SI23626A - Method for dynamically controlling the density neutral atoms with an active element in a plasma vacuum chamber and a device for treatment of solid materials by using the present method - Google Patents

Method for dynamically controlling the density neutral atoms with an active element in a plasma vacuum chamber and a device for treatment of solid materials by using the present method Download PDF

Info

Publication number
SI23626A
SI23626A SI201100023A SI201100023A SI23626A SI 23626 A SI23626 A SI 23626A SI 201100023 A SI201100023 A SI 201100023A SI 201100023 A SI201100023 A SI 201100023A SI 23626 A SI23626 A SI 23626A
Authority
SI
Slovenia
Prior art keywords
nitrogen
density
oxygen
atoms
active element
Prior art date
Application number
SI201100023A
Other languages
Slovenian (sl)
Inventor
PRIMC@Gregor
MOZETIÄŚ@Miran
Original Assignee
Institut@@quot@JoĹľef@Stefan@quot
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut@@quot@JoĹľef@Stefan@quot filed Critical Institut@@quot@JoĹľef@Stefan@quot
Priority to SI201100023A priority Critical patent/SI23626A/en
Priority to PCT/SI2012/000001 priority patent/WO2012099547A1/en
Publication of SI23626A publication Critical patent/SI23626A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32981Gas analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems

Abstract

The subject invention is a method for dynamically controlling the density neutral atoms with an active element in a plasma vacuum chamber (4) and a device for treatment of solid materials by using the present method. Control system through measurement and record ingdensity of neutral atoms of oxygen, nitrogen or hydrogen admission input data (17 and 18), under which generates control signals for adjusting and controlling the position of the active element (20), with a high coefficient of a heterogeneous surface recombination of oxygen atoms, nitrogen or hydrogen, with the corresponding engine (21). The system includes the density of neutral oxygen atoms,nitrogen or hydrogen through various methods such as catalytic probe (22), optical emission spectroscopy (23 and 24), optical absorption spectroscopy and titration. This kind of control enables dynamic control of the density of neutral atoms in around the treated sample, which is independent of the workpiece other discharge parameters, and are actively changing the density neutral atoms in the presence or absence of a workpiece independently of the other discharge parameters.

Description

METODA ZA DINAMIČNO NADZOROVANJE GOSTOTE NEVTRALNIH ATOMOV V PLAZEMSKI VAKUUMSKI KOMORI IN NAPRAVA ZA OBDELAVO TRDIH MATERIALOV S TO METODOMETHOD FOR DYNAMIC DENSITY CONTROL OF NEUTRAL ATOMS IN THE Plasma Vacuum Chamber and Device for the Treatment of Solid Materials by this Method

Predmet izuma sta metoda za dinamično nadzorovanje gostote nevtralnih atomov z aktivnim elementom v plazemski vakuumski komori in naprava za obdelavo trdih materialov z uporabo opisane metode. Kontrolni sistem preko meritev in beleženja gostote nevtralnih atomov kisika, dušika ali vodika sprejema vhodne podatke, na podlagi katerih generira kontrolne signale za prilagajanje oziroma krmiljenje položaja aktivnega elementa, z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, z ustreznim motorjem. Sistem zajema gostoto nevtralnih atomov kisika, dušika ali vodika z različnimi metodami, kot so katalitična sonda, optična emisijska spektroskopija, optična absorpcijska spektroskopija in titracija. Tovrstno krmiljenje omogoča dinamično nadzorovanje gostote nevtralnih atomov v okolici obdelovanega vzorca (v nadaljevanju: obdelovanec) neodvisno od razelektritvenih parametrov, in pa aktivno spreminjanje gostote nevtralnih atomov ob prisotnosti ali odsotnosti obdelovanca neodvisno od razelektritvenih parametrov.The subject of the invention are methods for dynamically controlling the density of neutral atoms with an active element in a plasma vacuum chamber and a device for treating solid materials using the method described. The control system, through the measurements and recording of the density of neutral oxygen, nitrogen or hydrogen atoms, receives the input data on the basis of which it generates control signals for adjusting or controlling the position of the active element, with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms, with a suitable engine. The system captures the density of neutral oxygen, nitrogen or hydrogen atoms by various methods such as catalytic probe, optical emission spectroscopy, optical absorption spectroscopy and titration. This control enables the dynamic control of the density of neutral atoms in the vicinity of the treated sample (hereinafter: the workpiece) independently of the discharge parameters, and the active change of the density of the neutral atoms in the presence or absence of the workpiece independently of the discharge parameters.

