SI24502A - The manufacturing process of the models for windmill wings - Google Patents

The manufacturing process of the models for windmill wings Download PDF

Info

Publication number
SI24502A
SI24502A SI201300340A SI201300340A SI24502A SI 24502 A SI24502 A SI 24502A SI 201300340 A SI201300340 A SI 201300340A SI 201300340 A SI201300340 A SI 201300340A SI 24502 A SI24502 A SI 24502A
Authority
SI
Slovenia
Prior art keywords
model
layer
paste
infusion
epoxy
Prior art date
Application number
SI201300340A
Other languages
Slovenian (sl)
Inventor
Roman Kogoj
Original Assignee
Seaway Yachts, D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seaway Yachts, D.O.O. filed Critical Seaway Yachts, D.O.O.
Priority to SI201300340A priority Critical patent/SI24502A/en
Priority to PCT/SI2013/000063 priority patent/WO2015057174A1/en
Publication of SI24502A publication Critical patent/SI24502A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • B29C33/3892Preparation of the model, e.g. by assembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/545Perforating, cutting or machining during or after moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/757Moulds, cores, dies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Predloženi izum se nanaša na izdelavo modelov za krila vetrnice za vetrne elektrarne. Postopek obsega 3D računalniško modeliranje designa modela krila vetrnice, pripravo nosilne konstrukcije in izgradnjo jeklenega nosilnega podstavka, izdelavo lesenega ogrodja iz lesnih reber, ki se pritrdijo na nosilno konstrukcijo in je položaj vsakega posameznega rebra točno določen glede na x,y,z koordinate in se rebra pokrije z lesenimi deščicami, da se model popolnoma zapre, mokro laminacijo s plastimi steklenihvlaken, ki se jih prepoji z epoksi smolo, pri čemer se na vrhnji sloj položi plast abrajze, suho laminacijo z infuzijo, ki vključuje nanos plasti balse in plasti steklenih vlaken prepojenih s smolo, pri čemer se za prepajanje s smolo uporabi infuzija, polaganje epoksidne paste, temperaturno obdelavo modela, grobo in fino frezanje epoksidne paste s CNC strojem s pozitivno kompenzacijo za dosego končne 3D površino z ustrezno natančnostjo, pregled in popravilo napak v površini, lasersko meritev površine,zaključevanje in glajenje površine in vakuumski test za ugotavljanje ali model na kakem mestu prepušča zrak.The present invention relates to the production of wind turbine windscreens for wind farms. The process involves 3D computer modeling of the designa model of the wing wing, preparation of the supporting structure and construction of the steel support base, the production of a wooden frame made of wood ribs, which are attached to the supporting structure and the position of each individual rib is precisely determined with respect to x, y, with the coordinates the rib covers with wooden plies to completely close the model, the wet lamination with layers of glass fibers, coated with an epoxy resin, with a layer of abrasive deposited on the top layer, dry lamination with an infusion, which involves the application of a layer of balsa and a layer of glass fibers coating with epoxy paste, temperature treatment of the model, coarse and fine milling of epoxy paste with CNC machine with positive compensation for achieving the final 3D surface with adequate accuracy, inspection and repair of surface defects, laser surface measurement, finishing and surface smoothing and vacuum test for determining or model in which place it leaves the air.

Description

Predmet izumaThe subject of the invention

Predmet izuma je postopek izdelave modela za krilo vetrnice, v nadaljevanju vetrnica, pri vetrnih elektrarnah. Na podlagi modela se nato izdela kalup za masovno proizvodnjo vetrnic.The object of the invention is a method of manufacturing a model for a wing of a windmill, hereinafter referred to as a windmill, at wind farms. The mold is then made for mass production of windmills.

