SI23783A - Process of the adaptive compensation of nonlinearity of the power amplifier - Google Patents

Process of the adaptive compensation of nonlinearity of the power amplifier Download PDF

Info

Publication number
SI23783A
SI23783A SI201100238A SI201100238A SI23783A SI 23783 A SI23783 A SI 23783A SI 201100238 A SI201100238 A SI 201100238A SI 201100238 A SI201100238 A SI 201100238A SI 23783 A SI23783 A SI 23783A
Authority
SI
Slovenia
Prior art keywords
signal
component
phase
frequency
shoulder
Prior art date
Application number
SI201100238A
Other languages
Slovenian (sl)
Inventor
Rok Pirnat
Original Assignee
Beyond Devices D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beyond Devices D.O.O. filed Critical Beyond Devices D.O.O.
Priority to SI201100238A priority Critical patent/SI23783A/en
Publication of SI23783A publication Critical patent/SI23783A/en

Links

Abstract

Predloženi izum se nanaša na postopek adaptivne kompenzacije nelinearnosti močnostnega ojačevalnika. Bistvo postopka adaptivne kompenzacije nelinearnosti širokopasovnega močnostnega ojačevalnika po predloženem izumu je adaptivna kompenzacija zgornjega in spodnjega frekvenčnega pasu z merjenjem količine, ki določa uspešnost adaptivnega postopka. S tem se zagotovi neprekinjeno oddajo signala med spreminjanjem kompenzacijskih koeficientov v delovni tabeli neodvisno za zgornji in spodnji frekvenčni pas.The present invention relates to a method of adaptive compensation of the non-linearity of the power amplifier. The principle of the adaptive compensation method for the non-linearity of the broadband power amplifier according to the present invention is the adaptive compensation of the upper and lower frequency bands by measuring the amount determining the performance of the adaptive process. This ensures continuous transmitting of the signal while changing the compensation coefficients in the working table independently for the upper and lower frequency bands.

Description

Beyond Devices d.o.o.Beyond Devices d.o.o.

Postopek adaptivne kompenzacije nelinearnosti močnostnega ojačevalnikaThe process of adaptive compensation for the nonlinearity of a power amplifier

Predloženi izum se nanaša na postopek adaptivne kompenzacije nelinearnosti močnostnega ojačevalnika.The present invention relates to a process for the adaptive compensation of the nonlinearity of a power amplifier.

Za ozkopasovne modulacijske signale velja, da so pri prenosu preko nelinearne karakteristike ojačevalnika v veliki meri podvrženi amplitudno-amplitudnemu in amplitudno-faznemu popačenju, kar pomeni, da sta amplituda in faza izhodnega signala v približku odvisna le od amplitude vhodnega signala. Pri višjih modulacijskih frekvencah signala pa poleg amplitude vhodnega signala na izhodni signal vpliva tudi frekvenca. Vezje za nastavitev delovne točke in vezje za prilagoditev impedance namreč ne zagotavljata frekvenčno konstantne karakteristike v celotnem naboru modulacijskih frekvenc, kar povzroči fazno in amplitudno spremembo signala pri prehodu skozi močnostni ojačevalnik v odvisnosti od frekvence. Posledica tega je različen vpliv ojačevalnika na frekvence nad in pod opazovanim signalom, oz. tako imenovano odtekanje signala v zgornji in spodnji sosednji kanal. Poleg tega prenosna karakteristika ojačevalnika ni statična, saj je podvržena spremembam temperature, napajalne napetosti, staranju, odpovedi ojačevalnih stopenj, itd.Narrowband modulation signals are considered to be largely subjected to amplitude-amplitude and amplitude-phase distortion when transmitted through a non-linear amplifier characteristic, meaning that the amplitude and phase of the output signal in the approximation depend only on the amplitude of the input signal. At higher signal modulation frequencies, in addition to the amplitude of the input signal, the output signal is also affected by the frequency. Namely, the setpoint and impedance control circuitry do not provide a frequency constant characteristic throughout the range of modulation frequencies, which causes a phase and amplitude change of the signal as it passes through the power amplifier as a function of frequency. This results in different effects of the amplifier on the frequencies above and below the observed signal, respectively. so-called signal drainage into the upper and lower adjacent channels. In addition, the transmission characteristic of the amplifier is not static, as it is subject to changes in temperature, supply voltage, aging, failure of amplification stages, etc.

