SI24244A - Apparatus and method for determining and verifying of strength of a mechanically loaded machine part - Google Patents

Apparatus and method for determining and verifying of strength of a mechanically loaded machine part Download PDF

Info

Publication number
SI24244A
SI24244A SI201200352A SI201200352A SI24244A SI 24244 A SI24244 A SI 24244A SI 201200352 A SI201200352 A SI 201200352A SI 201200352 A SI201200352 A SI 201200352A SI 24244 A SI24244 A SI 24244A
Authority
SI
Slovenia
Prior art keywords
machine part
increment
deformation
geometry
calculating
Prior art date
Application number
SI201200352A
Other languages
Slovenian (sl)
Inventor
Vili MalnariÄŤ
Rajko MarinÄŤiÄŤ
Tomaž Savšek
Original Assignee
SIEVA, podjetje za razvoj in trĹľenje v avtomobilski industriji d.o.o.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIEVA, podjetje za razvoj in trĹľenje v avtomobilski industriji d.o.o. filed Critical SIEVA, podjetje za razvoj in trĹľenje v avtomobilski industriji d.o.o.
Priority to SI201200352A priority Critical patent/SI24244A/en
Priority to PCT/SI2013/000065 priority patent/WO2014081399A1/en
Publication of SI24244A publication Critical patent/SI24244A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Naprava za določanje in preverjanje nosilnosti mehansko obremenjenega strojnega dela, obsegajoča enoto za digitalno izračunavanje, ki je na podlagi programske opreme in vsakokrat vnesenih podatkov po metodi končnih elementov (MKE) zmožna izračunavati napetosti in deformacije v vnaprej določenih območjih mehansko obremenjenega strojnega dela, in sicer še zlasti na osnovi podatkov o geometriji, mehanskih obremenitvah, katerim je vsakokraten strojni del izpostavljen, ter o materialu, iz katerega sestoji vsakokraten mehansko obremenjen strojni del. Poleg omenjene enote za digitalno izračunavanje naprava obsega tudi enoto za preizkušanje mehanskih lastnosti vsakokrat izbranega materiala vsakokratnega mehansko obremenjenega strojnega dela, s katero se vrši preizkušanje materiala v območju elastičnih in plastičnih deformacij, s podatki pa se oskrbuje enoto za digitalno izračunavanje.A device for determining and checking the load-carrying capacity of a mechanically loaded machine part, comprising a digital computing unit that is able to calculate voltages and strains in predetermined areas of the mechanically loaded machine part based on the software and the input data according to the end-element method (FEM) in particular on the basis of the geometry data, the mechanical loads to which each machine part is exposed, and the material from which the mechanically loaded machine part consists. In addition to the said digital calculating unit, the device also includes a unit for testing the mechanical properties of the respective material of the respective mechanically loaded machine part of each defining material in which the material is tested in the region of elastic and plastic deformations, and the data is provided to the digital computing unit.

Description

SIEVA, podjetje za razvoj in trženje v avtomobilski industriji d.o.o.SIEVA, an automotive industry development and marketing company d.o.o.

Naprava in postopek za določanje in preverjanje nosilnosti mehansko obremenjenega strojnega delaApparatus and process for determining and checking the load capacity of a mechanically loaded machine part

Izum se nanaša na napravo in postopek za določanje in preverjanje nosilnosti mehansko obremenjenega strojnega dela, še zlasti nestandardnega statično in/ali dinamično mehansko obremenjenega kovinskega nosilnega dela vozila, stroja ali druge naprave, pri katerem so med uporabo poleg elastičnih deformacij dovoljene tudi kontrolirane oz. vnaprej določljive plastične deformacije, obenem pa mora biti z visoko zanesljivostjo preprečena tolikšna deformacija ali drugačna poškodba mehanskega dela, da je slednji odtlej nezmožen prenašanja vsakokrat zahtevanih mehanskih obremenitev.The invention relates to a device and a method for determining and checking the load-carrying capacity of a mechanically loaded machine part, in particular a non-standard static and / or dynamically mechanically loaded metal carrier part of a vehicle, machine or other device, which, in addition to elastic deformations, are allowed to be controlled or controlled in addition to elastic deformations. predefined plastic deformations, and at the same time it must be avoided, with high reliability, such deformation or other damage to the mechanical part, that the latter is henceforth unable to withstand the required mechanical loads.

Po mednarodni razvrstitvi patentov so izumi te vrste uvrščeni na področje fizike, natančneje k opremi in postopkom za digitalno obdelavo podatkov v povezavi s specifičnim namenom, konkretno pa na področje računalniško podprtega konstruiranja.According to the international classification of patents, inventions of this kind are classified in the field of physics, and more specifically in equipment and processes for digital processing of data in connection with a specific purpose, and more specifically in the field of computer aided design.

Pri tem je izum osnovan na problemu, kako omogočiti določanje in preverjanje nosilnosti mehansko obremenjenega strojnega dela vsakokrat vnaprej določene geometrije, namreč oblike in dimenzij, in sestoječega iz vsakokrat vnaprej določenega materiala, tako da bi bile dimenzije tovrstnega dela v primerjavi z dimenzijami doslej znanih adekvatnih delov lahko znatno manjše, posledično pa bi bil del navzlic manjšim dimenzijam in teži še vedno zmožen prenašati vse mehanske obremenitve, katerim je med uporabo izpostavljen.The invention is based on the problem of making it possible to determine and check the load-carrying capacity of a mechanically loaded machine part of a predetermined geometry, namely shape and dimensions, and consisting of a predetermined material, so that the dimensions of such part would be adequate in comparison with the dimensions of previously known adequate of the parts may be significantly smaller, and as a result, the smaller part would still be able to withstand any mechanical stress to which it is exposed during use.