Tehnični problemA technical problem

Osrednji tehnični problem je, kako tehnološko izdelati model vetrnice, ki bi zagotavljal ustrezno natančnost glede na računalniško 3D geometrijo. Dopustno tolerančno odstopanje je običajno reda 0,5mm pri modelih, ki so daljši kot 20m. Model mora biti izdelan na tak način, da se toleranca med uporabo modela, t.j. pri izdelavi kalupa na podlagi modela, ne poslabšuje. Izbrani materiali in konstrukcija morajo izkazovati zadostno mero robustnosti, tudi zaradi velikih nateznih sil pri transportu in ostalih manipulacijah, hkrati pa morajo biti odporni na temperature, višje od 70°C. Te temperature se namreč sproščajo pri endotermnih procesih pri uporabi paste in smole pri izdelavi modela.A central technical problem is how to technologically design a windmill model that would provide adequate accuracy with respect to computer 3D geometry. The tolerance tolerance is typically of the order of 0.5mm for models longer than 20m. The model must be designed in such a way that tolerance while using the model, i.e. when making a mold based on a model, it does not deteriorate. The materials and construction chosen must exhibit a sufficient degree of robustness, also due to the high tensile forces during transport and other manipulations, and at the same time be resistant to temperatures higher than 70 ° C. These temperatures are released by endothermic processes in the use of paste and resin in the design of the model.

Znano stanje tehnikeThe prior art

Do uvedbe računalniškega 3D modeliranja so se uporabljale vetrnice različnih oblik, posebej značilno pa je bilo, da so bile vetrnice na koncu pravokotno odrezane. Tehnološko je bilo takšno obliko lažje proizvesti, vendar pa je bil končni izkoristek zato nižji od sodobnih modelov. Za samo izdelavo modela vetrnice so se uporabljali dražji in težji materiali, kot na primer les in kovina, ki jih ni bilo mogoče obdelati z natančnostjo, ki jo zahteva sodobna tehnologija.Until the introduction of computer 3D modeling, windmills of various shapes were used, and in particular, the windmills were cut off at right angles. Technologically, this design was easier to produce, but the final efficiency was therefore lower than modern models. Only the more expensive and heavier materials, such as wood and metal, were used to make the model of the windmill, which could not be machined with the precision required by modern technology.

S sodobnimi modeli za vetrnice, ki jih omogoča računalniško 3D modeliranje, je mogoče takšno načrtovanje oblike vetrnice, ki optimalno izkorišča gibanje vetra. Ustvarjene tlačne razlike in sile na ta način lahko bistveno povečajo izkoristek same vetrne elektrarne in s tem hitreje upravičijo naložbo v obliki povrnjene električne energije.With modern windmill models made possible by computer 3D modeling, it is possible to design such a windmill that optimizes the use of wind motion. The resulting pressure differentials and forces in this way can significantly increase the efficiency of the wind farm itself and thus more quickly justify the investment in the form of recovered electricity.

Rešitev tehničnega problemaThe solution to a technical problem

Navedeni tehnični problem je bil rešen s postopkom po izumu. Izdelava modela za vetrnico poteka v naslednjih korakih.Said technical problem has been solved by the process of the invention. The model for the windmill is made in the following steps.

3D računalniško modeliranje: pomeni računalniško zasnovo designa modela, ki temelji na numeričnem izračunu najboljšega izkoristka za končno vetrno elektrarno, postavljeno na specifični lokaciji. Prične se v konstrukciji, kjer se 3D geometrije računalniško izrišejo glede na teoretične simulacije vetrnih pogojev. Pri tem se definirajo efektivna površina vetrnice, pomožne prirobnice ter položaj nosilne konstrukcije. Pri večjih vetrnicah, daljših od 20 m, se modeli razkosajo na več krajših enot, ker je potrebno upoštevati logistične omejitve, na primer maksimalna dolžina transporta ter fizične omejitve orodij kot so freza, peč in delavnica.3D Computer Modeling: means the computer design of a design model based on a numerical calculation of the best efficiency for a final wind farm installed at a specific location. It begins in a construction where 3D geometries are computer-aided by theoretical simulations of wind conditions. The effective surface of the windmill, the auxiliary flanges and the position of the supporting structure are defined. For larger windmills longer than 20 m, the models are split into several smaller units, because logistical constraints, such as the maximum transport length and the physical limitations of tools such as a mill, stove and workshop, must be observed.