Prikaz problemaView the problem

Dandanes se za obdelavo raznovrstnih materialov v vedno večji meri uporablja šibko ionizirano, visoko disociirano plinsko plazmo. Plazemsko obdelavo materialov namreč odlikuje izredna kakovost, stabilnost in ekološka neoporečnost. Zelo pogosto se v različnih tehnologijah uporablja ravno kisikovo, dušikovo ali vodikovo plazmo, predvsem kot alternativo okolju neprijaznim mokrim kemijskim postopkom. Uporablja sejo predvsem za plazemsko čiščenje, aktivacijo organskih materialov, selektivno jedkanje polimernih kompozitov, hladno upepeljevanje bioloških vzorcev ter v medicinskih aplikacijah za sterilizacijo občutljivih materialov in za sintezo nano materialov.Today, weakly ionized, highly dissociated gas plasma is increasingly used to treat a wide variety of materials. Plasma treatment of materials is characterized by exceptional quality, stability and ecological integrity. Very often oxygen, nitrogen or hydrogen plasma is used in various technologies, especially as an alternative to environmentally unfriendly wet chemical processes. It is used primarily for plasma purification, activation of organic materials, selective etching of polymer composites, cold ashing of biological samples, and in medical applications for the sterilization of sensitive materials and for the synthesis of nano materials.

Plazma je delno ioniziran plin. Osnovni parametri plazme so: elektronska temperatura oziroma energijska porazdelitvena funkcija elektronov, gostota nevtralnih atomov, gostota nevtralnih molekul v vzbujenih stanjih, s poudarkom na metastabilnih stanjih ter gostota nabitih težkih delcev oziroma ionov ali pozitivno in negativno nabitih molekul in atomov.Plasma is a partially ionized gas. The basic parameters of the plasma are: electron temperature or energy distribution function of electrons, density of neutral atoms, density of neutral molecules in excited states, with emphasis on metastable states, and density of charged heavy particles or ions or positively and negatively charged molecules and atoms.

Poznamo termično ravnovesne plazme, kjer dosežemo zadosten nivo ionizacije s segrevanjem plina. V tovrstnih plazmah so koncentracije elektronov, ionov, nevtralnih atomov in molekul ter kinetična energija termičnega gibanja delcev enolično odvisne od temperature. Problem predstavlja potrebna temperatura, saj je plin potrebno segreti nad 104K. Zato se poslužujemo laboratorijsko ustvarjenih termično neravnovesnih plazem, kjer ionizacijo atomov ali molekul dosežemo - med drugim - z razelektritvijo v plinu. Poznamo različne vrste razelektritev, kot so tleča, enosmerna z vročo katodo, visokofrekvenčna radiofrekvenčna ali RF in mikrovalovna ali MV ter kombinirana. Pri razelektritvi z močnim zunanjim električnim poljem v plinu povzročimo pospešeno gibanje prostih elektronov, ki so v vsakem primeru prisotni v plinu v majhnih gostotah, do energije, ki je ustrezna za ionizacijo atomov ali molekul. Zunanje električno polje je lahko enosmerno ali pa izmenično. Pomembno je le, da se elektroni pospešijo do dovolj visoke energije, ki omogoča ionizacijo. Prenos energije visokofrekvenčnega električnega polja je veliko bolj učinkovit za lahke elektrone kot težke ione, zato je v plazmah, ustvarjenih z visokofrekvenčno razelektritvijo, elektronska temperatura ali termična energija elektronov dosti višja od ionske.Thermal equilibrium plasmas are known where a sufficient level of ionization is obtained by heating the gas. In such plasmas, the concentrations of electrons, ions, neutral atoms and molecules and the kinetic energy of the thermal motion of the particles are uniquely temperature dependent. The problem is the required temperature, because the gas needs to be heated above 10 4 K. Therefore, we use laboratory-generated thermally nonequilibrium plasmas, where the ionization of atoms or molecules is achieved, among other things, by gas discharge. There are various types of discharges such as hot cathode direct current, high frequency radio frequency or RF and microwave or MV and combined. In the case of a charge with a strong external electric field in the gas, the free electrons, which are in each case present in the gas at low densities, are accelerated to an energy suitable for ionization of atoms or molecules. The external electric field may be DC or AC. It only matters that the electrons are accelerated to a sufficiently high energy that allows ionization. The transmission of energy by a high-frequency electric field is much more efficient for light electrons than heavy ions, so in plasma generated by high-frequency discharge, the electron temperature or thermal energy of the electrons is much higher than the ionic energy.

Pri obdelavi materialov je zelo pomembno poznavanje gostote plazemskih delcev v okolici obdelovanca, saj sta način in intenziteta obdelave močno odvisni od gostote toka delcev na površino obdelovanca. Poleg tega lahko obstajajo v obdelovalni komori gradienti koncentracije različnih plazemskih delcev, torej ni vseeno, kje se naš obdelovanec nahaja. Pogosto se tudi pripeti, da predstavlja obdelovanec močan ponor plazemskih delcev, tako da je gostota toka delcev na površino odvisna tudi od razsežnosti in snovnih značilnosti obdelovanca.When processing materials, it is very important to know the density of plasma particles in the workpiece environment, since the method and intensity of the treatment depend strongly on the particle flux density on the workpiece surface. In addition, concentration gradients of different plasma particles may exist in the treatment chamber, so it does not matter where our workpiece is located. It is also often the case that the workpiece represents a strong sink of plasma particles, so that the particle flux density to the surface also depends on the size and material characteristics of the workpiece.