Naloga predloženega izuma je ustvariti postopek adaptivne kompenzacije nelinearnosti močnostnega ojačevalnika, s katerim bodo odpravljene pomanjkljivosti znanih rešitev.It is an object of the present invention to provide a method of adaptive compensation for the nonlinearity of a power amplifier, which will eliminate the disadvantages of the known solutions.

Zastavljena naloga je po izumu rešena z značilnostnim delom 1. patentnega zahtevka. Podrobnosti so podane v ustreznih podzahtevkih. Za dolgoročno zagotavljanje minimalnega odtekanja signala v sosednja kanala je tako potreben adaptacijski postopek, ki kljub počasnim spremembam v čim krajšem času prilagodi kompenzacijsko vezje novi prenosni karakteristiki ojačevalnika. Bistvo postopka adaptivne kompenzacije nelinearnosti širokopasovnega močnostnega ojačevalnika po predloženem izumu je adaptivna kompenzacija zgornjega in spodnjega frekvenčnega pasu z merjenjem količine, ki določa uspešnost adaptivnega postopka. S tem se zagotovi neprekinjeno oddajo signala med spreminjanjem kompenzacijskih koeficientov v delovni tabeli za zgornji in spodnji frekvenčni pas.The present invention is solved by the characteristic part of claim 1. Details are given in the relevant sub-claims. In order to ensure a minimal drainage of signal to adjacent channels in the long run, an adaptation procedure is thus required, which, despite slow changes, adapts the compensation circuit to the new transfer characteristic of the amplifier in the shortest possible time. The essence of the adaptive compensation procedure for the nonlinearity of a broadband power amplifier according to the present invention is the adaptive upper and lower frequency band compensation by measuring the amount that determines the success of the adaptive process. This ensures a continuous signal transmission while changing the upper and lower band working coefficients.

Postopek adaptivne kompenzacije nelinearnosti širokopasovnega močnostnega ojačevalnika po izumu na oddajni strani uporablja kot vhod sofazno in kvadratumo komponento spodnjega in zgornjega frekvenčnega pasu. Vezje na oddajni strani ločeno kompenzira zgornji in spodnji frekvenčni pas po postopku digitalne kompenzacije v osnovnem pasu na podlagi koeficientov kompenzacijske tabele.The process of adaptive compensation for the nonlinearity of a broadband power amplifier according to the invention on the transmitter side uses as input a sophisticated and quadratic component of the lower and upper frequency bands. The circuit on the transmitter side separately compensates the upper and lower frequency bands according to the digital compensation procedure in the base band, based on the coefficients of the compensation table.

Po postopku po predloženem izumu se sinhronizira sprejeti signal povratne vezave z referenčnim oddajnim signalom in na podlagi razlike med sprejetim in oddajnim signalom popravi koeficiente v obeh delovnih tabelah in sočasno pomožni tabeli. Na ta način se dodamo pospeši celoten postopek določanja koeficientov kompenzacijskega vezja za zagotavljanje minimalnega odtekanja signala v sosednja kanala, saj sta si karakteristiki zgornjega in spodnjega pasu podobni.According to the process of the present invention, the received feedback signal is synchronized with the reference transmit signal and, based on the difference between the received and transmit signal, the coefficients in both the working tables and the concurrent auxiliary table are corrected. In this way, the whole process of determining the coefficients of the compensation circuit is added to accelerate, in order to ensure minimal signal drainage into adjacent channels, since the characteristics of the upper and lower bands are similar.

Kot mera za odtekanje signala v sosednji kanal se uporablja moč ozkega frekvenčnega pasu na robu sosednega kanala. Spektralna gostota moči v sosednjem kanalu kot posledica nelinearne karakteristike ojačevalnika monotono pada z naraščanjem frekvenčne razdalje od roba opazovanega kanala (tj. minimalne ali maksimalne frekvenčne komponente opazovanega signala). Zato velja, da moč ozkega frekvenčnega pasu na robu sosednjega kanala zavzame minimalno vrednost ob minimalni moči celotnega motilnega signala v sosednjem pasu kot posledica nelinearnosti močnostnega ojačevalnika.The power of a narrow frequency band at the edge of an adjacent channel is used as a measure to drain a signal into an adjacent channel. The spectral power density in the adjacent channel as a result of the nonlinear characteristic of the amplifier decreases monotonically as the frequency distance from the edge of the observed channel increases (ie, the minimum or maximum frequency component of the observed signal). It is therefore considered that the power of the narrow frequency band at the edge of the adjacent channel occupies a minimum value with the minimum power of the total interference signal in the adjacent band as a result of the nonlinearity of the power amplifier.