Izdelava nosilne konstrukcije: nosilna konstrukcija mora biti dovolj toga, da prenese ukrivljanje tako zaradi lastne teže, kot zaradi teže samega modela. Skupne teže lahko variirajo med 3-6 t pri manjših modelih in 6-12 t pri večjih modelih. Nosilna konstrukcija je sestavljena iz horizontalnih prečk, vertikalnih prečk, diagonalnih ojačitev, plošč za pritrditev in niveliranje podstavka, dvižnih rok in opcijsko iz stranskih nastavkov. Za izdelavo nosilne konstrukcijo se uporabljajo votli jekleni kvadratni ali pravokotni profili naslednjih dimenzij: 100/100/3 (100 mm χ 100 mm χ 3 mm debeline), 60/60/3, 50/50/2, 100/60/3 in 100/50/3: za horizontale 100/60/3 ali 100/50/3 pri večjih konstrukcijah, pri manjših in ožjih pa 60/60/3, za vertikale 60/60/3 pri večjih in 50/50/2 pri manjših konstrukcijah, za diagonalne ojačitve 50/50/2. Za plošče za pritrditve in niveliranje podstavka se uporabljajo aluminijaste plošče PL 50x200x12 mm s privarjeno matico M20. Plošče imajo izvrtine Φ17 za pritrditev v tla za nivelirni vijak M20xl00 z jeklenimi sidri M16xl50.Construction of the load-bearing structure: The load-bearing structure must be rigid enough to withstand the curvature, both on its own weight and on the weight of the model itself. The total weights can vary between 3-6 t for smaller models and 6-12 t for larger models. The supporting structure consists of horizontal bars, vertical bars, diagonal reinforcements, mounting and leveling plates of the base, lifting arms and, optionally, side extensions. Hollow steel square or rectangular profiles of the following dimensions are used to construct the load-bearing structure: 100/100/3 (100 mm χ 100 mm χ 3 mm thickness), 60/60/3, 50/50/2, 100/60/3 and 100/50/3: for horizontals 100/60/3 or 100/50/3 for larger structures, for smaller and narrower ones 60/60/3, for verticals 60/60/3 for larger and 50/50/2 at smaller structures, for diagonal reinforcements 50/50/2. PL 50x200x12 mm aluminum plates with welded nut M20 are used for the mounting and leveling plates. The panels have holes Φ17 for mounting to the floor for a M20xl00 leveling screw with M16xl50 steel anchors.

Z vidika preciznosti izdelave končnega modela je odločilno, da je podstavek po vsakem premikanju med različnimi fazami in orodji ustrezno pritrjen v tla ter vodoravno niveliran, kar je izvedeno z laserjem.From the point of view of precision of the final model, it is crucial that after each movement between the various phases and tools, the base is properly fixed to the ground and horizontally leveled, which is done with a laser.

Izdelava lesenega ogrodja: leseno ogrodje predstavlja prvi grobi približek končnemu modelu in predstavlja osnovo za nanos paste (fini model). Ogrodje se sestavi iz lesnih reber, ki se jih na podlagi računalniškega 3D modela precizno izrežejo na rezalni napravi. Rebra se z vijaki pritrdijo na nosilno konstrukcijo. Zelo pomembno je, da je položaj vsakega posameznega rebra točno določen glede na x,y,z koordinate, kar se sproti določa z laserjem. Rebra se na koncu pokrije z lesenimi deščicami in se na ta način model popolnoma zapre. Za rebra se uporabi lesne plošče tipa QSB debeline 22,5 mm zaradi večje nosilnosti. Za pokritje reber se uporabi nekoliko tanjše deske tipa QSB debeline 15 mm. Za povezovanje se uporabi ustrezno lepilo.Wooden frame construction: The wooden frame represents the first rough approximation to the final model and forms the basis for the paste application (fine model). The frame is made up of wood fins that are precisely cut on a cutting device based on a computer 3D model. The ribs are fixed to the supporting structure by screws. It is very important that the position of each individual rib is accurately determined with respect to x, y, from the coordinate, which is determined by the laser. The fins are eventually covered with wooden planks, thus completely closing the model. 22.5 mm thick QSB wood panels are used for the ribs for increased load capacity. Slightly thinner 15 mm QSB boards are used to cover the ribs. Appropriate adhesive is used for bonding.

