nad tlemi) 22, ki lahko nastane v zunanji steni bazena 12 kot posledica izrednega dogodka, kot je na primer potres. Poškodba ovoja 22 ima velikosti preseka A, kot je prikazano na sliki 1, in lahko vodi do izgube hladila 16 iz bazena za izrabljeno gorivo 12, prostora za manevriranje s hladilom 18 in prenosnega kanala 20. Hladilo, ki izteka iz sistema za izrabljeno gorivo se zbira v zbiralniku 24, ki je lociran pod sistemom za izrabljeno gorivo 10.In Figure 1, h 0 indicates the maximum coolant height in the spent fuel tank 12, while h (t) indicates the coolant level in the pool 12 at some specified time t. The h O o parameter indicates the location of damage to the pool envelope; the amount of damage (above ground) 22 that may occur in the outer wall of the pool 12 as a result of an emergency such as an earthquake. Damage to the sheath 22 has cross-sectional dimensions A as shown in Figure 1 and may lead to the loss of coolant 16 from the spent fuel pool 12, the coolant maneuvering space 18 and the transmission duct 20. The coolant escaping from the spent fuel system collects in reservoir 24 located below the spent fuel system 10.

Kot je nadalje razvidno iz slike 1, je sistem za izrabljeno gorivo 10 rutinsko opremljena z množico merjenih parametrov, ki jih lahko uporabimo v kontekstu predloženega izuma in skupaj tvorijo in določajo merilni sklop. Merilnik pretoka 26, ki je predvideni del zbiralnika 24 je nameščen tako, da meri odtok hladila iz zbiralnika24.As further illustrated in Figure 1, the spent fuel system 10 is routinely provided with a plurality of measured parameters that can be used in the context of the present invention and together form and determine the measurement assembly. The flow meter 26, which is the intended part of the reservoir 24, is arranged to measure the outflow of coolant from the reservoir24.

Merilnik 28 je predviden za merjenje višine nivoja hladilne tekočine v omenjenem sistemu za izrabljeno gorivo 10. Na sliki 1 je prikazan merilnik višine 28 nivoja gladine hladila, ki je nameščen v bazenu za izrabljeno gorivo 12. Omenjeni merilnik 28 je alternativno ali dodatno predviden tudi na drugih lokacijah znotraj sistema za izrabljeno gorivo 10.Meter 28 is provided for measuring the level of coolant level in said spent fuel system 10. Figure 1 shows a level meter 28 of the coolant level installed in the spent fuel pool 12. Said meter 28 is alternatively or additionally provided on other locations within the spent fuel system 10.

Sistem za izrabljeno gorivo 10 je nadalje opremljen s termometrom 30 prirejenim za merjenje temperature hladila 16 v bazenu za izrabljeno gorivo 12.The spent fuel system 10 is further equipped with a thermometer 30 adapted to measure the coolant temperature 16 in the spent fuel pool 12.

Upad nivoja gladine hladila lahko korigiramo s pomočjo dotoka svežega hladila preko dotočnega ventila 32. Merilnika pretoka 34 je nameščen na dovodni cevi in je predviden za merjenje dotoka svežega hladila v bazen za izrabljeno gorivo 12, medtem ko je temperatura svežega hladila merjena s pomočjo termometra 36.The decrease in the coolant level can be corrected by the flow of fresh coolant via the inlet valve 32. The flowmeter 34 is mounted on the inlet pipe and is designed to measure the fresh coolant flow into the spent fuel tank 12, while the fresh coolant temperature is measured by a thermometer 36 .

Objekt izrabljenega goriva 10 je nadalje opremljeno z merilnikom hitrosti doze 38 in je nameščen na robu oziroma v bližini bazena za izrabljeno gorivo 12. Merilnik je prilagojen za spremljanje hitrosti doze radioaktivnega sevanja iz gorivnih svežnjev 14.The spent fuel facility 10 is further equipped with a dose rate gauge 38 and is located at the edge or near the spent fuel pool 12. The meter is adapted to monitor the dose rate of radioactive radiation from the fuel bundles 14.

Merilnik seizmične aktivnosti 40, ki je lahko nameščen na strukturi sistema za izrabljeno gorivo 10 je namenjen prepoznavanju narave nihanja sistema, kot je na primer potresna aktivnost.The seismic activity meter 40, which may be mounted on the structure of the spent fuel system 10, is intended to identify the nature of the oscillation of the system, such as seismic activity.

Kot je dodatno razvidno iz slike 1, so merilnik pretoka 26 hladilne tekočine, merilnik višine nivoja 28 in merilnik temperature 30 hladila v bazenu 12, merilnik temperature 36 in merilnik pretoka 34 svežega hladila, merilnik hitrosti doze 38 in merilnik seizmične aktivnosti 40 strukture omenjenega sistema vsi priključeni preko podatkovnih vodov (črtkano na sliki 1) na računski sklop 42, ki zbira podatke o izmerjenih vrednostih in izvaja karakterizacijo poškodbe ovoja. Del ali vsi pridobljeni podatki se lahko uporabljajo za napovedovanje razvoja višine nivoja hladilne tekočine v sistemu za izrabljeno gorivo 10, bodisi samostojno ali v kombinaciji.As can be further seen from Figure 1, the coolant flow meter 26, the level meter 28 and the pool cooler temperature meter 30, the temperature meter 36 and the fresh cooler flow meter 34, the dose rate meter 38 and the seismic activity meter 40 of the structure of said system all connected via data lines (dashed in Figure 1) to the computational assembly 42, which collects data on measured values and performs characterization of the envelope damage. Part or all of the data obtained can be used to predict the development of coolant level in a spent fuel system 10, either alone or in combination.

Računski sklop 42 lahko predstavlja računalnik za splošne namene, ki opravlja računske operacije nad izmerjenimi podatki. Računski sklop 42 je povezan s prikazovalnim sklopom 44. Slednji posreduje merjene in interpretirane vrednosti merilnega in računskega sklopa. Omogoča predčasno opozarjanje odgovornega osebja na potencialni potek dogodkov v izrednih razmerah. Kot je shematsko prikazano na sliki 1 lahko v okviru prikazovalnega sklopa izmerjene in interpretirane vrednosti predstavljamo preko različnih medijev.A computational assembly 42 may be a general-purpose computer that performs computational operations on measured data. The computational unit 42 is connected to the display unit 44. The latter provides the measured and interpreted values of the measurement and computational unit. Provides early warning to responsible staff of potential contingency events. As shown schematically in Figure 1, within the display assembly, the measured and interpreted values can be represented through different media.

Rezultati analize se nenehno posodabljajo in pošiljajo na dveh ravneh; Raven 1 se uporablja med normalnim delovanjem in prikazuje trenutne vrednosti, kot tudi opozorila, ko so presežene mejne vrednosti za normalno delovanje. Raven 2 se uporablja po začetnem dogodku. Izvede se karakterizacija izrednega dogodka in karakterizacija poškodbe ovoja sistema za izrabljeno gorivo 10. Na tej ravni se izvede napoved razvoja izrednega dogodka vključno s projekcijo prejetih doz interventnega osebja za predvidena opravila. Tu se predvidi skrajni čas za evakuacijo.The results of the analysis are constantly updated and transmitted at two levels; Level 1 is used during normal operation and displays the current values as well as warnings when the limits for normal operation are exceeded. Level 2 applies after the initial event. Emergency characterization and damage characterization of the spent fuel system wrap shall be performed. At this level, an emergency development forecast shall be performed, including a projection of received doses of emergency personnel for the intended tasks. This is the time for evacuation.

Da bi se izognili preobremenitvi operaterjev jedrskega objekta je število informacij na ravni 1 zreducirano na minimum. Brez posebne zahteve, je predstavljen le niz osnovnih informacij skupaj z opozorili, ko so mejne vrednosti presežene. Brez začetnega dogodek, raven 1 prikazuje samo izmerjene podatke; brez karakterizacij izrednega dogodka, poškodbe ovoja in napovedi razvoja omenjenega dogodka.In order to avoid overloading the operators of the nuclear installation, the level 1 information is minimized. Without a specific request, only a set of basic information is presented, together with warnings when the limit values are exceeded. Without the initial event, Level 1 shows only the measured data; no characterization of the incident, damage to the envelope and no prognosis for the development of the event.

• ·• ·

Predstavitev rezultatov analize računskega sklopa je na ravni 2 vključena v primeru izrednega dogodka, ko naprava zazna nenadzorovan padec nivoja hladilne tekočine, puščanja, nenadzorovan porast temperature hladilne tekočine ali povečanje hitrosti doze na robu bazena za izrabljeno gorivo 12. Rezultati analiza računskega sklopa omogočajo: karakterizacijo izrednega dogodka, karakterizacijo poškodbe ovoja sistema za izrabljeno gorivo, napoved razvoja izrednega dogodka vključno z napovedjo skrajnega časa evakuacije objekta.The presentation of the results of the analysis of the calculation set is included at level 2 in the event of an emergency when the device detects an uncontrolled fall in the coolant level, a leak, an uncontrolled rise in the coolant temperature or an increase in the dose rate at the edge of the spent fuel pool 12. The results of the analysis of the calculation set allow for: characterization emergency, characterization of damage to the spent fuel system envelope, prediction of the development of the emergency, including the prediction of the evacuation time of the facility.

V prvem koraku bomo podrobno pojasnili, kako pridemo do računske napovedi razvoja višine nivoja hladilne tekočine v sistemu za izrabljeno gorivo 10, ki temelji na spremljanju puščanja hladila iz omenjenega sistema.In the first step, we will explain in detail how we arrive at a computational prediction of the development of the coolant level in the spent fuel system 10, based on monitoring the coolant leakage from said system.

V drugem koraku, bomo pojasnili, kako se spremljanje puščanja hladilne tekočine iz omenjenega sistema lahko dopolnjuje v kombinaciji z drugimi merjenimi parametri v sistemu za izrabljeno gorivo 10, kar povečuje natančnost in robustnost napoved razvoja višine nivoja hladila in pričakovane hitrost doze v sistemu.In the second step, we will explain how monitoring the coolant leakage from said system can be complemented in combination with other measured parameters in the spent fuel system 10, which increases the accuracy and robustness of the coolant level forecast and the expected dose rate in the system.

Napoved razvoja višine nivoja hladilne tekočine, ki temelji na spremljanju puščanja hladila iz omenjenega sistemaForecast for the development of coolant level based on monitoring the coolant leakage from said system

Osnova in ozadje za karakterizacijo poškodbe 22 ovoja bazena in napoved razvoja izrednega dogodka sta v splošnem podobna pristopu izumiteljev M. Matkovič et al., kot je opisan v raziskovalnem članku Characterization of the spent-fuel pit rupture based on water-level monitoring v Annals of Nuclear Energy 63 (2014) 674 to 679.The basis and background for characterizing the damage of the pool envelope 22 and predicting the occurrence of an incident are broadly similar to the inventors' approach of M. Matkovich et al., As described in the research article Characterization of spent fuel-based water rupture based on Annals of Nuclear Energy 63 (2014) 674 to 679.