Ob predpostavljeni konstantni moči izhodnega signala določa ozkopasovna moč frekvenčne komponente (ramenske frekvence) na robu sosednjega frekvenčnega kanala ramensko slabljenje. Slednje je definirano kot razmerje ozkopasovne moči pri centralni frekvenci opazovanega kanala in ozkopasovne moči pri ramenski frekvenci v sosednjem kanalu kot posledica odtekanja moči signala v sosednji kanal.Given the assumed constant output power, the narrowband power of the frequency component (shoulder frequencies) at the edge of the adjacent frequency channel determines the shoulder attenuation. The latter is defined as the ratio of the narrowband power at the center frequency of the observed channel and the narrowband power at the shoulder frequency in the adjacent channel as a result of the drainage of the signal strength into the adjacent channel.

Po vsakem adaptacijskem intervalu določi vezje za merjenje ramenskega slabljenja moč signala pri ramenski frekvenci in jo primerja s predhodno izmerjeno vrednostjo. Če je vrednost manjša, se adaptacijski postopek nadaljuje, v nasprotnem primeru pa se naložijo koeficienti iz pomožne tabele.After each adaptation interval, the circuit for measuring the shoulder attenuation determines the signal strength at the shoulder frequency and compares it with the previously measured value. If the value is lower, the adaptation process is continued, otherwise the coefficients in the auxiliary table are loaded.

Postopek po izumu določa enake koeficiente tabel za zgornji in spodnji frekvenčni pas dvopasovne kompenzacije nelinearne karakteristike močnostnega ojačevalnika in izbiroma predstavlja začetni pogoj optimizacijskega postopka. Optimizacijski postopek se izvaja v mikrokrmilniku ali namenskem vezju, ki po enem od postopkov, ki niso predmet tega izuma, neodvisno za zgornji in spodnji frekvenčni pas spreminja koeficiente v kompenzacijskih tabelah, določene z adaptivnim postopkom po izumu. Ob spremembi omenjenih koeficientov vezje za merjenje ramenskega slabljenja izmeri moč signala pri ramenski frekvenci, ki jo optimizacijski postopek v mikrokrmilniku ali namenskem vezju uporabi kot mero za izboljšanje kompenzacije nelinearnega popačenja močnostnega ojačevalnika glede na spremembo koeficientov v eni od tabel.The method according to the invention determines the same coefficients of the tables for the upper and lower frequency band of the two-band compensation of the nonlinear characteristic of the power amplifier and the selection represents the initial condition of the optimization process. The optimization process is performed in a microcontroller or dedicated circuit which, according to one of the processes not the subject of the present invention, independently of the upper and lower frequency bands, changes the coefficients in the compensation tables determined by the adaptive method of the invention. When these coefficients change, the shoulder attenuation circuit measures the signal strength at the shoulder frequency that the optimization process in the microcontroller or dedicated circuit uses as a measure to improve the compensation of the nonlinear distortion of the power amplifier relative to the change in the coefficients in one of the tables.

Sofazna in kvadratuma komponenta zgornjega in spodnjega frekvenčnega pasu vhodnega signala sta ojačani in fazno zasukani s kompleksnimi koeficienti iz predkorekcijskih tabel, ki ju v vezju predstavlja pomnilnik z naključnim dostopom. Naslov tabele oz. indeks a koeficienta je določen kot trenutna moč vzorca celotnega signala, kar ponazarja izraz a = (lij + uii)2 + (lqi + uqi)2, kjer pomeni li, sofazna komponenta signala spodnjega frekvenčnega pasu, ui, sofazna komponenta signala zgornjega frekvenčnega pasu, lqi kvadratuma komponenta signala spodnjega frekvenčnega pasu, uqi kvadratuma komponenta signala zgornjega frekvenčnega pasu.The sophisticated and quadratum components of the upper and lower frequency bands of the input signal are amplified and phase-locked by the complex coefficients of the pre-correction tables, represented by random access memory in the circuit. Table title the index a of the coefficient is defined as the instantaneous power of the sample of the whole signal, which is illustrated by the expression a = (funnel + uii) 2 + (lqi + uqi) 2 , where li, the sophisticated component of the signal of the lower frequency band, ui, the sophisticated component of the signal of the upper frequency , lqi quadratum component of the lower band signal, uqi quadratum component of the signal of the upper frequency band.