Mokra laminacija: na leseno ogrodje se najprej položi dve plasti steklenih vlaken in se ju prepoji z epoksi smolo, ki je v ustreznem razmerju zmešana s trdilcem. Na vrhnji sloj steklenih vlaken se položi že plast abrajze (»peel ply«), ki se po laminiranju ali vakuumiranju preprosto odtrga/odstrani, tako da ostane fino hrapava površina za nadaljno obdelavo. Namen mokre laminacije je narediti vakumsko tesnost, to je preprečitev prehoda zraka iz lesenega ogrodja skozi to plast. Vakuumska tesnost se potrebuje kasneje pri izdelavi kalupa na podlagi tega modela - pri kalupu se uporablja postopek infuzije, ki ne bi funkcioniral, če model ne bi bil vakuumsko tesen. Po laminaciji je potrebno počakati vsaj 12 ur, preden se nadaljuje z naslednjo fazo.Wet lamination: Two layers of fiberglass are first laid on the wooden frame and impregnated with an epoxy resin mixed with the hardener in an appropriate ratio. A layer of abrasive ("peel ply") is already applied to the top layer of fiberglass, which is simply torn off / removed after laminating or vacuuming, leaving a finely rough surface for further processing. The purpose of wet lamination is to make vacuum tight, that is, to prevent the passage of air from the wood frame through this layer. Vacuum leakage is required later in making the mold based on this model - the mold uses an infusion process that would not work if the model were not vacuum tight. After lamination, wait at least 12 hours before proceeding to the next phase.

Suha laminacija z infuzijo: plast vlaken iz prejšnje faze je pretanka, da bi lahko vzdrževala stabilnost površine glede na geometrijski model. Zato se v površino vgradi plast balse debeline 19,5 mm, ki se jo prekrije z dvema plastema steklenih vlaken, kot na primer EQX 2400 in vse skupaj prepojimo s smolo, v ustreznem razmerju pomešano s trdilcem. Za prepajanje s smolo se uporabi infuzijo. Model se za infuzijo pripravi tako, da se po zgornji (laminirani) površini razporedijo spiralne cevke. Na spiralne cevke so na lm razdaljah povezane vakuumske cevke, ki zagotavljajo dotok smole. Spiralne cevke, povezane z vakuumskimi, se speljejo tudi ob boku modela, s tem da je njihova funkcija izsesavanje zraka s pomočjo vakuumske črpalke. Celoten model se za ta namen prekrije z vakuumsko vrečo in se jo neprodušno zalepi na model. Ob ustvarjanju podtlaka tako smola samodejno pronica skozi položeno balso ter vlakna EQX in na ta način ustvari kvaliteten laminat. V primeru, da vakuumsko tesnenje ni ustrezno izvedeno, se lahko v laminatu pojavijo zračni žepi, ki poslabšajo njegove mehanske lastnosti. Po infuziji je potrebno počakati vsaj 12 ur, preden se nadaljuje z naslednjo fazo.Dry infusion lamination: The fiber layer from the previous phase is too thin to maintain surface stability according to the geometric model. Therefore, a 19.5 mm thick balsamic layer is embedded in the surface, covered with two layers of fiberglass, such as the EQX 2400, and all coated with resin mixed in the appropriate ratio with the hardener. The infusion resin is used for infusion. The model is prepared for infusion by distributing helical tubes over the upper (laminated) surface. Vacuum tubes are connected to the helical tubes at distances of lm to ensure resin flow. Vacuum-connected helical tubes also run along the side of the model, with the function of sucking air through a vacuum pump. For this purpose, the entire model is covered with a vacuum bag and sealed tightly to the model. When the pressure is created, the resin automatically penetrates the laid balsa and EQX fibers, thus creating a quality laminate. In the event that vacuum sealing is not properly performed, air pockets may appear in the laminate, which impair its mechanical properties. After infusion, wait at least 12 hours before proceeding to the next phase.