Izmed vseh delcev imajo v šibko ionizirani plazmi ravno nevtralni atomi najpomembnejši vpliv na fizikalne in kemične reakcije na površini obdelovanega materiala. Ioni imajo večjo potencialno energijo kot nevtralni atomi in so zato kemijsko bolj aktivni. Če bi želeli znatenOf all the particles in the weakly ionized plasma, precisely neutral atoms have the most important influence on the physical and chemical reactions on the surface of the material being treated. Ions have higher potential energy than neutral atoms and are therefore more chemically active. If you wanted a substantial

-3delež ioniziranih atomov, bi potrebovali termično ravnovesno ali vročo plazmo, da bi ionizacija dosegla zadosten nivo. Po drugi strani pa je v hladnih ali termično neravnovesnih plazmah znatno večji delež nevtralnih atomov, ki so navadno stabilnejši od ionov. Nevtralni atomi se ob dotiku stene rekombinirajo z verjetnostjo, ki jo določa koeficient za heterogeno površinsko rekombinacijo atomov - ta je lahko zelo nizek -, medtem ko se ioni na steni zagotovo rekombinirajo z verjetnostjo blizu 1.-3 fraction of ionized atoms, a thermal equilibrium or hot plasma would be required for the ionization to reach a sufficient level. On the other hand, in cold or thermally nonequilibrium plasmas, there is a significantly higher proportion of neutral atoms, which are usually more stable than ions. Neutral atoms are recombined upon contact with a wall with a probability determined by the coefficient for heterogeneous surface recombination of atoms - which may be very low - while the ions on the wall are definitely recombined with a probability close to 1.

Tako je gostota kisikovih atomov v plazemskem sistemu z obdelovancem odvisna ravno od lastnosti vzorca, ki ga obdelujemo, ter od razelektritvenih parametrov. Ti parametri so moč, frekvenca in faza generatorja, stopnja vakuuma, tlak vpusta plina, oblika reaktorske komore, itd.Thus, the density of oxygen atoms in the plasma system with the workpiece depends precisely on the properties of the sample being treated and on the discharge parameters. These parameters are power, frequency and phase of the generator, vacuum level, gas inlet pressure, reactor chamber design, etc.

Poglavitni problem predstavlja natančno poznavanje in ohranjanje gostote nevtralnih atomov v okolici obdelovanca neodvisno od razelektritvenih parametrov, saj le-ta pogosto predstavlja spreminjajoči se ponor delcev, in pa aktivno spreminjanje gostote nevtralnih atomov ob prisotnosti ali odsotnosti obdelovanca neodvisno od razelektritvenih parametrov.The major problem is the precise knowledge and conservation of the density of neutral atoms in the workpiece environment independently of the discharge parameters, since this often represents a changing particle sink, and the active change of the density of neutral atoms in the presence or absence of the workpiece independently of the discharge parameters.

Stanje tehnikeThe state of the art

Termično neravnovesno plazmo izkoriščamo na številne načine, tako za akademske, kot industrijske namene. Naprava za generiranje plazme s primemo gostoto nevtralnih atomov je opisana v patentu SI21903A. Laboratorijski plazemski reaktorji se uporabljajo pri selektivnem plazemskem jedkanju materialov polimernih kompozitov, predvsem polprevodniških elementov, za nanos materialov s CVD (Chemical Vapour Deposition) metodo, za čiščenje površin, v medicinskih aplikacijah pa je namembnost plazme pomembna pri sterilizaciji občutljivih materialov. Plazma je prisotna tudi v najnovejših tehnologijah, kot je npr. sinteza nanomaterialov.Thermal disequilibrium plasma is utilized in many ways, for both academic and industrial purposes. A device for generating plasma with a density of neutral atoms is described in patent SI21903A. Laboratory plasma reactors are used in the selective plasma etching of polymer composite materials, especially semiconductor devices, for the CVD (Chemical Vapor Deposition) method, for surface cleaning, and in medical applications, the use of plasma is important in the sterilization of sensitive materials. Plasma is also present in the latest technologies, such as. synthesis of nanomaterials.

Nekatere izmed naštetih metod za obdelovanje uporabljajo nevtralne atome, torej je poznavanje in aktivno nadzorovanje gostote nevtralnih atomov izrednega pomena, saj omogoča izboljšanje izkoristka in kvalitete samih procesov obdelovanja.Some of the above methods use neutral atoms to process, so knowing and actively controlling the density of neutral atoms is of the utmost importance, as it improves the efficiency and quality of the machining processes themselves.

Obstajajo številne metode za nadzor gostote ionov, elektronov in atomov, predvsem pa zagotavljajo uniformno gostoto plazme na območju vzorca, ki ga obdelujemo. Zelo pogostaThere are numerous methods for controlling the density of ions, electrons, and atoms, most of all providing uniform plasma density in the area of the sample being processed. Very common