Sestavni deli vozil morajo poleg funkcionalnosti zadostiti tudi strogim varnostnim zahtevam. Pri določenih obremenitvah, kot so trki vozil, se deli vozil lahko plastično deformirajo, ne sme pa priti do njihove porušitve, npr. do loma ali pretrganja. Plastične deformacije v fazi virtualnega preizkušanja izdelka so indikator, ki pove, kako blizu porušitve se nahajajo kritična območja posameznega dela. Pri tem se običajno uporabljajo analize na osnovi inženirskih napetostnodeformacijskih krivulj, ki pogosto vodijo do predimenzionirane konstrukcije.In addition to functionality, vehicle components must also meet stringent safety requirements. At certain loads, such as vehicle collisions, parts of the vehicle may be deformed plastically but may not collapse, e.g. to breaking or tearing. Plastic deformations in the virtual product testing phase are an indicator that shows how close the critical areas of each part are to the burst. Generally, analyzes based on engineering stress-strain curves are used, which often lead to over-dimensioned construction.

Običajna inženirska obravnava nosilnosti mehansko obremenjenih strojnih delov namreč temelji na predpostavki, da mehansko obremenjen strojni del lahko suvereno in zanesljivo prenaša obremenitve predvsem v območju pod mejo plastičnosti, v katerem se del sicer elastično deformira, po razbremenitvi pa se deformacije praktično povsem izničijo in se del povrne v svojo izhodiščno obliko. V odvisnosti od vrste obremenitev, ki so lahko statične ali dinamične, npr. pulzne (t.j. samo tlačne ali samo natezne) ali izmenične (t.j. izmenično tlačne in natezne) se potem strojni del dimenzionira z ustrezno varnostno rezervo, ki omogoča kljubovanje dela bodisi stalnim ali občasnim statičnim obremenitvam, ali pa občasnim ali trajnim dinamičnim obremenitvam.Conventional engineering treatment of the load-carrying capacity of mechanically loaded machine parts is based on the assumption that a mechanically loaded machine part can withstand sovereign and reliable loads, especially in the area below the plasticity limit, in which the part is otherwise elastically deformed, and after relieving the deformations are virtually completely eliminated and the part restores to its starting shape. Depending on the type of loads that may be static or dynamic, e.g. pulse (i.e. pressure only or tensile only) or alternating (i.e. alternately pressure and tensile) the machine part is then dimensioned with an adequate safety margin to allow the work to withstand either constant or occasional static loads or intermittent or permanent dynamic loads.

Tovrsten pristop je med drugim opisan tudi v US 2009/0192766, pri čemer gre za spremljanje vedenja dveh med seboj povezanih delov po metodi končnih elementov. Bistvo te metode je simulacija vsakokratnega strojnega dela s pomočjo matematičnega modela, s katerim je določena oblika strojnega dela. Simulirani del sestoji iz končnega števila geometrijsko pravilnih teles, ki so med seboj povezana v ogliščih. Ob predpostavki, da je tako simuliran del izpostavljen določenim mehanskim obremenitvam, je možno izračunati napetosti in deformacije v posameznih točkah ter s tem ugotavljati razmere v posameznih kritičnih točkah omenjenega dela ali deformacije dela samega kot takega. Deformacije so odvisne od vrste materiala, ki ga opredeljuje modul elastičnosti, ki je uporabljen v izračunu. Za verifikacijo je možno spreminjati število in/ali velikost in/ali obliko omenjenih elementov matematičnega modela geometrije dela.Such an approach is described, inter alia, in US 2009/0192766, which is to monitor the behavior of two interconnected parts by the finite element method. The essence of this method is to simulate each machine part using a mathematical model that determines the shape of the machine part. The simulated part consists of a finite number of geometrically regular bodies interconnected in corners. Assuming that such a simulated part is subjected to certain mechanical stresses, it is possible to calculate stresses and deformations at individual points, thereby determining the conditions at individual critical points of said part or deformation of the part itself. The deformations depend on the type of material defined by the modulus of elasticity used in the calculation. For verification, it is possible to vary the number and / or size and / or shape of said elements of the mathematical model of the geometry of the work.

S pomočjo tovrstnega inženirskega pristopa deklarirana nosilnost mehansko obremenjenega dela je neposredno odvisna od modula elastičnosti vsakokrat izbranega materiala in od dopustne napetosti, ki je določena kot tista, kateri mehansko obremenjen del še lahko kljubuje obremenitvam, ne da bi deformacije iz elastičnih prešle v plastične še preden pride do prekoračitve takoimenovane meje tečenja.Using this engineering approach, the declared load-bearing capacity of a mechanically loaded part depends directly on the modulus of elasticity of the material selected, and on the permissible stress, which is defined as that which the mechanically laden part can withstand loads without deformation from elastic to plastic before the so-called flow limit is exceeded.

Posledica tovrstnega pristopa so dimenzijsko razmeroma obsežni strojni deli s temu primerno veliko maso, kar je še zlasti v avtomobilski industriji izrazito nezaželeno, saj težji mehanski deli vozil med uporabo povzročajo večje obremenitve ostalih sestavnih delov, obenem pa tudi večjo porabo pogonskih goriv in večji vpliv na okolje, zlasti v smislu večjih emisij škodljivih snovi.This approach results in relatively large-sized machine parts with a correspondingly large mass, which is particularly undesirable in the automotive industry, since heavier mechanical parts of vehicles cause more loads of other components while in use, as well as greater fuel consumption and greater impact on the vehicle. the environment, especially in terms of higher emissions of harmful substances.