Za potrebe analize predpostavljamo, da je prosta površina gladine hladila v sistemu za izrabljeno gorivo veliko večji, kot je prečni presek razpoke v ovoju sistema. To ima za posledico zanemarljivo hitrost hladila, kar se odraža v nepomembnem povečanju kinetične energije sistema med puščanjem in zanemarljivim izgubam zaradi mešanja in trenja na stenah bazena za izrabljeno gorivo 12. Ob omenjenih predpostavkah lahko energetsko bilanco za puščanje hladila iz bazena za izrabljeno gorivo 12 zapišemo, kot potencialno energijo, ki se pretvori v kinetično energijo iztoka zmanjšano z ustrezne izgube energije zaradi trenja.For the purposes of analysis, we assume that the free surface of the coolant surface in the spent fuel system is much larger than the crack cross-section in the system sheath. This results in negligible coolant velocity, which is reflected in the insignificant increase in the kinetic energy of the system during leakage and negligible loss due to mixing and friction on the walls of the spent fuel tank 12. Under these assumptions, the energy balance for leaking coolant from the spent fuel pool 12 can be written , as the potential energy converted to the kinetic energy of the effluent minus the corresponding energy loss due to friction.

. _2 ίή 1 _2 m g &h = - · m - v + — - - p · k5oc - r p 2 (l) dm m - —;. _2 ίή 1 _2 mg & h = - · m - v + - - - p · k 5oc - rp 2 (l) dm m - - ; -

V enačbi (1) at predstavlja masni tok puščanja hladila, g gravitacijski pospešek, Ah višinsko razlika med gladino vode in mestom poškodbe, v povprečno hitrostjo izliva vode, p gostoto vode in k,oc celokupni koeficient tlačnega padca. Ob predpostavki le ene lokacije puščanja in toge strukture sistema, je mogoče povezati hitrost spreminjanja višine gladine hladilne vode s hitrostjo odtekanje hladila iz razpoke.In Equation (1), at represents the mass of the leakage current, g the gravitational acceleration, Ah the height difference between the water level and the damage site, the average water discharge rate, p the water density and k, oc the overall pressure drop coefficient. Assuming only one leak location and rigid structure of the system, it is possible to relate the rate of change of the cooling water surface height to the rate of coolant drainage from the crack.

dk dt •S =dk dt • S =

Αβ·ι(2)Α β · ι (2)

Tu se dh/dt nanaša na hitrost spreminjanja višine gladine hladilne vode, Ao na prečni presek razpoke v ovoju sistema in S na prosto površino gladine hladila v sistemu za izrabljeno gorivo. Z upoštevanjem enačb (1) in (2) pridemo do fizikalnega modela v obliki diferencialne enačbe puščanja hladila iz bazena za izrabljeno gorivo 12,Here, dh / dt refers to the rate of change in the height of the cooling water surface, A o to the cross-section of the crack in the system sheath and S to the free surface of the coolant surface in the spent fuel system. Considering Equations (1) and (2), we arrive at a physical model in the form of a differential leakage equation from the spent fuel tank 12,

CO (3) kjer se h(t) nanaša na višino nivoja hladilne vode v času t in hoo se nanaša na višino poškodbe ovoja bazena.CO (3) where h (t) refers to the height of the cooling water level at time t and hoo refers to the height of damage to the pool envelope.

celokupni koeficient tlačnega padca v navedenem primeru ni odvisen od iztočne hitrosti skozi razpoko. To je dokaj dober približek za turbulentne tokove pri relativno velikih poškodbah ovoja. Pri visokih Reynoldsovih številih ostaja celokupni koeficient trenja skoraj neodvisen od hitrosti iztekanja. Po drugi strani pa, če je hidravlični premer razpoke dovolj majhna, da je pričakovati laminarni tok iztekanja hladilnega sredstva, je predpostavka o nespremenljivem koeficientu slaba. Kakorkoli že, pa je v slednjem primeru celokupni koeficient trenja obratno sorazmeren z Reynoldsovim številom, zato bi predpostavka s konstantno vrednostjo omenjenega koeficienta, ki je dobljen v začetni fazi, ko sta višina vode in hitrost iztekanja najvišji, dala konzervativno rešitev napovedi razvoja dogodkov.in this case, the overall pressure drop coefficient does not depend on the discharge velocity through the crack. This is a fairly good approximation for turbulent flows with relatively large sheath damage. At high Reynolds numbers, the overall friction coefficient remains almost independent of the flow rate. On the other hand, if the hydraulic crack diameter is small enough that the laminar flow of the refrigerant leakage is expected, then the assumption of a fixed coefficient is poor. However, in the latter case, the overall coefficient of friction is inversely proportional to the Reynolds number, so the assumption of a constant value of the mentioned coefficient obtained at the initial stage when the height of the water and the velocity of leakage would give a conservative solution to the prognosis.

V poenostavljeni enačbi hitrosti spreminjanja višine nivoja hladila (3) predpostavljamo, da:In the simplified velocity change equation of the coolant level (3), we assume that:

• · • gre za eno poškodbo ovoja sistema, katere topologija se v času opazovanja ne spreminja, • ni vnosa svežega hladila, • je prosta površina gladine hladila S v sistemu za izrabljeno gorivo 12 veliko večja, kot je prečni presek razpoke v ovoju sistema Ao (S » Ao), • se prečni presek razpoke v ovoju sistema Ao, celokupni koeficient tlačnega padca, prosta površina gladine hladila S in višina poškodbe ovoja h00 ne spreminjajo s časom, • se celokupni koeficient tlačnega padca ne spreminja s hitrostjo pretoka.• · • there is one damage to the sheath of the system whose topology does not change during the observation; • no intake of fresh coolant; • the free surface of coolant S in the spent fuel system 12 is much larger than the crack cross-section in the sheath of system A o (S »A o ), • the crack cross-section in the system envelope A o , the overall pressure drop coefficient, the free surface of the coolant S and the height of the sheath damage h 00 do not change with time, • the overall pressure drop coefficient does not change with speed flow rate.

Matematična formulacija poenostavljenega fizikalnega modela opisanega z enačbo (3) daje za dano lokacijo poškodbe ovoja enake rezultate za primer majhne poškodbe in hipotetično iztekanje hladila brez trenja, kot za primer večje poškodbe z ustrezno večjo oceno trenja med iztekanjem. V tem okviru so bile uvedene nadaljnje poenostavitve:The mathematical formulation of the simplified physical model described by equation (3) gives the same results for a given location of the sheath damage for small damage and hypothetical frictionless coolant leakage as for larger damage with a correspondingly higher friction estimate during leakage. In this context, further simplifications have been introduced:

• prečni presek razpoke v ovoju sistema je hipotetična vrednost, ki upošteva dejanski presek Ao in celokupni koeficient tlačnega padca k|0C, • potencialna energije tekočine se pretvori v kinetično energijo iztekanja in izgube energije zaradi trenja.• the cross section of the crack in the system envelope is a hypothetical value that takes into account the actual cross section A o and the overall pressure drop coefficient k | 0C , • the potential energy of the fluid is converted to the kinetic energy of leakage and friction energy loss.

Ob zgornjih predpostavkah lahko ohranitev volumskega pretoka puščanja zapišemo v obliki diferencialne enačbe, kot sledi:With the above assumptions, the conservation of the leakage volume flow can be written in the form of a differential equation as follows:

Vit) = · j2-5'(MV(t))-fc0.o) (4) kjer dt označuje izmerjeni pretoka hladila 16 na merilnik pretoka 26, ki meri puščanje hladilnega sredstva skozi poškodbo ovoja 22. V nasprotju z obstoječim pristopom [1], ki temelji na spremljanju hitrosti spreminjanja nivoja gladine hladilne vode, se zdi, da natančnost predmetnega pristopa ni odvisna od velikosti proste površine gladine hladila v omenjenem sistemu. V enačbi (4) sta prečni presek razpoke v ovoju sistema A in višina poškodbe ovoja bazena hoo neznani spremenljivki, kar zahteva opredelitev dveh novih robnih pogojev.Vit) = · j2-5 '(MV (t)) - fc 0 . o ) (4) where dt denotes the measured coolant flow 16 to the flow meter 26, which measures the coolant leakage through the damage of the sheath 22. Contrary to the existing approach [1], based on monitoring the rate of change of the cooling water level, that the accuracy of the subject approach does not depend on the size of the free surface of the coolant surface in said system. In Equation (4), the cross-sectional area of the crack in system A sheath and the height of damage to the pool sheath are hoo unknown variables, requiring the definition of two new boundary conditions.

Robna pogoja 1 in 2 (BC1, BC2): t=t0, t=ti να0) = 4 · 72-5-(Mte)-w (5) vaj = 4 - f2g-(h(tj-k^ (6)Boundary conditions 1 and 2 (BC1, BC2): t = t 0 , t = ti να 0 ) = 4 · 72-5- (Mt e ) -w (5) exercises = 4 - f2g- (h (ie-k ^ (6)

V enačbi (5) h(t0) predstavlja začetno višino nivoja hladilne vode. Ko so določeni zahtevani robni pogoji, lahko določimo h00 in A. Z upoštevanjem enačb (4), (5) in (6), lahko s sledečima zapisoma izrazimo višino poškodbe ovoja bazena in prečni presek razpoke.In equation (5), h (t 0 ) represents the initial height of the cooling water level. Once the required boundary conditions are determined, we can determine h 00 and A. Considering Equations (4), (5) and (6), the following notations can be used to express the height of damage to the pool envelope and the crack cross-section.

M)* · ws - Vfri)5 (7) · g- (h(fa) - hitj) (8)M) * · w s - Vfri) 5 (7) · g- (h (f a ) - fast) (8)

Iz enačb (7) in (8) je razvidno, da sta za potrebe karakterizacije poškodbe ovoja bazena za izrabljeno gorivo potrebni samo dve različni meritvi pretoka puščanja hladila v času. Karakterizacija poškodbe ovoja sistema za izrabljeno gorivo opredeljuje višino poškodbe omenjenega ovoja h00 in presek razpoke v omenjenem ovoju A, medtem, ko sta V(t) in h(t) odvisni spremenljivki, ki sta vezani preko proste površine gladine hladila S sistema za izrabljeno gorivo 12. Iz omenjenega sledi, da lahko splošno rešitev diferencialne enačbe (4 ) zapišemo takole:It can be seen from Equations (7) and (8) that only two different measurements of the flow of coolant leakage over time are required to characterize the damage of the spent fuel tank envelope. Characterization of damage to the spent fuel system sheath defines the damage height of said sheath h 00 and the crack intersection in said sheath A, while V (t) and h (t) are dependent variables bound across the free surface of the coolant surface S of the spent fuel system. fuel 12. It follows from the foregoing that the general solution of differential equation (4) can be written as follows:

(9)(9)

Kot je razvidno iz enačbe (9), med reševanjem enačbe (4) naletimo na novo neznanko Co. Do rešitve omenjene neznanke (Co) pridemo preko definicije tretjega robnega pogoja t = 0.As can be seen from equation (9), while solving equation (4), we encounter a new unknown C o . The solution of the unknown (C o ) is obtained via the definition of the third boundary condition t = 0.

