SI24520A - The device for measuring the incident direction of the gamma rays - Google Patents

The device for measuring the incident direction of the gamma rays Download PDF

Info

Publication number
SI24520A
SI24520A SI201300352A SI201300352A SI24520A SI 24520 A SI24520 A SI 24520A SI 201300352 A SI201300352 A SI 201300352A SI 201300352 A SI201300352 A SI 201300352A SI 24520 A SI24520 A SI 24520A
Authority
SI
Slovenia
Prior art keywords
geometric plane
gamma
incident
mentioned
exactly
Prior art date
Application number
SI201300352A
Other languages
Slovenian (sl)
Inventor
Toni PetroviÄŤ
MatjaĹľ Vencelj
Original Assignee
Toni PetroviÄŤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toni PetroviÄŤ filed Critical Toni PetroviÄŤ
Priority to SI201300352A priority Critical patent/SI24520A/en
Publication of SI24520A publication Critical patent/SI24520A/en

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Predstavljeni sta metoda in konkretna izvedba naprave za meritev vpadne smeri žarkov gama. Optimizirana oblika svinčenega križnega senčila, na katerega so pripeti štirje scintilacijski detektorji, dovoljuje enolično določitev vpadne smeri sevanja gama zgolj na osnovi primerjave števnih hitrosti z vseh štirih detektorjev. Pristop je posebno primeren za rabo v ročnem merilnem instrumentu za delo na terenu v scenariju iskanja izgubljenega vira radiacije.The method and the concrete implementation of the device for measuring the incident direction of the gamma rays are presented. The optimized shape of the lead cross-sight, to which four scintillation detectors are attached, allows a uniform determination of the incident direction of gamma radiation based solely on the comparison of the counting speeds from all four detectors. The approach is particularly suitable for use in a hand-held measuring instrument for field work in the scenario of searching for a lost source of radiation.

Description

NAPRAVA ZA MERJENJE VPADNE SMERI ŽARKOV GAMADEVICE FOR MEASURING THE DIRECT DIRECTION OF GAMES BEAMS

Izum spada v tehnično področje merjenja radiacije, konkretneje gre za merilnik vpadne smeri žarkov gama.The invention belongs to the technical field of radiation measurement, more specifically it is a gauge of the incident direction of gamma rays.

1. Prikaz tehničnega problema1. Demonstration of a technical problem

V nekaterih industrijskih procesnih kontrolnih metodah (debelina nasutja, gostota suspenzij, kontrola zvarov, merilniki nivoja v vsebnikih), v medicini (pri slikovno-diagnostičnih in radioterapevtskih napravah), pri nekaterih fizikalno-kemijskih analitskih metodah in pri radiacijskih sterilizacijskih napravah so v rabi viri sevanja žarkov gama z aktivnostmi do več Tbq (več bilijonov radioaktivnih razpadov na sekundo). Kadar iz tehničnih ali človeških razlogov pride do izgube tako močnih virov radiacije, predstavljajo slednji nevarnost za hude poškodbe oseb, ki se gibljejo v bližini neščitenega vira.In some industrial process control methods (bulk thickness, suspension density, weld control, level gauges in containers), medicine (imaging and radiotherapy devices), some physico-chemical analytical methods and radiation sterilization devices, sources are used. gamma rays with activities up to several Tbq (several trillion radioactive decays per second). When, for technical or human reasons, such a strong source of radiation is lost, the latter pose a risk of serious injury to persons moving near an unprotected source.

Pri iskanju izguljenega vira je detekcija splošne bližine vira razmeroma enostavna z merilniki za hitrost doze sevanja, kjer v smislu igre „vroče-mrzlo iz instrumenta dobimo informacijo o oddaljenosti od vira.When looking for a blank source, detecting the general proximity of a source is relatively easy with radiation dose rate gauges, where in the sense of the 'hot-cold' instrument, information is obtained about the distance from the source.

Zaplete se pri določanju mikrolokacije, ko je oseba, ki išče vir, lahko izpostavljena nevarno visokim hitrostim radiacijske doze, vira pa še ne vidi s prostim očesom. Navadno gre za to, da geometrija neposredne okolice (poraščen teren v naravnem okolju oz. z zidovi, pohištvom in predmeti omejeno urbano okolje) otežuje pogled proti viru in pogosto tudi nepredvidljivo delno senči radiacijo, kar oteži interpretacijo signala z instrumentov, ki merijo le dozno hitrost, neodvisno od vpadnega kota radiacije.It complicates the determination of the microlocation when the person seeking the source may be exposed to dangerously high radiation dose rates and cannot see the source with the naked eye. Usually, the geometry of the immediate surroundings (overgrown terrain in the natural environment, or with walls, furniture and objects limited urban environment) makes it difficult to look at the source and often also unpredictably partially obscures the radiation, making it difficult to interpret the signal from dose-only instruments. velocity independent of the angle of incidence of radiation.

