SI23618A - Gravitational heat pipe for the production of geothermal heat - Google Patents
Gravitational heat pipe for the production of geothermal heat Download PDFInfo
- Publication number
- SI23618A SI23618A SI201200108A SI201200108A SI23618A SI 23618 A SI23618 A SI 23618A SI 201200108 A SI201200108 A SI 201200108A SI 201200108 A SI201200108 A SI 201200108A SI 23618 A SI23618 A SI 23618A
- Authority
- SI
- Slovenia
- Prior art keywords
- pipe
- tube
- borehole
- plug
- heat
- Prior art date
Links
Landscapes
- Building Environments (AREA)
Abstract
Description
GRAVITACIJSKA TOPLOTNA CEV ZA PROIZVODNJO GEOTERMIČNE TOPLOTEGRAVITY HEAT PIPE FOR GEOTHERMAL HEAT PRODUCTION
Predmet izumaThe subject of the invention
Predmet izuma je gravitacijska toplotna cev za proizvodnjo geotermične toplote, ki temelji na izkoriščanju toplotnega potenciala zemlje.The subject of the invention is a gravity heat pipe for the production of geothermal heat based on the utilization of the thermal potential of the earth.
Prijavljeni izum je po mednarodni patentni klasifikaciji predvidoma uvrščen v F24J3/08 in dodatno v F28D15/02.According to the international patent classification, the claimed invention is envisaged to be classified in F24J3 / 08 and additionally in F28D15 / 02.
Tehnični problemA technical problem
Tehnični problem, ki ga rešuje izum, je takšna konstrukcija gravitacijske toplotne cevi, ki bo omogočala učinkovito proizvodnjo geotermične toplote na osnovi izkoriščanja temperaturnega potenciala zemlje do globine 5000 m in več, ob uporabi ekološko neoporečnega nosilca toplote. Izkoriščanje temperaturnega potenciala globin zemlje po prijavljenem izumu bo imelo ugoden dolgoročni vpliv na učinkovito rabo obnovljivih virov energije, ob hkratnem zmanjšanju ekološkega obremenjevanja okolja. Hkrati bo konstrukcija gravitacijske toplotne cevi enostavna in kompaktna, ki jo bo mogoče izvesti v obstoječih neproduktivnih naftnih in plinskih vrtinah ali v novih zemeljskih vrtinah z velikim temperaturnim gradientom.A technical problem solved by the invention is such a design of a gravity heat pipe that will allow efficient production of geothermal heat based on the exploitation of the earth's temperature potential up to a depth of 5000 m and using an environmentally friendly heat carrier. The exploitation of the temperature potential of the depths of the earth according to the invention will have a favorable long-term effect on the efficient use of renewable energy sources, while reducing the ecological burden on the environment. At the same time, the construction of the gravity heat pipe will be simple and compact, which can be implemented in existing unproductive oil and gas wells or in new ground wells with a large temperature gradient.
Znano stanje tehnikeThe prior art
Z razvojem tehnike in potrebe po izkoriščanju novih virov energije, se vse večji poudarek namenja izkoriščanju obnovljivih virov energije, med drugim geotermične energije, katere nosilec toplote je običajno voda. Pri nižjih temperaturah se le ta uporablja za ogrevanje zgradb, rastlinjakov, v balneologiji, za sušenje in podobno, pri višjih temperaturah pa tudi za proizvodnjo električne energije. Zaradi ekoloških zahtev se mora razen eksploatacijske geotermične vrtine izvesti še reinjekcijska vrtina, ki omogoča vračanje energetsko izrabljene vode nazaj v zemljo. Zaradi tega se znatno povečajo investicijski stroški izvedbe tovrstnih sistemov, razen tega pa ima geotermalna voda pri višjih temperaturah pogosto visoko vsebnost raztopljenih mineralnih snovi in CO2, kar tehnično zelo otežuje njeno izrabo. V izogib tem pomanjkljivostim je zasnovana gravitacijska toplotna cev za proizvodnjo geotermične toplote po prijavljenem izumu, zlasti njena konstrukcija in delovanje.With the development of technology and the need to exploit new energy sources, increasing emphasis is being placed on the exploitation of renewable energy sources, including geothermal energy, which is usually the carrier of heat. At lower temperatures it is used for heating buildings, greenhouses, in balneology, for drying and the like, and at higher temperatures for the production of electricity. Due to ecological requirements, in addition to the exploitation geothermal well, a re-injection well has to be carried out, which enables the return of energy-consumed water back into the earth. As a result, the investment costs of implementing such systems are significantly increased, and geothermal water at high temperatures often has a high content of dissolved minerals and CO 2 , which makes it technically difficult to use. To avoid these drawbacks, a gravity heat pipe is designed to produce the geothermal heat of the present invention, in particular its construction and function.
Proizvodnja toplote z izkoriščanjem geotermičnega potenciala zemlje, ki bi temeljila na izvedbi gravitacijske toplotne cevi, načinu njene vgradnje in postopku uporabe, ki so predmet prijavljenega izuma, prijavitelju ni znana.The production of heat by exploiting the geothermal potential of the earth based on the design of the gravitational heat pipe, the method of its installation and the process of use which are the subject of the present invention is unknown to the applicant.
So pa znane nekatere druge rešitve izkoriščanja geotermične energije oziroma toplote zemlje.However, there are some other known solutions to the exploitation of geothermal energy or heat of the earth.
Po dokumentih DE 202004007567, DE 2928414 in DE 4329269 so znane rešitve izkoriščanja toplote zemljin z geosondo. Skupna značilnost teh rešitev je v tem, da omogočajo izkoriščanje toplote zemlje s pomočjo geosonde in toplotnih črpalk, ter se uporabljajo za nizkotemperaturno ogrevanje zgradb. Izvedbe geosond se konstrukcijsko med seboj sicer razlikujejo, za vse pa velja, da je v vrtino vstavljena U cev ali pa cev v cevi. Geosonde običajno ne presegajo globine 100 m, kjer je letna temperatura zemeljskih plasti konstantna in znaša približno 10°C. Zaradi nizkih temperatur in ekonomskih razlogov se uporabljajo samo za nizkotemperaturno ogrevanje zgradb s pomočjo toplotnih črpalk. Pri izvedbiAccording to documents DE 202004007567, DE 2928414 and DE 4329269, geo-probe soil heat recovery solutions are known. A common feature of these solutions is that they allow the exploitation of the earth's heat by means of geosondes and heat pumps, and are used for low-temperature heating of buildings. The design of geosondes differs from one another in design, but all consider that a U tube or a tube is inserted in the well. Geosondes typically do not exceed a depth of 100 m, where the annual temperature of the Earth's layers is constant and is approximately 10 ° C. For low temperatures and economic reasons, they are only used for low-temperature heating of buildings by means of heat pumps. When performing
geosonde z U cevjo se po eni cevi v vrtino dovaja hladna tekočina, ki se v vrtini segreje in se po drugi cevi segreta vrača na površino. Cevi, ki se vstavljajo v vrtino geosonde so običajno izdelane iz umetne mase.geosondes with a U tube a cold liquid is introduced into one well, which is heated in the well and returns to the surface after the other. Pipes that are inserted into a geosound well are usually made of plastic.