Robni pogoj 3 (BC3): t=0 -> h{t=O) = h0 • ·Boundary Condition 3 (BC3): t = 0 -> h {t = O) = h 0 • ·

Co |2 (h0 - hfi) ΑΊ s (10)C o | 2 (h 0 - hfi) Α Ί s (10)

Parameter Co predstavlja časovni interval, ki je potreben, da se zaradi omenjenega puščanja višina gladine hladilne vode zniža iz začetne višine h0 na višino omenjene poškodbe ovoja bazena hOoKer so zmogljivosti dušenja ionizirajočega sevanja in nevtronskega fluxa v bazenu z rabljenim gorivom 12 neposredno povezane z višino nivoja hladilne vode v omenjenem bazenu, lahko karakteristične čase za izbran sistem izračunamo po enačbi (9). Gre za čase, ki jih napovemo v primeru izrednega dogodka, ko višina gladine hladilne vode v bazenu za izrabljeno gorivo pade na določeno višino. Analogno lahko karakteristične čase izračunamo tudi za določene hitrosti doze na robu bazena oziroma določene mejne vrednosti projiciranih kumulativnih prejetih doz interventnega osebja. Te informacije so lahko v pomoč pri določanju prioritetnih opravil v primeru izrednega dogodka in planiranju skrajnega časa evakuacije.Parameter C o represents the time interval required to reduce the height of the cooling water surface from the initial height h 0 to the height of said damage of the pool envelope h O oKer, because of the damping capacity of ionizing radiation and neutron flux in the used fuel pool 12 associated with the height of the cooling water level in said basin, the characteristic times for the selected system can be calculated according to equation (9). These are times that are predicted in the event of an emergency when the level of cooling water in the spent fuel tank drops to a certain height. Similarly, characteristic times can also be calculated for certain dose rates at the edge of the basin or for certain limit values of projected cumulative doses received by emergency personnel. This information can help you prioritize emergencies and plan evacuation time.

S preureditvijo enačbe (9) in ob upoštevanju enačbe (10) lahko zapišemo dokončno rešitev diferencialne enačbe (9) v smislu časovnega poteka višine hladila v bazenu z rabljenim gorivom. V primeru izrednega dogodka lahko napoved razvoja višine nivoja hladila v omenjenem bazenu zapišemo:By rearranging equation (9) and taking into account equation (10), we can write a definitive solution to differential equation (9) in terms of the time course of the height of the coolant in the used fuel pool. In the event of an emergency, the forecast for the development of the level of the coolant level in the said pool can be written:

A(O =A (O =

('70 t)a + Aqo (11)('7 0 - t) a + Aqo (11) |

Spremljanje puščanja hladilne vode iz sistema za izrabljeno gorivo v relativno kratkem časovnem intervalu po začetnem dogodku omogoči računsko karakterizacijo poškodbe ovoja, ki jo določa presek razpoke v ovoju A in višina poškodbe omenjenega ovoja hoo- Omenjena karakterizacija predstavlja osnovo za napoved razvoja višine gladine hladilne vode v sistemu za izrabljeno gorivo 12 dolgo po začetnem dogodku. Velikost razpoke A lahko izračunamo iz enačbe (8), višino poškodbe bazena h00 iz enačbe (7), napoved razvoja višine nivoja gladine hladilne vode v sistemu pa lahko izračunamo iz enačbe (11).Monitoring the cooling water leakage from the spent fuel system in a relatively short time after the initial event enables the computational characterization of the sheath damage determined by the crack section in sheath A and the height of damage of said sheath hoo- This characterization provides the basis for predicting the cooling water surface height in the spent fuel system 12 long after the initial event. The magnitude of the crack A can be calculated from equation (8), the height of damage to the pool h 00 from equation (7), and the prediction of the development of the height of the cooling water level in the system can be calculated from equation (11).

.:. .:. *··* ··* ♦·· ·.:. .:. * · · · · · · ·

Pomembna prednost tega pristopa je povezana posrednim in takojšnjim izračunom karakteristike poškodbe ovoja bazena. V morebitnem primeru izrednega dogodka bi bila pravočasna karakterizacija izrednega dogodka zelo težko izvedljiva ali celo nemogoča, v kolikor nebi bila pridobljena posredno.An important advantage of this approach is the direct and indirect calculation of the damage characteristic of the pool envelope. In the event of an emergency, timely characterization of the emergency would be very difficult or even impossible if it were not obtained indirectly.

Primerjava predmetnega izuma z obstoječim stanjem tehnike [1], ki temelji na spremljanju višine gladine hladila v bazenu, kaže, da se pri določanju karakterizacije poškodbe ovoja predmetni izum ne opira na poznavanje proste površine gladine hladila v bazenu 12. To omogoča bistveno večjo natančnost karakterizacije poškodbe omenjenega ovoja in ustrezno večjo natančnost napovedi tako razvoja višine nivoja hladilne tekočine v bazenu za izrabljeno gorivo, kot tudi razvoja hitrosti doze na robu omenjenega bazena.Comparison of the present invention with the present state of the art [1], based on monitoring the level of the coolant in the pool, shows that in determining the characterization of the damage to the wrapper, the present invention does not rely on the knowledge of the free surface of the coolant in the pool 12. This allows significantly greater accuracy of characterization damage to said jacket and correspondingly greater accuracy in predicting both the evolution of the coolant level in the spent fuel pool and the development of dose rate at the edge of said pool.

Na podlagi podatkov, pridobljenih preferenčno v začetni fazi izrednega dogodka, lahko računski sklop naprave 42 poda računsko oceno poškodbe ovoja sistema z izrabljenim gorivom 10; določi velikost poškodbe in njeno elevacijo v omenjenem sistemu. Napove intenziteto puščanja in izparevanja hladiva iz sistema. Ti podatki se lahko uporabijo za določitev toplotne bilance sistema in morebitno spremembo kritičnosti v bazenu, kot posledica nenadzorovane akumulacije goriva. Na osnovi teh podatkov lahko računski sklop napove razvoj višine nivoja gladine hladilne tekočine, razvoj hitrosti doze na robu bazena in projekcijo pričakovanih integralnih absorbiranih doz interventnega osebja, kot tudi skrajni časa za evakuacijo. Izum lahko pomaga pri optimizaciji in vzpostavitvi prednostnih opravil pri sanaciji posledic izrednega dogodka tako, da je interventno osebje izpostavljeno minimalnim dozam sevanja in v skladu z zakonodajo. Če sanacije posledic ni mogoče izvesti znotraj sprejemljivih doz prejetega sevanja, računski sklop 42 predvidi skrajni čas za evakuacijo objekta.Based on information obtained preferentially in the initial phase of an emergency, the computational assembly of the device 42 may provide a computational estimate of damage to the spent fuel system 10 sheath; determine the size of the injury and its elevation in said system. Predicts the intensity of refrigerant leakage and evaporation from the system. This information can be used to determine the heat balance of the system and any change in criticality in the pool as a result of uncontrolled fuel accumulation. Based on this information, the computational set can predict the development of the coolant level, the dose rate at the edge of the basin, and the projection of expected integral absorbed doses by emergency personnel as well as the evacuation time. The invention can help optimize and prioritize emergency response by exposing emergency personnel to minimal radiation doses and in accordance with the law. If the consequences cannot be restored within acceptable doses of received radiation, the computational unit 42 provides for a maximum evacuation time for the facility.

Upoštevanje in integracija različnih merjenih parametrov sistemaConsideration and integration of various measured system parameters

Drugi merjeni parametri v sistemu za izrabljeno gorivo 10 pomembno dopolnjujejo spremljanje puščanja 26 iz omenjenega bazena. Raznolikost merjenih veličin izboljšuje natančnost, predvsem pa izboljšuje zanesljivost napovedi razvoja višine gladine hladilne vode v bazenu za izrabljeno gorivo in napovedi razvoja hitrosti doze v bližini omenjenega bazena.Other measured parameters in the spent fuel system 10 significantly complement the monitoring of leakage 26 from said pool. The variety of measured quantities improves accuracy, and above all improves the reliability of the prediction of the height of the cooling water surface in the spent fuel pool and the prediction of the development of dose rate near the said pool.

Slika 2 prikazuje primer toka podatkov in merjenih veličin, ki so potrebni za računsko karakterizacijo poškodbe ovoja 22 sistema za izrabljeno gorivo 10. Karakterizacija in napoved razvoja izrednega dogodka temeljita na osnovi zaznanega puščanja hladila merjenega z merilnikom pretoka 26, višine nivoja hladilne tekočine spremljane z merilnikom višine gladine hladilne tekočine 28 in ravni sevanja, ki ga spremljamo z merilnikom hitrosti doze 38 v bližini bazena za izrabljeno gorivo. V blokovnem diagramu na sliki 2 je upoštevan tudi dotok svežega hladila.Figure 2 shows an example of the data flow and measured values that are required for the computational characterization of damage to a spent fuel system 22 sheath 22. Characterization and the prediction of an emergency occurrence are based on the detected coolant leak measured by the flowmeter 26, the coolant level monitored by the meter. coolant level 28 and radiation level monitored with a dose rate meter 38 near the spent fuel pool. The block diagram in Figure 2 also takes into account the flow of fresh coolant.

• «• «

Prav merjenje dotoka 34 in temperature 36 svežega hladila, temperature 30 hladila 16 v bazenu za izrabljeno gorivo lahko uporabimo za oceno zaostale toplotne moči rabljenega goriva v bazenu in toplotnih izgub v okolico. Na osnovi toplotne bilance lahko ocenimo izparevanje, ki v raznolikosti merjenih veličin s poudarkom na merjenju puščanja hladila 26 in pri znani geometriji sistema za izrabljeno gorivo omogoča večjo zanesljivost in boljšo natančnost napovedi izrednega dogodka.It is precisely the measurement of the inflow 34 and the temperature 36 of the fresh coolant, the temperature 30 of the coolant 16 in the spent fuel tank that can be used to estimate the residual thermal power of the used fuel in the pool and the heat losses to the surroundings. Evaporation can be estimated on the basis of the heat balance, which, in the variety of measured quantities, with emphasis on measuring the leakage of refrigerant 26 and with the known geometry of the spent fuel system, provides greater reliability and better accuracy in predicting an emergency.

Slika 2 podrobneje prikazuje napoved razvoja izrednega dogodka v treh korakih.Figure 2 shows in more detail the three-step emergency forecast.