Instrument, ki bi meril tudi (ali predvsem ali celo zgolj) vpadni • ·An instrument that would also measure (or, most of all, or even just) the intrusion • ·

-2kot radiacije, je v takih razmerah mnogo bolj uporaben, ker uporabniku pokaže smer, iz katere prihaja radiacija, pri tem pa ni bistveno občutljiv na delno senčenje zaradi predmetov v bližini. Terenske izkušnje kažejo, da je v tipičnem scenariju iskanja vira dosegljivo nekajkrat nižje dozno breme za operaterja, če pri določanju mikrolokacije pozna vpadno smer sevanja.In such circumstances, radiation is much more useful because it shows the user the direction from which radiation is coming, while not being significantly sensitive to partial shading due to nearby objects. Field experience shows that, in a typical source search scenario, several times the dose rate for the operator is achievable if he or she knows the downward direction of radiation when determining the microlocation.

2. Stanje tehnike2. State of the art

Med znanimi merilniki sevanja gama s poudarjeno kotno občutljivostjo prepoznamo nekaj poglavitnih izvedbenih konceptov.Among the known gamma rays with pronounced angular sensitivity, we recognize some key implementation concepts.

Prvi koncept je kolimacijski in deluje tako, da je merilnik sevanja bodisi vložen v tulec iz absorptivnega materiala ali pa ima ob eni od mejnih ploskev pritrjeno absorptivno satje, kar omejuje občutljivost na vpad iz večjega dela prostorskega kota, razen za izbrano vpadno smer [US3011057, US3936646, US5021667, EP0090594A1, EP0212416A1, US 5448073 Α]. V aktualnem scenariju je slabost teh pristopov v tem, da je bilo potrebno takšno napravo obračati v različne smeri prostora in pri tem opazovati, pri kateri orientaciji naprave je signal naj večji. Iz slednjega lahko v grobem sklepamo na smer, iz katere od prihaja radiacija.The first concept is collimating and operates in such a way that the radiation meter is either inserted into a sleeve of absorbent material or has an absorbent honeycomb attached to one of the boundary surfaces, which limits the sensitivity to incidence from a large part of the spatial angle, except for the selected incident direction [US3011057, US3936646, US5021667, EP0090594A1, EP0212416A1, US 5448073 A]. In the current scenario, the disadvantage of these approaches is that such a device had to be rotated in different directions of the room, observing at which orientation of the device the signal was greatest. From the latter, we can roughly deduce the direction from which radiation is coming.

Druga skupina pristopov so t.i. comptonske kamere [US4857737, US5175434], ki temeljijo na večkratnem sipanju žarka gama in z računskimi metodami [US5841141, US5861627] iz velikega števila izmerjenih detekcij rekunstruiraj o vpadno smer sevanja. Navadno je potrebna težja konstrukcija, manj primerna za vgradnjo v ročni instrument za rabo na terenu, nujna je tudi meritev v sipanju odložene energije žarka gama, kar poveča zahteve pri verigi za zajem signala.The second group of approaches are i.e. Compton cameras [US4857737, US5175434], based on multiple gamma ray scattering and using the computational methods [US5841141, US5861627], reconstruct the western direction of radiation from a large number of measured detections. Typically, a heavier construction is required, less suitable for installation in a hand held field instrument, and measurement of the deposited energy of the gamma ray beam is required, which increases the requirements for the signal acquisition chain.

Tretji pristop so izpeljanke na temo kamere z luknjico ali več luknjicami in s krajevno občutljivim ploskim detektorjem [US8389943 B2, US6628984 Β2], ki trpijo za slabim detekcijskim izkoristkom in razmeroma zapleteno elektroniko za zajem signala. Posebni primer so teleskopski sistemi s prostorsko kodirano • · · • · · · ·A third approach is a one-shot or multi-hole camera derivative with a locally sensitive flat-panel detector [US8389943 B2, US6628984 Β2], which suffer from poor detection efficiency and relatively complex signal capture electronics. A special example is space-encoded telescopic systems • · · • · · · ·

-3zaslonko [EP 0920643 Β1], ki izboljšajo detekcijski izkoristek, še vedno pa potrebujejo prostorsko ločljiv detektorski element in skrbno analogno obdelavo signala.-3Shield [EP 0920643 lon1] which improve detection efficiency but still require a spatially resolved detector element and careful analog signal processing.