Znana naprava za določanje in preverjanje nosilnosti mehansko obremenjenega strojnega dela torej v splošnem obsega enoto za digitalno izračunavanje, ki je na podlagi programske opreme in vsakokrat vnesenih podatkov po metodi končnih elementov (MKE) zmožna izračunavati napetosti in deformacije v vnaprej določenih območjih mehansko obremenjenega strojnega dela, in sicer še zlasti na osnovi podatkovA known device for determining and verifying the load-carrying capacity of a mechanically loaded machine part therefore generally comprises a digital computing unit capable of calculating stresses and deformations in predetermined areas of the mechanically loaded machine part based on software and finite element input data (FEM) , especially on the basis of data

- o geometriji, namreč obliki in dimenziji vsakokratnega strojnega dela, ki je izražena v obliki matematičnega modela, sestoječega iz končnega števila geometrijsko pravilnih teles, t.j. končnih elementov, ki so definirana z množico oglišč, namreč točk z vsakokrat določenimi prostorskimi koordinatami, ki definirajo geometrijo oz. togostno matriko B prostornine V, AV;- the geometry, namely the shape and dimension of each machine part, which is expressed in the form of a mathematical model consisting of a finite number of geometrically regular bodies, i.e. of finite elements, which are defined by a set of angles, namely points with each time defined spatial coordinates that define the geometry or. rigidity matrix B of volume V, AV;

- o mehanskih obremenitvah, katerim je vsakokraten strojni del izpostavljen in ki so izražene npr. s silami ali zveznimi obremenitvami v določenih območjih strojnega dela, in/ali z vrtilnimi momenti, in- the mechanical stresses to which each machine part is exposed and which are expressed e.g. by forces or continuous loads in certain areas of machine work, and / or torques, and

- o materialu, ki je definiran vsaj s pomočjo modula elastičnosti E in določa matriko elastičnosti kot lastnost vsakokrat izbranega materiala, kot tudi s pravo napetostno-deformacijsko krivuljo oz. krivuljo tečenja, pri čemer izračunavanje v smislu določanja ali preverjanja nosilnosti mehansko obremenjenega dela v enoti za digitalno izračunavanje poteka iteracijsko z izračunavanjem neuravnotežene sile, ki se doda za vsak nadaljnji korak, posamezni koraki pa si sledijo v sledečem zaporedju:- on a material that is defined at least by means of the modulus of elasticity E and defines the elasticity matrix as a property of the material selected, as well as by the true stress-strain curve, or a flow curve, the calculation in terms of determining or verifying the load carrying capacity of a mechanically loaded part in a digital computing unit, is carried out iteratively by calculating an unbalanced force added for each subsequent step, the following steps being followed in the following order:

i) oblikovanje deformacijske matrike B na osnovi geometrije strojnega dela;i) designing a deformation matrix B based on the geometry of the machine part;

ii) izračun prirastka deformacij;ii) calculation of deformation increment;

iii) izračun prirastka napetosti;iii) calculation of voltage increment;

in pri čemer vsakokrat dobljeni končni rezultati obsegajo po eni strani podatke o obremenitvenem stanju v vsaj določenih točkah omenjenega strojnega dela in po drugi strani podatke o deformacijah v vsaj določenih točkah omenjenega strojnega • aand wherein the final results obtained each time comprise, on the one hand, information on the loading condition at at least certain points of said machine part and, on the other hand, information on deformations at at least certain points of said machine • a

dela, ki so posledica vsakokratne geometrije, mehanskih obremenitev in izbire materiala omenjenega strojnega dela.works resulting from the geometry, mechanical stresses and material selection of said machine part.

Uvodoma zastavljeni problem je rešen z napravo in postopkom v skladu z značilnostmi, ki so navedene v neodvisnih in odvisnih zahtevkih.The problem posed initially is solved by the apparatus and process in accordance with the characteristics stated in the independent and dependent claims.

Po izumu je predvidena naprava za določanje in preverjanje nosilnosti mehansko obremenjenega strojnega dela, ki poleg omenjene enote za digitalno izračunavanje obsega tudi enoto za preizkušanje mehanskih lastnosti vsakokrat izbranega materiala vsakokratnega mehansko obremenjenega strojnega dela.According to the invention, there is provided a device for determining and verifying the load-carrying capacity of a mechanically loaded machine part, which in addition to the said digital computing unit also includes a unit for testing the mechanical properties of the material of the respective mechanically loaded machine part of the material.

Pri tem je omenjena enota za preizkušanje mehanskih lastnosti tako zasnovana, da na osnovi standardne epruvete, sestoječe iz omenjenega materiala, generira podatke o funkcijski odvisnosti med napetostmi v materialu in v mehansko obremenjenem delu vse od pričetka obremenjevanja le-tega preko območja elastičnih deformacij in zatem tudi preko celotnega območja plastičnih deformacij vse do porušitve materiala omenjene epruvete.The said unit for testing mechanical properties is designed in such a way that, on the basis of a standard tube consisting of the said material, it generates data on the functional dependence between the stresses in the material and in the mechanically loaded part from the beginning of its loading through the area of elastic deformation and thereafter also over the entire area of plastic deformation up to the destruction of the material of said tube.

V ta namen se v enoti za preizkušanje mehanskih lastnosti uporabi epruveto z izhodiščno dolžino (l0) in izhodiščnim prečnim presekom (Ao) ter sestoječo iz določenega materiala, kije identičen materialu mehansko obremenjenega strojnega dela, pri čemer se epruveto obremenjuje s pomikom, katerega vrednost se koračno povečuje, obenem pa se meri vsakokratno silo obremenjevanja (F) in kontrakcijo prečnega preseka v območju od izhodiščnega preseka (Ao) do končnega preseka (A) oz. specifične deformacije (ε) neposredno pred porušitvijo dela.For this purpose, a test tube with a starting length (l 0 ) and a starting cross-section (A o ) and consisting of a specific material identical to the material of the mechanically loaded machine part shall be used, with the tube being loaded with a displacement of which the value is incrementally stepped up, while at the same time the load force (F) and the contraction of the cross-section are measured in the range from the initial section (Ao) to the final section (A) or. specific deformations (ε) immediately before the part is bursted.