(i) Karakterizacija izrednega dogodka in morebitne posledice:(i) Characterization of an emergency and possible consequences:

Karakterizacija izrednega dogodka temelji na spremljanju puščanja hladila iz sistema za izrabljeno gorivo 10, ki ga merimo z merilnikom pretoka 26, spremljanju višine gladine hladila s pomočjo namenskega merilnika 28, spremljanju vibracij in nihanj strukture omenjenega sistema, kar spremljamo s seismometerom 40. Karakterizacija izrednega dogodka je pomembna za opredelitev narave začetnega dogodka. Predstavlja osnovo za izvedbo ocene; ali je zaradi seizmične aktivnosti geometrija bazena za izrabljeno gorivo 12 spremenjena, ali je prišlo do vnosa tujkov v bazen, ali je prišlo do izlitja hladila preko roba bazena, ali je prišlo do naklona strukture ipd. Pomembno je, da izgubo hladila iz bazena pravilno opredelimo. Lahko gre za izgubo hladila zaradi valovanja čez rob, ki je posledica gibanja tal, zaradi naklona strukture, zaradi prekomernega polnjenja ali pa zaradi izpodriva hladila, kije posledica vnosa tujkov v bazen. Čeprav je lahko izgub hladila v primeru razlitja preko roba bazena znatna, je poškodba ovoja sistema s stališča minimalnega vpliva na okolje in ljudi praviloma bolj problematična. Zniževanje višine hladila je lahko posledica izparevanja hladila 16 zaradi nezadostnega hlajenja rabljenega goriva 14. Posamezni prispevki spreminjanja višine hladilne vode v bazenu za izrabljeno hladilo se lahko izračuna s pomočjo znane temperature 30 hladilne v bazenu, merjenega dotoka 34 in temperature 36 svežega hladila.The characterization of an emergency is based on monitoring the coolant leakage from the spent fuel system 10, which is measured with a flowmeter 26, monitoring the height of the coolant using a dedicated gauge 28, monitoring vibrations and fluctuations in the structure of said system, which is monitored with a seismometer 40. is important in determining the nature of the initial event. It is the basis for the assessment; whether due to the seismic activity the geometry of the spent fuel pool 12 has changed, whether there has been an introduction of foreign matter into the pool, whether a coolant has been leaked over the edge of the pool, or a slope of the structure has occurred, etc. It is important to properly define the loss of coolant from the pool. This may be due to loss of coolant due to the ripple over the edge due to the movement of the soil, to the slope of the structure, to overcharging, or to the displacement of the coolant resulting from the introduction of foreign matter into the pool. Although the loss of coolant in the event of a spill over the edge of the basin can be significant, damage to the system envelope is, from the point of view of minimal environmental impact, generally more problematic for humans. The lowering of the coolant height may be due to evaporation of coolant 16 due to insufficient cooling of used fuel 14. Individual contributions to changing the cooling water height in the spent coolant pool can be calculated using the known coolant temperature 30 in the pool, measured flow 34 and fresh coolant temperature 36.

(ii) Karakterizacija poškodbe 22 ovoja sistema za izrabljeno gorivo:(ii) Characterization of damage 22 of the spent fuel system sheath:

Kot je bilo prikazano zgoraj, izum omogoča, da poškodbo ovoja sistema računsko opredelimo z lokacijo in velikostjo poškodbe. Osnova za omenjeno oceno je izdelana karakterizacija izrednega dogodka, ki pri znani geometriji infrastrukture sistema podaja vzrok in naravo spremenjene višine nivoja hladila v bazenu.As shown above, the invention enables the damage of the system envelope to be calculated by the location and size of the damage. The basis for the above assessment is the characterization of an emergency, which, given the known geometry of the system infrastructure, gives the cause and nature of the altitude of the coolant level in the pool.

(iii) Napoved razvoja izrednega dogodka:(iii) Emergency forecast:

V tem zadnjem koraku se izvede napoved razvoja višine gladine hladila 16 v bazenu za izrabljeno gorivo 12. Višina nivoja hladilne tekočine v bazenu 12 se lahko upošteva kot osnova za izračun hitrosti doze na robu bazena 12 in za projekcijo predvidenih absorbiranih doz interventnega osebja. Na podlagi teh informacij, lahko upravljavec jedrskega objekta: (a) izdela takšno prioritetno listo potrebnih opravil za sanacijo posledic izrednega dogodka na način, ki bi vodila do minimalnih negativnih posledic za ljudi in okolje, (b) predvidi in razdeli interventna opravila med interventno osebje tako, bodo prejete absorbirane doze vseh udeleženih znotraj zakonsko omejenih kumulativnih doz, in (c) odredi skrajni čas evakuacije objekta, ko interventnih opravil ni več mogoče izvesti znotraj z zakonom omejenimi prejetimi dozami interventnega osebja.In this last step, the prediction of the development of the coolant level 16 in the spent fuel pool 12 is made. The height of the coolant level in the pool 12 can be taken as the basis for calculating the dose rate at the edge of the pool 12 and for projecting anticipated absorbed doses of emergency personnel. On the basis of this information, the nuclear facility operator may: (a) draw up such a priority list of necessary emergency response work in a manner that would lead to minimal adverse effects on humans and the environment, (b) anticipate and distribute emergency operations among emergency personnel thus, absorbed doses of all participants within legally cumulative cumulative doses will be received, and (c) order the evacuation time of the facility when the emergency operations can no longer be performed within legally restricted doses of emergency personnel.

Slika 2 podrobneje prikazuje oceno resnosti izrednega dogodka po treh različnih scenarijih (levo / center/ desno), kijih opredelimo z upoštevanjem različnih merjenih parametrov.Figure 2 shows in more detail the estimation of the severity of an emergency under three different scenarios (left / center / right), which are defined by taking into account different measured parameters.

V vsakem primeru se karakterizacija izrednega dogodka prične s prepoznavanjem vzorcev merjenih parametrov, kot je podrobneje opisano zgoraj. V naslednjem koraku upoštevamo zgodovino višine gladine hladilne tekočine h(t), ki jo spremljamo z ustreznimi merilniki 28 v sistemu. Sočasno spremljamo tudi stopnjo ionizirajočega sevanja je He(t), ki jo merimo z merilnikom hitrosti doze 38 v bližini (preferenčno na robu) bazena za izrabljeno gorivo. Časovni odvod posameznega parametra na sliki 2 je označen s piko nad pripadajočim simbolom.In each case, the characterization of an emergency begins with the recognition of patterns of measured parameters, as described in more detail above. In the next step, we consider the history of the coolant height h (t), which is monitored by the corresponding gauges 28 in the system. At the same time, the level of ionizing radiation is He (t), which is measured with a dose rate meter 38 near (preferably at the edge) of the spent fuel pool. The time derivation of each parameter in Figure 2 is indicated by a dot above the associated symbol.

V prvem scenariju (leva stran na sliki 2) nivo hladilne vode upada, kar se odraža na povečevanju hitrosti doze na robu bazena zaradi zmanjšane debeline plasti vode nad rabljenim gorivom. Manjša količina vode v sistemu brez hlajenja povzroči hitrejše naraščanje temperature T3 merjene s temperaturnim zaznavalom 30. V kolikor hladilna voda vre (T3 = 100 °C ali več), v enačbi za razvoj višine nivoja hladilne vode upoštevamo puščanje, izparevanje in dotok svežega hladila. V omenjeni enačbi na sliki 2, dV4/dt označuje priliv svežega hladila, ki ga merimo z merilnikom pretoka 34, dV2/dt pa označuje puščanje hladila iz sistema, kar spremljamo z merilnikom pretoka 26, ki je nameščen na zbiralniku 24. T5 označuje temperaturo svežega hladila 36 in dQREs/dt označuje zaostalo toplotno moč rabljenega goriva, kije manjša za izmerjene/izračunane toplotne izgube sistema.In the first scenario (left side of Figure 2), the cooling water level decreases, which is reflected in an increase in the dose rate at the edge of the pool due to the reduced thickness of the water layer above the used fuel. A smaller amount of water in a non-cooling system causes a faster rise in temperature T3 as measured by the temperature sensor 30. If cooling water boils (T3 = 100 ° C or more), the leakage, evaporation and flow of fresh coolant are taken into account in the equation for the level of cooling water level. In the mentioned equation in Figure 2, dV4 / dt denotes the inflow of fresh coolant measured with the flowmeter 34, dV2 / dt indicates the coolant leakage from the system, which is monitored by the flowmeter 26 mounted on the reservoir 24. T5 indicates the temperature fresh coolant 36 and dQ RE s / dt indicates the residual thermal power of the used fuel, which is less for the measured / calculated heat losses of the system.

V kolikor voda v bazenu ne vre, puščanje hladila pa je prisotno, uporabimo zgolj prvi del desne strani omenjene enačbe, kjer ne upoštevamo toplotne bilance.If the water is not boiling in the pool and there is a leakage of coolant, use only the first part of the right-hand side of this equation, where the heat balance is not taken into account.

V drugem scenariju (center na sliki 2) se nivo vode v bazenu in posledično nivo sevanja v sistemu za izrabljeno gorivo ne spreminjata. V kolikor je prisotno vrenje (T3 = 100 °C ali več), dotok svežega hladila kompenzira puščanje in izgubo hladila zaradi uparjanja. V kolikor je temperatura hladila v bazenu pod vreliščem, dotok svežega hladila ravno nadomesti izgube zaradi puščanja.In the second scenario (center in Figure 2), the water level in the pool and consequently the radiation level in the spent fuel system do not change. If boiling (T3 = 100 ° C or more) is present, the supply of fresh coolant compensates for the leakage and loss of coolant due to evaporation. If the temperature of the coolant in the pool is below boiling point, the supply of fresh coolant just compensates for the loss due to leakage.

• ·• ·

Μ · · · · · • ·· · · · ·

V obeh zgornjih scenarijih, kjer je prisotno puščanje, se izvede karakterizacija poškodbe ovoja sistema za izrabljeno gorivo, kot je opisane zgoraj in napoved razvoja izrednega dogodka.In both of the above scenarios, where a leak is present, characterization of the spent fuel system wrap damage as described above and emergency response is performed.

V tretjem scenariju (desna stran na sliki 2) smo priča zviševanju gladine hladilne tekočine. Zaradi povečevanja debeline hladila nad gorivom, se zmanjšuje tudi raven sevanja v bližini bazena. Gre za primer, ko dotok svežega hladila 34 presega izgube zaradi puščanja 26 in izgube zaradi morebitnega izparevanja hladila (T3 = 100 °C ali več), ali pa imamo opravka z vnosom tujkov v bazen za izrabljeno gorivo. V tem scenariju je situacija praviloma manj kritična. Izvaja se nadaljnje spremljanje merjenih veličin, takojšnjih ukrepov pa ne predvideva.In the third scenario (right-hand side of Figure 2), we see an increase in the coolant level. Increasing the thickness of the coolant above the fuel also reduces the radiation level near the pool. This is when the supply of fresh coolant 34 exceeds losses due to leakage 26 and losses due to possible evaporation of the coolant (T3 = 100 ° C or more), or we are dealing with the introduction of foreign matter into the spent fuel pool. In this scenario, the situation is generally less critical. Further monitoring of the measured quantities is carried out, but no immediate measures are foreseen.

Računski sklop naprave lahko na osnovi medsebojne primerjave izmerjenih parametrov identificira neveljavne meritve, ki se v primeru izrednega dogodka lahko pojavijo zaradi poškodb na infrastrukturi merilnega sklopa. Metoda, kot jo opisuje izum omogoča izbiro med razpoložljivimi vhodnimi parametri, ki zagotavljajo najboljšo natančnost napovedi poškodbe ovoja in napovedi razvoja izrednega dogodka.On the basis of mutual comparison of the measured parameters, the computational assembly of the device can identify invalid measurements which, in the event of an emergency, may occur due to damage to the infrastructure of the measuring assembly. The method described by the invention enables the selection of the available input parameters, which provide the best accuracy of predicting damage to the envelope and predicting the development of an emergency.