V dokumentu JP 59007856 je opisana znana rešitev izkoriščanja geotermičnega potenciala zemlje, ki je izvedena kot termosifon, ki je v bistvu v vrtino vstavljen prenosnik toplote tipa cev v cevi. Voda v termosifonu kroži v zaprtem tokokrogu s pomočjo črpalke ali ob pomoči razlike v gostoti tople in hladne vode. V medcevni prostor, med cevjo vrtine in sredinsko cevjo, se dovaja hladna voda, ki se ob pretoku po vrtini navzdol segreva in se segreta vrača po izolirani sredinski cevi na površino. V vrtino vstavljena sredinska cev je na zunanji strani obdana z izolacijsko oblogo, da se zmanjšajo toplotne izgube med kroženjem tekočega delovnega fluida. Tehnična rešitev termosifona za izkoriščanje geotermičnega potenciala globokih vrtin z visoko temperaturo, se lahko uporablja za visokotemperaturno ogrevanje in/ali za proizvodnjo električne energije. Pomanjkljivost te rešitve je predvsem v tem, da pri proizvodnji električne energije ne omogoča izkoriščanja celotnega razpoložljivega temperaturnega potenciala. Na primer, pri temperaturi vode 100°C, se lahko s tem sistemom za proizvodnjo električne energije izkoristi samo temperaturna razlika med 100°C in 80°C, torej le ΔΤ 20°C, preostali nizkotemperaturni energetski potencial pa ostane neizkoriščen.JP 59007856 describes a well-known solution for the exploitation of the geothermal potential of the earth, which is made as a thermosyphon, which is essentially a tube-type heat exchanger inserted into the pipe. Water in the thermosyphon circulates in a closed circuit by means of a pump or by the difference in the density of hot and cold water. Cold water is introduced into the interstitial space, between the borehole tube and the center tube, which, when flowing down the hole, heats up and returns to the surface via the insulated center tube. A center tube inserted into the borehole is enclosed on the outside by an insulating liner to minimize heat losses during the circulation of the liquid working fluid. The thermosiphon technical solution for harnessing the geothermal potential of deep wells with high temperature can be used for high temperature heating and / or for the production of electricity. The disadvantage of this solution is that it does not allow the exploitation of the full available temperature potential in the production of electricity. For example, at a water temperature of 100 ° C, only a temperature difference between 100 ° C and 80 ° C can be utilized with this power generation system, ie only ΔΤ 20 ° C, and the remaining low-temperature energy potential remains untapped.
Po dokumentu JP 8285480 je znana rešitev izkoriščanja geotermične energije, kjer je v zgornji del vrtine vstavljena toplotna cev oblita z vodo, katera se v spodnjem delu vrtine segreva ter s pomočjo črpalnega sistema kroži vzdolž toplotne cevi in v njej uparja hladilno snov. Tekoča hladilna snov, ki se v toplotni cevi uparja, se kot para odvaja na površino v kondenzator, kjer se s kondenzacijo par hladilne snovi proizvaja toplotna energija. Rešitev temelji na dovodu tekoče hladne snovi v toplotno cev po sredinski cevi in odvodu par po vmesnem medcevnem prostoru na površino. Pomanjkljivost takšne izvedbe toplotne cevi je v tem, da zaradi nastanka visokega hidrostatičnega tlaka ne omogoča uparjanje tekoče hladilne snovi po njeni celotni dolžini oziroma globini. Slabost te rešitve je tudi v zahtevni izvedbi, to je v zapletenem postopku vstavljanja toplotne cevi v vrtino. Naslednja pomanjkljivost je v tem, da se zaradi nižjih temperatur obtočne vode, ki v višjih plasteh obliva toplotno cev, del pare hladilne snovi začne ponovno kondenzirati in vračati nazaj proti dnu toplotne cevi. Zaradi tega se samo del parne faze hladilne snovi dovaja na površino, kjer se z njihovo kondenzacijo proizvaja toplota.JP 8285480 is a known solution for the exploitation of geothermal energy, where a water-filled heat pipe is inserted into the upper part of the well, which is heated in the lower part of the well and circulates along the heat pipe through the pump system and evaporates the refrigerant therein. Liquid refrigerant, which evaporates in the heat pipe, is discharged as steam into the condenser, where the condensation of the refrigerant vapor produces thermal energy. The solution is based on the supply of liquid coolant into the heat pipe through the center pipe and the discharge of steam through the intermediate interstitial space to the surface. The disadvantage of such a heat pipe design is that due to the formation of high hydrostatic pressure it does not allow the liquid coolant to evaporate along its entire length or depth. The disadvantage of this solution is also in the difficult implementation, that is, in the complicated process of inserting a heat pipe into the well. Another disadvantage is that due to the lower circulating water temperatures that heat the pipe in the higher layers, a portion of the refrigerant vapor begins to condense and return to the bottom of the heat pipe. As a result, only part of the vapor phase of the refrigerant is brought to the surface where their condensation produces heat.
Naslednja znana rešitev izkoriščanja geotermične energije je tako imenovani napredni geotermalni sistem (EGS), pri katerem se za proizvodnjo toplote in/ali električne energije uporabljajo vrtine z visoko temperaturo. Sestoji se iz dveh vzporednih vertikalnih vrtin, od katerih je ena proizvodna vrtina, druga pa povratna, reinjekcijska vrtina. Za odvzem toplote se uporablja na površini zemlje nameščeni toplotni prenosnik. Kot delovni fluid, oziroma nosilec toplote geotermične energije se uporablja voda, ki znotraj sistema kroži s pomočjo ustreznih črpalk. Najbolj znan primer uporabe EGS tehnologije je opisan v pilotnem znanstveno-raziskovalnem projektu, ki je izveden v Soultz-sous-Fortes v Franciji. Ta sistem ima to slabost, da zahteva vrtanje dveh vrtin, ki sta na dnu perforirani in je uporaben samo na geotermičnih področjih, kjer porozne zemeljske plasti ne vsebujejo tekočih ali plinastih fluidov, ki lahko onesnažijo delovno snov s primesmi. Tovrstna geotermična področja na zemlji so namreč zelo redka. Slabost tega sistema je tudi zahteva po vgradnji posebnih filtrov in ločevalnikov za čiščenje trdnih delcev in plinastih snovi iz dovedene tekočine. V povratno, reinjekcijsko vrtino je namreč potrebno dovajati izključno čisto vodo, da se prepreči zamašitev poroznih zemeljskih plasti.Another well-known solution for the exploitation of geothermal energy is the so-called Advanced Geothermal System (EEC), where high temperature wells are used to produce heat and / or electricity. It consists of two parallel vertical wells, one of which is a production well and the other a reverse, injection well. A heat exchanger installed on the surface of the earth is used for heat removal. Water, which circulates within the system by means of suitable pumps, is used as the working fluid or heat carrier of geothermal energy. The most famous example of the use of EEC technology is described in a pilot scientific research project carried out in Soultz-sous-Fortes, France. This system has the disadvantage of requiring the drilling of two holes that are perforated at the bottom and is only applicable in geothermal areas where porous earth layers do not contain liquid or gaseous fluids that can contaminate the workpiece with impurities. Such geothermal areas on earth are very rare. A disadvantage of this system is the requirement to install special filters and separators to clean solids and gases from the feed fluid. Namely, only clean water should be fed into the return, re-injection well to prevent clogging of porous earth layers.
