SI24472A - Fluoro-polymer nanocomposites with tailored friction properties - Google Patents

Fluoro-polymer nanocomposites with tailored friction properties Download PDF

Info

Publication number
SI24472A
SI24472A SI201300282A SI201300282A SI24472A SI 24472 A SI24472 A SI 24472A SI 201300282 A SI201300282 A SI 201300282A SI 201300282 A SI201300282 A SI 201300282A SI 24472 A SI24472 A SI 24472A
Authority
SI
Slovenia
Prior art keywords
mos
pvdf
nanotubes
fluoro
friction
Prior art date
Application number
SI201300282A
Other languages
Slovenian (sl)
Inventor
Maja Remškar
Janez Jelenc
Andrej Kržan
Original Assignee
Institut "Jožef Stefan"
Center Odličnosti Polimerni Materiali In Tehnologije, Polimat
Center Odličnosti Namaste, Zavod Za Raziskave In Razvoj Naprednih Nekovinskih Materialov S Tehnologijami Prihodnosti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut "Jožef Stefan", Center Odličnosti Polimerni Materiali In Tehnologije, Polimat, Center Odličnosti Namaste, Zavod Za Raziskave In Razvoj Naprednih Nekovinskih Materialov S Tehnologijami Prihodnosti filed Critical Institut "Jožef Stefan"
Priority to SI201300282A priority Critical patent/SI24472A/en
Priority to PCT/SI2014/000052 priority patent/WO2015041612A1/en
Publication of SI24472A publication Critical patent/SI24472A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Izum opisuje tridimenzionalne in tankoplastne oblike fluoro - polimernih nanokompozitov s prilagojenimi lastnostmi trenja, ki vsebujejo nanomateriale na osnovi anorganskih nanocevk kot dodatke za zmanjševanje trenja. Izraz nanomateriali na osnovi nanocevk, pomeni nanomateriale, ki se pojavljajo v valjasti geometriji, ali so izpeljani iz valjaste geometrije z mehanskimi ali kemijskimi metodami. Natančneje, ta izum opisuje postopek za uravnavanje tornih lastnosti polimerov na osnovi PVDF z nanocevkami na osnovi MoS2 kot anorganskim dodatkom za zniževanje trenja. Trenje nanomaterialov na osnovi PVDF/nanocevk MoS2 je znatno nižje v primerjavi s prevleko PVDF brez omenjenih dodatkov.The invention describes three - dimensional and thin - layer forms of fluoro - polymeric nanocomposites with adapted friction properties that contain nanomaterials based on inorganic nanotubes as additives for reducing friction. The term nanotechnology nanomaterials means nanomaterials appearing in cylindrical geometry or derived from cylindrical geometry using mechanical or chemical methods. More specifically, this invention describes a process for regulating the frictional properties of PVDF-based PVDF-based nanowires based on MoS2 as an inorganic reducing agent. Friction of nanomaterials based on PVDF / MoS2 nanotubes is significantly lower compared to PVDF coating without the mentioned additives.

Description

Fluoro-polimemi nanokompoziti s prilagojenimi tornimi lastnostmiFluoro-polymers nanocomposites with adapted friction properties

Izum razkriva fluoro-polimeme nanokompozite s prilagojenimi lastnostmi trenja v tridimenzionalni in tankoplastni morfologiji, ki vsebujejo anorganske nanomateriale kot dodatke za zmanjševanje trenja. Določneje, izum razkriva polimere na osnovi polivinilidenfluorida (PVDF), ki vsebujejo nanomateriale na osnovi MoS2, in metodo za prilagajanje drsnih lastnosti polimerov na osnovi PVDF.The invention discloses fluoro-polymer nanocomposites with customized friction properties in three-dimensional and thin-layer morphology containing inorganic nanomaterials as friction reducing additives. More specifically, the invention discloses polyvinylidene fluoride (PVDF) polymers containing MoS 2 based nanomaterials and a method for adjusting the sliding properties of PVDF based polymers.

PODROČJE IZUMAFIELD OF THE INVENTION

Predloženi izum se nanaša v splošnem na področje polimernih nanokompozitov in podrobneje na metode prilagajanja fizikalnih lastnosti termoplastnih visokozmogljivih fluoro-polimerov, predvsem tornih lastnosti polimerov na osnovi poliviniliden fluorida, z uporabo nanocevk na osnovi MoS2.The present invention relates generally to the field of polymer nanocomposites and more specifically to methods of adapting the physical properties of thermoplastic high-performance fluoro-polymers, in particular the friction properties of polyvinylidene fluoride-based polymers, using MoS 2- based nanotubes.

STANJE TEHNIKE NA PODROČJU IZUMABACKGROUND OF THE INVENTION

Polivinilidenfluorid (PVDF) je visoko inerten termoplastični fluoro-polimer z visoko toplotno stabilnostjo do 175 °C. Uporaben je za številne aplikacije, ki so odvisne od njegove posamezne faze kristalizacije, kot so cevovodi, izolatorji za elektrovode, za vezivne materiale za kompozitne elektrode za litij- ionske baterije, za membrane v biomedicini, za komponente za farmacevtsko in živilsko predelovalno industrijo, kot piezoelektričen in piroelektričen material, itd. PVDF najdemo v petih kristalnih oblikah ( α, β, γ, δ, ε) in pri treh od teh ( β, γ, δ) je močno polama struktura orientirana na tak način, da je PVDF piezoelektričen ( A. Lovinger, Macromolecules 1982, 15, 40-44). PVDF ima relativno visok PVDF - PVDF koeficient trenja v območju 0.250.45, kar omejuje njegovo uporabo v samo-mazalnih prevlekah ali v prevlekah, ki so podvržene močnemu trenju ali v uporabi kot zaščitni premazi. Anorgansko trdno mazivo molibden disulfid (MoS2) je znano mazivo, ki se v veliki meri uporablja že desetletja. Njegove učinkovite mazavne lastnosti izvirajo iz lahkega medsebojnega drsenja plasti MoS2 vzdolž bazalnih (001) ravnin in površinske inertnosti bazalnih (001) ravnin MoS2. MoS2 v običajni obliki ploščatih lističev, kijih je možno sintetizirati ali izkoriščati naravni mineral, se pogosto uporablja kot suho mazivo ali dodatek oljem ali mastem. Na žalost so trdni robovi kristalnih lusk nagnjeni k oksidaciji, kar zmanjšuje učinkovitost mazanja, zlasti v vlažnem okolju. Tanki lističi z visoko aktivno površino in s sorazmerno nizkim številom nenasičenih vezi na robovih so zato zaželjeni. Standardna uporaba ploščic MoS2 kot dodatek za zmanjšanje trenja in nedavna odkritja novih morfologij MoS2 so omogočili pripravo novih nanokompozitnih filmov na osnovi PVDF, ki vsebujejo nanocevke MoS2 ali razslojene nanocevke MoS2 za samo-mazalne in zaščitne prevleke.Polyvinylidene fluoride (PVDF) is a highly inert thermoplastic fluoro-polymer with high thermal stability up to 175 ° C. It is useful for many applications that depend on its individual crystallization phase, such as pipelines, power line insulators, composite electrode binder materials for lithium-ion batteries, biomedical membranes, components for the pharmaceutical and food processing industries, such as piezoelectric and pyroelectric material, etc. PVDF is found in five crystalline forms (α, β, γ, δ, ε), and in three of these (β, γ, δ), the strongly pole structure is oriented in such a way that the PVDF is piezoelectric (A. Lovinger, Macromolecules 1982; 15, 40-44). PVDF has a relatively high PVDF - PVDF coefficient of friction in the range 0.250.45, which limits its use in self-lubricating coatings or in coatings subjected to heavy friction or in use as protective coatings. Inorganic solid lubricant molybdenum disulfide (MoS 2 ) is a well-known lubricant that has been used extensively for decades. Its effective lubricating properties originate from the easy inter-sliding of the MoS 2 layers along the basal (001) planes and the surface inertia of the basal (001) planes of MoS 2 . MoS 2, in the usual form of flat sheets, which can be synthesized or exploited by a natural mineral, is often used as a dry lubricant or as an additive to oils or greases. Unfortunately, the solid edges of crystalline scales are prone to oxidation, which reduces the lubrication efficiency, especially in humid environments. Thin sheets with a high active surface and a relatively low number of unsaturated edges at the edges are therefore desirable. The standard use of MoS 2 plates as an adjunct to friction reduction and recent discoveries of new MoS 2 morphologies have made it possible to prepare new PVDF-based nanocomposite films containing MoS 2 nanotubes or layered MoS 2 nanotubes for self-lubricating and protective coatings.