Naprava poda karakterizacijo izrednega dogodka in na osnovi vsaj 3 zaporednih meritvah bodisi intenzitete puščanja, bodisi trenda upadanja nivoja hladiva v bazenu, bodisi trenda hitrosti doze v bližini bazena z izrabljenim gorivom omogoča karakterizacijo poškodbe ovoja sistema za izrabljeno gorivo in napoved razvoja izrednega dogodka.The device shall characterize the emergency and, based on at least 3 consecutive measurements, either the leakage intensity, the trend of declining refrigerant levels in the pool, or the trend of the dose rate near the spent fuel pool, allows characterization of the damage to the spent fuel system envelope and the prediction of the occurrence of an emergency.

Sposobnost karakterizacije poškodbe bazena za izrabljeno gorivo in napoved razvoja izrednega dogodka lahko najbolje primerjamo z delovanjem hitrega merilnika telesne temperature. Preprost izračun časovne konstante tovrstnega merilnika pokaže, da v nekaj sekundah, ki so potrebne za uspešno izvedbo meritve, zaznavalo merilnika ne doseže prikazane temperature. Ker privzamemo, da se med meritvijo telesne temperature zaznavalo in pogoji merjenja ne spreminjajo (masa, površina, specifična toplota ter prestop/prevod toplote), je merjeni temperaturni profil enolično določen s temperaturo merjenca. Prikazana temperatura je tako plod računskega algoritma, ki na osnovi izmerjenih vrednosti v začetni fazi meritve predvidi vrednost asimptote - merjeno temperaturo. Ker časovna konstanta merilnika temperature ni znana (prestop/prevod toplote se spreminja s stanjem pacienta), sta za določitev asimptote potrebni več kot sicer minimalno dve periodični meritvi temperature v znanem časovnem intervalu.The ability to characterize the damage of a spent fuel pool and the prediction of an emergency can best be compared to the performance of a rapid body temperature meter. A simple calculation of the time constant of this type of meter indicates that, within the few seconds required for successful measurement, the meter sensor does not reach the displayed temperature. Since it is assumed that the sensor and the measurement conditions do not change during the measurement of body temperature (mass, surface, specific heat and heat transfer / transfer), the measured temperature profile is uniquely determined by the temperature of the meter. The displayed temperature is thus the result of a computational algorithm that, on the basis of measured values, predicts an asymptote value - the measured temperature - in the initial phase of measurement. Since the time constant of the temperature gauge is unknown (heat transfer / transfer varies with the patient's condition), more than otherwise a minimum of two periodic temperature measurements over a known time interval are required to determine the asymptote.

Analogno velja za posredno karakterizacijo poškodbe bazena za izrabljeno gorivo, kjer lahko iskano temperaturo primerjamo z določevanjem asimptote višine gladine hladilne vode - torej višine nastale poškodbe, medtem, ko je računanje velikosti razpoke direktno vezano na določevanje časovne konstante spreminjanja nivoja hladilne vode. Tudi tukaj bi v teoretičnem primeru, ko bi poznali • · · fizikalni model poškodbe, karakterizacijo slednje lahko opravili zgolj s tremi periodičnimi meritvami nivoja hladila v bazenu.Analogous to the indirect characterization of spent fuel pool damage, where the required temperature can be compared to determining the asymptote of the cooling water surface height - that is, the height of the damage caused, while the calculation of the crack size is directly related to determining the time constant of changing the cooling water level. Here, too, in the theoretical case of knowing the physical model of damage, the characterization of the injury could only be performed by three periodic measurements of the level of coolant in the pool.

Kljub preprosti primerjavi naprave s hitrim merilnikom telesne temperature pa gre v prvem primeru za mnogo kompleksnejše računske algoritme in upoštevanje večjega števila spremenljivk. Naprava namreč omogoča karakterizacijo poškodbe in napoved razvoja izrednega dogodka, ki upošteva:In spite of the simple comparison of the device with the rapid body temperature meter, in the first case it is much more complex computational algorithms and taking into account a larger number of variables. Namely, the device enables the characterization of an injury and the prediction of an emergency, which takes into account:

a) spremenljivo geometrijo bazena po višini in morebitno spremembo naklona bazena,a) variable geometry of the pool in height and possible change of slope of the pool,

b) spremembo toplotne moči uparjanja z odkrivanjem gorivnih elementov,b) change in thermal power of evaporation by detecting fuel elements,

c) morebitno spremembo kritičnosti med segrevanja strukture,c) any change in the criticality during the warming of the structure,

d) spremembo toplotnih izgub zaradi višanja temperature hladila,d) change in heat losses due to increase in coolant temperature,

e) usklajevanje merjenih vrednosti različnih veličin in izločitev defektnih meritev,e) reconciling measured values of different quantities and eliminating defective measurements,

f) izliv hladila (pljusk) preko roba bazena,f) coolant splash over the edge of the pool,

g) negotovost meritev, negotovost karakterizacije poškodbe ovoja bazena in negotovost napovedovanja razvoja dogodkov,g) uncertainty in measurements, uncertainty in the characterization of damage to the pool envelope and uncertainty in predicting events;

h) različen razvoj scenarijev v primeru puščanja znotraj SFP ali izven (CLA/TC).h) different scenario development in case of leaks inside SFP or outside (CLA / TC).

Merilni sklop 42 naprave omogoča na podlagi izmerjenih vhodnih parametrov izračun toplotne bilance v bazenu za izrabljeno gorivo.The measuring unit 42 of the device enables the calculation of the heat balance in the spent fuel pool based on the measured input parameters.

Zaostala toplotna moč gorivnih elementov, zmanjšana za toplotne izgube v okolico, povzroči naraščanje temperature hladilne vode in infrastrukture, ki je v stiku s hladilom. Večja kot je njuna toplotna kapaciteta, počasnejše naraščanje temperature hladilne vode pričakujemo. Izračunamo jo lahko na dva načina:The residual thermal power of the fuel elements, reduced by the heat losses to the surroundings, causes the cooling water temperature and the contacting infrastructure to rise. The higher their heat capacity, the slower the rise in cooling water temperature is expected. It can be calculated in two ways:

a) analitično - s pomočjo znane geometrije/mase in fizikalnih lastnosti omenjene infrastrukture,a) analytically - by means of the known geometry / mass and physical properties of said infrastructure,

b) empirično - v odsotnosti zunanjega hlajenja jo določimo s pomočjo poznane zaostale toplotne moči ter izmerjene hitrosti spreminjanja povprečne temperature sistema.b) empirically - in the absence of external cooling, it is determined by the known residual thermal power and the measured rate of change of the average temperature of the system.

Zviševanje temperature v bazenu je zaradi spreminjanja toplotne kapacitete ob puščanju in zaradi spreminjanja toplotnih izgub v okolico nelinearno, tako kot je zaradi spreminjajočega statičnega tlaka hladila na mestu puščanja nelinearno tudi spreminjanje višine gladine hladilne vode (Slika 3). Na dinamično spreminjanje toplotne kapacitete sistema vpliva tudi geometrija bazena, inventura in akumulacija hladilne vode vzdolž globine bazena. Omenjeni podatki so unikatni za vsako geometrijo bazena, inventuro strukture ter za vsako polnitev posebej, torej so specifični za vsak SFS.Increasing the temperature in the basin is non-linear due to the change in the leakage heat capacity and the change in the heat losses to the surroundings, just as the height of the cooling water surface is nonlinear due to the changing static pressure of the coolant at the leakage point (Figure 3). Dynamic changes in the heat capacity of the system are also affected by the pool geometry, inventory and cooling water accumulation along the depth of the pool. These data are unique for each pool geometry, structure inventory and for each fill, so they are specific to each SFS.

Ko hladilo doseže temperaturo nasičenja, se vsa zaostala toplota »preusmeri« v izparevanje vode iz bazena. V primeru neuspešne vzpostavitve zunanjega hlajenja oziroma neuspešne dobave svežega hladila je izparevanje poleg morebitnega puščanja glavni vzrok za intenzivno zniževanje nivoja gladine hladilne vode v bazenu (Slika 3).When the coolant reaches saturation temperature, all the residual heat is "redirected" to the evaporation of the water from the pool. In the event of failure of the external cooling system or the failure of the supply of fresh coolant, evaporation is, in addition to any leakage, a major cause of the intense lowering of the cooling water surface in the pool (Figure 3).

Slika 3 prikazuje rezultat napovedi računskega sklopa, kjer je prikazan časovni potek razvoja višine gladine hladila v bazenu za izrabljeno gorivo. Časovni interval A na sliki 3 označuje »mrtvi« čas zajemanja podatkov, ki je v prvi fazi izrednega dogodka potreben za uspešno karakterizacijo poškodbe ovoja sistema in prvi izračun napovedi razvoja dogodkov. Časovni interval B označuje območje napovedi razvoja nivoja hladilne tekočine v času po začetnem dogodku.Figure 3 shows the result of the calculation set prediction, which shows the time course of the development of the coolant level in the spent fuel tank. The time interval A in Figure 3 indicates the "dead" time of data capture, which is required in the first phase of an emergency to successfully characterize the damage to the system envelope and to first calculate the prognosis. Time interval B indicates the area of prognosis for the development of the coolant level during the time after the initial event.

Slika 3 primerja napoved razvoja izrednega dogodka za dva različni polnitvi bazena. Polna črta ustreza 1,5 MW zaostali toplotni moči gorivnih elementov 14 v bazenu, črtkana črta pa ponazarja potek pri polnitvi bazena s skupno toplotno močjo 8,5 MW. Gre za relativno kratka periodična obdobja med normalnim obratovanjem elektrarne; med menjavo goriva, ko je celotna sredica reaktorja premeščena v bazen za izrabljeno gorivo. Upadanje gladine hladila na sliki 3 v prvi fazi je posledica puščanja in kmalu tudi izparevanja.Figure 3 compares the forecast of an emergency development for two different pool fillings. The solid line corresponds to 1.5 MW of residual thermal power of the fuel elements 14 in the pool, and the dashed line illustrates the course of filling the pool with a total thermal output of 8.5 MW. These are relatively short periodic periods during the normal operation of the power plant; during fuel change when the entire core of the reactor is transferred to the spent fuel pool. The decrease in coolant level in Figure 3 in the first phase is due to leakage and soon evaporation.