Naša predlagana rešitev gre v smer majhnega števila senzorjev s preprostimi zahtevami za zajem signala, kar je moč doseči na račun inovativne geometrije senzorskega dela.Our proposed solution goes towards a small number of sensors with simple signal capture requirements, which can be achieved at the expense of innovative sensor geometry.

3. Opis rešitve problema z izvedbenim primerom3. Description of the solution to the problem with the implementation example

Senzorski del naprave je načelno zasnovan na geometriji, kot je razvidna s slike 1.The sensor part of the device is, in principle, based on geometry, as shown in Figure 1.

Iskani radiacijski vir 1 seva žarke gama 2, od katerih nekateri dosežejo občutljivi detekcijski del 3 predmeta tega izuma. Slednji detekcijski del je sestavljen iz vsaj štirih neodvisnih detektorskih elementov 4 za žarke gama in lahko še iz dodatnega pasivnega senčila 5.Geometrija sistema je zasnovana tako, da za poljubno vpadno smer žarkov gama 2 slednji osvetljujejo od dva do štiri detektorske elemente obenem. To je doseženo s senzorskim delom 3, ki je oblikovan tako, da ga ga sekajo prva, druga in tretja geometrijska ravnina, ki so med seboj pravokotne, in sta dva od detekcijskih elementov 4 v celoti na eni strani prve geometrijske ravnine, preostala dva pa na drugi strani. Obenem je en detekcijski element od omenjenih na eni strani druge geometrijske ravnine in eden na drugi strani druge geometrijske ravnine. Obenem je tudi en detekcijski element na eni strani tretje geometrijske ravnine in en detekcijski element na njeni drugi strani. Pasivno senčilo 5 pa sestavlja predvsem plošča s po enim grebenastim izrastkom na vsaki od obeh večjih mejnih ploskev.The sought radiation source 1 is a strain of gamma rays 2, some of which reach the sensitive detection portion 3 of the object of the present invention. The latter detection part is composed of at least four independent gamma ray detector elements 4 and may further have an additional passive shade 5. The system geometry is designed to illuminate from two to four detector elements simultaneously for any incident direction of the gamma 2 rays. This is achieved by means of a sensor part 3, which is formed by intersection of the first, second and third geometric planes, which are perpendicular to each other, and two of the detection elements 4 are entirely on one side of the first geometric plane and the remaining two on the other hand. At the same time there is one detection element from the one mentioned on one side of the other geometric plane and one on the other side of the other geometric plane. At the same time there is one detection element on one side of the third geometric plane and one detection element on its other side. The passive shade 5 consists mainly of a panel with one ridge outgrowth on each of the two major boundary surfaces.

Ker so ti elementi 4, odvisno od vpadnega kota, različno osenčeni za vpadne žarke (vsakega od njih lahko senčijo ostali detekcijski elementi 4 in pasivno senčilo 5), lahko iz individualnih signalov z detekcijskih elementov enolično sklepamo na smer, iz katere vpada sevanje 2, saj v enakem časovnem intervalu več žarkov gama 2 detektiramo v bolj osvetljenih elementih.Električni signali s vseh • · · · ·Since these elements 4, depending on the incident angle, are differently shaded by the incident rays (each of them can be shadowed by the other detection elements 4 and the passive shading 5), we can uniquely deduce from the individual signals from the detection elements the direction from which radiation 2 falls, since at the same time interval more gamma 2 beams are detected in more illuminated elements.Electric signals from all • · · · ·

-4detekcijskih elementov so zajeti in obdelani v procesnem delu 6, kjer sledi preračun merjenih količin v oceno vpadnega kota sevanja. Slednji kot je geometrijsko nazorno prikazan na zaslonu 7, kjer horizontalna in vertikalna lega izrisane značke predstavljata azimutalni in elevacijski parameter vpadne smeri.-4Detection elements are captured and processed in process part 6, followed by the conversion of the measured quantities into the estimate of the incident angle of radiation. The latter angle is shown geometrically on screen 7, where the horizontal and vertical positions of the drawn badges represent the azimuthal and elevation parameters of the incident direction.