Omenjeni indeks a se zakasnjen uporablja tudi za izbiro normalizacij skega koeficienta. Oba bočna pasova sta pred pretvorbo na nosilno frekvenco sešteta v sofazno in kvadratumo komponento.The above mentioned index a is also used to select the normalization coefficient. Both lateral bands are summed into a sophisticated and quadratic component before conversion to the carrier frequency.

Sočasno s tem se sofazno in kvadratumo komponento zgornjega in spodnjega frekvenčnega pasu vhodnega signala paroma sešteje v referenčni signal, ki se ga primerja s signalom povratne vezave. Rezultat postopka primerjave je signal, ki krmili zakasnitvene elemente, in signal, sestavljen iz sofazne in kvadratume komponente, ki določa potrebni povprečni fazni zasuk in amplitudno skaliranje signala povratne zanke na vhodu v predkorekcijski blok. Tako sta omenjeni referenčni signal in omenjeni signal povratne vezave časovno sinhrona, močnostno usklajena in fazno poravnana. Slednje izloči fazni zasuk, ki je skupen vsem močnostnim nivojem signala povratne vezave, in izredno pospeši adaptacijski postopek. Ko sta signala časovno in fazno sinhrona ter močnostno usklajena, kar se vrši v kompleksnem množilniku, adaptacijski postopek primerja referenčni signal in signal povratne vezave tako, da v vsakem urinem ciklu vzorčne frekvence odšteje vzorec omenjenega referenčnega signala od omenjenega signala povratne vezave ter ga kompleksno množi s konjugirano vrednostjo omenjenega referenčnega signala. Glede na zakasnjeno trenutno moč oz. naslov v delovni tabeli je dobljena napaka utežena z normalizacij skim koeficientom. Na ta način dobljena signala predstavljata adaptacijsko vrednost vsakokratnega postopkovnega koraka v odvisnosti od trenutne moči signala.At the same time, the sophisticated and quadratic components of the upper and lower frequency bands of the input signal of the pair are added to the reference signal, which is compared with the feedback signal. The result of the comparison process is a signal that controls the delay elements and a signal consisting of a phase and quadrature component that determines the required average phase rotation and amplitude scaling of the feedback signal at the input to the pre-correction block. Thus, said reference signal and said feedback signal are synchronously timed, power-coordinated and phase-aligned. The latter eliminates the phase rotation common to all power levels of the feedback signal and greatly accelerates the adaptation process. When the time and phase signals are synchronous and power-coordinated, which is performed in a complex multiplier, the adaptation procedure compares the reference signal and the feedback signal by subtracting a sample of said reference signal from said feedback signal in each clock cycle of said frequency and multiplying it complexly with the conjugated value of said reference signal. Given the delayed current power or. the address in the worksheet is the resulting error weighted by the normalization coefficient. The signals thus obtained represent the adaptation value of the respective process step, depending on the current signal strength.

V vsakem postopkovnem koraku, ki se vrši s frekvenco vzorčenja, so popravljene vrednosti v delovnih tabelah pri zakasnjenem naslovu a, ki predstavlja trenutno moč signala, v skladu z rekurzivnim izrazom kjer n določa trenutni indeks koraka, v katerem je bila napaka določena, in kjer pomeni:In each process step performed with a sampling frequency, the corrected values in the worksheets of the delayed address a, which represents the current signal strength, according to the recursive expression where n determines the current index of the step in which the error was determined, and where means:

T vrednost koeficienta v tabeli, sestavljenega iz sofazne in kvadratume komponente, ti sofazna komponenta vrednosti vsakokratnega koraka, j imaginarno število (koren iz -1), tq kvadratuma komponenta vrednosti vsakokratnega koraka.The t-value of the coefficient in the table, consisting of the so-phase and quadratum component, the so-sophase component of the value of each step, j is the imaginary number (root of -1), tq quadrature is the component of the value of each step.