Skupna značilnost vseh navedenih znanih rešitev izkoriščanja geotermične energije je v tem, da se v vrtino po cevi dovaja hladen tekoči medij, ki se segret vrača na površje zemlje. Problem, ki je ostal nerešen, je zlasti v omejeni geotermični kapaciteti globokih vrtin, ki je posledica omejitve pretoka tekočega medija zaradi padca tlaka. Omejitev hitrosti toka tekočega medija v vrtini ima za posledico manj dovedene toplotne energije na površino zemlje. Da bi se temu • * » ··· · · · · • · · · · ··· · · · , ····· · ····· · · ,, . ·· · ······· izognili je zasnovana gravitacijska toplotna cev za proizvodnjo geotermične toplote po prijavljenem izumu.A common feature of all the known known solutions for the exploitation of geothermal energy is that a cool liquid medium is introduced into the borehole, which returns to the surface of the earth when heated. The problem that remains unsolved is, in particular, the limited geothermal capacity of deep wells, which is a consequence of the flow limitation of the fluid medium due to pressure drop. Limiting the flow velocity of a fluid medium in a well results in less heat input to the surface of the earth. To make the topic • * »··· · · · · · · · · · · · · · · · · · · · · · · · · · · ·,. ·· · ······· A designed gravity heat pipe for geothermal heat production according to the invention has been avoided.
Rešitev tehničnega problemaThe solution to a technical problem
Po izumu je tehnični problem izkoriščanja temperaturnega potenciala zemljin vrtine rešen z gravitacijsko toplotno cevjo za proizvodnjo geotermične toplote ter s postopki v zvezi s tem. Gravitacijska toplotna cev kot nosilec toplote uporablja hladilno snov R717 ali R718. Izvedena je kot plinotesna ocevljena vrtina, v katero sta vstavljeni cev manjšega premera in cev večjega premera, ki ima na globini začetka uparjanja hladilne snovi zasnovan hidravlični sistem v obliki parne zapore, ki enakomerno dovaja tekočo hladilno snov v uparjalno območje gravitacijske toplotne cevi. Postopek po izumu temelji na proizvodnji par hladilne snovi R717 ali R718 v gravitacijski toplotni cevi in proizvodnji geotermične toplote s kondenzacijo par hladilne snovi na površini zemlje. Na ta način proizvedena toplota se lahko koristi za ogrevanje, ob uporabi dodatne opreme pa tudi za proizvodnjo električne energije.According to the invention, the technical problem of exploiting the temperature potential of the earth's wells is solved by a gravity heat pipe for the production of geothermal heat and by processes in this connection. The gravitational heat pipe uses refrigerant R717 or R718 as the heat carrier. It is designed as a gas-tight borehole, into which a smaller diameter tube and a larger diameter tube are inserted, with a hydraulic vapor barrier system designed at the depth of the start of evaporation of the refrigerant, which uniformly feeds the liquid refrigerant into the evaporation zone of the gravitational heat pipe. The process of the invention is based on the production of a R717 or R718 refrigerant pair in a gravity heat pipe and the production of geothermal heat by condensing a refrigerant pair on the earth's surface. The heat produced in this way can be used for heating, and also for the production of electricity using accessories.
Izum je natančneje pojasnjen na dveh izvedbenih primerih in priloženih risbah, ki prikazujejo sl. 1 prvi izvedbeni primer gravitacijske toplotne cevi po izumu v vzdolžnem prerezu sl. 2 enako, kot v sl. 1, samo prečni prerez A-A gravitacijske toplotne cevi nad parno zaporo sl. 3 enako, kot v sl. 1, samo povečan prikaz gravitacijske toplotne cevi v predelu parne zapore, v vzdolžnem prerezu sl. 4 enako, kot v sl. 3, samo prečni prerez B-B parne zapore sl. 5 drugi izvedbeni primer gravitacijske toplotne cevi po izumu v vzdolžnem prerezu sl. 6 enako, kot v sl. 5, samo prečni prerez C-C gravitacijske toplotne cevi nad parno zaporo sl. 7 enako, kot v sl. 5, samo povečan prikaz gravitacijske toplotne cevi v predelu parne zapore, v vzdolžnem prerezu sl. 8 enako, kot v sl. 7, samo prečni prerez D-D parne zaporeThe invention is explained in more detail by way of two embodiments and the accompanying drawings illustrating FIG. 1 is a first embodiment of a gravitational heat pipe according to the invention in longitudinal section; 2 in the same way as in FIG. 1, only a cross-sectional view of the A-A gravity heat pipe above the vapor barrier FIG. 3 in the same way as in FIG. 1, only an enlarged view of a gravity heat pipe in the vapor barrier region, in the longitudinal section of FIG. 4 the same as in FIG. 3, cross-sectional view only of the B-B vapor barrier FIG. 5 is a second embodiment of a gravitational heat pipe according to the invention in longitudinal section; 6 is the same as in FIG. 5, only a cross-sectional view of the C-C gravity heat pipe above the vapor bar FIG. 7 in the same way as in FIG. 5, only an enlarged view of a gravity heat pipe in the vapor barrier region, in the longitudinal section of FIG. 8 is the same as in FIG. 7, D-D vapor barrier cross section only
Konstrukcijska zasnova obeh predstavljenih izvedb gravitacijske toplotne cevi za proizvodnjo geotermične toplote je značilna po tem, da je uporabna za izkoriščanje toplotnega potenciala zemlje v vrtinah globine do 5000m ali več. Konstrukcija gravitacijske toplotne cevi je izvedena tako, da z izkoriščanjem geotermične toplote zemlje v vrtini uparja hladilno snov, katere para se na površini kondenzira v kondenzatorju in vrača nazaj v vrtino. S kondenzacijo par hladilne snovi proizvedena toplota se koristi za proizvodnjo toplote, ob uporabi ORC naprave pa tudi za proizvodnjo električne energije.The structural design of the two presented versions of the gravity heat pipe for the production of geothermal heat is characterized in that it is useful for exploiting the thermal potential of the earth in wells up to 5000 m deep or more. The design of the gravitational heat pipe is designed to evaporate a coolant by exploiting the geothermal heat of the earth in the well, whose vapor condenses on the surface in the condenser and returns to the well. The condensation of a refrigerant vapor produced by heat is used to produce heat and, using an ORC device, to produce electricity.