Ukrivljene, samo-zaključene oblike MoS2, kot so nanocevke in fulerenom podobni delci z nanočebulasto morfologijo (Margulis L, Salitra G, Tenne R, Talianker M: Nested fullerene-like structures.Nature 1993, 365: 113-114) omogočajo odpravo robov. Te oblike so intenzivno raziskovali v zvezi z njihovo posebno primernostjo za novo generacijo maziv. Pod mehanskimi obremenitvami se ti nanodelci počasi deformirajo in razslojujejo v nano-luske, ki se prenašajo na podlago (učinek tretjega telesa)), ter zagotavljajo učinkovito mazanje, dokler niso povsem razslojeni ( Chhowalla M, Amaratunga GAJ: Ultra low friction and wear MoS2 nanoparticle thin films. Nature 2000,.407:.164-167).Curved, self-terminated MoS 2 forms, such as nanotubes and fullerene-like particles with nanobubule morphology (Margulis L, Salitra G, Tenne R, Talianker M: Nested fullerene-like structures.Nature 1993, 365: 113-114) . These designs have been extensively researched regarding their particular suitability for the next generation of lubricants. Under mechanical loading, these nanoparticles slowly deform and stratify into nanosheets, which are transferred to the substrate (third-body effect)) and provide effective lubrication until completely stratified (Chhowalla M, Amaratunga GAJ: Ultra low friction and wear MoS 2 nanoparticle thin films. Nature 2000, .407: .164-167).

Različne morfologije in kombinacije nanocevk in nano čebulic MoS2, ki so bile sintetizirane iz iz M6CyHz, 8.2 < y + z < 10, kjer je M prehodna kovina ( Mo, W, Ta, Nb ), C je halkogen (S, Se, Te), H je halogen (I), so bile razkrite v US 8.007.756 B2.Different morphologies and combinations of MoS 2 nanotubes and nano bulbs synthesized from M 6 C y H z , 8.2 <y + z <10, where M is a transition metal (Mo, W, Ta, Nb), C is chalcogen (S, Se, Te), H is halogen (I), have been disclosed in US 8,007,756 B2.

Spontano delno razslojevanje sten MoS2 nanocevk v sintetiziranem materialu (Remškar M , Viršek M, Mrzel A: The MoS2 nanotube hybrids. Appl Phys Lett 2009,95: 133122-1-133122-3) in tanke stene nanocevk MoS2 (M. Remškar, A. Mrzel, M. Viršek, M. Godec, M. Krause, A. Kolitsch, A. Singh in A. Seabaugh, Nanoscale Res. Lett. 6, 26 ( 2011)) omogočajo nizko porabo energije pri utekanju v procesu trenja.Spontaneous partial delamination of MoS 2 nanotube walls in synthesized material (Remškar M, Viršek M, Mrzel A: The MoS 2 nanotube hybrids. Appl Phys Lett 2009,95: 133122-1-133122-3) and thin MoS 2 nanotube walls (M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh and A. Seabaugh, Nanoscale Res. Lett. 6, 26 (2011) allow low energy consumption during process run-in friction.

Luščenje MoS2 nanocevk lahko dosežemo s kemičnimi sredstvi preko interkalacije visoko reaktivnih molekul, kot je butil litij ( Višič et al., Nanoscale Research Letters 2011 , 6:593 ) ali na mehanski način med procesom drsenja.Leaching of MoS 2 nanotubes can be achieved by chemical means through the intercalation of highly reactive molecules such as butyl lithium (Visic et al., Nanoscale Research Letters 2011, 6: 593) or mechanically during the sliding process.

• ·• ·

Kompoziti PVDF/M0S2 so bili opisani v: a ) US 5.024.882, kjer je bil MoS2 dodan v PVDF v obliki praškastih delcev < 40 pm za uporabo v kompozitih za drsne ležaje. Opisan je bil proces izdelave materiala; b) US 2011 / 0045309 Al, kjer je bil MoS2 brez navedbe oblike, uporabljen kot suho mazivo ali v kombinaciji s PVDF za prilagajanje koeficienta trenja kovinskega obdelovanca, c ) US 5.976.190, kjer je bil MoS2 brez navedbe oblike, vgrajen v vmesno plast med vpenjalno cevjo in cevjo narejeno iz lahke kovine, ki obe sestavljata ortopedsko vpenjalno povezavo, d) US 6.106.936, kjer je MoS2 opisan samo kot kovinska spojina s plastovito strukturo, ki se uporablja kot komponenta maziva za drsne ležaje, e) US 6.528.143 BI , kjer je MoS2 brez navedbe oblike, sestavina plastične prevleke na kovinski podlagi; f ) US20130071623 Al, kjer je MoS2 brez navedbe oblike, trdno mazivo dispergirano znotraj polimera.PVDF / M0S2 composites were described in: a) US 5,024,882, where MoS 2 was added to PVDF in powder form <40 pm for use in slide bearing composites. The process of making the material was described; b) US 2011/0045309 Al, where MoS 2 without designation was used as a dry lubricant or in combination with PVDF to adjust the coefficient of friction of the metal workpiece, c) US 5,976,190, where MoS 2 was without designation, incorporated into the intermediate layer between the clamping tube and the tube made of light metal, which both form an orthopedic clamping connection, d) US 6.106.936, where MoS 2 is described only as a metal compound with a layered structure used as a component of lubricant for sliding bearings, e) US 6,528,143 BI, wherein MoS 2, without designation, is a component of a metal-based plastic coating; f) US20130071623 Al, wherein MoS 2 is without formulation, a solid lubricant dispersed within the polymer.