Določeno število adaptacijskih korakov predstavlja en adaptacijski interval, katerega frekvenca je lahko mnogo manjša od frekvence vzorčenja. Pri tem je lahko prvi adaptacijski interval daljši od vseh naslednjih, s čimer se pospeši celotni postopek. Prav tako ni omejitev, da adaptacijski interval predstavlja le en adaptacijski korak.A certain number of adaptation steps represent one adaptation interval whose frequency may be much less than the sampling frequency. In this case, the first adaptation interval may be longer than all subsequent ones, thus speeding up the whole process. There is also no restriction that the adaptation interval represents only one adaptation step.

Postopek po izumu v vsakem urinem ciklu vzorčne frekvence popravi vrednost enega od koeficientov v tabeli. Ko koeficient na določenem naslovu doseže stabilno vrednost se nadaljnji popravki gibljejo okrog te stabilne vrednosti. Vendar to velja le ob predpostavki, da najvišja trenutna izhodna moč signala ne preseže vrednosti nasičenja na linearni vhodno-izhodni karakteristiki osnovnega signala ojačevalnika. Slednje se v praksi izkaže za nepravilno predpostavko, še zlasti pri močnostnih ojačevalnikih z visokim izkoristkom in uporabi sodobnih modulacijskih tehnik z visokim razmerjem med povprečno in maksimalno močjo signala. Zato je po izumu predvideno tudi, da se meri ramensko slabljenje, ki določa ozkopasovno moč signala v oddaljenosti nekaj procentov pasovne širine celotnega kanala od roba sosednjega kanala.The process of the invention corrects for each hourly cycle of the sample frequency the value of one of the coefficients in the table. When the coefficient at a given address reaches a stable value, further corrections move around that stable value. However, this is only assuming that the maximum instantaneous output power of the signal does not exceed the saturation value on the linear input-output characteristic of the amplifier's base signal. The latter proves to be an incorrect assumption in practice, especially with high-efficiency power amplifiers and the use of modern modulation techniques with a high ratio of average to maximum signal strength. Therefore, according to the invention, it is also envisaged to measure shoulder attenuation, which determines the narrowband signal strength at a distance of a few percent of the bandwidth of the entire channel from the edge of the adjacent channel.

Ustrezno vezje za merjenje ramenskega slabljenja najprej pretvori merjeno ramensko frekvenco v enosmerno komponento. Po preteku adaptacijskega intervala se vzorce omenjene enosmerne komponente uteži s poljubno okensko funkcijo in sešteje. Ko je seštetih k vzorcev signala v osnovnem pasu, se zatem določi trenutno moč enosmerne komponente signala kot vsoto kvadratne vrednosti sofazne in kvadratume komponente signala, ki se jo zatem povpreči. Po povprečenih m vrednostih vzorcev signala se sproži odločitveni korak, ki primerja trenutno vrednost povprečne moči pri ramenski frekvenci s predhodno shranjeno povprečno vrednostjo moči.An appropriate circuit for measuring shoulder attenuation first converts the measured shoulder frequency into a DC component. After the expiration of the adaptation interval, the samples of said one-way component are weighted with any window function and summed. When summed to the signal samples in the base band, the instantaneous power of the DC component of the signal is then determined as the sum of the squared value of the phase and squared components of the signal, which are then averaged. After averaging m values of the signal samples, a decisive step is initiated that compares the current value of the average power at shoulder frequency with the previously stored average power value.

Če je ramensko slabljenje večje oz. če je povprečna moč ramenske frekvence manjša od predhodno izmerjene, odločitveni signal dovoli shranitev trenutnih kompenzacijskih koeficientov iz delovne tabele v začasno tabelo. Če ima odločitveni signal negativno vrednost, kar pomeni, da je nova vrednost moči pri ramenski frekvenci večja od predhodne, se iz začasne tabele naložijo vrednosti koeficientov, ki so bile shranjene po predhodnem adaptacijskem intervalu, v delovni tabeli. Ko je omenjeni prenos koeficientov končan, se prične nov adaptacijski interval.If the shoulder attenuation is greater, if the average power of the shoulder frequency is less than previously measured, the decision signal permits the storage of the current compensation coefficients from the working table to the temporary table. If the decision signal has a negative value, which means that the new power value at shoulder frequency is higher than the previous one, the values of the coefficients stored after the previous adaptation interval in the working table are loaded from the temporary table. When said coefficient transfer is complete, a new adaptation interval begins.