Na sliki 3 sta primerjana tudi dva scenarija puščanja v bazenu za izrabljeno gorivo (odebeljena črta) in izven (tanka črta), torej v prenosnem kanalu 20 oziroma prostoru za manevriranje z gorivom 18. Hitrost zniževanja gladine hladilne vode je ob danih predpostavkah enaka vse dokler gladina hladila ne doseže dno prehoda med omenjenimi strukturami. Ko ni več povezave med omenjenimi strukturami, je razpoložljiv volumen hladila v bazenu za izrabljeno hladilo občutno manjši, kar povzroči občutno povečanje hitrosti upadanja nivoja gladine hladila v bazenu, kadar je poškodovan ovoj bazena. V kolikor gre za poškodbo izven bazena, se hitrost upadanja gladine sicer upočasni na račun prekinjene povezave z virom puščanja, poveča pa se zaradi manjše proste površine hladila v bazenu in nespremenjenem uparjanju.Figure 3 also compares two leakage scenarios in the spent fuel pool (bold line) and out (thin line), respectively, in the transmission channel 20 or the fuel maneuvering space 18. The rate of reduction of the cooling water surface is assumed to be the same under the given assumptions. the coolant level does not reach the bottom of the passage between the structures. When there is no longer a connection between the structures, the available refrigerant volume in the spent coolant pool is significantly smaller, causing a significant increase in the rate of decline in the coolant surface level in the pool when the pool cover is damaged. In the case of damage outside the pool, the rate of decrease in the level is slowed down by the disconnection with the source of leakage, but increases due to the smaller free surface of the coolant in the pool and the constant evaporation.

Po drugi strani pa, če se poškodba ovoja 22 nahaja na steni ovoja bazena za izrabljeno gorivo, hitrost upadanja gladine hladila naraste zaradi kombiniranega učinka puščanja in izhlapevanja hladila iz bazena.On the other hand, if the damage of the sheath 22 is located on the wall of the spent fuel tank sheath, the rate of decrease of the coolant surface increases because of the combined effect of the leakage and evaporation of the coolant from the pool.

Kumulativno posledico puščanja, izparevanja, dolivanja svežega hladila, vnosa materiala v bazen ter morebitne spremembe geometrije in naklona bazena spremljamo z merjenjem nivoja 28 gladine 12 hladilne vode 16. Nenadno spremembo višine gladine brez izmerjenega puščanja računski sklop prepozna, bodisi kot spremembo geometrije (naklona) bazena, ali pa vnos materiala v bazen, karakterizacija ekstremnega dogodka se lahko dopolnjuje s prepoznavanjem specifičnih vzorcev valovanje gladine hladilne vode, kjer računski sklop 42 zazna seizmično aktivnost terena. Vzporedno kontrolo opravlja neodvisno merjenje pospeška 40 strukture bazena. Manjše amplitude nihanja gladine z zanemarljivim odčitkom pospeška sistem identificira kot dolivanje svežega hladila ali prhanje.The cumulative effect of leakage, evaporation, refilling of fresh coolant, material input into the pool and any changes in the geometry and slope of the pool are monitored by measuring the level 28 of the cooling water surface 16. A sudden change in the height without measured leakage is recognized by the computational assembly or as a change in the geometry (slope). or the introduction of material into the pool, the characterization of an extreme event can be complemented by the recognition of specific patterns of cooling water surface waves, where the computational assembly 42 detects the seismic activity of the terrain. Parallel control performs an independent measurement of the acceleration 40 of the pool structure. Smaller amplitudes of surface fluctuations with negligible acceleration readings are identified by the system as refreshing or showering.

Ko gre za monotono zniževanje gladine 12 hladilne vode 16 s temperaturo hladila 30 nižjo od temperature vrelišča, se hitrost zniževanja gladine hladilne vode neposredno ujema z merjenjem puščanja 26 hladila iz bazena. Na osnovi slednjih meritev računski sklop 42 sistema poda karakterizacijo poškodbe ovoja bazena in napove razvoj izrednega dogodka z bistveno večjo točnostjo in natančnostjo, kot je to mogoče z merjenjem trenda nivoja gladine hladilne vode 12 ali celo z merjenjem hitrosti doze 38 na robu bazena. Tedaj, ko hladilo 16 doseže temperaturo vrelišča, računski sklop 42 upošteva tudi prispevek zaradi uparjanja.In the case of a monotonous lowering of the cooling water surface 12 with a coolant temperature of 30 below the boiling point, the cooling water surface lowering speed is directly matched by measuring the leakage of 26 coolant from the pool. Based on the latter measurements, the system computing unit 42 characterizes the damage to the pool envelope and predicts the occurrence of an emergency with significantly greater accuracy and precision than is possible by measuring the trend in the cooling water level 12 or even by measuring the dose rate 38 at the edge of the pool. When the coolant 16 reaches the boiling point, the computational assembly 42 also considers the contribution due to evaporation.

Izlitje preko roba bazena sistem identificira z nezvezno spremembo nivoja gladine 12 hladilne vode 16 in specifičnim potekom signala puščanja 26. Medtem, ko morebitna sprememba geometrije bazena negativno vpliva na točnost karakterizacije poškodbe ovoja 22 in napoved razvoja dogodka, se eventualna sprememba naklona bazena odraža z odstopanjem meritev nivoja gladine na različnih lokacijah bazena in odklonom merjenih vrednosti od pričakovane hitrosti doze v bližini bazena. Posledično izračunano mesto poškodbe ovoja bazena ni okarakterizirano z višino, pač pa je opredeljeno z ravnino, ki je vzporedna gladini hladilne vode in, ki opredeljuje nadaljnji izračun napovedi razvoja izrednega dogodka.The spillage over the edge of the pool is identified by the system by a discontinuous change in the water level 12 of the cooling water 16 and a specific flow of the leakage signal 26. While a possible change in the geometry of the pool adversely affects the accuracy of characterizing the damage of the envelope 22 and the prediction of the event, a possible change in the slope of the pool is reflected by a deviation measuring the level of water at different locations of the pool and deviation of the measured values from the expected dose rate near the pool. As a result, the calculated site of damage to the pool envelope is not characterized by height, but is defined by a plane parallel to the surface of the cooling water and which defines the further calculation of the emergency development forecast.

Sistem se zaradi zanesljivosti in točnosti karakterizacije in računskih napovedi ter zaradi nepredvidljivih posledic izrednega dogodka poslužuje večkratnosti in raznolikost merjenih parametrov. Na osnovi analize merilne negotovosti računski sklop 42 naprave določi hierarhijo izbranih vhodnih parametrov, ki omogočajo najnatančnejšo karakterizacijo poškodbe ovoja in napoved razvoja izrednega dogodka. Računski sklop 42 karakterizacijo poškodbe ovoja in napoved razvoja izrednega dogodka sproti posodablja z novimi računskimi rezultati.Due to the reliability and accuracy of characterization and computational forecasts, and due to the unpredictable consequences of an emergency, the system uses multiplicity and diversity of measured parameters. Based on the measurement uncertainty analysis, the computational assembly 42 of the device determines a hierarchy of selected input parameters that allow for the most accurate characterization of the envelope damage and the prediction of an emergency. Computational unit 42 updates the current characterization of the envelope damage and the forecast of an emergency with new computational results.

Opis prednostnih izvedb in pripadajočih slik služi samo za ilustracijo izuma in pozitivnih učinkov povezanih z njim, ne prinašajo pa nobenih omejitev. Namen izuma je povzet v priloženih zahtevkih.The description of the preferred embodiments and the accompanying drawings are intended only to illustrate the invention and the positive effects associated therewith and do not bring any limitations. The purpose of the invention is summarized in the appended claims.

• ·• ·

LegendaLegend

Sistem za izrabljeno gorivo / Merilni sklop napraveSpent Fuel System / Unit Meter

Bazen za izrabljeno gorivo / Bazen z rabljenim gorivomSpent Fuel Pool / Used Fuel Pool

Sveženj jedrskega goriva / Gorivni elementNuclear Fuel Package / Fuel Element

Toplotna moč zaostale toploteThermal power of residual heat

Hladilna vodaCooling water

Prostor za manevriranje s hladilomCooling room for maneuvering

Prenosni kanalPortable channel

Poškodba v ovoju bazena za izrabljeno gorivo 12Damage to spent fuel tank wrap 12

Zbiralnik hladilaCoolant collector

Merilnik pretoka pri zbiranju nasip 24Flowmeter for levee collection 24

Merilnik višine nivoja gladine hladilne vodeCoolant water level meter

Temperaturno zaznavalo hladila v bazenu za izrabljeno gorivo 12Refrigerant temperature sensor in spent fuel tank 12

Nadzorovan priliv svežega hladilaControlled inflow of fresh coolant

Merilnik pretoka svežega hladilaFresh coolant flowmeter

Temperaturno zaznavalo dotoka svežega hladilaFresh air coolant temperature sensor