V vseh zgoraj naštetih PVDF/MoS2 kompozitih so uporabljali standardne ploščice MoS2 makro ali mikro razsežnosti.In all PVDF / MoS 2 composites listed above, standard macro or micro-scale MoS 2 tiles were used.

Kompoziti PVDF/MoS2, kjer so MoS2 opisali kot nanocevke, so opisani v: g) US 20080248201 in US20080249221 Al, kjer je PVDF naveden posredno kot eden izmed polivinilidenskih halogenidov, in MoS2 kot možno nano-polnilo med široko paleto materialov za premaze z nizkim trenjem, vendar brez podatkov za to posebno kombinacijo, h) US20060233692 Al, kjer je opisana metoda, s katero je mogoče podlago iz kovinske zmesi direktno prekriti z nanocevkami, med katerimi so navedene tudi nanocevke MoS2 in potem nanesti polimerno prevleko. PVDF je opisan kot polimerno vezivo za ogljikove nanocevke.PVDF / MoS 2 composites, where MoS 2 has been described as nanotubes, are described in: g) US 20080248201 and US20080249221 A1, where PVDF is indicated indirectly as one of the polyvinylidene halides, and MoS 2 as a possible nanofiller among a wide variety of materials for h) US20060233692 Al, which describes a method by which a substrate of a metallic mixture can be directly coated with nanotubes, including the MoS 2 nanotubes, and then applied to the polymer coating. PVDF is described as a polymeric binder for carbon nanotubes.

Nanokompoziti PVDF/MoS2, kjer je MoS2 v cilindrični obliki nanocevk ali v obliki razslojenih nanocevk MoS2, in vmešan v PVDF pred pripravo prevleke, in bi bili testirani glede mazavnih lastnosti, še niso bili opisani.PVDF / MoS 2 nanocomposites, where MoS 2 is in cylindrical nanotubes or layered MoS 2 nanotubes, and blended into PVDF before coating, and would have been tested for lubrication properties, have not yet been described.

Testiranje trenja ob uporabi polialfaolefinskega olja (PAO), ki so mu bile dodane nanocevke MoS2, je pokazalo bistveno zmanjšano trenje in izboljšanje obrabnih lastnosti v pogojih mejnega mazanja na jeklenem kontaktu. Koeficient trenja seje zmanjšal za več kot 2 -krat, medtem ko je bila obraba manjša kar za 5 do 9 -krat ( M. Kalin, J. Kogovšek, M. Remškar, Wear 280/281, 36• · (2012), doi: 10.1016/j.wear.2012.01.011). Izboljšanje glede na bazično olje je bilo večje za grobe površine , kjer seje koeficient trenja zmanjšal za največ 65 % , v primerjavi s približno 40 % znižanjem na gladkih jeklenih površinah pod pogoji mejnega mazanja. Trenje je bilo v glavnem neodvisno od hrapavosti površine (J. Kogovšek, M. Remškar, A. Mrzel, M.Kalin, Tribology International 61 (2013) 40-47).Friction testing using polyalphaolefin oil (PAO), to which MoS 2 nanotubes were added, showed significantly reduced friction and improved wear properties under conditions of boundary lubrication at steel contact. The coefficient of friction of the session decreased by more than 2 times, while the wear was reduced by as much as 5 to 9 times (M. Kalin, J. Kogovšek, M. Remškar, Wear 280/281, 36 • · (2012), doi : 10.1016 / j.wear.2012.01.011). The improvement over the base oil was greater for rough surfaces where the friction coefficient decreased by up to 65%, compared to a reduction of about 40% on smooth steel surfaces under boundary lubrication conditions. Friction was largely independent of surface roughness (J. Kogovšek, M. Remškar, A. Mrzel, M.Kalin, Tribology International 61 (2013) 40-47).

Vmešavanje nanocevk MoS2 v izotaktični polipropilen (iPP) je zmanjšalo koeficient trenja za 15 % in obrabo za več kot 50% ( M. Naffakh, M. Remskar, et al., J. Mater.Chem. 22 , 17002-17010 (2012)). To je edini polimerni kompozit na osnovi nanocevk MoS2 nanocevk, o katerem so poročali do sedaj.Interference with MoS 2 nanotubes in isotactic polypropylene (iPP) reduced the friction coefficient by 15% and wear by more than 50% (M. Naffakh, M. Remskar, et al., J. Mater.Chem. 22, 17002-17010 (2012 )). It is the only polymer composite based on MoS 2 nanotubes reported to date.

BISTVO IZUMASUMMARY OF THE INVENTION

Izum opisuje tridimenzionalne in tankoplastne oblike fluoro - polimernih nanokompozitov s prilagojenimi lastnostmi trenja, ki vsebujejo nanomateriale na osnovi anorganskih nanocevk kot dodatke za zmanjševanje trenja. Izraz nanomateriali na osnovi nanocevk, pomeni nanomateriale, ki se pojavljajo v valjasti geometriji, ali so izpeljani iz valjaste geometrije z mehanskimi ali kemijskimi metodami. Natančneje, ta izum opisuje postopek za uravnavanje tornih lastnosti polimerov na osnovi PVDF z nanocevkami na osnovi MoS2 kot anorganskim dodatkom za zniževanje trenja. Trenje nanomaterialov na osnovi PVDF/nanocevk MoS2 je znatno nižje v primerjavi s prevleko PVDF brez omenjenih dodatkov.The invention describes three-dimensional and thin-film forms of fluoro-polymer nanocomposites with customized friction properties containing inorganic nanotube-based nanomaterials as friction-reducing additives. The term nanotubes-based nanomaterials means nanomaterials that appear in cylindrical geometry or are derived from cylindrical geometry by mechanical or chemical methods. More specifically, the present invention describes a method for regulating the friction properties of PVDF-based polymers with MoS 2- based nanotubes as an inorganic friction-reducing additive. The friction of PVDF / MoS 2 based nanomaterials is significantly lower compared to PVDF coating without the aforementioned additives.

PODROBEN OPIS IZUMADETAILED DESCRIPTION OF THE INVENTION

Naloga predloženega izuma je izdelava tridimenzionalnih in tankoplastnih oblik fluoropolimemih nanokompozitov s prilagojenimi tornimi lastnostmi, ki vsebujejo nanomateriale na osnovi anorganskih nanocevk kot dodatke za zmanjševanje trenja.It is an object of the present invention to provide three-dimensional and thin-film forms of fluoropolymer nanocomposites with customized friction properties containing nanomaterials based on inorganic nanotubes as friction-reducing additives.