Z namenom jasnejše percepcije s strani uporabnika je v nekaterih izvedbenih primerih časovno poprečevanje vpadne smeri žarkov gama 2 primerno realizirati v procesni enoti 6 tako, da se povprečevalni čas dinamično prilagaja glede na statistično negotovost signala in je pri tem povprečevalna utež izračunana iz števnih hitrosti posamičnih detekcijskih elementov.For the sake of clearer user perception, in some embodiments, the timing of the incident beam direction of gamma 2 can be conveniently realized in processing unit 6 so that the averaging time is dynamically adjusted with respect to the statistical uncertainty of the signal and the average weighting is calculated from the counting speeds of the individual detection elements.

Iz konstrukcijskih razlogov je posebno primeren izvedbeni primer s kombinacijo štirih nehigroskopičnih trdnih scintilacijskih detektorjev, sklopljenih s polvodniškimi optoelektričnimi pretvorniki, in pasivnega senčila iz gostega materiala, denimo iz svinca. Za osnovno določitev kota zadošča meritev in primerjava števnih hitrosti v vsakem od detekcijskih elementov, ki je opravljena v vgrajeni elektroniki 6 in procesnem delu.For design reasons, an embodiment is particularly suitable with the combination of four non-hygroscopic solid scintillation detectors coupled to semiconductor optoelectric converters and a passive shading of dense material such as lead. For the basic determination of the angle, it is sufficient to measure and compare the count velocities in each of the detection elements, which is performed in the integrated electronics 6 and the process part.

Claims (4)

1. Detektorski sklop za merjenje vpadne smeri žarkov gama, značilen po tem, da • vključuje štiri detekcijske elemente (4) za žarke gama (A gamma ray incident beam detector assembly, characterized in that it • includes four gamma ray detector elements (4) (4). 2) in poleg teh še pasivno senčilo (5), ki, odvisno od vpadne smeri omenjenih žarkov gama, do različne mere senči vpad omenjenih žarkov gama na omenjene detektorske elemente, • ga sekajo prva, druga in tretja geometrijska ravnina, ki so paroma pravokotne, • sta dva od že omenjenih detekcijskih elementov v celoti na eni strani prve geometrijske ravnine, preostala dva od detekcijskih elementov pa v celoti na drugi strani prve geometrijske ravnine, • je natanko en detekcijski element od omenjenih v celoti na eni strani druge geometrijske ravnine in natanko en detekcijski element od omenjenih v celoti na drugi strani druge geometrijske ravnine, • je natanko en detekcijski element od omenjenih v celoti na eni strani tretje geometrijske ravnine in natanko en detekcijski element od omenjenih v celoti na drugi strani tretje geometrijske ravnine, • omenjeno pasivno senčilo (5) obsega ploščo, ki leži tako, da jo prva geometrijska ravnina deli na dve tanjši plošči, in ima plošča dva grebenasta izrastka, od katerih je eden na prvi strani prve geometrijske ravnine in ga druga geometrijska ravnina deli na dva ožja grebena ter je drugi izrastek na drugi strani prve geometrijske ravnine in ga tretja geometrijska ravnina deli na dva ožja grebena.2) and, in addition, a passive shade (5) which, depending on the incident direction of said gamma rays, shades to a certain extent the incident of said gamma rays on said detector elements, • intersected by the first, second and third geometric planes, which are perpendicular to the pair , • two of the above-mentioned detection elements are entirely on one side of the first geometric plane, and the remaining two of the detection elements are entirely on the other side of the first geometric plane, • exactly one detection element of the ones mentioned is completely on one side of the second geometric plane, and exactly one detection element from those mentioned entirely on the other side of the second geometric plane, • exactly one detection element from the mentioned ones completely on one side of the third geometric plane and exactly one detection element from the mentioned ones completely on the other side of the third geometric plane, • mentioned passively the shade (5) comprises a panel lying such that the first geometric plane divides it into two thin plates and having plate two ridges, one of which is on the first side of the first geometric plane and divided by the second geometric plane into two narrower ridges and the second outgrowth on the other side of the first geometric plane and divided by the third geometric plane into two narrower ridges. • · · · ·• · · · · -62. Naprava, ki vsebuje detektorski sklop po zahtevku 1, značilna po tem, da v vgrajeni elektronski procesni enoti (6) z računsko primerjavo signalov iz omenjenih detekcijskih elementov (4) določi vpadno smer žarkov gama (2).-62. An apparatus comprising a detector assembly according to claim 1, characterized in that, in a built-in electronic processing unit (6), the incident direction of the gamma rays (2) is determined by computational comparison of the signals from said detection elements (4). 3. Naprava po zahtevku 2, značilna po tem, da pri izračunu vpadne smeri žarkov gama (2) časovno povprečuje oceno vpadne smeri žarkov tako, da prilagaja povprečevalno utež glede na statistično negotovost signala in je utež izračunana iz števnih hitrosti posamičnih detekcijskih elementov.Apparatus according to claim 2, characterized in that, in calculating the incident beam direction, the gamma (2) averages the estimate of the incident beam direction by adjusting the average weight with respect to the statistical uncertainty of the signal and the weight calculated from the counting speeds of the individual detection elements. 4. Naprava po zahtevku 2, značilna po tem, da ocenjeni azimutalni in elevacijski kot vpadnih žarkov gama v realnem času predstavi kot horizontalno in vertikalno lego prikazane značke na grafičnem zaslonu (7).Apparatus according to claim 2, characterized in that the estimated azimuthal and elevation angle of the incident beams presents the gamma in the horizontal and vertical position of the displayed badges on the graphical screen (7).
SI201300352A 2013-10-23 2013-10-23 The device for measuring the incident direction of the gamma rays SI24520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201300352A SI24520A (en) 2013-10-23 2013-10-23 The device for measuring the incident direction of the gamma rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201300352A SI24520A (en) 2013-10-23 2013-10-23 The device for measuring the incident direction of the gamma rays