Dogajanje med koračnim povečevanjem raztezanja (dolžine ali smiselno druge dimenzije) epruvete je razvidno v priloženih diagramih (Sl. 1 in 2). V splošnem je možno razmerje med dejanskimi in klasičnimi inženirsko izračunanimi napetostmi in deformacijami ponazoriti tudi matematično, pri čemer je dejanska napetost v primerjavi z inženirsko sledečaThe action during the stepwise extension of the extension (length or reasonably different dimension) of the test tube can be seen in the enclosed diagrams (Figs. 1 and 2). In general, the relationship between actual and classical engineering calculated stresses and deformations can also be mathematically illustrated, with the actual stress compared to engineering following

kjerwhere

F predstavlja silo, s katero je obremenjena epruveta;F represents the force applied to the tube;

σ pomeni napetost v prečnem preseku epruvete, izračunano po običajni inženirski metodi,σ denotes the voltage in the cross-section of the tube, calculated according to the usual engineering method,

A predstavlja trenutno velikost prečnega preseka deformirane epruvete;A represents the instantaneous cross-sectional size of the deformed tube;

Ao pa predstavlja velikost prečnega preseka nedeformirane epruvete;But o represents the cross-sectional size of the undeformed tube;

dejanske specifične deformacije ε so v primerjavi z inženirsko izračunanimi sledečethe actual specific deformations ε are as follows compared with the engineering ones calculated

AA

Priložena sta tudi napetostna diagrama (Sl. 3 in 4), ki ponazarjata izhodne podatke iz enote 1 za preizkušanje mehanskih lastnosti in omogočata primerjavo med dejanskimi in inženirsko določenimi razmerji med napetostmi in deformacijami.Voltage diagrams (Figs. 3 and 4) are also provided to illustrate the output data from Unit 1 for testing mechanical properties and to allow comparison between actual and engineered stress-strain relationships.

Zahvaljujoč prisotnosti in uporabi omenjene enote za preizkušanje mehanskih lastnosti in v slednji eksperimentalno pridobljenim podatkom o dejanskih napetostih in deformacijah v celotnem elastičnem in plastičnem območju, namreč podatkom o dejanski trdnosti oz. nosilnosti določenega materiala v celotnem elastičnem in tudi plastičnem področju pa potem enota za digitalno izračunavanje vrši izračunavanje napetostno-deformacijskega stanja v vsakokrat izbranem mehansko obremenjenem delu vsakokrat znane geometrije in dimenzij, in sicer po sledečih korakihThanks to the presence and use of the said unit for testing the mechanical properties and, in the latter, experimentally obtained data on the actual stresses and deformations in the whole elastic and plastic range, namely the data on the actual strength or. load carrying capacity of a certain material in the whole elastic as well as the plastic region, then the digital computing unit performs the calculation of the stress-strain state in the mechanically loaded part of the known geometry and dimensions, in each case, by the following steps

i) z določanjem togostne matrike konstrukcije vsakokratnega mehansko obremenjenega strojnega dela po formuli (I)i) by determining the stiffness matrix of the construction of each mechanically loaded machine part according to formula (I)

K- (I) kjerK- (I) where

K predstavlja togostno matriko konstrukcije;K represents the rigid matrix of the structure;

B predstavlja deformacijsko matriko (geometrijo);B represents the deformation matrix (geometry);

E predstavlja matriko elastičnosti (lastnosti materiala)E represents the elasticity matrix (material properties)

V, d V predstavlja volumen oz. spremembo le-tega;V, d V represents the volume or. a change thereto;

ii) z izračunavanjem prirastka deformacij z reševanjem globalnega sistema enačb po formuli (II)ii) by calculating the increment of deformations by solving the global system of equations according to formula (II)

KAu = AF Au = K *AF (II) kjerKAu = AF Au = K * AF (II) where

F, AF predstavlja vektor sil oz. prirastek sil t.j. obremenitve v posameznem koraku oz. v vsaki iteraciji;F, AF represents the vector of forces or. the increment of forces i.e. load in each step or. in each iteration;

u, Au pa predstavlja vektor pomika oz. prirastek pomikov v posameznem koraku oz. v vsaki iteraciji;u, and Au represents the displacement vector or. increment of movements in each step or. in each iteration;

iii) z izračunavanjem prirastka napetosti po formuli (III):iii) by calculating the voltage increment according to formula (III):

Δσ = EBAu (III) pri čemer velja u = u + Διι (IV) in σ = σ + Δσ (V) pri čemer σ, Δσ predstavlja vektor napetosti oz. prirastka napetosti v posameznem koraku oz. v vsaki iteraciji;Δσ = EBAu (III) where u = u + Διι (IV) and σ = σ + Δσ (V) where σ, Δσ represents the voltage vector or. voltage increment in a single step or. in each iteration;

zatem pa še iv) z izračunavanjem prirastka plastičnih deformacij po formuli (VI)and then iv) by calculating the plastic deformation increment according to formula (VI)

Δερ1 = ΒΔιι - E'1 σ (V) kjerΔε ρ1 = ΒΔιι - E ' 1 σ (V) where

Δερ| predstavlja prirastek vektorja plastičnega deleža specifičnih deformacij ερ|, čemur potem sledi še izračun neuravnotežene sile, ki se doda obremenitvi pred izračunavanjem naslednjega koraka v omenjenem procesu iteracije.Δε ρ | represents the increment of the vector of the plastic fraction of specific deformations ε ρ | , which is then followed by the calculation of the unbalanced force, which is added to the load before calculating the next step in the said iteration process.