Opisano velja za oba izvedbena primera izuma.The above applies to both embodiments of the invention.
Bistvo prijavljenega izuma gravitacijske toplotne cevi za proizvodnjo geotermične toplote je v cev vrtine 2, ki je na dnu zatesnjena s čepom 7, sekvenčno vstavljeno nadgrajeno paro nepropustno ocevje, katerega sestavna dela sta parna zapora 6 in čep 9. Kot je predhodno že omenjeno, obsega prijavljeni izum dva izvedbena primera gravitacijske toplotne cevi, ki se med seboj razlikujeta po načinu dovajanja tekoče hladilne snovi in po načinu odvajanja par hladilne snovi na površino.The essence of the claimed invention of a gravity heat pipe for the production of geothermal heat is in the borehole 2, which is sealed at the bottom with a plug 7, a sequentially inserted superimposed steam-tight pipe, the components of which are a vapor barrier 6 and a plug 9. As previously mentioned, it comprises the present invention are two embodiments of a gravity heat pipe that differ from each other in the manner of delivery of the liquid refrigerant and in the manner of discharge of the refrigerant vapor to the surface.
V prvem izvedbenem primeru gravitacijske toplotne cevi, ki je prikazan na sl. 1, se tekoča hladilna snov dovaja v parno zaporo 6 in dalje v uparjalno območje 14, po medcevnem prostoru 8, ki se nahaja med cevjo vrtine 2 in vmesno cevjo 4. Odvodna cev 3, ki je nameščena v vmesno cev 4, je namenjena za odvod par hladilne snovi iz uparjalnega območja 14 na površino.In the first embodiment of the gravitational heat pipe shown in FIG. 1, the liquid refrigerant is introduced into the vapor barrier 6 and further into the evaporation zone 14, through the interstitial space 8, which is located between the borehole pipe 2 and the intermediate pipe 4. The drainage pipe 3, which is located in the intermediate pipe 4, is intended for the removal of a coolant vapor from the evaporation zone 14 to the surface.
V drugem izvedbenem primeru gravitacijske toplotne cevi, ki je prikazan na sl. 5, se tekoča hladilna snov dovaja v parno zaporo 6 in dalje v uparjalno območje 14 po dovodni cevi 16, ki je znotraj cevi vrtine 2 nameščena vzporedno z odvodno cevjo 17, po kateri se pare hladilne snovi vodijo v kondenzator, ki je na površini zemlje.In another embodiment, the gravitational heat pipe shown in FIG. 5, the liquid refrigerant is introduced into the vapor barrier 6 and further into the evaporation zone 14 via the inlet pipe 16, which is positioned inside the borehole pipe 2 in parallel with the drainage pipe 17, through which the refrigerant vapors are directed to a condenser located on the earth's surface. .
Za oba izvedbena primera gravitacijske toplotne cevi velja, da se lahko izvedeta v obstoječi vrtini, tako imenovani neproduktivni vrtini, ki zagotavlja dovolj velik geotermičen toplotni potencial ali pa v namensko izvrtani vrtini, v katero se vgradijo posamezni sestavni deli in sklopi gravitacijske toplotne cevi. Spoji posameznih cevnih segmentov cevi vrtine 2 so izvedeni plinotesno, da se prepreči vdorfluidov, ki so prisotni v zemeljskih plasteh.In both embodiments, gravity heat pipes can be considered to be made in an existing well, a so-called unproductive well, providing a sufficiently large geothermal heat potential, or in a well-drilled hole into which individual components and assemblies of a gravity heat pipe are installed. The joints of the individual tube segments of the borehole tube 2 are gas-tight to prevent vdorfluids present in the earth layers.
Izvedbena primera gravitacijske toplotne cevi po izumu sta natančneje opisana v nadaljevanju.Embodiments of the gravity heat pipe of the invention are described in more detail below.
Prvi izvedbeni primer gravitacijske toplotne cevi za proizvodnjo geotermične toplote po izumu je prikazan na sl. 1, sl. 2, sl. 3 in sl. 4. Gre za sistem cevi oziroma ocevje, nameščeno v vrtino z vstavljeno uvodno cevjo 1, v katero je nameščena cev vrtine 2, katere premer se z globino običajno stopenjsko zmanjšuje. V cev vrtine 2 je vstavljen sestav iz parne zapore 6, čepa 9, odvodne cevi 3 in vmesne cevi 4, ki se sestavi na površini zemlje in se z dvigalom spušča v cev vrtine 2, ki je na dnu hermetično zaprta s čepom 7. Pri tem velja, da je vmesna cev 4 manjšega premera od cevi vrtine 2 in večjega premera od odvodne cevi 3. Cev 3 je namenjena za odvod vročih par hladilne snovi iz uparjalnega območja 14 na površino.A first embodiment of a gravity heat pipe for producing geothermal heat according to the invention is shown in FIG. 1, FIG. 2, FIG. 3 and FIG. 4. It is a system of pipes or tubes installed in a borehole with a inserted inlet pipe 1 into which a borehole pipe 2 is installed, whose diameter is usually gradually reduced in depth. An assembly of the vapor barrel 6, the plug 9, the drainage pipe 3 and the intermediate tube 4 is inserted into the borehole 2, which is assembled on the ground surface and is lowered into the borehole tube 2 by means of a hermetically sealed seal at the bottom. the intermediate pipe 4 is therefore smaller in diameter than the borehole pipe 2 and larger in diameter than the drainage pipe 3. The pipe 3 is intended for the discharge of hot refrigerant vapor from the evaporation zone 14 to the surface.
V cev vrtine 2 sta, ena v drugo centrično vstavljeni odvodna cev 3 in vmesna cev 4, ki na ta način oblikujeta medcevna prostora 5 in 8. Vmesna cev 4 je na obeh koncih na odvodno cev 3 pritrjena hermetično z reducirnim vložkom 19. Med cevjo vrtine 2 in vmesno cevjo 4 je medcevni prostor 8, ki je namenjen za dovod tekoče hladilne snovi v parno zaporo 6 in dalje v uparjalno območje 14. Med odvodno cevjo 3 in vmesno cevjo 4 je hermetično zaprt medcevni prostor 5, ki predstavlja vakuumsko izolacijo. Opisano je prikazano na sl. 1 in sl. 2.The drainage tube 3 and the intermediate tube 4 are thus centrally inserted into the borehole tube 2, thus forming the interconnecting spaces 5 and 8. The intermediate tube 4 is sealed at both ends hermetically with a reducing insert 19. During the tube wells 2 and the intermediate tube 4 is an interconnecting space 8 intended to supply the liquid coolant to the vapor barrier 6 and further to the evaporation zone 14. There is a hermetically sealed interconnecting space 5 between the discharge tube 3 and the intermediate tube 4, which represents vacuum insulation. The description is shown in FIG. 1 and FIG. 2.