Merilnik hitrosti doze na robu bazenaA dose rate meter at the edge of the pool

SeismometerSeismometer

Računski sklopComputational circuit

Prikazovalni sklopDisplay assembly

Claims (21)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1) Metoda za karakterizacijo poškodbe ovoja sistema za izrabljeno gorivo 10, označena s tem, da obsega:1) A method for characterizing the damage of a spent fuel system liner 10, characterized in that it comprises: merjenje puščanja hladila (16) iz omenjenega sistema (10), prednostno pridobljeno z merilnikom pretoka (26) na zbiralniku hladila (24);measuring the leakage of a coolant (16) from said system (10), preferably obtained by a flowmeter (26) on the coolant reservoir (24); korak določanja velikosti in lokacije poškodbe ovoja (22) v omenjenem sistemu za izrabljeno gorivo (10), kar temelji na omenjenem spremljanju puščanja (26) hladila (16); in napoved razvoja višine nivoja gladine hladila v omenjenem sistemu za izrabljeno gorivo (10), ki temelji na znani karakterizaciji poškodbe ovoja.the step of determining the size and location of damage to the sheath (22) in said spent fuel system (10), based on said monitoring of the coolant leakage (26); and a prediction of the development of the level of the coolant level in said spent fuel system (10) based on the known characterization of the damage to the wrapper. 2) Metoda po zahtevku 1, označena s tem, da nadalje obsega korak periodičnega ponavljanja meritev puščanja hladila (16) in periodičnega obnavljanja rezultatov računske karakterizacije poškodbe ovoja sistema in periodičnega obnavljanja rezultatov računske napovedi razvoja višine nivoja gladine hladila v sistemu, kar temelji na osnovi spremljanja ponavljajočih meritev omenjenih parametrov.2) The method of claim 1, further comprising the step of periodically repeating the measurements of the coolant leakage (16) and periodically updating the results of the computational characterization of damage to the system envelope and periodically updating the results of the computational prediction of the level of the coolant level in the system monitoring of repeated measurements of the mentioned parameters. 3) Metoda po zahtevku 1 ali 2, označena s tem, da nadalje obsega korak napovedovanja razvoja ravni sevanja, zlasti napovedovanja hitrosti doze v bližini bazena za izrabljeno gorivo (10), in ki temelji na napovedi razvoja višine nivoja gladine hladilne vode.3) The method according to claim 1 or 2, further comprising the step of predicting the development of radiation levels, in particular predicting the dose rate near the spent fuel pool (10), and based on the prediction of the level of cooling water level. 4) Metoda po katerem koli izmed predhodnih zahtevkov, značilna po tem, da nadalje obsega korak spremljanja ravni sevanja v bližini bazena za izrabljeno gorivo (10) in napovedovanja razvoja višine gladine hladila v omenjenem bazenu (10) in/ali napovedovanja razvoja pričakovane hitrosti doze v bližini omenjenega bazena (10) in, ki temelji na spremljanju merjenih vrednosti puščanja hladila iz sistema in hitrosti doze v bližini omenjenega bazena.The method of any of the preceding claims, further comprising the step of monitoring the radiation level near the spent fuel pool (10) and predicting the development of the coolant level in said pool (10) and / or predicting the development of the expected dose rate near said pool (10) and based on monitoring the measured values of coolant leakage from the system and the dose rate near said pool. 5) Metoda po katerem koli izmed predhodnih zahtevkov, značilna po tem, da nadalje obsega korak kontinuiranega spremljanja merjenih veličin dotoka svežega hladila (34) v sistem (10) in/ali temperature omenjenega hladila (36) in/ali višine gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali temperature (30) omenjenega hladila (16) v omenjenem sistemu (10) in napovedi razvoja višine nivoja gladine hladilne vode v bazenu za izrabljeno gorivo (12), ki temelji na izmerjeni/izračunani zaostali toplotni moči in toplotnih izgubah, na dotoku svežega hladila (34) v sistem (10) in/ali na temperaturi omenjenega svežega hladila (36) in/ali na višini gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali na temperature (30) omenjenega hladila (16) v omenjenem sistemu (10).The method according to any one of the preceding claims, characterized in that it further comprises the step of continuously monitoring the measured quantities of fresh refrigerant (34) flow into the system (10) and / or the temperature of said coolant (36) and / or the height (28). coolants in the spent fuel pool (12) and / or temperatures (30) of said coolant (16) in said system (10) and forecasts of the level of cooling water level in the spent fuel pool (12) based on the measured / calculated residual heat output and heat losses, the fresh coolant (34) inflow into the system (10) and / or the temperature of said fresh coolant (36) and / or the coolant level (28) in the spent fuel pool (12) and / or to the temperatures (30) of said coolant (16) in said system (10). » ·»· 6) Metoda po katerem koli izmed predhodnih zahtevkov, značilna po tem, da nadalje obsega korak merjenja seizmične aktivnosti (40) strukture sistema za izrabljeno gorivo (10) in/ali merjenja naklona omenjene strukture sistema (10) in napovedovanja razvoj višine nivoja gladine hladilne vode v omenjenem sistemu (10), ki temelji na izmerjeni seizmični aktivnosti in/ali naklonu omenjene strukture sistema (10).Method according to any one of the preceding claims, characterized in that it further comprises the step of measuring the seismic activity (40) of the spent fuel system structure (10) and / or measuring the slope of said system structure (10) and predicting the level of the cooling surface level water in said system (10) based on the measured seismic activity and / or slope of said system structure (10). 7) Metoda po katerem koli izmed predhodnih zahtevkov, značilna po tem, da nadalje obsega korak merjenja seizmične aktivnosti (40) strukture omenjenega sistema (10) in/ali merjenja naklona omenjene strukture sistema (10) in korak karakterizacije izrednega dogodka, ki temelji na spremljanju merjenih vrednosti puščanja hladila iz sistema in/ali spremljanju omenjene seizmične aktivnosti in/ali merjenju naklona omenjene strukture sistema (10) in znani geometriji omenjenega sistema.Method according to any one of the preceding claims, characterized in that it further comprises the step of measuring the seismic activity (40) of the structure of said system (10) and / or measuring the slope of said structure of the system (10) and the step of characterizing an emergency event based on monitoring the measured values of coolant leakage from the system and / or monitoring said seismic activity and / or measuring the slope of said system structure (10) and the known geometry of said system. 8) Metoda po zahtevku 7, označena s tem, da nadalje obsega korak karakterizacije poškodbe ovoja sistema oziroma določanja velikosti in lokacije poškodbe ovoja (22) v sistemu za izrabljeno gorivo (10) in, ki temelji na spremljanju merjenih vrednosti puščanja hladila iz omenjenega sistema ter karakterizacije izrednega dogodka.The method of claim 7, further comprising the step of characterizing the system envelope damage or determining the size and location of the envelope damage (22) in the spent fuel system (10) and based on monitoring the measured values of coolant leakage from said system and emergency characterization. 9) Metoda po zahtevku 8, označena s tem, da nadalje obsega korak kontinuiranega spremljanja merjenih veličin dotoka svežega hladila (34) v sistem (10) in/ali temperature omenjenega hladila (36) in/ali višine gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali temperature (30) omenjenega hladila (16) v omenjenem sistemu (10), pri čemer sta velikost in lokacija omenjene poškodbe ovoja (22) določena na osnovi omenjenega spremljanja merjenih vrednosti puščanja hladila iz omenjenega sistema, spremljanja merjenih veličin dotoka svežega hladila (34) v sistem (10) in/ali temperature omenjenega hladila (36) in/ali višine gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali temperature (30) omenjenega hladila (16) v omenjenem sistemu (10).The method of claim 8, further comprising the step of continuously monitoring the measured quantities of fresh refrigerant flow (34) into the system (10) and / or the temperature of said coolant (36) and / or the height of the pool coolant (28) (12) for spent fuel and / or temperature (30) of said coolant (16) in said system (10), the size and location of said damage of the sheath (22) being determined on the basis of said monitoring of the measured values of coolant leakage from said system, monitoring the measured quantities of fresh coolant (34) flow into the system (10) and / or the temperature of said coolant (36) and / or the height of the coolant level (28) in the spent fuel pool (12) and / or the temperature (30) of said coolant ( 16) in said system (10). 10) Metoda po zahtevku 8 ali 9, označena s tem, da je napoved razvoja višine nivoja gladine hladila v omenjenem sistemu izvedena na osnovi karakterizacije izrednega dogodka in omenjene karakterizacije poškodbe ovoja sistema.A method according to claim 8 or 9, characterized in that the prediction of the development of the level of the coolant level in said system is made on the basis of the characterization of an emergency and the said characterization of damage to the system envelope. • ·• · 11) Metoda po katerem koli od predhodnih zahtevkov, značilna po tem, da korak napovedi razvoja višine nivoja gladine hladila v omenjenem sistemu (10) vključuje korak ocene uparjanja hladila iz omenjenega sistema, pri čemer ocena intenzitete uparjanja temelji na osnovi omenjenega spremljanja merjenih vrednosti puščanja in dotoka svežega hladila (34) v sistem za izrabljeno gorivo (10) in/ali na temperaturi omenjenega hladila (36) in/ali na višini gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali na temperaturi (30) omenjenega hladila (16) v omenjenem sistemu (10) ter na izmerjeni/izračunani zaostali toplotni moči gorivnih elementov (14) in na toplotnih izgubah sistema (10).Method according to any one of the preceding claims, characterized in that the step of predicting the development of the level of the coolant level in said system (10) includes the step of estimating the evaporation of the coolant from said system, the estimation of the intensity of evaporation based on said monitoring of the measured leakage values and supplying fresh coolant (34) to the spent fuel system (10) and / or at the temperature of said coolant (36) and / or at the level of the coolant level (28) in the spent fuel pool (12) and / or at temperature (30 ) of said coolant (16) in said system (10) and on measured / calculated residual thermal power of fuel elements (14) and on heat losses of system (10). 12) Naprava za karakterizacijo poškodbe ovoja sistema za izrabljeno gorivo (10), označena s tem, da obsega:12. An apparatus for characterizing the damage of a spent fuel system liner (10), characterized in that it comprises: merilnik pretoka kapljevine (26) prilagojen za merjenje celokupnega puščanja hladila (16), ki se iz omenjenega sistema za izrabljeno gorivo (10) prednostno zbira v namenskem zbiralniku (24); in računski sklop (42), ki je povezan z omenjenim merilnikom pretoka (26) in je prilagojen za sprejem merjenih podatkov iz omenjenega merilnika (26), pri čemer je omenjeni merilni sklop (42) naprave prilagojen za računsko določanje velikosti in lokacije poškodbe ovoja (22) v omenjenem sistemu za izrabljeno gorivo (10) in za napoved razvoja višino nivoja gladine hladilne tekočine v omenjenem sistemu (10), ki temelji na omenjeni karakterizaciji poškodbe.a liquid flowmeter (26) adapted to measure the overall coolant leakage (16), which is preferably collected from said spent fuel system (10) in a dedicated reservoir (24); and a computational assembly (42) connected to said flowmeter (26) and adapted to receive the measured data from said meter (26), said measurement unit (42) of the device adapted to calculate the size and location of the envelope damage (22) in said spent fuel system (10) and for predicting the development of the level of coolant level in said system (10) based on said damage characterization. 13) Naprava po zahtevku 12, označena s tem, da merilni sklop naprave nadalje obsega merilnik hitrost doze sevanja (38), ki se nahaja v bližini omenjenega bazena za izrabljeno gorivo (12) in je omenjeni merilnik (38) prilagojen za merjenje ionizirajočega sevanja v bližini omenjenega bazena za izrabljeno gorivo (10), pri čemer je računski sklop naprave (42) prilagojen za napoved razvoja višine nivoja gladine hladila v omenjenem sistemu za izrabljeno gorivo (10) in/ali za napoved razvoja hitrosti doze v bližini omenjenega bazena, ki temelji na spremljanju meritev puščanja hladila iz sistema za izrabljeno gorivo in spremljanju meritev hitrosti doze v bližini omenjenega bazena.Apparatus according to claim 12, characterized in that the measuring assembly of the device further comprises a radiation dose rate meter (38) located near said spent fuel pool (12) and said meter (38) adapted to measure ionizing radiation in the vicinity of said spent fuel pool (10), wherein the computational assembly of the device (42) is adapted to predict the development of the level of coolant level in said spent fuel system (10) and / or to predict the development of dose rate near said pool, based on monitoring the measurements of refrigerant leakage from the spent fuel system and monitoring the dose rate measurements near said pool. 14) Naprava po zahtevku 12 ali 13, označena s tem, da je merilni sklop naprave nadalje prilagojen za spremljanje merjenih veličin dotoka svežega hladila (34) v sistem (10) in/ali temperature omenjenega hladila (36) in/ali višine gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali temperature (30) omenjenega hladila (16) v omenjenem sistemu (10) in je omenjeni računski sklop naprave (42) prirejen za napoved razvoja višine nivoja gladine hladila v bazenu za izrabljeno gorivo (12), ki temelji na osnovi izmerjenih/izračunanih vrednosti toplotnih izgub sistema in toplotnega toka zaostale toplote goriva v bazenu in/ali na dotoku svežega hladila v sistem (10) in/ali na temperaturi svežega hladila in/ali na nivoju hladilne tekočine v omenjenem sistemu (10) in/ali na omenjeni temperaturi omenjenega hladilnega sredstva (16) v omenjenem sistemu (10).Apparatus according to claim 12 or 13, characterized in that the measuring assembly of the device is further adapted to monitor the measured quantities of fresh coolant (34) flow into the system (10) and / or the temperature of said coolant (36) and / or the height ( 28) the coolant in the spent fuel pool (12) and / or temperature (30) of said coolant (16) in said system (10) and said computational assembly of the device (42) adapted to predict the development of the level of coolant level in the spent fuel pool fuel (12) based on the measured / calculated values of the heat losses of the system and the heat flow of the residual heat of the pool fuel and / or the fresh coolant flow into the system (10) and / or the coolant temperature and / or coolant level in said system (10) and / or at said temperature of said refrigerant (16) in said system (10). • ·• · 15) Naprava po kateremkoli od zahtevkov od 12 do 14, označena s tem, da je merilni sklop naprave prirejen za merjenje seizmičnih aktivnosti v bližini strukture sistema za izrabljeno gorivo (10) in/ali za merjenje naklona omenjene strukture sistema za izrabljeno gorivo (10 ), in je omenjeni računski sklop (42) naprave prirejen za napoved razvoja višine nivoja gladine hladilne vode v omenjenem sistemu (10), ki temelji na izmerjeni seizmični aktivnosti in/ali na omenjenem naklonu omenjene strukture sistema (10).Apparatus according to any one of claims 12 to 14, characterized in that the measuring assembly of the device is adapted for measuring seismic activities near the structure of the spent fuel system (10) and / or for measuring the slope of said spent fuel system structure (10) ), and said computational assembly (42) of the apparatus being adapted to predict the development of the cooling water surface level in said system (10) based on the measured seismic activity and / or on said slope of said system structure (10). 16) Naprava po kateremkoli od zahtevkov od 12 do 15, označena s tem, da je merilni sklop naprave prirejen za merjenje seizmične aktivnosti (40) strukture sistema za izrabljeno gorivo (10) in/ali merjenje naklona omenjene strukture sistema (10) in je računski sklop (42) naprave prirejen za izvedbo karakterizacije izrednega dogodka, ki temelji na spremljanju merjenih vrednosti puščanja hladila iz sistema in/ali spremljanju omenjene seizmične aktivnosti in/ali merjenju naklona omenjene strukture sistema (10) in znani geometriji omenjenega sistema.Device according to any one of claims 12 to 15, characterized in that the measuring assembly of the device is adapted for measuring the seismic activity (40) of the structure of the spent fuel system (10) and / or measuring the slope of said structure of the system (10) and a computational assembly (42) of an apparatus adapted to perform an emergency characterization based on monitoring the measured values of coolant leakage from the system and / or monitoring said seismic activity and / or measuring the slope of said system structure (10) and the known geometry of said system. 17) Naprava po zahtevku 16, označena s tem, da računski sklop naprave (42) omogoča karakterizacijo poškodbe ovoja sistema oziroma izračun velikosti in lokacijo poškodbe ovoja (22) v sistemu za izrabljeno gorivo (10) in, ki temelji na spremljanju merjenih vrednosti puščanja hladila iz omenjenega sistema ter karakterizacije izrednega dogodka.Device according to claim 16, characterized in that the computational assembly of the device (42) enables the characterization of the system envelope damage or the calculation of the size and location of the envelope damage (22) in the spent fuel system (10) and based on monitoring of measured leakage values refrigerants from said system and emergency characterization. 18) Naprava po zahtevku 17, označena s tem, da je merilni sklop naprave prilagojena za kontinuirano spremljanja merjenih veličin dotoka svežega hladila (34) v sistem (10) in/ali temperature omenjenega hladila (36) in/ali višine gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali temperature (30) omenjenega hladila (16) v omenjenem sistemu (10), in pri čemer računski sklop (42) naprave omogoča izračun velikosti in lokacije omenjene poškodbe ovoja (22), ki temelji na osnovi omenjenega spremljanja merjenih vrednosti puščanja hladila iz omenjenega sistema, spremljanja zaostale toplotne moči in toplotnih izgub, spremljanja merjenih veličin dotoka svežega hladila (34) v sistem (10) in/ali temperature omenjenega hladila (36) in/ali višine gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali temperature (30) omenjenega hladila (16) v omenjenem sistemu (10).Device according to claim 17, characterized in that the measuring assembly of the device is adapted for continuous monitoring of the measured quantities of fresh coolant flow (34) into the system (10) and / or temperature of said coolant (36) and / or surface height (28). refrigerants in the spent fuel pool (12) and / or temperatures (30) of said coolant (16) in said system (10), and wherein the computational assembly (42) of the apparatus enables the calculation of the size and location of said damage to the wrapper (22) is based on said monitoring of measured values of coolant leakage from said system, monitoring of residual heat output and heat losses, monitoring measured values of fresh coolant flow (34) to the system (10) and / or temperature of said coolant (36) and / or surface height ( 28) refrigerants in the spent fuel pool (12) and / or temperatures (30) of said coolant (16) in said system (10). 19) Naprava po zahtevku 17 ali 18, označena s tem, da je računski sklop (42) naprave prirejen za napoved razvoja višine nivoja gladine hladila v omenjenem sistemu (10) in, ki temelji na karakterizaciji izrednega dogodka in/ali spremljanju zaostale toplotne moči in toplotnih izgub in/ali na osnovi omenjene karakterizacije poškodbe ovoja, torej na osnovi izračunanih velikosti in lokacije omenjene poškodbe ovoja (22).Apparatus according to claim 17 or 18, characterized in that the computational assembly (42) of the device is adapted for predicting the development of the level of coolant level in said system (10) and based on the characterization of an emergency and / or monitoring of residual heat output and heat losses and / or on the basis of said characterization of the sheath damage, i.e. based on the calculated sizes and location of said sheath damage (22). • · • ·• · · · 29 ..... *29 ..... * 20) Naprava po kateremkoli od zahtevkov od 12 do 19, označena s tem, da je računski sklop naprave (42) prilagojen za izračun ocene uparjanja hladila iz omenjenega sistema, pri čemer ocena intenzitete uparjanja temelji na osnovi omenjenega spremljanja merjenih vrednosti puščanja in dotoka svežega hladila (34) v sistem za izrabljeno gorivo (10) in/ali na temperaturi omenjenega hladila (36) in/ali na višini gladine (28) hladila v bazenu (12) za izrabljeno gorivo in/ali na temperaturi (30) omenjenega hladila (16) v omenjenem sistemu (10) ter na izmerjeni/izračunani zaostali toplotni moči gorivnih elementov (14) in na toplotnih izgubah sistema (10).Apparatus according to any one of claims 12 to 19, characterized in that the computational assembly of the appliance (42) is adapted to calculate an estimate of the evaporation of the coolant from said system, the estimation of the intensification of the evaporation based on said monitoring of the measured leakage values and the fresh inflow. coolant (34) to the spent fuel system (10) and / or at the temperature of said coolant (36) and / or at the level of surface (28) of the coolant in the spent fuel pool (12) and / or at temperature (30) of said coolant (16) in said system (10) and on the measured / calculated residual thermal power of the fuel elements (14) and the heat losses of the system (10). 21) Naprava po zahtevku 12 do 20, označena s tem, da računalniški program vključuje računalniško berljiva navodila in izvaja računske operacije na način, ki vključujejo in izvajajo metodo.21. The apparatus of claim 12 to 20, characterized in that the computer program includes computer-readable instructions and performs computational operations in a manner that involves and executes the method.
SI201400371A 2014-06-04 2014-10-16 A method and a device for indirect characterization of the damage to the pool for spent nuclear fuel SI24756A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1409900.6A GB2530969B (en) 2014-06-04 2014-06-04 Method and apparatus for assessing the state of a spent-fuel facility