Claims (3)

1. Naprava za določanje in preverjanje nosilnosti mehansko obremenjenega strojnega dela, obsegajoča enoto za digitalno izračunavanje, ki je na podlagi programske opreme in vsakokrat vnesenih podatkov po metodi končnih elementov (MKE) zmožna izračunavati napetosti in deformacije v vnaprej določenih območjih mehansko obremenjenega strojnega dela, in sicer še zlasti na osnovi podatkov1. A device for determining and verifying the load-carrying capacity of a mechanically loaded machine part, comprising a digital computing unit capable of calculating stresses and deformations in predetermined areas of the mechanically loaded machine part, based on software and finite element data (FEM) inputs, especially on the basis of data - o geometriji, namreč obliki in dimenziji vsakokratnega strojnega dela, ki je izražena v obliki matematičnega modela, sestoj ečega iz končnega števila geometrijsko pravilnih teles, t.j. končnih elementov, ki so definirana z množico oglišč, namreč točk z vsakokrat določenimi prostorskimi koordinatami, ki definirajo geometrijo oz. deformacijsko matriko (B) prostornine (V, AV);- the geometry, namely the shape and dimension of the respective machine part, expressed in the form of a mathematical model consisting of a finite number of geometrically regular bodies, i.e. of finite elements, which are defined by a set of angles, namely points with each time defined spatial coordinates, which define the geometry or. deformation matrix (B) of volume (V, AV); - o mehanskih obremenitvah, katerim je vsakokraten strojni del izpostavljen in ki so izražene npr. s silami ali zveznimi obremenitvami v določenih območjih strojnega dela, in/ali z vrtilnimi momenti, in- the mechanical stresses to which each machine part is exposed and which are expressed e.g. by forces or continuous loads in certain areas of machine work, and / or torques, and - o materialu, ki je definiran s pomočjo modula elastičnosti (E) in določa matriko elastičnosti kot lastnost vsakokrat izbranega materiala, kot tudi s pravo napetostnodeformacijsko krivuljo oz. krivuljo tečenja, pri čemer izračunavanje v omenjeni enoti za digitalno izračunavanje poteka iteracijsko z izračunavanjem neuravnotežene sile, ki se doda za vsak nadaljnji korak, posamezni koraki pa si sledijo v sledečem zaporedju:- on the material, which is defined by the modulus of elasticity (E) and defines the elasticity matrix as a property of the material selected, as well as by the true stress-strain curve, respectively. a flow curve, the calculation in said digital computing unit being iterated by calculating an unbalanced force, which is added for each subsequent step, and the individual steps are followed in the following order: i) oblikovanje deformacijske matrike (B) na osnovi geometrije strojnega dela;i) designing a deformation matrix (B) based on the geometry of the machine part; ii) izračun prirastka (Δε) deformacij (ε);ii) calculating the increment (Δε) of deformation (ε); iii) izračun prirastka (Δσ) napetosti (σ);iii) calculation of voltage increment (Δσ) (σ); in pri čemer vsakokrat dobljeni končni rezultati obsegajo po eni strani podatke o obremenitvenem stanju v vsaj določenih točkah omenjenega strojnega dela in po drugi strani podatke o deformacijah v vsaj določenih točkah omenjenega strojnega • · · · dela, ki so posledica vsakokratne geometrije, mehanskih obremenitev in izbire materiala omenjenega strojnega dela, označena s tem, da poleg omenjene enote za digitalno izračunavanje obsega tudi enoto za preizkušanje mehanskih lastnosti vsakokrat izbranega materiala vsakokratnega mehansko obremenjenega strojnega dela pri čemer je z enoto za digitalno izračunavanje po metodi končnih elementov sodelujoča enota za preizkušanje mehanskih lastnosti tako zasnovana, da na osnovi standardne epruvete, sestoječe iz materiala, ki je identičen materialu vsakokratnega mehansko obremenjenega strojnega dela, generira podatke o funkcijski odvisnosti med napetostmi (σ) v materialu in v mehansko obremenjenem delu vse od pričetka obremenjevanja le-tega preko območja elastičnih deformacij in zatem tudi preko celotnega območja plastičnih deformacij vse do porušitve materiala omenjene epruvete, in pri čemer je enota za preizkušanje mehanskih lastnosti epruvete z izhodiščno dolžino (l0) in izhodiščnim prečnim presekom (Ao) ter sestoječe iz določenega materiala, ki je identičen materialu mehansko obremenjenega strojnega dela, prirejena za obremenjevanje omenjene epruvete s pomikom, katerega vrednost se koračno povečuje, obenem pa se meri vsakokratno silo obremenjevanja (F) in kontrakcijo prečnega preseka v območju od izhodiščnega preseka (Ao) do trenutnega preseka (A) oz. specifične deformacije (ε) neposredno pred porušitvijo dela, in pri čemer na osnovi iz enote za preizkušanje mehanskih lastnosti pridobljenih podatkov o napetostno-deformacijski karakteristiki materiala epruvete v območju elastičnih in plastičnih deformacij enota za digitalno izračunavanje vrši izračunavanje napetostno-deformacijskega stanja v vsakokrat izbranem mehansko obremenjenem delu vsakokrat znane geometrije in dimenzij, in sicer po sledečih korakihand in each case the resulting results include, on the one hand, information on the loading state at at least certain points of said machine part and, on the other hand, information on deformations at at least certain points of said machine part due to the respective geometry, mechanical loads, and the selection of material of said machine part, characterized in that, in addition to said digital computing unit, it also includes a unit for testing the mechanical properties of the material of the respective mechanically loaded machine part of each of the said components, with a digital unit according to the finite element method a cooperating unit for testing the mechanical properties so designed that, on the basis of a standard tube consisting of a material identical to the material of each mechanically loaded machine part, it generates information on the functional dependence between the stresses (σ) in the material and in the mechanically loaded part from the beginning of the loads of extending it over the area of elastic deformation and thereafter over the entire area of plastic deformation up to the destruction of the material of said tube, wherein the unit for testing the mechanical properties of the tube with a starting length (l 0 ) and a starting cross-section (A o ) and standing of a material identical to that of a mechanically loaded machine part, adapted to load said tube by a displacement whose value is incrementally incremented, while measuring the respective loading force (F) and the contraction of the cross-section in the area from the initial section (A o ) to the current cross-section (A) or. Specific deformations (ε) immediately before the fracture of the work, and on the basis of the unit for testing the mechanical properties of the obtained data on the stress-deformation characteristics of the test tube material in the area of elastic and plastic deformations, the digital calculation unit performs the calculation of the stress-strain state in the mechanically