-4je uporaba dveh ali treh elektrodnih sistemov, kjer se vsaj ena elektroda uporabi za enosmerno prednapetost na obdelovancu, ostale pa za vzbujanje plazme. Vsaka izmed elektrod je preko ujemalnega člena povezana na svoj vir in preko povratne zanke povezana s kontrolnim sistemom, ki preko kontrolnih signalov nadzoruje bodisi dovajano moč ali napetost na elektrodah bodisi frekvenco RF močnostnega vira. Tovrstne metode se uporabljajo predvsem za nadzorovanje temperature elektronov, gostote ionov ali uniformne gostote plazme. Slednje dosegajo preko spreminjanja razelektritvenih parametrov plazemskega sistema, kar je opisano v patentih US6174450B1, US2004060660A1 in US2009126634A1. Se vedno pa ostaja problem aktivnega nadzorovanja nevtralnih atomov neodvisno od razelektritvenih parametrov.-4 is the use of two or three electrode systems, where at least one electrode is used for DC bias on the workpiece and the rest for plasma excitation. Each of the electrodes is connected to its source via a matching member and through a feedback loop connected to a control system that controls either the input power or voltage at the electrodes or the frequency of the RF power source via the control signals. Such methods are mainly used to control electron temperature, ion density, or uniform plasma density. The latter are achieved by varying the discharge parameters of the plasma system, as described in US6174450B1, US2004060660A1 and US2009126634A1. However, the problem of active control of neutral atoms remains independent of the discharge parameters.

Tudi metode opisane v patentih US5266364A, US6383554B1, US2003141821A1, US2003155079A1 ter US2010224321A1, prilagajajo ali ohranjajo gostoto atomov, elektronov in ionov, ponekod tudi gostoto plazme, s spreminjanjem razelektritvenih parametrov. Omenjeni patenti se med seboj razlikujejo glede načina zajemanja plazemskih parametrov ter načina krmiljenja krajevnih porazdelitev delcev. Posamezne metode izvajajo regulacijo glede na zajemanje meritev magnetnega pretoka znotraj plazme US5266364A, zaznavanje gostote plazme s heterodinskim milimetrskim valovnim interferometrom US6383554B1, glede na merjenje toka med dvema elektrodama v plazmi US2003141821A1, kvantitativni in prostorski nadzor nad vpustom plina v plazmo US2003155079A1 ter glede na meijenje RF fazne razlike med radiofrekvenčnim virom za vzbujanje plazme in radiofrekvenčnim virom, ki omogoča prednapetost na substratu US2010224321A1. Pri opisanih postopkih je ponovno glavna pomanjkljivost nadzor nad gostoto delcev v plazemskem sistemu preko spreminjanja razelektritvenih parametrov.Also, the methods described in US5266364A, US6383554B1, US2003141821A1, US2003155079A1 and US2010224321A1 adjust or maintain the density of atoms, electrons and ions, and in some cases the density of plasma, by varying the discharge parameters. The aforementioned patents differ from one another in the way they capture plasma parameters and how the local particle distributions are controlled. Individual methods perform regulation based on capturing magnetic flux measurements inside the plasma US5266364A, detecting plasma density using a US6383554B1 heterodyne millimeter wave interferometer, relative to the measurement of current between two electrodes in plasma US2003141821A1, quantitative and spatial control of the gas flow into the plasma US795 RF1315A5 Phase differences between the plasma excitation radio frequency source and the radio frequency source that allows bias on the substrate US2010224321A1. In the described procedures, the main disadvantage again is the control of the particle density in the plasma system by varying the discharge parameters.

Nekatere metode so nekoliko abstraktnejše, kot npr. nadzor nad delci v plazemskem sistemu z injiciranjem nevtralnih oziroma plazemskih zvočnih valov, kar je opisano v patentu US5350454A. Metoda omogoča, preko zgoščin in razredčin nevtralnih oziroma plazemskih zvočnih valov, nadzor nad premikom večjih plazemskih delcev, ne omogoča pa natančnega spreminjanja gostote nevtralnih atomov.Some methods are a little more abstract, such as control of particles in the plasma system by injecting neutral or plasma sound waves, as described in US5350454A. The method allows, through the densities and dilutions of neutral or plasma sound waves, to control the displacement of larger plasma particles, but does not allow the exact density of neutral atoms to be changed.

-5Opis izuma in izvedbeni primer-5Description of the invention and embodiment

Izum obsega metodo za dinamično nadzorovanje gostote nevtralnih atomov v plazemski vakuumski komori in napravo za obdelavo trdih materialov z uporabo te metode. Nadzorovanje atomov je izvedeno s posebnim aktivnim elementom. Metoda temelji na kontrolnem sistemu s povratno vezavo za motoriziran nadzor nad položajem aktivnega elementa, z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, v glavni plazemski cevi. Krmiljenje tega aktivnega elementa omogoča dinamično nadzorovanje gostote nevtralnih atomov v okolici obdelovanca neodvisno od razelektritvenih parametrov, in pa spreminjanje gostote nevtralnih atomov ob prisotnosti ali odsotnosti obdelovanca neodvisno od razelektritvenih parametrov.The invention comprises a method for dynamically controlling the density of neutral atoms in a plasma vacuum chamber and a device for treating solid materials using this method. Atoms are monitored with a special active element. The method is based on a feedback control system for motorized position control of the active element, with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms in the main plasma tube. The control of this active element allows dynamic control of the density of neutral atoms in the workpiece environment independently of the discharge parameters, and the change of the density of the neutral atoms in the presence or absence of the workpiece independently of the discharge parameters.