Po izumu je naloga rešena s postopkom za prilagajanje koeficienta trenja PVDF in polimerov na osnovi PVDF, z vgrajevanjem MoS2.According to the invention, the problem is solved by a method for adjusting the coefficient of friction of PVDF and polymers based on PVDF, by incorporating MoS 2 .

S postopkom v smislu izuma, so nanomateriali na osnovi nanocevk MoS2 dodani v PVDF v obliki raztopine v primernem topilu ali v PVDF v obliki taline, in dodatno homogenizirami z mehanskim mešanjem.By the process of the invention, MoS 2 nano-based materials are added to PVDF as a solution in a suitable solvent or PVDF as melt, and further homogenized by mechanical stirring.

Fluoro polimerni nanokompoziti s prilagojenimi tornimi lastnostmi po izumu vsebujejo fluorotermoplastični polimerni material, nanomateriale na osnovi nanocevk MoS2 kot dodatek za nizko trenje, in dodatke, kot so zaviralci aglomeracije ali sedimentacije. Fluorotermoplastični material je lahko polimer ali kopolimer na osnovi polivinilidenfluorida, pri čemer je fluorotermoplastičen material homogena polimerna zmes, ki vsebuje od 99 - 5 % polimerov ali kopolimerov na osnovi polivinilidenfluorida. Delež nanomaterialov na osnovi nanocevk MoS2 je v območju od 0,1 ut. % do 50 ut. % glede na delež fluorotermoplastičnega polimernega materiala in so nanocevke MoS2 v nanomaterialih na osnovi nanocevk MoS2 lahko delno razslojene ali popolnoma razslojene.Fluorine polymer nanocomposites with custom friction properties of the invention contain fluorothermoplastic polymeric material, MoS 2 nanotubes based on low friction additives, and additives such as agglomeration or sedimentation inhibitors. The fluorothermoplastic material may be a polymer or copolymer based on polyvinylidene fluoride, the fluorothermoplastic material being a homogeneous polymeric mixture containing from 99 - 5% of polymers or copolymers based on polyvinylidene fluoride. The proportion of nano-based MoS 2 nanotubes is in the range of 0.1 wt. % to 50 wt. % by weight of fluorothermoplastic polymeric material, and MoS 2 nanotubes in MoS 2 nanotubes may be partially stratified or fully stratified.

Nanokompozitne tanke plasti so lahko pripravljene z različnimi tehnikami, ki se uporabljajo za mešanice polimer-nanodelci v tekočem ali plastificiranem stanju. Dve izmed njih sta: a) nalivanje raztopine na ustrezno podlago in vlečenje filma s pomočjo skalpela; b) nanos premaza na ustrezno vrtečo podlago. Filmi so se sušili na različnih režimih ogrevanja z ali brez uporabe atmosfere z nadzorovano sestavo.Nanocomposite thin films can be prepared by various techniques used for polymer-nanoparticle mixtures in liquid or plasticized state. Two of these are: a) pouring the solution onto a suitable substrate and drawing the film with a scalpel; b) application of the coating to a suitable rotating base. The films were dried under different heating regimes with or without the use of a controlled composition atmosphere.

Z uporabo opisanih načinov nanosa smo pripravili PVDF/MoS2 na osnovi nanocevk v obliki filmov in premazov z debelino med 10 pm in 500 pm. Kontrolirano kristalno strukturo in morfologijo nanokompozitov lahko pripravimo z uporabo različnih pomožnih dodatkov v vlogi inhibitorjev aglomeracije in sedimentacije nanomaterialov na osnovi nanocevk MoS2 in s spreminjanjem pogojev nanosa in sušenja.Using the described application methods, PVDF / MoS 2 was prepared on the basis of nanotubes in the form of films and coatings with a thickness between 10 pm and 500 pm. The controlled crystal structure and morphology of nanocomposites can be prepared using various auxiliary additives as inhibitors of agglomeration and sedimentation of nanomaterials based on MoS 2 nanotubes and by varying the deposition and drying conditions.

Testirali smo fizikalne in kemijske lastnosti tako pripravljenih nanokompozitov, zlasti njihovo kristalno strukturo, površinsko morfologijo, porazdelitev nanomaterialov na osnovi nanocevk MoS2 znotraj polimerov na osnovi PVDF, in debelino nanokompozitnih filmov.We tested the physical and chemical properties of the nanocomposites thus prepared, in particular their crystal structure, surface morphology, the distribution of MoS 2 -based nanomaterials within PVDF-based polymers, and the thickness of the nanocomposite films.

Tome lastnosti tako pripravljenih nanokompozitnih prevlek so bile testirane v konfiguracijah ravno-na-ravnem (angl. flat-on-flat) in kroglica na disku (angl. ball-on-disc). Trenje na nanokompozitih PVDF/M0S2 na osnovi nanocevk je bilo znatno zmanjšano v primerjavi s prevlekami PVDF brez dodatkov na osnovi nanocevk M0S2.The properties of the nanocomposite coatings thus prepared were tested in flat-on-flat and ball-on-disc configurations. The friction on nanotubes-based PVDF / M0S2 nanocomposites was significantly reduced compared to PVDF coatings without M0S2-based nanotubes.

KRATEK OPIS SLIKBRIEF DESCRIPTION OF THE DRAWINGS

SLIKA 1 prikazuje rentgenski uklonski spekter na PVDF/M0S2 filmih z 0 ut. % (oznaka - 0 ) , 1 ut. % (oznaka - 1 ), in 2 ut. % (oznaka - 2) nanocevk M0S2. Uklonski vrhovi, ki ustrezajo M0S2, so označeni z * . Drugi vrhovi ustrezajo PVDF.FIG. 1 shows the X-ray spectrum for PVDF / M0S2 films with 0 wt. % (mark - 0), 1 wt. % (mark - 1), and 2 wt. % (label - 2) M0S2 nanotubes. Slope peaks corresponding to M0S2 are indicated by *. Other peaks correspond to PVDF.

SLIKA2 je optični posnetek narejen v presevnem načinu in prikazuje homogeno porazdelitev nanocevk M0S2 znotraj filma PVDF, ki vsebuje 0,5 ut.% nanocevk MoS2.FIG. 2 is an optical image taken in screening mode and shows a homogeneous distribution of M0S2 nanotubes within a PVDF film containing 0.5% by weight of MoS 2 nanotubes.

SLIKA3 je vrstični elektronsko mikroskopski posnetek zgornje površine filma iz PVDF/nanocevke M0S2, ki vsebuje 2 ut.% nanocevk M0S2 in kaže porozno strukturo.FIG. 3 is a line electron microscopic image of the top surface of a PVDF / M0S2 nanotube film containing 2% by weight of M0S2 nanotubes and showing a porous structure.