Polaganje paste: model se pred začetkom te faze znivelira. Epoxidna pasta, ki je pravzaprav kombinacija epoxy smole SC-175 ter epoxy trdilca SC-175 v razmerju 1:1, je material, ki ga je mogoče zelo elegantno oblikovati na natančne dimenzije. Pasto se na model nanese ročno ali strojno s CNC strojem - odvisno od geometrije samega modela. Običajno se večje površine nanaša strojno, zaradi večje hitrosti in natančnosti nanosa, detajle in robove pa potem ročno. Pri tem delovnem postopku je potrebno paziti, kako pasto nanašamo, da ni zračnih mehurjev, da paste ni preveč in da je vedno pravo razmerje med pasto in trdilcem. Pred nadaljno obdelavo je potrebno počakati vsaj 12 ur. Pri nanosu paste je zelo pomembna debelina sloja. Premajhna debelina, pod 4mm, lahko pomeni nevarnost, da se v naslednji fazi sfreza skozi pasto in poškoduje laminat. Prevelika debelina, večja od 30mm, povzroči, da se temperature znotraj paste dvignejo previsoko in poškodujejo model. Poleg tega debelejša pasta lahko pomeni tudi bistveno večji strošek. Kot optimalno se uporablja debelina nanosa med 8 in 20 mm.Paste Laying: The model goes numb before the start of this phase. The epoxy paste, which is actually a combination of the SC-175 epoxy resin and the SC-175 epoxy hardener in a 1: 1 ratio, is a material that can be very elegantly molded to precise dimensions. The paste is applied to the model by hand or machine with a CNC machine - depending on the geometry of the model itself. Typically, larger surfaces are machined, for greater speed and accuracy of application, and then the details and edges are then manually applied. In this working process, care must be taken when applying the paste, that there are no air bubbles, that the paste is not too large, and that there is always a proper relationship between the paste and the hardener. Wait at least 12 hours before further processing. The thickness of the layer is very important when applying the paste. Too low a thickness of less than 4mm can risk cutting through the paste in the next phase and damaging the laminate. Excessive thickness greater than 30mm causes the temperatures inside the paste to rise too high and damage the model. In addition, a thicker paste can also cost significantly more. An optimum thickness of 8 to 20 mm is used.

Temperaturna obdelava: model se v tej fazi postavi v peč in se ga znivelira. Peč ima možnost programske nastavitve delovne temperature. Model je potrebno izpostaviti temperaturi 80°C za 10 ur. V tem času in pri tej temperaturi se vsi materiali ustrezno utrdijo in stabilizirajo. Ko se bo na podlagi modela izdelal kalup, se bodo temperature namreč dvignile do 60-70°C, zato je potrebno model na te pogoje narediti neobčutljiv. Temperaturno segrevanje mora obvezno potekati postopoma, in sicer v časovnih korakih po 1 uro dvigujemo temperaturo po 10°C (začetna temperatura je 20-30°C), dokler se ne doseže maksimalne temperature 80°C, kjer se model pusti 10 ur. Nato sledi še faza ohlajanja - model se za 80 min izpostavi temperaturi 30°C. Avtomatsko regulirana peč ima svoj notranji senzor temperature. Inštalira se ga na model, skupaj s še dvema senzorjema, priključenima na računalnik, s katerima se grafično spremlja dogajanje v peči.Temperature treatment: At this stage, the model is placed in a furnace and it is worn out. The oven has the possibility of programmatically setting the operating temperature. The model should be exposed to 80 ° C for 10 hours. During this time and at this temperature, all materials are properly cured and stabilized. When a mold is made based on the model, temperatures will rise to 60-70 ° C, so the model must be insensitive to these conditions. The temperature warming must be carried out gradually, in steps of 1 hour, raising the temperature to 10 ° C (the initial temperature is 20-30 ° C) until the maximum temperature of 80 ° C is reached, where the model is left for 10 hours. The cooling phase then follows - the model is exposed to a temperature of 30 ° C for 80 minutes. The automatic controlled oven has its own internal temperature sensor. It is installed on the model, along with two other sensors connected to the computer, which graphically monitor the furnace.