Metoda za krmiljenje gostote nevtralnih atomov in naprava za obdelavo trdih materialov sta podrobneje opisani s pomočjo slik, ki prikazujejo sl. 1 shematski prikaz vakuumskega dela plazemskega sistema, sl. 2 shematski prikaz električnega oziroma vzbujevalnega dela plazemskega sistema, sl. 3 shematski prikaz krmilnega sistema s povratno zanko, sl. 4 shematski prikaz izvedbenega primera v šibko ionizirani kisikovi plazmi z aktivnim elementom z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, sl. 5 meritve gostote nevtralnih kisikovih atomov pri tlaku 90 Pa, različnih močeh vzbujanja ter različnih položajih aktivnega elementa z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, sl. 6 meritve disociacije kisikove plazme pri tlaku 90 Pa, različnih močeh vzbujanja ter različnih položajih aktivnega elementa z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika.The method for controlling the density of neutral atoms and the device for the treatment of solid materials are described in more detail by means of the figures illustrating FIG. 1 is a schematic view of the vacuum portion of the plasma system; 2 is a schematic view of the electrical or excitatory part of the plasma system, FIG. 3 is a schematic view of the feedback control system of FIG. 4 is a schematic view of an embodiment in a weakly ionized oxygen plasma with an active element with a high coefficient for the heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms, FIG. 5 is a measurement of the density of neutral oxygen atoms at a pressure of 90 Pa, different excitation powers, and different positions of the active element with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms, FIG. 6 measurements of oxygen plasma dissociation at 90 Pa pressure, different excitation powers and different positions of the active element with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms.

-6Shematski prikaz vakuumskega dela plazemskega sistema je prikazan na sliki 1. Sestavljen je iz preciznega dozirnega ventila za vpust plina 2 iz jeklenke 1, razelektritvene cevi 4, merilnika tlaka 3, ventila za vpust zraka 7 ter vakuumske črpalke 6 in pripadajočega ventilaThe schematic diagram of the vacuum part of the plasma system is shown in Figure 1. It consists of a precision gas inlet metering valve 2 from cylinder 1, a discharge tube 4, a pressure gauge 3, an air intake valve 7, and a vacuum pump 6 and associated valve

5.5.

Slika 2 prikazuje električni oziroma vzbujevalni del naprave, ki sestoji iz visokofrekvenčnega radiofrekvenčnega močnostnega generatorja 8, ki je preko koaksialnega kabla 9 povezan z uskladitvenim členom 10. Uskladitveni člen je preko dveh usmerjevalnih členov 11 in 12, ki merita vhodno moč v razelektritveno cev 4 in od antene odbito ali reflektirano moč, povezan z radiofrekvenčno tuljavo za vzbujanje plazme 13. Plazmi, ki jo vzbujamo s prenosom elektromagnetnega valovanja preko radiofrekvenčne tuljave, pravimo induktivno sklopljena plazma. Uskladitveni člen je sestavljen iz dveh visokonapetostnih, visokofrekvenčnih, variabilnih kondenzatorjev, ki služita za prilagajanje impedance sistema antena-plazma na impedanco preostalega vezja, ki znaša 50 Ω.Figure 2 shows the electrical or excitation part of the device, which consists of a high-frequency radio frequency power generator 8, which is connected via a coaxial cable 9 to the harmonizing member 10. The harmonizing member is via two guiding members 11 and 12, which measure the input power into the discharge tube 4 and reflected or reflected power from the antenna coupled to a radio frequency coil for excitation of plasma 13. Plasma excited by the transmission of electromagnetic waves through a radio frequency coil is called inductively coupled plasma. The tuning link consists of two high-voltage, high-frequency, variable capacitors that serve to adjust the impedance of the antenna-plasma system to the impedance of the remaining 50 Ω circuit.

Na sliki 3 je prikazan shematski prikaz plazemskega sistema z dodanim kontrolnim sistemom. Celoten sistem sestoji iz glavne razelektritvene cevi 4 ter ene ali dveh stranskih cevi 14 in 15. Električni del predstavlja radiofrekvenčna tuljava 13, ki jo vzbujamo z visokofrekvenčnim RF močnostnim generatorjem 8. Slednji je preko koaksialnega kabla 9 povezan z uskladitvenim členom 10. Kontrolni sistem 16 na vhodih zajema podatke in na podlagi vhodnih signalov 17 in 18, preko povratne zanke, dinamično prilagaja izhodni krmilni signal 19 s katerim, preko motoriziranega vmesnika 21, krmili aktivni element 20 z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika. Podatke zajemamo bodisi s katalitično sondo 22 ali z optičnim vlaknom 23, ki je povezano s spektrometrom 24. Možna je tudi katera koli kombinacija omenjenih metod zajemanja podatkov.Figure 3 shows a schematic of a plasma system with an added control system. The whole system consists of the main discharge tube 4 and one or two side pipes 14 and 15. The electrical part is a radio-frequency coil 13, which is excited by a high-frequency RF power generator 8. The latter is connected to the harmonizing article 10 via a coaxial cable 9. it captures data at the inputs and dynamically adjusts the output control signal 19 through the feedback signals 17 and 18 through which, through the motorized interface 21, it controls the active element 20 with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms. The data is captured either with a catalytic probe 22 or with an optical fiber 23 connected to the spectrometer 24. Any combination of these data acquisition methods is also possible.