Parna zapora 6 je izvedena pod čepom 9 in je locirana ob steni cevi vrtine 2. Sestoji se iz cevi 12, ki je spodaj zaprta z dnom 13 in iz cevi 11, ki je povezana z medcevnim prostorom 8. Cev 11 je namenjena za dovod tekoče hladilne snovi iz • ·The vapor barrier 6 is made under the plug 9 and is located adjacent to the wall of the borehole pipe 2. It consists of a pipe 12, which is closed below with the bottom 13, and a pipe 11, which is connected to the tube space 8. The pipe 11 is intended for supplying liquid refrigerants from • ·
medcevnega prostora 8 v parno zaporo 6. Cev 11 je z zgornjim koncem pritrjena na čep 9, njen spodnji konec pa sega v cev 12 parne zapore 6 in se končuje nekoliko nad dnom 13. V steno cevi 12 je izvedena perforacija 15, katere namen je enakomerna razpršitev tekoče hladilne snovi v uparjalno območje 14 v cevi vrtine 2, ki se nahaja pod parno zaporo 6. Perforacija 15 je izvedena na zgornji tretjini plašča cevi 12, tvori pa jo določeno število lukenj ustrezne velikosti, ki morajo biti izvedene nad spodnjim koncem cevi 11.of the tubing space 8 into the vapor barrel 6. The tube 11 is fixed to the plug 9 by the upper end, and its lower end extends into the tube 12 of the vapor barrier 6 and ends slightly above the bottom 13. A perforation 15 is designed into the wall of the tube 12, intended for uniform dispersion of the liquid coolant into the evaporation zone 14 in the borehole pipe 2, which is located below the vapor barrel 6. The perforation 15 is carried out on the upper third of the tube casing 12 and is formed by a number of holes of a suitable size to be made above the lower end of the pipe 11.
Opisano je prikazano na sl. 3 in sl. 4.The description is shown in FIG. 3 and FIG. 4.
Parna zapora 6 je lahko izvedena tudi drugače od prikazane na sl. 3, kar pa posebej ni prikazano in opisano.The vapor barrier 6 may also be designed differently from that shown in FIG. 3, which is not specifically shown and described.
Gravitacijska toplotna cev po prvem izvedbenem primeru se lahko izvede tudi brez parne zapore 6, ki jo je mogoče nadomestiti z vgradnjo ustreznega nepovratnega ventila na spodnjem koncu cevi 11.The gravity heat pipe according to the first embodiment can also be provided without a steam stop 6, which can be replaced by the installation of a suitable non-return valve at the lower end of the pipe 11.
Vse cevi 1, 2, 3, 4, 11 in 12 so standardnih premerov, katerih dimenzije so izbrane tako, da se lahko vstavijo ena v drugo in hkrati omogočajo potreben pretok fluida znotraj njih in skozi medcevni prostor 8.All pipes 1, 2, 3, 4, 11 and 12 are of standard diameters, the dimensions of which are chosen so that they can be inserted into one another and at the same time allow the necessary flow of fluid within them and through the interstitial space 8.
Sklicujoč se na predhodni opis prvega izvedbenega primera izuma, se v zgornjem delu gravitacijske toplotne cevi, med cevjo vrtine 2 in vmesno cevjo 4, nahaja medcevni prostor 8, po katerem se s površine v smeri X dovaja tekoča hladilna snov, ki teče skozi cev 11, pritrjeno na čep 9, v parno zaporo 6. V parni zapori 6 tekoča hladilna snov delno izteka skozi perforacijo 15, preostanek pa se v smeri Y preliva preko zgornjega roba cevi 12, oziroma gladine 10, v uparjalno območje 14. Tekoča hladilna snov na poti navzdol v uparjalnem območju 14 izpareva zaradi toplotnega toka, ki prehaja skozi steno cevi vrtine 2 iz vročih zemeljskih plasti, ki jo obdajajo. Z izparevanjem hladilne snovi nastale pare tečejo v smeri Z navzgor, ki je nasprotna smeri toka tekoče faze v smeri Y tekoče faze. Para v smeri Z pri čepu 9 vstopa v odvodno cev 3, po kateri se odvaja na površino.Referring to the preceding description of the first embodiment of the invention, there is in the upper part of the gravitational heat pipe between the borehole 2 and the intermediate pipe 4 an interstitial space 8, through which a liquid coolant which flows through the pipe 11 is supplied from the surface in the X direction. attached to the plug 9 into the vapor barrel 6. In the vapor barrel 6, the liquid refrigerant partially escapes through the perforation 15, and the remainder flows in the Y direction through the upper edge of the pipe 12 or the surface 10 into the evaporation zone 14. The liquid refrigerant at the downward paths in the evaporation zone 14 evaporate due to the heat flow passing through the wall of the borehole tube 2 from the hot earth layers surrounding it. By evaporation of the coolant, the resulting vapors flow in the Z direction, which is opposite to the liquid phase flow direction in the liquid phase Y direction. The steam in the Z direction at the plug 9 enters the drainage pipe 3, after which it is discharged to the surface.
Uparjalno območje 14 sega od čepa 9 nad parno zaporo 6 do čepa 7 na dnu cevi vrtine 2, pri čemer čepa 7 in 9 uparjalno območje 14 hermetično zapirata.The evaporation zone 14 extends from the plug 9 above the vapor barrier 6 to the plug 7 at the bottom of the borehole tube 2, with the plugs 7 and 9 sealing zone 14 sealed.
Čep 9 je v cev vrtine 2 nameščen z namenom, da hermetično loči zgornji del gravitacijske toplotne cevi od spodnjega, kjer poteka uparjanje hladilne snovi.Plug 9 is installed in the borehole tube 2 in order to hermetically separate the upper part of the gravity heat pipe from the lower one, where the refrigerant evaporation takes place.
Čep 9 leži nad parno zaporo 6 in je v cev vrtine 2 hermetično vstavljen in pritrjen. Skozi čep 9 vodita odvodna cev 3 in cev 11. Cevi 3 in 11 sta na čep 9 pritrjeni tako, da omogočata pretok tekoče faze v smeri X skozi cev 11 v parno zaporo 6 in pretok par hladilne snovi v smeri Z skozi odvodno cev 3 na površino.The plug 9 lies above the vapor barrier 6 and is hermetically inserted and secured into the borehole tube 2. The drainage tube 3 and the pipe 11 are guided through the plug 9. The pipes 3 and 11 are secured to the plug 9 so that the liquid phase in the X direction is passed through the pipe 11 into the vapor barrier 6 and the refrigerant vapor in the Z direction through the drain pipe 3 at surface.