selected loads of known geometry and dimensions in each of the following steps i) z določanjem togostne matrike konstrukcije vsakokratnega mehansko obremenjenega strojnega dela po formuli (I)i) by determining the stiffness matrix of the construction of each mechanically loaded machine part according to formula (I) K =J*V ΒΓΕΒί/Γ (I) kjerK = J * V Β Γ ΕΒί / Γ (I) where K predstavlja togostno matriko konstrukcije;K represents the rigid matrix of the structure; B predstavlja deformacijsko matriko (geometrijo);B represents the deformation matrix (geometry); E predstavlja matriko elastičnosti (lastnosti materiala)E represents the elasticity matrix (material properties) V, dV predstavlja volumen ii) z izračunavanjem prirastka deformacij z reševanjem globalnega sistema enačb po formuli (II)V, dV represents volume ii) by calculating the increment of deformations by solving the global system of equations according to formula (II) KAu = AF -» Au = KAF (II) kjerKAu = AF - »Au = KAF (II) where F, AF predstavlja vektor sil oz. prirastek sil t.j. obremenitve v posameznem koraku oz. v vsaki iteraciji;F, AF represents the vector of forces or. the increment of forces i.e. load in each step or. in each iteration; u, Au pa predstavlja vektor pomika oz. prirastek pomikov v posameznem koraku oz. v vsaki iteraciji;u, and Au represents the displacement vector or. increment of movements in each step or. in each iteration; iii) z izračunavanjem prirastka napetosti po formuli (III):iii) by calculating the voltage increment according to formula (III): Ασ = FBAu (III) pri čemer velja u = u + Au (IV) in σ = σ + Δσ (V) pri čemer σ, Δσ predstavlja vektor napetosti oz. prirastka napetosti v posameznem koraku oz. v vsaki iteraciji;Ασ = FBAu (III) where u = u + Au (IV) and σ = σ + Δσ (V) where σ, Δσ represents the voltage vector or. voltage increment in a single step or. in each iteration; zatem pa še iv) z izračunavanjem prirastka plastičnih deformacij po formuli (VI)and then iv) by calculating the plastic deformation increment according to formula (VI) Δερ| = BAu - E’1 σ (VI) kjer ερ1, Δερ| predstavlja vektor plastičnega deleža specifičnih deformacij, oz. prirastek le-tega, čemur potem sledi še izračun neuravnotežene sile zaradi dodajanja obremenitvi pred izračunavanjem naslednjega koraka v omenjenem procesu iteracije.Δε ρ | = BAu - E ' 1 σ (VI) where ε ρ1 , Δε ρ | represents the vector of plastic fraction of specific deformations, respectively. the increment thereof, which is then followed by the calculation of the unbalanced force due to the addition of the load before calculating the next step in the said iteration process. 2. Naprava po zahtevku 1, označena s tem, da je enota za preizkušanje mehanskih lastnosti prirejena za izvajanje statičnega ali dinamičnega nateznega preizkusa na osnovi standardizirane epruvete iz vsakokrat izbranega kovinskega materiala.Apparatus according to claim 1, characterized in that the mechanical properties testing unit is adapted to perform a static or dynamic tensile test on the basis of a standardized test tube of the metallic material selected. 3. Postopek za določanje in preverjanje nosilnosti mehansko obremenjenega strojnega dela s pomočjo enote za digitalno izračunavanje, s pomočjo katere se na podlagi programske opreme in vsakokrat vnešenih podatkov po metodi končnih elementov (MKE) izračunava napetosti in deformacije v vnaprej določenih območjih mehansko obremenjenega strojnega dela, in sicer še zlasti na osnovi podatkov3. Procedure for determining and verifying the load-carrying capacity of a mechanically laden machine part by means of a digital computing unit, by means of which, on the basis of software and the finite element method (FEM) data entered, the stresses and deformations are calculated in predetermined areas of the mechanically laden machine part , especially on the basis of data - o geometriji, namreč obliki in dimenziji vsakokratnega strojnega dela, ki je izražena v obliki matematičnega modela, sestoječega iz končnega števila geometrijsko pravilnih teles, t.j. končnih elementov, ki so definirana z množico oglišč, namreč točk z vsakokrat določenimi prostorskimi koordinatami, ki definirajo geometrijo oz. deformacijsko matriko (B) prostornine (V, AV);- the geometry, namely the shape and dimension of each machine part, which is expressed in the form of a mathematical model consisting of a finite number of geometrically regular bodies, i.e. of finite elements, which are defined by a set of angles, namely points with each time defined spatial coordinates that define the geometry or. deformation matrix (B) of volume (V, AV); - o mehanskih obremenitvah, katerim je vsakokraten strojni del izpostavljen in ki so izražene npr. s silami ali zveznimi obremenitvami v določenih območjih strojnega dela, in/ali z vrtilnimi momenti, in- the mechanical stresses to which each machine part is exposed and which are expressed e.g. by forces or continuous loads in certain areas of machine work, and / or torques, and - o materialu, ki je definiran vsaj s pomočjo modula elastičnosti (E) in določa matriko elastičnosti kot lastnost vsakokrat izbranega materiala, kot tudi s pravo napetostno-deformacijsko krivuljo oz. krivuljo tečenja, pri čemer se izračunavanje v omenjeni enoti za digitalno izračunavanje vrši iteracijsko z izračunavanjem neuravnotežene sile, ki se doda za vsak nadaljnji korak, posamezni koraki pa si sledijo v sledečem zaporedju:- on a material that is defined at least by the modulus of elasticity (E) and defines the elasticity matrix as a property of the material selected, as well as by the true stress-strain curve, or the curve of flow, the calculation in said digital computing unit being done iteratively by calculating an unbalanced force, which is added for each subsequent step, and the individual steps are followed in the following order: i) oblikovanje deformacijske matrike (B) na osnovi geometrije strojnega dela;i) designing a deformation matrix (B) based on the geometry of the machine part; ii) izračun prirastka (Δε) deformacij (ε);ii) calculating the increment (Δε) of deformation (ε); iii) izračun prirastka (Δσ) napetosti (o);iii) calculation of the voltage gain (Δσ) (o); vsakokrat dobljeni končni rezultati pa obsegajo po eni strani podatke o obremenitvenem stanju v vsaj določenih točkah omenjenega strojnega dela in po drugi strani podatke o deformacijah v vsaj določenih točkah omenjenega strojnega dela, ki so posledica vsakokratne geometrije, mehanskih obremenitev in izbire materiala omenjenega strojnega dela, pri čemer se omenjeno enoto za digitalno izračunavanje oskrbuje s podatki iz enote za preizkušanje mehanskih lastnosti vsakokrat izbranega materiala vsakokratnega mehansko obremenjenega strojnega dela, pri čemer se enoto za digitalno izračunavanje oskrbuje s podatki iz enote za preizkušanje mehanskih lastnosti, ki je prirejena za izvajanje statičnega ali • · dinamičnega nateznega preizkusa na osnovi standardizirane epruvete iz vsakokrat izbranega kovinskega materiala, in pri čemer se v enoti za preizkušanje mehanskih lastnosti epruvete z izhodiščno dolžino (l0) in izhodiščnim prečnim