Z opisano kontrolno metodo neposredno kontroliramo gostoto nevtralnih atomov ob prisotnosti ali odsotnosti obdelovanca, ki predstavlja ponor delcev, neodvisno od razelektritvenih parametrov.The control method described here directly controls the density of neutral atoms in the presence or absence of a workpiece that represents a particle sink, independent of the discharge parameters.

V izvedbenem primeru na sliki 4 smo uporabili aktivni element 20 z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, njegov položaj paIn the embodiment of Figure 4, an active element 20 with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms was used, and its position was

-Ίsmo spreminjali ročno. Aktivni element je lahko kakršenkoli izdelek z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, prvenstveno pa je to snop, ki sestoji iz množice urejenih žic z nanostrukturirano površino. Žice so značilno razporejene vzdolžno glede na orientacijo aktivnega elementa. Nanostrukturirana površina značilno sestoji iz nanožic, ki so orientirane pravokotno na geometrijsko površino žic. Tovrstna konfiguracija zagotavlja veliko verjetnost za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika ob hkratni minimalni upornosti za pretok plina v svoji okolici. Dolžina aktivnega elementa z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, je bila 40 cm, od tega smo največ 13 cm površine izpostavili plazmi. Uporabili smo kisikovo plazmo, plazemski reaktor pa je imel glavno razelektritveno cev 4 dolžine 80 cm in premera 4 cm ter stransko cev 14 dolžine 10 cm in premera 1,5 cm. Plazmo smo ustvarili z radiofrekvenčno tuljavo 13, s šestimi ovoji, ovito okoli glavne cevi, na dolžini 5,5 cm. Radiofrekvenčna tuljava je bila preko uskladitvenega člena 10 s koaksialnim kablom 9 povezana z visokofrekvenčnim RF močnostnim generatorjem 8. Podatke o gostoti nevtralnih atomov smo zajemali z nikljevo optično katalitično sondo 22 in z optičnim vlaknom 23, povezanim s spektrometrom Avantes 3648 24, za analizo optične emisijske spektroskopije plazme. Preko računalnika 25 smo spremljali in beležili gostote posameznih plazemskih delcev. S tem izvedbenim primerom smo pokazali ter dokazali zmožnost nadzorovanja gostote nevtralnih atomov neodvisno od razelektritvenih parametrov s spreminjanjem položaja aktivnega elementa z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika.- We changed manually. The active element can be any product with a high coefficient for the heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms, and primarily a bundle consisting of a series of ordered wires with a nanostructured surface. The wires are typically arranged longitudinally according to the orientation of the active element. The nanostructured surface typically consists of nanowires oriented perpendicularly to the geometric surface of the wires. Such a configuration provides a high likelihood of heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms, while minimizing the resistance to gas flow in their surroundings. The length of the active element with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms was 40 cm, of which a maximum of 13 cm was exposed to plasma. Oxygen plasma was used, and the plasma reactor had a main discharge tube 4 with a length of 80 cm and a diameter of 4 cm and a side tube 14 with a length of 10 cm and a diameter of 1.5 cm. Plasma was created with a radio frequency coil 13, with six sheaths wrapped around the main tube, 5.5 cm in length. The radio frequency coil was connected to a high-frequency RF power generator 8 via co-ordination article 10 via coaxial cable 9. Data on the density of neutral atoms were captured with a nickel optical catalytic probe 22 and an optical fiber 23 coupled to an Avantes 3648 24 spectrometer for optical emission analysis of plasma spectroscopy. The density of individual plasma particles was monitored and recorded via computer 25. With this embodiment, we demonstrated and demonstrated the ability to control the density of neutral atoms independently of discharge parameters by varying the position of the active element by a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms.

Meritve gostote nevtralnih atomov in meritve disociacij izvedene z opisanim izvedbenim primerom v kisikovi plazmi so prikazane na sliki 5 ter sliki 6. Meritve so bile opravljene pri tlaku 90 Pa, s šestimi različnimi močmi med 0 in 600 W. Položaj aktivnega elementa, z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, smo spreminjali glede na položaj nikljeve optične katalitične sonde in je znašal med 4 cm desno od konice merilne sonde in 7,5 cm levo od konice merilne sonde.Density measurements of neutral atoms and dissociation measurements performed using the described embodiment in oxygen plasma are shown in Figure 5 and Figure 6. Measurements were made at a pressure of 90 Pa, with six different powers between 0 and 600 W. The position of the active element, with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms, we varied according to the position of the nickel optical catalytic probe and ranged between 4 cm to the right of the tip of the probe and 7.5 cm to the left of the tip of the probe.