Čep 7, ki cev vrtine 2 na dnu hermetično zapira, se po vstavljanju aktivira in utrdi s plastjo betona.The plug 7, which seals the borehole tube 2 at the bottom, is activated and solidified with a layer of concrete after insertion.
Čepa 7 in 9 sta standardne konstrukcijske izvedbe, ker se uporabljata pri tehnologiji črpanja nafte in zemeljskega plina. Postopek njune aktivacije poteka po navodilih proizvajalca.Studs 7 and 9 are standard construction designs because they are used in oil and natural gas extraction technology. The process of their activation is performed according to the manufacturer's instructions.
Po vgradnji čepa 7 na dnu cevi vrtine 2 sledi vstavljanje cevi 11 s parno zaporo 6 v čep 9, nato pa sočasna montaža in spuščanje odvodne cevi 3 in vmesne cevi 4. Vsi sestavni deli tega sklopa, ki so med seboj hermetično spojeni, se sestavljajo na površini zemlje in z dvižno napravo spuščajo v cev vrtine 2.Following the installation of the plug 7 at the bottom of the borehole pipe 2, the insertion of the steam pipe 11 with the steam seal 6 into the plug 9 is followed by the simultaneous mounting and lowering of the drainage pipe 3 and the intermediate pipe 4. All hermetically sealed components of this assembly are assembled. on the surface of the earth and with a lifting device they lower wells 2.
Izbira hladilne snovi kot nosilca toplote je odvisna od globine vrtine oziroma dolžine cevi vrtine 2 in od geotermičnega toplotnega potenciala. Najustreznejša ekološko neoporečna tekoča hladilna snov, ki se lahko kot nosilec toplote uporablja v gravitacijski toplotni cevi je R717, pri zelo visokih temperaturah in globokih vrtinah pa se lahko uporabi tudi R718. Za proizvodnjo toplote pri nižjih temperaturah in plitkih vrtinah se lahko uporabijo tudi hladilne snovi R290, R600, R600a, R744, R170 oziroma hladilne snovi, ki se običajno uporabljajo v hladilni tehniki, kot so R134a, R245fa in podobne.The choice of coolant as a heat carrier depends on the depth of the borehole or the length of the borehole pipe 2 and on the geothermal heat potential. The most environmentally friendly liquid refrigerant that can be used as a heat carrier in a gravity heat pipe is R717, and R718 can be used at very high temperatures and deep wells. Coolants R290, R600, R600a, R744, R170 or refrigerants commonly used in refrigeration such as R134a, R245fa and the like may also be used to produce heat at lower temperatures and shallow wells.
Količina proizvedene geotermične toplote z gravitacijsko toplotno cevjo po izumu se regulira na površini z vračanjem ustrezne količine tekoče hladilne snovi v vrtino. Optimalna globina namestitve parne zapore 6 se določi na podlagi računalniške simulacije obratovanja gravitacijske toplotne cevi za vsako vrtino posebej. Parna zapora 6 ni potrebna pri obratovanju geotermične vrtine nad kritično temperaturo in tlakom hladilne snovi (super kritična hladilna snov), vendar je potrebno v tem primeru odvodno cev 3 podaljšati skoraj do čepa 7 na dnu cevi vrtine 2. Intenzivnost prenosa toplote z notranje površine cevi vrtine 2 na hladilno snov je odvisna od temperaturne razlike, toplotne prevodnosti geoloških plasti vrtine in od površine uparjanja hladilne snovi.The amount of geothermal heat produced by the gravity heat pipe of the invention is regulated on the surface by returning an adequate amount of liquid coolant to the well. The optimal depth of installation of the vapor barrier 6 is determined on the basis of a computer simulation of the operation of the gravity heat pipe for each well. The vapor barrier 6 is not required for the operation of the geothermal well above the critical temperature and coolant pressure (super critical coolant), but in this case the drainage pipe 3 must be extended almost to the plug 7 at the bottom of the borehole pipe 2. Intensity of heat transfer from the inner surface of the pipe of the well 2 per coolant depends on the temperature difference, the thermal conductivity of the geological layers of the well and the evaporation surface of the coolant.
Tlak in temperatura par hladilne snovi v stacionarnem stanju sta odvisna od temperature, toplotne prevodnosti geoloških plasti vrtine in masnega pretoka tekoče hladilne snovi. Toplotne izgube med tekočo in parno fazo hladilne snovi nad parno zaporo 6 se preprečujejo z vakuumiranjem medcevnega prostora 5 med stenama odvodne cevi 3 in vmesne cevi 4. S tem se zmanjšajo toplotne izgube in prepreči kondenzacija par hladilne snovi ob pretoku skozi sredinsko odvodno cev 3 na površino. Pred polnjenjem gravitacijske toplotne cevi s hladilno snovjo je potrebno iz vrtine odstraniti zrak in vodo.Steady-state refrigerant vapor pressure and temperature depend on the temperature, thermal conductivity of the borehole geological layers, and the mass flow rate of the liquid coolant. The heat losses between the liquid and the vapor phase of the coolant above the vapor barrier 6 are prevented by vacuuming the interstitial space 5 between the walls of the drainage pipe 3 and the intermediate pipe 4. This reduces heat losses and prevents condensation of the refrigerant vapor from flowing through the central drainage pipe 3 to surface. Air and water must be removed from the well before filling the gravity heat pipe with a coolant.
Konstrukcijska izvedba gravitacijske cevi za proizvodnjo geotermične toplote po drugem izvedbenem primeru izuma je prikazana na sl. 5 do vključno sl. 8. Gre za sistem cevi oziroma ocevje, nameščeno v vrtino z vstavljeno uvodno cevjo 1, v katero je nameščena cev vrtine 2, katere premer se z globino običajno stopenjsko zmanjšuje. V cev vrtine 2 je vstavljen sestav iz parne zapore 6, čepa 9, zapornega elementa 18, dovodne cevi 16 in odvodne cevi 17 in se sestavi na površini zemlje in se z dvigalom spušča v cev vrtine 2, ki je na dnu hermetično zaprta s čepom 7. Pri tem velja, da je odvodna cev 17 manjšega premera od cevi vrtine 2 in večjega premera od dovodne cevi 16. Dovodna cev 16 je namenjena za dovod tekoče hladilne snovi v parno zaporo 6 in skozi njo v uparjalno območje 14, po odvodni cevi 17 pa se vroče pare hladilne snovi odvajajo iz uparjalnega območja 14 na površino.A structural embodiment of a gravity tube for the production of geothermal heat according to another embodiment of the invention is shown in FIG. 5 to and including FIG. 8. It is a system of pipes or tubes fitted into a borehole with an inserted inlet pipe 1 into which a borehole pipe 2 is installed, the diameter of which is usually gradually reduced in depth. An assembly of the vapor barrel 6, the plug 9, the locking element 18, the inlet pipe 16 and the discharge pipe 17 is inserted into the borehole tube 2 and assembled on the surface of the earth and lowered into the borehole pipe 2, which is sealed with the plug at the bottom. 7. In this case, the discharge pipe 17 is smaller than the borehole pipe 2 and larger than the feed pipe 16. The feed pipe 16 is intended for supplying the liquid refrigerant to the vapor barrier 6 and through it to the evaporation zone 14, via the discharge pipe. 17, however, hot refrigerant vapors are discharged from the evaporation zone 14 to the surface.