Ob doseženem stanju, ko sprememba koeficientov ne povzroči povečanja ramenskega slabljenja, se adaptacijski postopek lahko prekine. Omogočen je namreč nadaljnji potek optimizacijskega postopka, ki spreminja koeficiente v tabeli zgornjega frekvenčnega pasu neodvisno od tabele spodnjega frekvenčnega pasu in obratno, pri čemer kot mero uspešnosti optimizacije uporablja odločitveni signal. Postopkovni korak merjenja ramenskega slabljenja meri tako ramensko slabljenje v spodnjem kot tudi v zgornjem sosednjem kanalu, odvisno od nastavitve ramenske frekvence. Optimizacijski postopek se vrši v mikrokrmilniku ali namenskem vezju.When the condition is reached, when the change in the coefficients does not lead to an increase in shoulder attenuation, the adaptation process may be interrupted. Namely, a further course of the optimization process is enabled, which changes the coefficients in the upper frequency band table independently of the lower frequency band table and vice versa, using the decision signal as a measure of optimization success. The process step of measuring shoulder attenuation measures both shoulder attenuation in the lower and upper adjacent channels, depending on the setting of the shoulder frequency. The optimization process is performed in a microcontroller or dedicated circuit.

Claims (9)

Patentni zahtevkiPatent claims 1. Postopek adaptivne kompenzacije nelinearnosti močnostnega ojačevalnika, značilen po tem, da obsega naslednje korake:1. A method of adaptive compensation for the nonlinearity of a power amplifier, characterized in that it comprises the following steps: a) spremembo koeficientov v kompenzacijskih tabelah zgornjega in spodnjega frekvenčnega pasu vhodnega signala na podlagi merjenja moči signala pri ramenski frekvenci in sicer tako, da se koeficientom v tabeli prišteje vrednost vsakokratnega adaptacijskega koraka, pri čemer se v primeru, da je ozkopasovna moč pri ramenski frekvenci manjša od predhodno določene koeficienti kopirajo tudi v začasno tabelo oziroma se naložijo iz začasne tabele v primeru, da je ozkopasovna moč pri ramenski frekvenci večja od predhodno izmerjene;a) changing the coefficients in the compensation tables of the upper and lower frequency bands of the input signal by measuring the signal strength at shoulder frequency by adding to the coefficients in the table the value of the respective adaptation step, whereby in the case of narrowband power at shoulder frequency Coefficients smaller than the predetermined value are also copied to the temporary table or loaded from the temporary table in the case of narrow bandwidth at shoulder frequency greater than previously measured; b) fazni zasuk in amplitudno skaliranje s signalom iz tabele spodnjega pasu vsakokratnega vzorca vhodnega signala spodnjega frekvenčnega pasu, sestavljenega iz sofazne in kvadratume komponente;b) phase rotation and amplitude scaling with the signal from the lower band table of each sample of the lower frequency band input signal consisting of a phase and quadrature component; c) fazni zasuk in amplitudno skaliranje s signalom iz tabele zgornjega pasu vsakokratnega vzorca vhodnega signala zgornjega frekvenčnega pasu, sestavljenega iz sofazne in kvadratume komponente;c) phase rotation and amplitude scaling with the signal from the upper band table of each sample of the upper frequency band input signal consisting of a sophisticated and quadratic component; d) seštetje kompenzirane sofazne komponente zgornjega frekvenčnega pasu in kompenzirane sofazne komponente spodnjega frekvenčnega pasu v sofazno komponento kompenziranega signala;d) summing the compensated uplink phase component and the offset downlink component into the offset component of the offset signal; e) seštetje kompenzirane kvadratume komponente zgornjega frekvenčnega pasu in kompenzirane kvadratume komponente spodnjega frekvenčnega pasu v kvadratumo komponento kompenziranega signala;e) adding the compensated quadrature of the upper frequency band component and the compensated quadrature of the lower frequency component into the quadratic component of the compensated signal; f) seštetje sofazne komponente zgornjega frekvenčnega pasu in sofazne komponente spodnjega frekvenčnega pasu vhodnega signala ter zakasnitev vsote v sofazno komponento referenčnega signala;f) summing up the phase phase component of the upper frequency band and the phase phase component of the lower frequency band of the input signal, and delaying the sum into the phase phase component of the reference signal; g) seštetje kvadratume komponente zgornjega frekvenčnega pasu in kvadratume komponente spodnjega frekvenčnega pasu vhodnega signala ter zakasnitev vsote v kvadratumo komponento referenčnega signala;g) adding up the quadrature of the component of the upper frequency band and the quadrature of the component of the lower frequency band of the input signal, and delaying the sum of the quadratic component of the reference signal; h) fazno sukanje in amplitudno skaliranje signala povratne vezave, sestavljenega iz sofazne in kvadratume komponente s signalom, določenim s primerjavo omenjenega signala z referenčnim signalom, sestavljenim iz sofazne in kvadratume komponente;h) phase rotation and amplitude scaling of the feedback signal consisting of a phase and quadrature component with a signal determined by comparing said signal with a reference signal consisting of a phase and quadrature component; i) določitev razlike med fazno zasukanim in amplitudno skaliranim signalom • · a · • · povratne vezave, sestavljenim is sofazne in kvadratume komponente, in zakasnjenim referenčnim signalom, sestavljenim iz sofazne in kvadratume komponente ter množenje s konjugirano vrednostjo referenčnega signala;i) determining the difference between the phase-locked and the amplitude-scaled