presekom (Ao) ter sestoječe iz določenega materiala, ki je identičen materialu mehansko obremenjenega strojnega dela, podatke za oskrbovanje enote za digitalno izračunavanje pridobi na ta način, da se omenjeno epruveto obremenjuje s pomikom, katerega vrednost se koračno povečuje, obenem pa se meri vsakokratno silo obremenjevanja (F) in kontrakcijo prečnega preseka v območju od izhodiščnega preseka (Ao) do trenutnega preseka (A) oz. specifične deformacije (ε) neposredno pred porušitvijo dela in pri čemer se podatke, s katero se za potrebe izračunavanja oskrbuje enoto za digitalno izračunavanje, v enoti za preizkušanje mehanskih lastnosti pridobi na ta način, da se na osnovi standardne epruvete, sestoječe iz materiala, ki je identičen materialu vsakokratnega mehansko obremenjenega strojnega dela, generira podatke o funkcijski odvisnosti med napetostmi (σ) v materialu in v mehansko obremenjenem delu vse od pričetka obremenjevanja le-tega preko območja elastičnih deformacij in zatem tudi preko celotnega območja plastičnih deformacij vse do porušitve materiala omenjene epruvete.in each case, the resulting results include, on the one hand, information on the loading state at at least certain points of said machine part and, on the other hand, information on deformations at at least certain points of said machine part as a result of the geometry, mechanical loads and material selection of said machine part, said digital computing unit being provided with data from the mechanical properties testing unit of the material of the respective mechanically loaded machine part of each of the mechanical calculations, the digital calculating unit being supplied with data from a mechanical testing unit adapted to perform static or • · a dynamic tensile test based on a standardized test tube of metallic material selected, with the unit having a mechanical test tube having a starting length (l 0 ) and a starting cross-section (A o ) and consisting of of material that is identical to the material of the mechanically loaded machine part, the data for supplying the digital computing unit is obtained in such a way that the said tube is loaded with a displacement whose value increases steadily, while measuring the respective loading force (F) and contraction of a cross-section in the range from the initial cross-section (A o ) to the current cross-section (A) or. specific deformation (ε) immediately before the part is bursted, and the information used to supply the digital computing unit for the purpose of calculation is obtained in the mechanical properties testing unit in such a way that, on the basis of a standard tube, consisting of a material consisting of is identical to the material of the mechanically loaded mechanical part of each part, generates data on the functional dependence between the stresses (σ) in the material and in the mechanically stressed part, from the beginning of its loading over the area of elastic deformation and then over the entire area of plastic deformation until the destruction of the material mentioned. tubes. in pri čemer se na osnovi iz enote za preizkušanje mehanskih lastnosti pridobljenih podatkov o napetostno-deformacijski karakteristiki materiala epruvete v območju elastičnih in plastičnih deformacij v enoti za digitalno izračunavanje vrši izračunavanje napetostno-deformacijskega stanja v vsakokrat izbranem mehansko obremenjenem delu vsakokrat znane geometrije in dimenzij, ki se ga vrši po sledečih korakihand whereby, based on the mechanical properties testing unit, data on the stress-strain characteristics of the test tube material in the area of elastic and plastic deformation in the digital computing unit, the stress-strain state is calculated in the mechanically loaded part of the geometry and dimensions known at each time, which is done in the following steps i) določanje togostne matrike konstrukcije vsakokratnega mehansko obremenjenega strojnega dela po formuli (I) • ·i) determining the stiffness matrix of the construction of each mechanically loaded machine part according to formula (I) • · K = Jv ΒΓΕΒί/Γ (I) kjerK = J in Β Γ ΕΒί / Γ (I) where K predstavlja togostno matriko konstrukcije;K represents the rigid matrix of the structure; B predstavlja deformacijsko matriko (geometrijo);B represents the deformation matrix (geometry); E predstavlja matriko elastičnosti (lastnosti materiala);E represents the elasticity matrix (material properties); V, dV pa predstavlja volumen oz. spremembo le-tega;V, dV represents the volume or. a change thereto; ii) izračunavanje prirastka deformacij z reševanjem globalnega sistema enačb po formuli (II)ii) calculating the increment of deformations by solving the global system of equations according to formula (II) KAu = AF -> Au = K'AF (II) kjerKAu = AF -> Au = K'AF (II) where F, AF predstavlja vektor sil oz. prirastek sil t.j. obremenitve v posameznem koraku oz. v vsaki iteraciji;F, AF represents the vector of forces or. the increment of forces i.e. load in each step or. in each iteration; u, Au pa predstavlja vektor pomika oz. prirastek pomikov v posameznem koraku oz. v vsaki iteraciji;u, and Au represents the displacement vector or. increment of movements in each step or. in each iteration; iii) izračunavanje prirastka napetosti po formuli (III):iii) calculating the voltage gain according to formula (III): Δσ = EBAu (III) pri čemer velja u = u + Au (IV) in σ = σ + Δσ (V) pri čemer σ, Δσ predstavlja vektor napetosti oz. prirastka napetosti v posameznem koraku oz. v vsaki iteraciji;Δσ = EBAu (III) where u = u + Au (IV) and σ = σ + Δσ (V) where σ, Δσ represents the voltage vector resp. voltage increment in a single step or. in each iteration; • fc zatem pa še iv) izračunavanje prirastka plastičnih deformacij po formuli (VI)• fc then iv) calculation of the plastic deformation increment according to formula (VI) Δερ1 = BAu - E'1 σ (V) kjer ερ|, Δερ1 predstavlja vektor plastičnega deleža specifičnih deformacij, oz. njihovega prirastka, čemur potem sledi še izračun neuravnotežene sile, ki se jo doda obremenitvi pred izračunavanjem naslednjega koraka v omenjenem procesu iteracije.Δε ρ1 = BAu - E ' 1 σ (V) where ε ρ | , Δε ρ1 represents the vector of plastic fraction of specific deformations, respectively. of their increment, which is then followed by the calculation of the unbalanced force, which is added to the load before calculating the next step in the said iteration process.
SI201200352A 2012-11-21 2012-11-21 Apparatus and method for determining and verifying of strength of a mechanically loaded machine part SI24244A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201200352A SI24244A (en) 2012-11-21 2012-11-21 Apparatus and method for determining and verifying of strength of a mechanically loaded machine part
PCT/SI2013/000065 WO2014081399A1 (en) 2012-11-21 2013-11-11 Apparatus and method for determining and verifying of strength of a mechanically loaded machine part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201200352A SI24244A (en) 2012-11-21 2012-11-21 Apparatus and method for determining and verifying of strength of a mechanically loaded machine part