Dovodna cev 16 in odvodna cev 17 sta v cev vrtine 2 vstavljeni vzporedno ena ob drugi tako, da med seboj oblikujejo medcevni prostor 5, katerega na vsako strani hermetično zapirata čep 9 in zaporni element 18. Medcevni prostor 5 predstavlja vakuumsko izolacijo. Opisano je prikazano na sl. 1 in sl. 2.The inlet pipe 16 and the outlet pipe 17 are inserted parallel to one another in the borehole tube 2, forming a tubular space 5, which is sealed on each side by a plug 9 and a sealing element 18. The tubular space 5 is a vacuum insulation. The description is shown in FIG. 1 and FIG. 2.
Parno zaporo 6, ki je izvedena pod čepom 9 in locirana ob steni cevi vrtine 2, tvorita cev 12 z dnom 13 in dovodna cev 16, ki je speljana skozi čep 9 po medcevnem prostoru 5 s površine zemlje. Dovodna cev 16 je z zgornjim koncem pritrjena na zaporni element 18, s spodnjim koncem pa na čep 9 in vodi v parno zaporo 6. V steno cevi 12 je izvedena perforacija 15, katere namen je enakomerna razpršitev tekoče hladilne snovi v uparjalno območje 14 v cevi vrtine 2, ki se nahaja pod parno zaporo 6. Perforacija 15 je izvedena na zgornji tretjini plašča cevi 12, tvori pa jo določeno število lukenj ustrezne velikosti, ki morajo biti izvedene nad spodnjim koncem dovodne cevi 16.The vapor barrier 6, which is made under the plug 9 and located adjacent to the wall of the borehole tube 2, forms a tube 12 with the bottom 13 and a supply pipe 16 that passes through the plug 9 through the interstitial space 5 from the surface of the earth. The inlet pipe 16 is attached to the closure element 18 by the upper end and the plug end 9 to the lower end and leads to a vapor barrier 6. A perforation 15 is carried out into the wall of the pipe 12, the purpose of which is to disperse the liquid coolant evenly into the evaporation zone 14 in the pipe bore 2, which is located below the vapor barrier 6. The perforation 15 is made on the upper third of the tube sleeve 12 and is formed by a number of holes of a suitable size to be provided above the lower end of the supply pipe 16.
Opisano je prikazano na sl. 7 in sl. 8.The description is shown in FIG. 7 and FIG. 8.
Parna zapora 6 je lahko izvedena tudi drugače od prikazane na sl. 3, kar pa posebej ni prikazano in opisano.The vapor barrier 6 may also be designed differently from that shown in FIG. 3, which is not specifically shown and described.
Tudi gravitacijska toplotna cev po drugem izvedbenem primeru je lahko izvedena brez parne zapore 6, katera se lahko nadomesti z vgradnjo ustreznega nepovratnega ventila na spodnjem koncu dovodne cevi 16.According to another embodiment, the gravity heat pipe may also be provided without a steam stop 6, which may be replaced by the installation of a suitable non-return valve at the lower end of the supply pipe 16.
Vse cevi 1, 2, 12, 16 in 17 so standardnih premerov, katerih dimenzije so izbrane tako, da se lahko vstavijo ena ob drugi in hkrati omogočajo potreben pretok fluida.All tubes 1, 2, 12, 16 and 17 are standard diameters, the dimensions of which are chosen so that they can be inserted side by side while allowing the necessary fluid flow.
Sklicujoč se na predhodni opis drugega izvedbenega primera izuma, se v zgornjem delu gravitacijske toplotne cevi, to je v cevi vrtine 2 in med dovodno cevjo 16 in odvodno cevjo 17, nahaja medcevni prostor 5, ki predstavlja vakuumsko izolacijo.Referring to the foregoing description of another embodiment of the invention, there is a vacuum space 5 in the upper part of the gravitational heat pipe, that is, in the borehole pipe 2 and between the feed pipe 16 and the discharge pipe 17.
S površine se v smeri X po dovodni cevi 16, ki poteka skozi čep 9 in zaporni element 18, dovaja tekoča hladilna snov v parno zaporo 6. Iz parne zapore 6 tekoča hladilna snov delno izteka skozi perforacijo 15 v uparjalno območje 14, v katerega se v smeri Y in preko roba cevi 12 z gladino 10 preliva tudi preostanek tekoče hladilne snovi. Tekoča hladilna snov na poti navzdol v uparjalnem območju 14 izpareva zaradi toplotnega toka, ki prehaja skozi steno cevi vrtine 2 iz vročih zemeljskih plasti, ki jo obdajajo. Z izparevanjem hladilne snovi nastala para teče v smeri Z navzgor, ki je nasprotna smeri toka tekoče faze Y. Para pri čepu 9 v smeri Z vstopa v odvodno cev 17, po kateri se odvaja na površino.Liquid refrigerant is introduced into the vapor barrier 6 from the supply line 16 in the direction of the inlet pipe 16, which passes through the plug 9 and the closure element 18. From the vapor barrier 6, the liquid refrigerant partly flows through the perforation 15 into the evaporation zone 14 into which the evaporation zone 14 in the Y direction and over the edge of the pipe 12 with a level 10, the remainder of the liquid coolant also overflows. The liquid refrigerant on the way down in the evaporation zone 14 evaporates due to heat flowing through the wall of the borehole tube 2 from the hot earth layers surrounding it. By evaporation of the refrigerant, the vapor produced flows in the Z direction upwards, which is opposite to the flow direction of the liquid phase Y. The vapor at the plug 9 in the Z direction enters the drainage pipe 17, after which it is discharged to the surface.
Uparjalno območje 14 sega od čepa 9 nad parno zaporo 6 do čepa 7 na dnu cevi vrtine 2, hermetično pa ga zapirata čepa 7 in 9.The evaporation zone 14 extends from the plug 9 above the vapor barrier 6 to the plug 7 at the bottom of the borehole tube 2 and is sealed by the plugs 7 and 9.
Čep 9 je v cev vrtine 2 nameščen z namenom, da v cevi vrtine 2 hermetično loči zgornji del gravitacijske toplotne cevi od spodnjega, kjer poteka uparjanje hladilne snovi, nameščen pa je nad parno zaporo 6.The plug 9 is mounted in the borehole pipe 2 in order to hermetically separate the upper part of the gravity heat pipe from the lower one, where the refrigerant evaporation takes place, and is placed above the vapor barrier 6.
Čep 9 in zaporni element 18 hermetično zapirata medcevni prostor 5, ki predstavlja vakuumsko izolacijo.The plug 9 and the locking element 18 hermetically seal the tubular space 5, which represents vacuum insulation.