SLIKA4 je vrstični elektronsko mikroskopski posnetek spodnje površine (na stiku s stekleno podlago) filma iz PVDF/ nanocevke M0S2, ki vsebuje 1 ut.% nanocevk M0S2.FIG. 4 is a line electron microscopic image of the lower surface (on contact with the glass substrate) of a PVDF / M0S2 nanotube film containing 1% by weight of M0S2 nanotubes.

SLIKA5 kaže rezultate testiranja trenja v geometriji ravno-na-ravnem na nanokompozitnih filmih PVDF/M0S2 z (a) 0 ut.% , (b) 1 ut.%, in (c) 2 ut. % nanocevk MoS2, in s poliranim neijavnim jeklom AISI 316 kot kontaktnim materialom.FIG. 5 shows the results of friction testing in flat-to-plane geometry on PVDF / M0S2 nanocomposite films with (a) 0 wt.%, (B) 1 wt.%, And (c) 2 wt. % of MoS 2 nanotubes, and with AISI 316 polished stainless steel as contact material.

SLIKA6 kaže rezultate testiranja trenja v geometriji kroglica-na-disku na nanokompozitnih filmih PVDF/M0S2 z (a) 0 ut. %, (b) 2 ut. % , in (c) 16,7 ut. % nanocevk M0S2, in s kroglico iz nerjavnega jekla AISI 316.FIG. 6 shows the results of friction testing in ball-on-disk geometry on PVDF / M0S2 nanocomposite films with (a) 0 wt. %, (b) 2 wt. %, and (c) 16.7 wt. % of M0S2 nanotubes, and with AISI 316 stainless steel ball.

Naslednji primeri so prikazani za pojasnitev izuma, vendar ga ne omejujejo.The following examples are set forth to illustrate the invention but are not limited thereto.

PRIMER 1:EXAMPLE 1:

PVDF smo dodali dimetilformamidu (DMF) v 20 ut. % in ga raztapljali 24 ur pri nizki hitrosti mešanja in segrevanja do 50 stopinj C. Homogeno raztopino PVDF/DMF smo mešali z magnetnim mešalom 15 minut preden smo dodali nanocevke. Nanocevke MoS2 v 0,5 ut.% , 1 ut.% in 2 ut.% glede na težo PVDF smo dodali v raztopino PVDF/DMF in mešali z magnetnim mešalom dodatnih 30 minut. Nato je bila tako izdelana disperzija sonificirana 30 minut v ultrazvočni kopeli pri 40 kHz in 200 W. Dobili smo homogeno disperzijo nanocevk v polimerni raztopini.PVDF was added to dimethylformamide (DMF) in 20 wt. % and dissolved for 24 hours at low mixing and heating rates up to 50 degrees C. The homogeneous PVDF / DMF solution was stirred with a magnetic stirrer for 15 minutes before nanotubes were added. MoS 2 nanotubes in 0.5 wt.%, 1 wt.% And 2 wt.% By weight of PVDF were added to the PVDF / DMF solution and mixed with a magnetic stirrer for an additional 30 minutes. The dispersion thus produced was sonicated for 30 minutes in an ultrasonic bath at 40 kHz and 200 W. Homogeneous dispersion of the nanotubes in the polymer solution was obtained.

Disperzijo smo nalili na stekleno ploščo in potegnili film s skalpelom z debelino filma 300 pm, s pomočjo filmskega aplikatoija (Erichsen ). Filme smo sušili pri 22 ° C in 50 % relativni vlagi 24 ur. Po sušenju smo filme odstranili s steklene plošče. Površina filma, ki je bila izpostavljena zraku med sušenjem, smo označili kot zgornjo površino. Površino filma, ki se je formirala na mejni ploskvi film/steklo smo označili kot spodnjo površino.The dispersion was poured onto a glass plate and a 300 pm film scalpel film was drawn using a film applicator (Erichsen). The films were dried at 22 ° C and 50% relative humidity for 24 hours. After drying, the films were removed from the glass plate. The surface of the film exposed to air during drying was referred to as the upper surface. The surface of the film formed on the film / glass interface was designated as the lower surface.

Rentgensko difrakcijo (XRD) smo izvedli pri sobni temperaturi z D4 Endeavor difraktometrom (Bruker AXS) z uporabo kvarčnega monokromatoija Cu Kal vira sevanja (λ = 0,1541 nm) in detektorjem energijske disperzije Sol - X. Kotno območje 2Θ je bilo izbrano od 6 ° do 73 ° z velikostjo koraka 0,04° in 4 s časom zajema signala. Kristalna struktura filma PVDF/MoS2 nanocevke, karakterizirana z rentgensko difrakcijo je predstavljena na SLIKA 1 in potrjuje prisotnost MoS2 v filmu. Vrhovi, ki pripadajo MoS2, so označeni z zvezdico (* ). Drugi vrhovi ustrezajo γ-fazi PVDF. Vrh pri 16,8° ustreza podvojeni osnovni celici γ - faze PVDF.X-ray diffraction (XRD) was performed at room temperature with a D4 Endeavor diffractometer (Bruker AXS) using a quartz monochromato Cu Cu radiation source (λ = 0.1541 nm) and a Sol - X energy dispersion detector. ° to 73 ° with a step size of 0.04 ° and 4 with a signal capture time. The crystal structure of the PVDF / MoS 2 nanotube film characterized by X-ray diffraction is presented in FIGURE 1 and confirms the presence of MoS 2 in the film. Peaks belonging to MoS 2 are marked with an asterisk (*). The other peaks correspond to the γ-phase of PVDF. The peak at 16.8 ° corresponds to the doubled cell γ - phase PVDF.

Homogena porazdelitev nanocevk MoS2 v PVDF, ki vsebuje 0,5 ut. % nanocevk MoS2, je prikazana na optičnem mikroskopskem posnetku posnetem v odbojnem načinu na SLIKA2.Homogeneous distribution of MoS 2 nanotubes in PVDF containing 0.5 wt. % of MoS 2 nanotubes is shown on an optical microscope image taken in reflective mode in FIGURE2.

Morfologijo nanokompozitov PVDF/M0S2 smo proučevali z vrstičnim elektronskim mikroskopom FE- SEM, Supra 35 VP, Carl Zeiss. Zgornja površina filmov PVDF/M0S2 nanocevke, je bila porozna in sestavljena iz kroglic, kot prikazuje SLIKA3. Nanocevke MoS2 niso vidne, ker so pokrite s PVDF. Spodnja površina filma PVDF/M0S2 nanocevke, pokaže nanocevke MoS2, ki so prekrite s tanjšo plastjo PVDF kot na zgornji površini. Nanocevke MoS2 na spodnji površini so postale vidne, ko smo uporabili višje pospeševalne napetosti v vrstični elektronski preiskavi, kot je prikazano na SLIKA4.The morphology of PVDF / M0S2 nanocomposites was studied using a FE-SEM scanning electron microscope, Supra 35 VP, Carl Zeiss. The upper surface of the PVDF / M0S2 nanotube films was porous and composed of beads as shown in FIG. MoS 2 nanotubes are not visible because they are covered with PVDF. The lower surface of the PVDF / M0S2 nanotube film shows MoS 2 nanotubes covered with a thinner PVDF layer than the upper surface. The MoS 2 nanotubes on the lower surface became visible when higher accelerating voltages were applied in a row electronic scan, as shown in FIG. 4.