Frezanje: model se postavi pod frezo in se ga znivelira. CAM oddelek pripravi 3D model za to orodje. Za obdelavo modelov se lahko uporabljajo 3, 4 ali 5 - osne operacije. Model se freza s pozitivno kompenzacijo. Pri izdelavi programov je potrebno paziti, da je orodje odmaknjeno od površine. Pri tem mora biti operater pozoren na premike stroja in na samo frezanje površine. Napaka naprave mora biti nižja od zahtevanih toleranc, in sicer pri vetrnicah pod 0,5 mm. Najprej se pasta sfreza na grobo. Ko je to zaključeno, se preveri, če je bilo paste kje premalo nanešeno in se to popravi. Popravlja se lahko z epoksidno pasto, ali pa z epoksidnim kitom, ki ima hitrejši čas sušenja, vendar se uporablja le za manjše nepravilnosti. Ko se popravki primerno osušijo, se prične fino frezanje.Milling: The model is placed underneath the milling cutter and is rotten. The CAM department prepares a 3D model for this tool. 3, 4 or 5 axis operations may be used to process the models. The model is milled with positive compensation. When creating programs, care must be taken to keep the tool away from the surface. The operator must pay attention to the movement of the machine and to the milling of the surface itself. The device defect must be lower than the tolerances required, for windmills below 0.5 mm. First, the paste is cut into rough. When this is completed, it is checked that the paste has not been applied too much and corrected. It can be repaired with an epoxy paste, or with an epoxy putty that has a faster drying time but is only used for minor imperfections. When the patches are properly dried, fine milling begins.

Popravljanje površin: model se postavi v delavnico in znivelira. Po frezanju se na modelu lahko pojavijo razpoke ali vdrtine, ki jih je potrebno popraviti z ustreznim kitom. Običajno se uporablja Avvlfair D8200, skombiniran s konverterjem D7222. V tej fazi se preveri tudi, če so narejeni vsi markerji.Surface repair: The model is put into a workshop and sweaty. After milling, cracks or indentations may occur on the model and need to be repaired with a suitable putty. The Avvlfair D8200 combined with the D7222 converter is usually used. At this stage, it is also checked that all markers are made.

Lasersko premerjenje površin: površino modela se premeri z laserjem. Meritev se primerja z izvorno 3D shemo in se ugotavlja razlike. Odstopanja smejo biti največ ± 0,5 mm. Manjša odstopanja lahko popravimo v fazah zaključevanja in glajenja. V kolikor so ugotovljene razlike, se model vrne v fazo polaganje paste in proces se ponovi, dokler napake niso odpravljene.Laser surface measurement: The surface of the model is laser-measured. The measurement is compared with the original 3D scheme and differences are identified. The tolerances may not exceed ± 0,5 mm. Minor deviations can be corrected in the finishing and smoothing stages. If differences are found, the model returns to the paste laying phase and the process is repeated until the faults have been corrected.

Zaključevanje in glajenje površin: model se nato zbrusi, in sicer najprej z grobim brusnim papirjem granulacije 100. Nato se ga prelakira (za ta postopek uporabljamo Intertherm 228) in na koncu zbrusi še na fino s papirjem granulacije 320.Finishing and smoothing the surfaces: the model is then sanded, first with coarse sanding paper of granulation 100. It is then coated (for this procedure we use Intertherm 228) and finally sanded to a fine sand with granulation paper 320.

• «• «

Vakuumski test: to je končni in obvezni test, ki preveri, ali skozi površino modela kje pronica zrak. Če se to ugotovi, je potrebno take luknjice popraviti s kitom in ponovno zbrusiti. Vakuumski test se izvede tako, da se model prekrije z vakuumskimi vrečami in se jih ob strani neprodušno zalepi. S pomočjo vakumske črpalke se izsesa zrak in se zabeleži začetno vrednost tlaka ob času t = 0. Nato se pusti črpalko v delovajnu še nadaljnih 20 min, in v tem času tlak ne sme pasti za več kot 0,03 bar.Vacuum test: This is the final and mandatory test to check that air is passing through the surface of the model. If this is the case, such holes must be repaired with a putty and sanded again. The vacuum test shall be carried out by covering the model with vacuum bags and sealing them side-by-side. The vacuum pump draws in air and records the initial pressure value at time t = 0. The pump is then left in operation for a further 20 minutes, during which time the pressure should not drop by more than 0.03 bar.