Skozi čep 9 in zaporni element 18 sta speljani odvodna cev 17 in dovodna cevA drain pipe 17 and a supply pipe are passed through the plug 9 and the locking element 18
16. Cevi 16 in 17 sta na čep 9 in zaporni element 18 pritrjeno tako, da omogočata pretok tekoče hladilne snovi v smeri X skozi dovodno cev 16 v parno zaporo 6 in pretok par hladilne snovi v smeri Z skozi odvodno cev 17 na površino.16. The tubes 16 and 17 are secured to the plug 9 and the closure element 18 to allow the flow of liquid refrigerant in the X direction through the inlet pipe 16 into the steam stop 6 and the flow of the refrigerant pair in the Z direction through the drain pipe 17 to the surface.
Čep 7, ki cev vrtine 2 na dnu hermetično zapira, se po vstavitvi aktivira in utrdi s plastjo betona.The plug 7, which seals the borehole tube 2 at the bottom, is activated and cured with a layer of concrete after insertion.
Čepa 7 in 9 ter zaporni element 18 so standardne konstrukcijske izvedbe in se uporabljajo pri tehnologiji črpanja nafte in zemeljskega plina. Postopek njihove aktivacije poteka po navodilih proizvajalca. Zaporni element 18 se za ta namen izdela posebej.Plugs 7 and 9 and locking element 18 are standard construction designs and are used in oil and natural gas extraction technology. The process of their activation is performed according to the manufacturer's instructions. The locking element 18 is specially designed for this purpose.
Po vgradnji čepa 7 na dnu cevi vrtine 2 sledi vstavljanje dovodne cevi 16 s parno zaporo 6 v čep 9, nato pa sočasna montaža in spuščanje dovodne cevi 16 in odvodne cevi 17. Vsi sestavni deli tega sklopa so med seboj hermetično spojeni in se sestavljajo na površini zemlje ter spuščajo z dvižno napravo v cev vrtine 2.After the plug 7 is installed at the bottom of the borehole pipe 2, insertion of the supply pipe 16 with a steam stop 6 into the plug 9 is followed by the simultaneous installation and lowering of the supply pipe 16 and the drainage pipe 17. All components of this assembly are hermetically connected and assembled at the surface of the earth and are lowered by a lifting device into the borehole 2.
Pogoji izbire hladilne snovi kot nosilca toplote so enaki, kot v prvem izvedbenem primeru.The conditions for selecting a refrigerant as a heat carrier are the same as in the first embodiment.
V bistvu se drugi izvedbeni primer od prvega izvedbenega primera gravitacijske toplotne cevi za proizvodnjo geotermične toplote razlikuje po tem, da se v zgornji del cevi vrtine 2 ena ob drugi vgradita vzporedni cevi 16 in 17. Po dovodni cevi 16 manjšega premera se s površine dovaja tekoča hladilna snov skozi čep 9 do parne zapore 6, po odvodni cevi 17 večjega premera pa se iz uparjalnega območja 14 v cevi vrtine 2 odvajajo pare hladilne snovi na površino. Ostala konstrukcija je enaka kot v prvem izvedbenem primeru. Enaka tudi vgradnja sestavnih delov v cev vrtine 2.In fact, the second embodiment differs from the first embodiment of the gravity heat pipe for the production of geothermal heat in that parallel pipes 16 and 17 are installed side by side in the upper part of the borehole pipe 2 and 17. Liquid pipe 16 is supplied from the surface with a smaller diameter. refrigerant through the plug 9 to the vapor barrier 6, and vapor coolant vapors are discharged to the surface via the outlet pipe 17 of a larger diameter through the evaporation zone 14 in the borehole tube 2. The rest of the construction is the same as in the first embodiment. The same applies to the installation of components in the borehole tube 2.
Drugi izvedbeni premer geotermične gravitacijske toplotne cevi ima glede na prvi izvedbeni primer približno za 20% slabši izkoristek geotermičnega potenciala vrtine.The second embodiment of the geothermal gravity heat pipe has, according to the first embodiment, about 20% lower efficiency of the geothermal well potential.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201200108A SI23618A (en) | 2012-04-04 | 2012-04-04 | Gravitational heat pipe for the production of geothermal heat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201200108A SI23618A (en) | 2012-04-04 | 2012-04-04 | Gravitational heat pipe for the production of geothermal heat |
Publications (1)
Publication Number | Publication Date |
---|---|
SI23618A true SI23618A (en) | 2012-07-31 |
Family
ID=46578774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201200108A SI23618A (en) | 2012-04-04 | 2012-04-04 | Gravitational heat pipe for the production of geothermal heat |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI23618A (en) |
-
2012
- 2012-04-04 SI SI201200108A patent/SI23618A/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8430166B2 (en) | Geothermal energy extraction system and method | |
JP7135094B2 (en) | Closed-loop energy generation from productive geothermal wells | |
EP3961122B1 (en) | Geothermal energy mining system using stepped gravity-assisted heat pipe having no accumulated liquid effect | |
US9394771B2 (en) | Single well, self-flowing, geothermal system for energy extraction | |
US8650875B2 (en) | Direct exchange geothermal refrigerant power advanced generating system | |
EP2649311B1 (en) | Passive heat extraction and power generation | |
US20120018120A1 (en) | Geothermal energy extraction system and method | |
US20150330670A1 (en) | System and method for utilizing oil and gas wells for geothermal power generation | |
US20090211757A1 (en) | Utilization of geothermal energy | |
JP2011524484A (en) | System and method for acquiring geothermal heat for generating electricity from a drilled well | |
WO1986000124A1 (en) | Improvements in earth heat recovery systems | |
SE535370C2 (en) | Device and method for storing thermal energy | |
US20240302079A1 (en) | Groundwater enhanced geothermal heat pump | |
US11913679B1 (en) | Geothermal systems and methods with an underground magma chamber | |
JP5009683B2 (en) | Geothermal utilization system | |
CA2916811A1 (en) | A linear geothermal heat exchange device | |
WO2010016919A2 (en) | System and method of maximizing performance of a solid-state closed loop well heat exchanger | |
SI23618A (en) | Gravitational heat pipe for the production of geothermal heat | |
EP3762663B1 (en) | Geothermal heat exchanger for recovering geothermal energy from dry rocks by means of a heat transfer medium with a closed circuit of the heat transfer medium | |
RU2701029C1 (en) | Method of petrothermal heat extracting | |
US20240360734A1 (en) | Casing a wellbore in magma | |
KR20180070502A (en) | apparatus of geothermal power generation | |
WO2023091786A1 (en) | Supercritical geothermal energy system | |
WO2024182025A1 (en) | Geothermal systems and methods with an underground magma chamber | |
Forrest | Geothermal drilling. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20120810 |
|
KO00 | Lapse of patent |
Effective date: 20220415 |