Debeline filmov PVDF in PVDF/MoS2 in površinske hrapavosti so bile izmeijene z Profilometrom (Form Talysurf Series, Taylor - Hobson Ltd ), z resolucijo: v smeri x -,25 pm , v smeri y -1 pm, in v smeri z- 3 nm. Čisti PVDF filmi so bili debeli 18,7 pm ± 1 pm. Filmi PVDF/MoS2, ki so vsebovali 1 ut. % nanocevk MoS2; so bili debeli 22,3 pm ± 1 pm. Filmi PVDF/MoS2, ki so vsebovali 2 ut. % nanocevk MoS2> so bili debeli 30 pm ± 1 pm.The thicknesses of PVDF and PVDF / MoS 2 films and surface roughness were exchanged with a Profilometer (Form Talysurf Series, Taylor - Hobson Ltd), with a resolution of x -, 25 pm, y -1 pm, and z - 3 nm. Pure PVDF films were 18.7 pm ± 1 pm thick. PVDF / MoS 2 films containing 1 wt. % MoS 2 nanotubes ; were 22.3 pm ± 1 pm thick. PVDF / MoS 2 films containing 2 wt. % of MoS 2> nanotubes were 30 pm ± 1 pm thick.

Zgornjo površino čistega PVDF filma in filmov PVDF/MoS2 nanocevke, smo pritrdili na nosilec tribometra z ogljikovim lepilnim trakom. Spodnja površina filmov iz PVDF in PVDF/MoS2 nanocevke, je bila v kontaktu s poliranim nerjavnim jeklom AISI 316. Tome poskuse smo izvedli s pomočjo tribometra CF- 800XS (RDM Test Equipment). Obremenitev na nosilec trenja je bila 223g. Izračunan kontaktni tlak je bil 83 kPa. Drsenje filmov iz PVDF in PVDF/MoS2 nanocevke, po nerjavnem jeklu AISI 316 je bilo v recipročnem načinu. Trenje smo merili samo v smeri naprej. Relativna hitrost je bila 300 mm/min. Vsaka pot je bila dolga 300 mm. Trenje je bilo merjeno pri normalnih sobnih pogojih: relativna vlažnost v območju 43-52 % in v temperaturnem območju: 20-25 0 C. Testi trenja so bili izvedeni v geometriji ravno-na-ravnem za nanokompozitne filme PVDF/MoS2 z 0%, 1 ut. % in 2 ut. % nanocevk MoS2. Rezultati so predstavljeni na SLIKA5. Prisotnost nanocevk MoS2 v PVDF filmov je odpravila pojav vrhov povezanih z utekanjem, ki so značilni za čiste filme PVDF. Prisotnost nanocevk MoS2 je zmanjšala koeficient trenja. Po 40 m drsne razdalje je bil koeficient trenja za kontakt čisti PVDF/AISI 316 0.42; za kontakt PVDF/ 1 ut. % nanocevk MoS2/AISI 316 je bil 0.31 in za kontakt PVDF/2 ut. % nanocevk MoS2/AISI 316 je bil 0.11. 1 ut. % nanocevk MoS2 v PVDF jeThe upper surface of the pure PVDF film and the PVDF / MoS 2 nanotube films were attached to the tribometer support with carbon adhesive tape. The lower surface of the PVDF and PVDF / MoS 2 nanotube films was in contact with the polished AISI 316 stainless steel. These experiments were performed using a CF-800XS tribometer (RDM Test Equipment). The load on the friction carrier was 223g. The calculated contact pressure was 83 kPa. The sliding of films from PVDF and PVDF / MoS 2 nanotubes along AISI 316 stainless steel was in reciprocal mode. Friction was measured only in the forward direction. The relative speed was 300 mm / min. Each path was 300 mm long. Friction was measured under normal ambient conditions: relative humidity in the range of 43-52% and in the temperature range: 20-25 0 C. The friction tests were performed in a flat-to-plane geometry for PVDF / MoS 2 nanocomposite films with 0% , 1 Tues. % and 2 wt. % of MoS 2 nanotubes. The results are presented in FIG. The presence of MoS 2 nanotubes in PVDF films eliminated the emergence of escape-related peaks characteristic of pure PVDF films. The presence of MoS 2 nanotubes reduced the coefficient of friction. After 40 m of sliding distance, the contact friction coefficient of pure PVDF / AISI 316 was 0.42; for contact PVDF / 1 Tues. % of MoS 2 / AISI 316 nanotubes was 0.31 and for PVDF / 2 contact wt. % of MoS 2 / AISI 316 nanotubes was 0.11. 1 Tues. % of MoS 2 nanotubes in PVDF is

zmanjšal trenje za več kot 20 % glede na čisti PVDF. 2 ut. % nanocevk MoS2 v PVDF sta zmanjšala trenje za več kot 70 % .reduced friction by more than 20% relative to pure PVDF. 2 Tues. % of MoS 2 nanotubes in PVDF reduced friction by more than 70%.

Rezultati testiranja trenja v geometriji ravno-na-ravnem, grafično predstavljeni na SLIKA5, kažejo, da MoS2 nanocevke dodane PVDF, kot je opisano v izumu, močno zmanjšajo trenje na kontaktu PVDF/ nanocevke MoS2 - AISI316.The results of friction testing in the flat-to-plane geometry presented graphically in FIG. 5 show that the MoS 2 nanotubes added to PVDF, as described in the invention, greatly reduce the friction at the PVDF / MoS 2 nanotube contact - AISI316.

PRIMER 2EXAMPLE 2

PVDF smo dodali dimetilformamidu (DMF) v 20 ut. % in ga raztapljali 24 ur z rahlim mehanskim mešanjem. Nato smo homogeno raztopino PVDF/DMF mešali z magnetnim mešalom 15 minut. Potem smo dodali nanocevke MoS2 v 2 ut. % in 16,7 ut. % glede na težo PVDF, v raztopino PVDF/DMF in mešali z magnetnim mešalom dodatnih 15 minut. Nato je bila tako izdelana disperzija sonificirana lh 45' v ultrazvočni kopeli pri 40 kHz in 200 W.PVDF was added to dimethylformamide (DMF) in 20 wt. % and dissolved for 24 hours with gentle mechanical stirring. Subsequently, a homogeneous PVDF / DMF solution was stirred with a magnetic stirrer for 15 minutes. Then we added MoS 2 nanotubes in 2 wt. % and 16.7 wt. % by weight of PVDF, into PVDF / DMF solution and stirred with a magnetic stirrer for an additional 15 minutes. The dispersion thus produced was sonicated lh 45 'in an ultrasonic bath at 40 kHz and 200 W.