Postopek po izumu je torej značilen po tem, da obsega: 3D računalniško modeliranje designa modela krila vetrnice, pripravo nosilne konstrukcije in izgradnjo jeklenega nosilnega podstavka, izdelavo lesenega ogrodja iz lesnih reber, ki se pritrdijo na nosilno konstrukcijo in je položaj vsakega posameznega rebra točno določen glede na χ,γ,ζ koordinate in se rebra pokrije z lesenimi deščicami, da se model popolnoma zapre, mokro laminacijo s plastimi steklenih vlaken, ki se jih prepoji z epoksi smolo, pri čemer se na vrhnji sloj položi plast abrajze, suho laminacijo z infuzijo, ki vključuje nanos plasti balse in plasti steklenih vlaken prepojenih s smolo, pri čemer se za prepajanje s smolo uporabi infuzija, polaganje epoxidne paste, temperaturno obdelavo modela, grobo in fino frezanje epoxidne paste s CNC strojem s pozitivno kompenzacijo za dosego končne 3D površine z ustrezno natančnostjo, pregled in popravilo napak v površini, lasersko meritev površine, zaključevanje in glajenje površine in vakuumski test za ugotavljanje ali model na kakem mestu prepušča zrak.The method according to the invention is characterized in that it comprises: 3D computer modeling of the design of the wing wing model, preparation of the load-bearing structure and construction of the steel load-bearing base, production of a wooden frame from the wood ribs that attach to the load-bearing structure and the position of each individual rib is precisely determined with respect to the χ, γ, ζ coordinates and the ribs are covered with wooden boards to completely close the model, wet lamination with layers of fiberglass impregnated with epoxy resin, with a layer of abrasive applied on the top layer, dry lamination with infusion involving the application of a resin layer of balsa and fiberglass layers, using infusion resin, epoxy paste deposition, model temperature treatment, coarse and fine milling of epoxy paste with a CNC machine with positive compensation to achieve the final 3D surface with proper accuracy, inspection and repair of surface defects, laser surface measurement, completion and surface smoothing and a vacuum test to determine whether the model is leaking air.

Claims (1)

Postopek izdelave modela za krilo vetrnice, označen s tem, da obsega:A process for making a model for a windmill wing, characterized in that it comprises: - 3D računalniško modeliranje designa modela krila vetrnice;- 3D computer modeling of design of windmill wing model; - pripravo nosilne konstrukcije in izgradnjo jeklenega nosilnega podstavka;- preparation of the load-bearing structure and construction of the steel load-bearing base; - izdelavo lesenega ogrodja iz lesnih reber, ki se pritrdijo na nosilno konstrukcijo in je položaj vsakega posameznega rebra točno določen glede na x,y,z koordinate in se rebra pokrije z lesenimi deščicami, da se model popolnoma zapre;- making a wooden frame from wood fins that attach to the supporting structure and the position of each individual rib is determined with respect to x, y, from the coordinates and the ribs are covered with wooden boards to completely close the model; - mokro laminacijo s plastimi steklenih vlaken, ki se jih prepoji z epoksi smolo, pri čemer se na vrhnji sloj položi plast abrajze;- wet lamination with layers of glass fiber, impregnated with epoxy resin, with a layer of abrasion applied to the top layer; - suho laminacijo z infuzijo, ki vključuje nanos plasti balse in plasti steklenih vlaken prepojenih s smolo, pri čemer se za prepajanje s smolo uporabi infuzija;- dry lamination by infusion, involving the application of a resin layer of balsa and fiberglass layers, using infusion for resin blending; - polaganje epoxidne paste;- laying of epoxy paste; - temperaturno obdelavo modela;- temperature treatment of the model; - grobo in fino frezanje epoxidne paste s CNC strojem s pozitivno kompenzacijo za dosego končne 3D površine z ustrezno natančnostjo;- coarse and fine milling of the epoxy paste with a CNC machine with positive compensation to achieve the final 3D surface with adequate precision; - pregled in popravilo napak v površini;- inspection and repair of surface defects; - laserska meritev površine- laser surface measurement - zaključevanje in glajenje površine;- finishing and smoothing the surface; - vakuumski test za ugotavljanje ali model na kakem mestu prepušča zrak.- Vacuum test to determine whether the model is leaking air.
SI201300340A 2013-10-17 2013-10-17 The manufacturing process of the models for windmill wings SI24502A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201300340A SI24502A (en) 2013-10-17 2013-10-17 The manufacturing process of the models for windmill wings
PCT/SI2013/000063 WO2015057174A1 (en) 2013-10-17 2013-10-25 The procedure for the manufacture of wind turbine blade models