Metoda za dinamično nadzorovanje gostote nevtralnih atomov kisika, dušika ali vodika v plazemski vakuumski komori po izumu je torej značilna po tem, da je v vakuumski komori gostota atomov kontrolirana s položajem gibljivega aktivnega elementa z velikimThe method for dynamically controlling the density of neutral oxygen, nitrogen or hydrogen atoms in a plasma vacuum chamber according to the invention is therefore characterized in that in the vacuum chamber the density of the atoms is controlled by the position of a moving active element with a large

-8koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika. Gibljivi element je povezan s kontrolno enoto, ki preko merilnika gostote atomov kisika, dušika ali vodika krmili položaj gibljivega aktivnega elementa. Gibljivi element je lahko motoriziran. Koeficient za heterogeno površinsko rekombinacijo aktivnega elementa je večji od 0,001. Merilnik gostote atomov je katalitična sonda ali optični spektrometer. Naprava za obdelavo trdih materialov z nevtralnimi atomi kisika, dušika ali vodika po izumu je značilna po tem, da vsebuje vakuumsko posodo, izvir atomov kisika, dušika ali vodika, merilnik gostote atomov kisika, dušika ali vodika in gibljiv aktivni element z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika. Aktivni element z velikim rekombinacij skim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, omogoča spreminjajočo se gostoto toka atomov kisika, dušika ali vodika med lxl018 in lxl025 m'2 s'1, prednostno pa med lxl019 in 5xl023m'2s‘1.-8coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms. The moving element is connected to a control unit that controls the position of the moving active element via a density meter of oxygen, nitrogen or hydrogen atoms. The moving element can be motorized. The coefficient for heterogeneous surface recombination of the active element is greater than 0.001. An atomic density meter is a catalytic probe or optical spectrometer. A device for treating solid materials with neutral oxygen, nitrogen or hydrogen atoms according to the invention, characterized in that it contains a vacuum vessel, a source of oxygen, nitrogen or hydrogen atoms, a meter for the density of oxygen, nitrogen or hydrogen atoms and a moving active element with a high coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms. An active element with a high recombination coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms, permitting a varying flux density of oxygen, nitrogen or hydrogen atoms between lxl0 18 and lxl0 25 m ' 2 s' 1 , preferably between lxl0 19 and 5xl0 23 m ' 2 s' 1 .

Claims (6)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Metoda za dinamično nadzorovanje gostote nevtralnih atomov kisika, dušika ali vodika v plazemski vakuumski komori, označena s tem, da je v vakuumski komori gostota atomov kontrolirana s položajem gibljivega aktivnega elementa z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika.A method for dynamically controlling the density of neutral oxygen, nitrogen or hydrogen atoms in a plasma vacuum chamber, characterized in that the density of the atoms in the vacuum chamber is controlled by the position of a moving active element with a large coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms. 2. Metoda po zahtevku 1, označena s tem, da je gibljiv element povezan s kontrolno enoto, ki preko merilnika gostote atomov kisika, dušika ali vodika krmili položaj gibljivega aktivnega elementa.Method according to claim 1, characterized in that the moving element is connected to a control unit which controls the position of the moving active element via a meter of oxygen, nitrogen or hydrogen atoms. 3. Metoda po zahtevku 2, označena s tem, daje gibljiv aktivni element motoriziran.Method according to claim 2, characterized in that the moving active element is motorized. 4. Metoda po zahtevku 1, označena s tem, da je koeficient za heterogeno površinsko rekombinacijo aktivnega elementa večji od 0,001.Method according to claim 1, characterized in that the coefficient for heterogeneous surface recombination of the active element is greater than 0.001. 5. Metoda po zahtevku 2, označena s tem, daje merilnik gostote atomov katalitična sonda ali optični spektrometer.5. The method of claim 2, wherein the atomic density meter is a catalytic probe or optical spectrometer. 6. Naprava za obdelavo trdih materialov z nevtralnimi atomi kisika, dušika ali vodika, označena s tem, da vsebuje vakuumsko posodo, izvir atomov kisika, dušika ali vodika, merilnik gostote atomov kisika, dušika ali vodika in gibljiv aktivni element z velikim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika.6. A device for treating solid materials with neutral oxygen, nitrogen or hydrogen atoms, characterized in that it contains a vacuum vessel, a source of oxygen, nitrogen or hydrogen atoms, a meter for the density of oxygen, nitrogen or hydrogen atoms and a moving active element with a high coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms. -107. Naprava za obdelavo trdih materialov z nevtralnimi atomi kisika, dušika ali vodika po zahtevku 6, označena s tem, da aktivni element, z velikim rekombinacijskim koeficientom za heterogeno površinsko rekombinacijo atomov kisika, dušika ali vodika, omogoča spreminjajočo se gostoto toka atomov kisika, dušika ali vodika med lxlO18 in lxl025 m'2s'1, prednostno pa med 1 χ 1019 in 5 χ 1023 m*2s'*.-107. A device for the treatment of solid materials with neutral oxygen, nitrogen or hydrogen atoms according to claim 6, characterized in that the active element, with a large recombination coefficient for heterogeneous surface recombination of oxygen, nitrogen or hydrogen atoms, allows a variable current density of oxygen, nitrogen or nitrogen atoms. hydrogen between lxlO 18 and lxl0 25 m ' 2 s' 1 , preferably between 1 χ 10 19 and 5 χ 10 23 m * 2 s' *.
SI201100023A 2011-01-19 2011-01-19 Method for dynamically controlling the density neutral atoms with an active element in a plasma vacuum chamber and a device for treatment of solid materials by using the present method SI23626A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201100023A SI23626A (en) 2011-01-19 2011-01-19 Method for dynamically controlling the density neutral atoms with an active element in a plasma vacuum chamber and a device for treatment of solid materials by using the present method
PCT/SI2012/000001 WO2012099547A1 (en) 2011-01-19 2012-01-16 Method for a dynamic control of density of neutral atoms in a plasma vacuum chamber and a device for the processing of solid materials by using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201100023A SI23626A (en) 2011-01-19 2011-01-19 Method for dynamically controlling the density neutral atoms with an active element in a plasma vacuum chamber and a device for treatment of solid materials by using the present method