Prevleke PVDF in prevleke na osnovi PVDF/ nanocevke MoS2> so bile pripravljene s kapljanjem raztopine neposredno na diske AISI 316 polirane do aritmetične povprečne hrapavosti Ra 2 mikrometra. Prevleke smo sušili pri 22 °C in pri relativni vlažnosti 50%, dokler niso dosegli konstantne mase.PVDF coatings and PVDF / MoS 2> nanotube coatings were prepared by dropping the solution directly onto AISI 316 disks polished to an arithmetic mean roughness of Ra 2 micrometer. The coatings were dried at 22 ° C and at 50% relative humidity until a constant mass was reached.

Tako narejene prevleke iz čistega PVDF na diskih AISI 316 so bile debele 50 pm. Prevleke PVDF/MoS2, ki so vsebovale 2 ut. % nanocevk MoS2, na diskih AISI 316, so bile debele 50 pm. Prevleke PVDF/MoS2, ki so vsebovale 16,7 ut. % nanocevk MoS2; so bile debele 60 pm.The pure PVDF coatings thus made on AISI 316 disks were 50 pm thick. PVDF / MoS 2 coatings containing 2 wt. % of MoS 2 nanotubes on AISI 316 discs were 50 pm thick. PVDF / MoS 2 coatings containing 16.7 wt. % MoS 2 nanotubes ; were 60 pm thick.

Testiranje trenja smo opravili s standardno ležajno kroglico s premerom 6 mm, izdelano iz nerjavnega jekla AISI 316, ki je tvorila kontakt s površino premazov iz PVDF in PVDF/ nanocevke MoS2. Aritmetična povprečna površinska hrapavost kroglice Ra je bila 200 nm, obremenitev nanjo je bila 1 N, polmer krožnice je bil 5,2 mm, kontaktni tlak je bil 0,2 MPa in hitrost kroglice glede na disk je bila 1 cm/s.Friction testing was performed using a standard 6 mm diameter ball bearing made of AISI 316 stainless steel that formed contact with the surface of PVDF coatings and PVDF / MoS 2 nanotubes. The arithmetic mean surface roughness of the Ra ball was 200 nm, the load on it was 1 N, the radius of the circle was 5.2 mm, the contact pressure was 0.2 MPa and the velocity of the ball relative to the disk was 1 cm / s.

Rezultati testiranja trenja v geometriji kroglica-na-disku, grafično predstavljeni na SLIKA6, kažejo, da nanocevke MoS2 dodane PVDF, kot je opisano v izumu, zmanjšajo trenje na stiku med kompozitom PVDF/ nanocevke MoS2, in AISI 316. Prevleka iz PVDF/ nanocevke MoS2 z 2 ut. % nanocevk MoS2 je pokazala zmanjšano trenje za 7 % glede na čisto prevleko PVDF. Prevleka iz PVDF/ nanocevke MoS2 z 16,7 ut. % nanocevk MoS2 je pokazala 73 % zmanjšano trenje glede na čisto prevleko PVDF, na prvih 12 m drsenja. Po 12 m drsenja se je koeficient trenja postopoma povečal na 0.43 in počasi približal 0.47 pri 77 m drsenja.The results of friction testing in ball-on-disk geometry, presented graphically in FIG. 6, show that PVDF-added MoS 2 nanotubes, as described in the invention, reduce the friction on contact between PVDF / MoS 2 nanotubes and AISI 316. PVDF coating / MoS 2 nanotubes with 2 wt. % of MoS 2 nanotubes showed reduced friction by 7% relative to the pure PVDF coating. PVDF / MoS 2 nanotube coating with 16.7 wt. % of MoS 2 nanotubes showed 73% reduced friction with respect to the clear PVDF coating on the first 12 m of slip. After 12 m of slip, the coefficient of friction gradually increased to 0.43 and slowly approached 0.47 at 77 m of slip.

Rezultati preskusov trenja, pridobljeni v geometriji kroglica-na-disku, so pokazali, da nanocevke MoS2 dodane PVDF, kot je opisano v izumu, močno zmanjšajo trenje na stiku med kompozitom PVDF/ nanocevke MoS2, in AISI 316.The results of the friction tests obtained in the ball-on-disk geometry showed that the PVDF-added MoS 2 nanotubes, as described in the invention, greatly reduce the friction on contact between the PVDF / MoS 2 nanotube composite and AISI 316.

Claims (11)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Fluoro-polimemi nanokompoziti s prilagojenimi tornimi lastnostmi za prilagajanje koeficienta trenja polivinilidenfluorida (PVDF), ki vsebujejo fluorotermoplastični polimerni material, nanomateriale na osnovi nanocevk MoS2 kot dodatek za nizko trenje, in dodatke, kot so zaviralci aglomeracije ali sedimentacije.1. Fluoro-polymer nanocomposites with modified friction properties for adjusting the friction coefficient of polyvinylidene fluoride (PVDF) containing fluorothermoplastic polymeric material, MoS 2 nanotubes as a low friction additive, and additives such as agglomeration inhibitors or sedimentation inhibitors. 2. Fluoro-polimemi nanokompoziti po zahtevku 1, kjer je fluorotermoplastični material polimer na osnovi polivinilidenfluorida (PVDF).2. Fluoro-polymer nanocomposites according to claim 1, wherein the fluorothermoplastic material is a polyvinylidene fluoride (PVDF) based polymer. 3. Fluoro-polimemi nanokompoziti po zahtevku 1, kjer je fluorotermoplastični material kopolimer na osnovi polivinilidenfluorida.3. Fluoro-polymer nanocomposites according to claim 1, wherein the fluorothermoplastic material is a polyvinylidene fluoride based copolymer. 4. Fluoro-polimemi nanokompoziti po zahtevku 1, kjer je fluorotermoplastični material homogena polimerna zmes, ki vsebuje 99 -5 % polimerov ali kopolimerov na osnovi polivinilidenfluorida.The fluoro-polymer nanocomposites according to claim 1, wherein the fluorothermoplastic material is a homogeneous polymer mixture containing 99 -5% of polymers or copolymers based on polyvinylidene fluoride. 5. Fluoro-polimemi nanokompoziti po zahtevku 3, kjer je kopolimer na osnovi polivinilidenfluorida, raztopljen v dimetilformamidu (DMF).5. Fluoro-polymer nanocomposites according to claim 3, wherein the polyvinylidene fluoride-based copolymer is dissolved in dimethylformamide (DMF). 6. Fluoro-polimemi nanokompoziti po zahtevku 1, kjer so nanocevke MoS2 v nanomaterialih na osnovi nanocevk MoS2, delno razslojene.6. Fluoro-polymer nanocomposites according to claim 1, wherein the MoS 2 nanotubes are partially stratified in the MoS 2 nanotubes based on nanotubes. 7. Fluoro-polimemi nanokompoziti po zahtevku 6, kjer so nanocevke MoS2 v nanomaterialih na osnovi nanocevk MoS2, popolnoma razslojene.7. Fluoro-polymer nanocomposites according to claim 6, wherein the MoS 2 nanotubes in the MoS 2 nanotubes are completely layered. 8. Fluoro-polimemi nanokompoziti po zahtevku 1, kjer je delež nanomaterialov na osnovi nanocevk MoS2, v območju od 0,1 ut. % do 50 ut. % glede na delež fluorotermoplastičnega polimernega materiala.The fluoro-polymer nanocomposites of claim 1, wherein the proportion of nano-based MoS 2 nanotubes is in the range of 0.1 wt. % to 50 wt. % based on the proportion of fluorothermoplastic polymer material. 9. Filmi, prevleke in tri-dimenzionalni nanokompoziti izdelani iz fluoro-polimemih nanokompozitov po zahtevku 1.Films, coatings and three-dimensional nanocomposites made from fluoro-polymer nanocomposites according to claim 1. 10. Filmi, prevleke in tri-dimenzionalni nanokompoziti po zahtevku 9, pripravljeni z nalivanjem raztopine, s procesiranjem prevlek na vrtečih podlagah ali narejenih iz taline.Films, coatings and three-dimensional nanocomposites according to claim 9, prepared by pouring a solution, by processing coatings on rotating substrates or made of melt. 11. Filmi in prevleke po zahtevku 9, za uporabo za zmanjšanje trenja.Films and coatings according to claim 9 for use in reducing friction.
SI201300282A 2013-09-19 2013-09-19 Fluoro-polymer nanocomposites with tailored friction properties SI24472A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201300282A SI24472A (en) 2013-09-19 2013-09-19 Fluoro-polymer nanocomposites with tailored friction properties
PCT/SI2014/000052 WO2015041612A1 (en) 2013-09-19 2014-09-19 Method for adjusting the friction coefficient of polyvinylidene fluoride (pvdf)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201300282A SI24472A (en) 2013-09-19 2013-09-19 Fluoro-polymer nanocomposites with tailored friction properties