signal • · a · • · feedback composed of the phase and quadrature component and the delayed reference signal consisting of the phase and quadrature component and multiplication by the conjugate value of the reference signal; j) množenje omenjenega produkta s skalarjem iz tabele v odvisnosti od celotne trenutne moči zakasnjenega referenčnega signala, kar predstavlja signal adaptacijskega koraka, sestavljenega iz sofazne in kvadratume komponente; inj) multiplying said product by the scalar of the table, depending on the total instantaneous power of the delayed reference signal, which is the signal of an adaptation step consisting of a sofas and a quadratum component; and k) prištevanje adaptacijskega koraka vrednosti v obeh tabelah na naslovu določenem s trenutno močjo zakasnjenega referenčnega signala.k) adding the adaptation step of the values in both tables to the address determined by the current power of the delayed reference signal. 2. Postopek po zahtevku 1, značilen po tem, da je naslov vsakokratne omenjene tabele določen kot vsota kvadratov vsote sofazne komponente signala zgornjega frekvenčnega pasu in spodnjega frekvenčnega pasu ter vsote kvadratume komponente signala zgornjega frekvenčnega pasu in spodnjega frekvenčnega pasu.Method according to claim 1, characterized in that the address of each said table is defined as the sum of the squares of the sum of the upper-band and lower-frequency signal components of the upper frequency band and the sum of the square of the upper-band and lower frequency signal components. 3. Postopek po zahtevku 1, značilen po tem, da obsega korak za določitev ramenskega slabljenja.Method according to claim 1, characterized in that it comprises a step for determining shoulder attenuation. 4. Postopek po zahtevkih 1 in 3, značilen po tem, da obsegaThe method of claims 1 and 3, characterized in that it comprises a) preslikavo ramenske frekvence signala povratne vezave, sestavljene iz sofazne in kvadratume komponente v enosmerno komponento, sestavljene iz sofazne in kvadratume komponente;a) mapping of the shoulder frequency of the feedback signal consisting of the sofas and quadratures of the component into a one-way component, consisting of the sofas and quadratures of the component; b) množenje sofazne in kvadratume komponente frekvenčno preslikanega signala s koeficienti poljubne okenske funkcije ter povprečenje njunih vzorcev;b) multiplying the sophisticated and quadratic components of the frequency-mapped signal by the coefficients of any window function and averaging their samples; c) izračun trenutne moči enosmerne komponente po izteku povprečenja vzorcev omenjenega oknjenega signala;c) calculating the instantaneous power of the DC component after the averaging of the samples of said windowed signal; d) določitev povprečne moči enosmerne komponente s seštevanjem vzorcev trenutne moči omenjenega signala;d) determining the average power of the DC component by summing the samples of the instantaneous power of said signal; e) primerjava predhodno shranjene ozkopasovne povprečne moči pri ramenski frekvenci s povprečno močjo, izmerjeno v zadnjem intervalu.e) comparison of previously stored narrowband average power at shoulder frequency with average power measured in the last interval. 5. Postopek po kateremkoli od predhodnih zahtevkov, značilen po tem, da določeno število adaptacijskih korakov predstavlja en adaptacijski interval, katerega frekvenca je lahko manjša od frekvence vzorčenja, pri čemer je lahko prvi adaptacijski interval daljši od vseh naslednjih.Method according to any one of the preceding claims, characterized in that a certain number of adaptation steps represents one adaptation interval whose frequency may be less than the sampling frequency, wherein the first adaptation interval may be longer than all the following. • · · k • ·• · · k • · 6. Postopek po kateremkoli od predhodnih zahtevkov, značilen po tem, da sta sofazna in kvadratuma komponenta zgornjega in spodnjega pasu signala na vhodu neodvisna od modulacijske tehnike, pasovne širine in drugih lastnosti signala.Method according to any one of the preceding claims, characterized in that the sophisticated and quadratic components of the upper and lower signal bands at the input are independent of the modulation technique, bandwidth and other signal properties. 55 7. Postopek po kateremkoli od predhodnih zahtevkov, značilen po tem, da je tekom adaptacijskega postopka omogočeno neprekinjeno oddajanje.Method according to any one of the preceding claims, characterized in that continuous transmission is allowed during the adaptation process. 8. Postopek po kateremkoli od predhodnih zahtevkov, značilen po tem, da se začetne pogoje optimizacijskega postopka zagotovi v obliki kompenzacijskih koeficientovMethod according to any one of the preceding claims, characterized in that the initial conditions of the optimization process are provided in the form of compensation coefficients 10 maksimalnega ramenskega slabljenja celotnega signala.10 maximum shoulder attenuation of the entire signal. 9. Postopek po kateremkoli od predhodnih zahtevkov, značilen po tem, da je uporabljiv neodvisno za zgornji in spodnji frekvenčni pas.Method according to any one of the preceding claims, characterized in that it is applicable independently of the upper and lower frequency bands.
SI201100238A 2011-06-30 2011-06-30 Process of the adaptive compensation of nonlinearity of the power amplifier SI23783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201100238A SI23783A (en) 2011-06-30 2011-06-30 Process of the adaptive compensation of nonlinearity of the power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201100238A SI23783A (en) 2011-06-30 2011-06-30 Process of the adaptive compensation of nonlinearity of the power amplifier