Publications (1)

Publication Number Publication Date
SI24520A true SI24520A (en) 2015-04-30

Family

ID=52998321

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201300352A SI24520A (en) 2013-10-23 2013-10-23 The device for measuring the incident direction of the gamma rays

Country Status (1)

Country Link
SI (1) SI24520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191161B1 (en) 2017-03-30 2019-01-29 Consolidated Nuclear Security, LLC Device and method for the location and identification of a radiation source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191161B1 (en) 2017-03-30 2019-01-29 Consolidated Nuclear Security, LLC Device and method for the location and identification of a radiation source

Similar Documents

Publication Publication Date Title
US10838085B2 (en) Compact directional radiation detector system
JP4679570B2 (en) Gamma ray detector and method for detecting the location of energetic particle interactions within the detector
CN103954988A (en) Space particle detector and data collecting and processing method thereof
US20040037394A1 (en) Radiation source position detection method, radiation source position detection system and radiation source position detection probe
EP3380875B1 (en) Apparatus and method for the non-invasive inspection of solid bodies via muon imaging
WO2010059784A2 (en) Methods and system for calibrating and correcting a detection system
AU2014372312B2 (en) Radiation detection apparatus and method
WO2020005142A1 (en) Radiation detecting system and method
JP2015187567A5 (en)
JP2019502900A5 (en)
EP3163326B1 (en) Detector for compton camera and compton camera
Sudarkin et al. High-energy radiation visualizer (HERV): A new system for imaging in X-ray and gamma-ray emission regions
US9568612B1 (en) 3D image generation with position-sensing gamma probe
JP6696529B2 (en) Air dose rate measuring method and directional radiation detector
SI24520A (en) The device for measuring the incident direction of the gamma rays
KR20210004119A (en) Device measuring radiation and method of measuring radioactive contamination using the same
US9645254B2 (en) Dose distribution measuring device
US20200037635A1 (en) Shieldless Detector With One-Dimensional Directionality
JP2015141158A5 (en)
JP5643864B2 (en) Radiation measurement apparatus and radiation measurement program
RU2386146C1 (en) Device with spherical field of view for searching for photon sources
US20220244409A1 (en) Personal wearable dosimeter for neutrons
JP7140658B2 (en) Radiation measuring device and radiation measuring method
US10444385B1 (en) Shieldless detector with one-dimensional directionality
RU2579799C1 (en) DEVICE FOR DETERMINING DIRECTION OF GAMMA RADIATION SOURCE ON TWO COORDINATES IN SOLID ANGLE OF 2π STERADIAN

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20150513

SP72 Change of data on inventor

Inventor name: PETROVIC TONI; SI

Effective date: 20151110