Publications (1)

Publication Number Publication Date
SI23626A true SI23626A (en) 2012-07-31

Family

ID=45879004

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201100023A SI23626A (en) 2011-01-19 2011-01-19 Method for dynamically controlling the density neutral atoms with an active element in a plasma vacuum chamber and a device for treatment of solid materials by using the present method

Country Status (2)

Country Link
SI (1) SI23626A (en)
WO (1) WO2012099547A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048190B2 (en) * 2012-10-09 2015-06-02 Applied Materials, Inc. Methods and apparatus for processing substrates using an ion shield

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056772B2 (en) 1990-08-20 2000-06-26 株式会社日立製作所 Plasma control method, plasma processing method and apparatus therefor
US5350454A (en) 1993-02-26 1994-09-27 General Atomics Plasma processing apparatus for controlling plasma constituents using neutral and plasma sound waves
US6174450B1 (en) 1997-04-16 2001-01-16 Lam Research Corporation Methods and apparatus for controlling ion energy and plasma density in a plasma processing system
US20030155079A1 (en) 1999-11-15 2003-08-21 Andrew D. Bailey Plasma processing system with dynamic gas distribution control
US6383554B1 (en) 2000-09-05 2002-05-07 National Science Council Process for fabricating plasma with feedback control on plasma density
TWI239794B (en) 2002-01-30 2005-09-11 Alps Electric Co Ltd Plasma processing apparatus and method
US20040060660A1 (en) 2002-09-26 2004-04-01 Lam Research Inc., A Delaware Corporation Control of plasma density with broadband RF sensor
JP2009123934A (en) 2007-11-15 2009-06-04 Tokyo Electron Ltd Plasma treatment apparatus
US8368308B2 (en) 2009-03-05 2013-02-05 Applied Materials, Inc. Inductively coupled plasma reactor having RF phase control and methods of use thereof

Also Published As

Publication number Publication date
WO2012099547A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
CN105931942B (en) Ambient desorption, ionization and excitation for spectrometry
CN105122042A (en) Microwave plasma spectrometer using dielectric resonator
Barkhordari et al. A pulsed plasma jet with the various Ar/N 2 mixtures
CN104064428A (en) Integrated Magnetron Plasma Torch And Related Methods
Latrasse et al. Self-matching plasma sources using 2.45 GHz solid-state generators: microwave design and operating performance
Mozetič et al. Introduction to plasma and plasma diagnostics
US11569059B2 (en) Apparatus of charged-particle beam such as electron microscope comprising plasma generator, and method thereof
Hopwood et al. Ultrahigh frequency microplasmas from 1 pascal to 1 atmosphere
JP5322157B2 (en) Spin-polarized ion beam generating apparatus, scattering spectroscopic apparatus and method using the spin-polarized ion beam, and sample processing apparatus
SI23626A (en) Method for dynamically controlling the density neutral atoms with an active element in a plasma vacuum chamber and a device for treatment of solid materials by using the present method
Petrova et al. Helium and oxygen excited states densities in a He-air RF-driven atmospheric pressure plasma jet
Wegner et al. E‐H Transition in Argon/Oxygen Inductively Coupled RF Plasmas
Lu et al. On the chronological understanding of the homogeneous dielectric barrier discharge
Frolko Plasma source based on helicon discharge for a plasma accelerator
Milosavljević et al. Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher
Aleksandrov et al. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system
Kolodko et al. Diagnostics of a low-pressure ICP discharge using a magnetic sector mass analyser
Kadhim et al. Development of Low-Temperature Atmospheric Plasma Jet Sources for Biological Applications
US20230187195A1 (en) Plasma generating device
Colina-Delacqua et al. Qualification of uniform large area multidipolar ECR hydrogen plasma
Sukhanov et al. Comparative study of inductively coupled and microwave BF3 plasmas for microelectronic technology applications
Kazakov et al. Beam-produced plasma generated by the pulsed large-radius electron beam in the forevacuum pressure range
Elgarhy Microwave Plasma Source Optimization for Thin Film Deposition Applications
Jaafarian et al. Using RF inductive rings to improve the efficiency of a designed pulsed plasma jet
Hassanpour et al. Characterization of RF-driven atmospheric pressure plasma micro-jet plume

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20120808

KO00 Lapse of patent

Effective date: 20210125