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201300340A SI24502A (en) 2013-10-17 2013-10-17 The manufacturing process of the models for windmill wings

Publications (1)

Publication Number Publication Date
SI24502A true SI24502A (en) 2015-04-30

Family

ID=49880912

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201300340A SI24502A (en) 2013-10-17 2013-10-17 The manufacturing process of the models for windmill wings

Country Status (2)

Country Link
SI (1) SI24502A (en)
WO (1) WO2015057174A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111284033A (en) * 2020-03-10 2020-06-16 单龙君 Laser projection positioning system and method for manufacturing wind power blade
CN111470839A (en) * 2020-04-15 2020-07-31 苏州法兰德环保设备有限公司 Glass fiber reinforced plastic fan impeller process
CN113942151B (en) * 2021-10-21 2022-10-04 山东双一科技股份有限公司 Manufacturing method of bonding angle die for wind driven generator blade

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863663A (en) * 1984-02-11 1989-09-05 General Motors Corporation Method of making a model, prototype part, and mold

Also Published As

Publication number Publication date
WO2015057174A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
CN104741864B (en) A kind of structural damage fast repairing method
JP6068838B2 (en) Comprehensive repair of composite aircraft
CN103358564B (en) Integral wind power blade ultraviolet light/electron beam in-situ cured fiber placement shaped device and method
US8747592B2 (en) Method of repairing a fibre composite solid member
DK179826B1 (en) Method for establishing erosion-resistant surface part on a wind turbine blade, method for forming an erosion-resistant coating, wind turbine blade with retrofitted coating in ...
CN110177933B (en) Method and system for building segmented or modular wind turbine blades, and mobile factory for joining segments of wind turbine blades
US20180236617A1 (en) System and method for manufacturing a wind turbine blade
CN110171579B (en) Method for deeply repairing metal honeycomb structural part
CN208431094U (en) A kind of wind electricity blade main beam structure
CN101990487A (en) Method for producing concrete prefinished parts
SI24502A (en) The manufacturing process of the models for windmill wings
CN104889706B (en) A kind of reverse segmental machining method and device of weak rigid workpiece
KR20140031933A (en) Rapid fabrication of a composite part
CN101979239A (en) Method for adhering blades of megawatt wind turbine in die assembly
WO2013113817A1 (en) A post-moulding station and an associated method of manufacture of a wind turbine blade
EP2432633A1 (en) A method of strengthening a wind turbine blade and the strengthened blade
CN107538770A (en) A kind of advanced composite material repairing material and repair method
CN107186927A (en) Bracket for wind turbine blade
CN103321434A (en) Arc surface unit type curtain wall construction method and structure
CN111042997B (en) Method for repairing major structural damage reinforcement of main beam of wind turbine blade
CN104999672A (en) Molding method of double-curvature variable-section variable-thickness through beam
CN105775162A (en) Method used for repairing local debonding fault of main paddle skin
Ashwill Sweep-twist adaptive rotor blade: final project report.
CN204399464U (en) Integrated composite controlsurface structure
EP2851183B1 (en) A method for applying fibre material on a vertical surface

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20150513

KO00 Lapse of patent

Effective date: 20170727