Publications (1)

Publication Number Publication Date
SI24244A true SI24244A (en) 2014-05-30

Family

ID=49998654

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201200352A SI24244A (en) 2012-11-21 2012-11-21 Apparatus and method for determining and verifying of strength of a mechanically loaded machine part

Country Status (2)

Country Link
SI (1) SI24244A (en)
WO (1) WO2014081399A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111914358B (en) * 2020-07-08 2022-07-19 中国第一汽车股份有限公司 Method for forecasting limit bearing capacity of transmission shell under impact action of engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2356420B1 (en) 2008-01-30 2012-03-01 Airbus Operations, S.L. METHOD OF SIMULATION OF THE BEHAVIOR OF A TWO-PIECE ADHESIVE UNION.

Also Published As

Publication number Publication date
WO2014081399A1 (en) 2014-05-30

Similar Documents

Publication Publication Date Title
Banea et al. Mode I fracture toughness of adhesively bonded joints as a function of temperature: experimental and numerical study
Joseph et al. Size effects on double cantilever beam fracture mechanics specimen based on strain gradient theory
SI24244A (en) Apparatus and method for determining and verifying of strength of a mechanically loaded machine part
Mahnken Simulation of strength difference coupled to softening in elasto-plasticity for adhesive materials
CN107609279B (en) Method for obtaining impact strength design criterion of T-shaped welding joint
Deng et al. A study of some issues in stable tearing crack growth simulations
Yang et al. A unified viscoplastic model for characterizing the softening behavior of the Sn3. 0Ag0. 5Cu solder under monotonic and cyclic loading conditions
Klusák et al. The influence of discontinuity and orthotropy of fracture toughness on conditions of fracture initiation in singular stress concentrators
Babeshko et al. Influence of the stress mode on the strength of high-pressure vessels
Métais et al. Experimental and numerical investigation of fatigue damage development under multiaxial loads in a lead-free Sn-based solder alloy
Cerit et al. Fracture mechanics-based design and reliability assessment of fillet welded cylindrical joints under tension and torsion loading
Sun et al. Reverse scaling of a bonded-sphere DEM model: Formulation and application to lignocellulosic biomass microstructures
JP5896150B2 (en) Break determination device, break determination method, and break determination program
Frydrýšek et al. Simple planar truss (linear, nonlinear and stochastic approach)
Rahimi et al. Fractional Euler-Bernoulli Beam Theory Based on the Fractional Strain-Displacement Relation and its Application in Free Vibration, Bending and Buckling Analyses of Micro/Nanobeams
CN113611377A (en) Method for simulating hybrid control creep fatigue deformation by using crystal plastic model
Choi et al. The integrated elasto-plastic cable modeling for cable driven parallel robots (CDPRs)
Ulbrich et al. Assessment of New Load Schedules for the Machine Calibration of a Force Balance
Neilsen et al. UCPD model for Pb-free solder
Hunnell et al. Numerical simulation of fatigue crack growth behavior by crack-tip blunting
Wang et al. Three dimensional implementation of HISS model in ABAQUS
Nedbal et al. Fractographic study of fatigue crack kinetics in bodies and structures
Zenkov et al. Modeling stress state stiffening of the nozzle zone of pressure vessel by finite element method
Al Ali et al. Simulation of experimental test using 3d modelling
Pichler et al. Instability during cohesive zone growth

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20140605

KO00 Lapse of patent

Effective date: 20160714