Publications (1)

Publication Number Publication Date
SI23783A true SI23783A (en) 2012-12-31

Family

ID=47427480

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201100238A SI23783A (en) 2011-06-30 2011-06-30 Process of the adaptive compensation of nonlinearity of the power amplifier

Country Status (1)

Country Link
SI (1) SI23783A (en)

Similar Documents

Publication Publication Date Title
US8184739B2 (en) Power series digital predistorter and control method therefor
US9692366B2 (en) Envelope tracking path delay fine tuning and calibration
CN104954301B (en) Device and method for amplifying transmission signal or for determining delay control parameter value
TWI540829B (en) Envelope tracking system with internal power amplifier characterization
US9450621B2 (en) Digital predistortion processing method and system
US8774738B2 (en) Closed loop power control for a wireless transmitter
US7899416B2 (en) RF transmitter with heat compensation and method therefor
US7333561B2 (en) Postdistortion amplifier with predistorted postdistortion
JP4617265B2 (en) Distortion compensation apparatus and distortion compensation method
US20150023445A1 (en) Systems and Methods Utilizing Adaptive Envelope Tracking
US20140132354A1 (en) Linearization Circuits And Methods For Multilevel Power Amplifier Systems
US20120200355A1 (en) Digital predistortion of a power amplifier for signals comprising widely spaced carriers
US20120200435A1 (en) Apparatuses and methods for rate conversion and fractional delay calculation using a coefficient look up table
US10003310B1 (en) Segmented digital predistortion apparatus and methods
US20130109441A1 (en) Method of Calibrating the Delay of an Envelope Tracking Signal
US20090315622A1 (en) Feedforward amplifier and control method thereof
CN104954302A (en) Apparatus and method for amplifying a transmit signal
US20110210789A1 (en) Power series digital predistorter and distortion compensation control method thereof
US9190963B2 (en) System and method for fast polynomial pre-distortion
US9584167B2 (en) Wireless communication system, distortion compensation device, and distortion compensation method
Hekkala et al. Adaptive time misalignment compensation in envelope tracking amplifiers
JP2007221244A (en) Distortion compensation device and method
US9479368B2 (en) Method and apparatus for adjusting pre-distortion coefficient
CA2374318C (en) Device and method for predistorting a transmission signal to be transmitted via a nonlinear transmission path
KR101768905B1 (en) linearing power amplifier using a look-up table and method therefor

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20130109

SP73 Change of data on owner

Owner name: BEYOND DEVICES D.O.O.; SI

Effective date: 20140731

KO00 Lapse of patent

Effective date: 20140728