Publications (1)

Publication Number Publication Date
SI24756A true SI24756A (en) 2015-12-31

Family

ID=51214696

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201400371A SI24756A (en) 2014-06-04 2014-10-16 A method and a device for indirect characterization of the damage to the pool for spent nuclear fuel

Country Status (2)

Country Link
GB (1) GB2530969B (en)
SI (1) SI24756A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112052998B (en) * 2020-09-08 2023-04-07 三门核电有限公司 Spent fuel pool boiling time real-time prediction system and method
CN112652415B (en) * 2020-12-01 2022-10-21 中国辐射防护研究院 Post-processing plant emergency state grading determination method based on characteristic parameter analysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930640B1 (en) * 2008-04-29 2010-07-30 Electricite De France DEVICE FOR DETECTING AND MEASURING FLOW RATE OF A BASIN CONTAINING A LIQUID
JP6071381B2 (en) * 2012-09-26 2017-02-01 三菱重工業株式会社 How to place fuel in a nuclear fuel storage pool

Also Published As

Publication number Publication date
GB2530969A (en) 2016-04-13
GB201409900D0 (en) 2014-07-16
GB2530969B (en) 2020-04-08

Similar Documents

Publication Publication Date Title
Mazumder et al. Reliability analysis of water distribution systems using physical probabilistic pipe failure method
EP3568682B1 (en) Systems and methods for subnetwork hydraulic modeling
ES2336904T3 (en) METHOD TO EVALUATE THE INTEGRITY OF A STRUCTURE.
JP5756767B2 (en) Water leak detection device
US9037422B2 (en) Leak detection in fluid conducting conduit
Wong et al. An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I= generalisation
US20160290974A1 (en) Determination of pipe wall failure based on minimum pipe wall thickness
US20140305201A1 (en) Electronic liquid level sensing device and gauge for liquid-immersed power transformers, reactors and similar equipment
JP2017075949A (en) Gas leak detection method, device and program of radioactive substance sealed container
CN105070332A (en) Monitoring system for preventing leakage of main steam pipeline in nuclear power plant
Noor et al. Deterministic prediction of corroding pipeline remaining strength in marine environment using DNV RP–F101 (Part A)
EP3521789A1 (en) System for monitoring leaks of liquid from a spent fuel pool
SI24756A (en) A method and a device for indirect characterization of the damage to the pool for spent nuclear fuel
Howe et al. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1–Aluminum
Kurasov et al. Substantiation of methods of improving safety of pipeline gas transportation
US11415124B2 (en) Apparatus and method for detecting occurrence of cavitation
JP4753244B2 (en) Hydrogen filling method and hydrogen filling monitoring device for hydrogen storage container
MacDonald et al. DMA design and implementation, a North American context
JP2021071304A (en) Corrosion detection system
CN204926803U (en) Monitoring system that main steam pipe way leaked is prevented to nuclear power station
CN116702645A (en) Method and system for drawing up warning water level of medium-small river and readable storage medium
Wan et al. Investigating hydraulic operational schemes of a large-scale multi-lane lock group concerning water-level fluctuations in a branched approach channel system
JP2018128768A (en) Flood countermeasure support system and flood countermeasure support method
Alviansyah et al. Dynamic Rbi with Central Difference Method Approach in Calculation of Uniform Corrosion Rate: A Casestudy on Gas Pipelines
Yasseri et al. Remaining useful life (RUL) of corroding pipelines

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20160112

SP72 Change of data on inventor

Inventor name: LJUBO FABJAN; SI

Effective date: 20160425

Inventor name: LEON CIZELJ; SI

Effective date: 20160425

Inventor name: IZTOK TISELJ; SI

Effective date: 20160425

Inventor name: MATJAZ LESKOVAR; SI

Effective date: 20160425

Inventor name: MARKO MATKOVIC; SI

Effective date: 20160425

Inventor name: IVO KLJENAK; SI

Effective date: 20160425

Inventor name: ANDREJ PROSEK; SI

Effective date: 20160425