Publications (1)

Publication Number Publication Date
SI24472A true SI24472A (en) 2015-03-31

Family

ID=52007253

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201300282A SI24472A (en) 2013-09-19 2013-09-19 Fluoro-polymer nanocomposites with tailored friction properties

Country Status (2)

Country Link
SI (1) SI24472A (en)
WO (1) WO2015041612A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185901B (en) * 2015-08-06 2017-11-14 天津理工大学 A kind of compound resistive memory based on molybdenum disulfide and preparation method thereof
US11221039B2 (en) * 2017-01-09 2022-01-11 Hamilton Sundstrand Corporation Bearing assembly with surface layer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815264A1 (en) 1988-05-05 1989-11-16 Kolbenschmidt Ag MATERIAL FOR COMPOSITE BEARINGS AND METHOD FOR THE PRODUCTION THEREOF
DE19524968A1 (en) 1995-07-08 1997-01-16 Glyco Metall Werke Plain bearing material and its use
DE19603353A1 (en) 1996-01-31 1997-08-07 Glyco Metall Werke Layer material for sliding elements, use and method for its production
EP0841043A3 (en) 1996-11-06 2000-04-12 Otto Bock Orthopädische Industrie Besitz- und Verwaltungs-Kommanditgesellschaft Orthopaedic clamp connection
US20060233692A1 (en) 2004-04-26 2006-10-19 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US8322754B2 (en) 2006-12-01 2012-12-04 Tenaris Connections Limited Nanocomposite coatings for threaded connections
US8007756B2 (en) 2007-03-30 2011-08-30 Institut “Jo{hacek over (z)}ef Stefan” Process for the synthesis of nanotubes and fullerene-like nanostructures of transition metal dichalcogenides, quasi one-dimensional structures of transition metals and oxides of transition metals
US20080248201A1 (en) 2007-04-06 2008-10-09 Naturalnano Research, Inc. Polymeric coatings including nanoparticle filler
US20080249221A1 (en) 2007-04-06 2008-10-09 Naturalnano Research, Inc. Polymeric adhesive including nanoparticle filler
PT2252673E (en) 2008-03-13 2013-10-03 Doerken Ewald Ag Method for adjusting the friction coefficient of a metallic workpiece

Also Published As

Publication number Publication date
WO2015041612A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
Ratoi et al. Mechanism of action of WS 2 lubricant nanoadditives in high-pressure contacts
Wu et al. CuO nanosheets produced in graphene oxide solution: An excellent anti-wear additive for self-lubricating polymer composites
Hou et al. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles
CN112830461B (en) Purple phosphorus nanosheet for lubricant and preparation method and application thereof
Yuan et al. Polyimide-based lubricating coatings synergistically enhanced by MoS2@ HCNF hybrid
Sorrentino et al. Nanosheets of MoS2‐oleylamine as hybrid filler for self‐lubricating polymer composites: thermal, tribological, and mechanical properties
Kumari et al. Octadecanethiol-grafted molybdenum disulfide nanosheets as oil-dispersible additive for reduction of friction and wear
Azam et al. A novel organoclay reinforced UHMWPE nanocomposite coating for tribological applications
Corni et al. Electrophoretic deposition of PEEK-nano alumina composite coatings on stainless steel
BRPI0917387B1 (en) multi-layer sliding member and rack guide in rack-type steering gear for cars using the same
Shen et al. Cathodic electrophoretic deposition of magnesium nitrate modified graphene coating as a macro-scale solid lubricant
De Riccardis et al. Study of polymer particles suspensions for electrophoretic deposition
US11926803B2 (en) Solid lubricant and method of making the same
Zhang et al. Tribological performance of CuS–ZnO nanocomposite film: The effect of CuS doping
SI24472A (en) Fluoro-polymer nanocomposites with tailored friction properties
Xu et al. The effect of Si content on the structure and tribological performance of MoS2/Si coatings
JP2020513298A (en) Coating method and its product
Moskalewicz et al. Improvement of the Ti-6Al-4V Alloy’s tribological properties and electrochemical corrosion resistance by nanocomposite TiN/PEEK708 coatings
Moskalewicz et al. Effect of the processing and heat treatment route on the microstructure of MoS2/polyetheretherketone coatings obtained by electrophoretic deposition
Wang et al. Antimony nanowires self-assembled from Sb nanoparticles
Dabees et al. Synthesis and characterization studies of high-density polyethylene-based nanocomposites with enhanced surface energy, tribological, and electrical properties
Khoda et al. Dip coating from density mismatching mixture
Hu et al. In-situ research on formation mechanisms of transfer films of a Polyimide-MoS2 composite in vacuum
US10439214B2 (en) Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles
Peng et al. Strain‐Induced Surface Micro/Nanosphere Structure: A New Technique to Design Mechanically Robust Superhydrophobic Surfaces with Rose Petal‐Like Morphology

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20150409

KO00 Lapse of patent

Effective date: 20200723