SI23547A - COATING OF TiO2 RUTILE NANOPARTICLES IN A SUSPENSION WITH HYDRATED SiO2 AND Al2O3 - Google Patents

COATING OF TiO2 RUTILE NANOPARTICLES IN A SUSPENSION WITH HYDRATED SiO2 AND Al2O3 Download PDF

Info

Publication number
SI23547A
SI23547A SI201000397A SI201000397A SI23547A SI 23547 A SI23547 A SI 23547A SI 201000397 A SI201000397 A SI 201000397A SI 201000397 A SI201000397 A SI 201000397A SI 23547 A SI23547 A SI 23547A
Authority
SI
Slovenia
Prior art keywords
nanoparticles
suspension
coating
tio
tio2
Prior art date
Application number
SI201000397A
Other languages
Slovenian (sl)
Inventor
VERONOVSKI@Nika
EK@Dejan VERHOVĹ
NIK@AljaĹľ SELIĹ
Original Assignee
CINKARNA@Metalurško@kemična@industija@Celje@@d@d@
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CINKARNA@Metalurško@kemična@industija@Celje@@d@d@ filed Critical CINKARNA@Metalurško@kemična@industija@Celje@@d@d@
Priority to SI201000397A priority Critical patent/SI23547A/en
Priority to PCT/SI2011/000064 priority patent/WO2012067590A1/en
Publication of SI23547A publication Critical patent/SI23547A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

The invention refers to a rapid, adaptable, manageable and reproducible approach to a synthesis of coated TiO2 nanoparticles with hydrated silicon and aluminium oxides with the use of harmless chemicals. The proposed method is based on a preparation of a well dispersed system of TiO2 nanoparticles and a controlled hydrolysis of Si02 from an alkaline precursor Na2Si03 in the presence of the mineral acid H2S04 or a hydrolysis of Al203 from an alkaline precursor of NaAlO2 in the presence of the mineral acid H2S04. The analyses have proved that the longer the coating times, the higher the SiO2 quantity and consequently the thickness of the coating. Controlled synthesis conditions were used to coat individual TiO2 nanoparticles. The mechanism of inorganic coating of TiO2 nanoparticles can be categorised as precipitation of hydrated oxides in the form of a thin layer onto already present particles (heterogeneous nucleation). The advantage of the method is its simplicity and the fact that a stable suspension of TiO2 nanoparticles is present in the whole method from the beginning to the end, which provides for healthy work conditions of industrial workers and users and also prevents negative effects on the environment (emission of nanoparticles).

Description

OPLAŠČEVANJE RUTILNIH NANODELCEV TIO2 V SUSPENZIJI S HIDRATIZIRANIM SiO2 IN A12O3 COATING OF ROUTE TIO2 nanoparticles in suspension with hydrated SiO 2 and A1 2 O 3

PODROČJE IZUMAFIELD OF THE INVENTION

Predmet izuma je oplaščevanje rutilnih nanodelcev TiO2 v suspenziji s SiO2 in AI2O3.The object of the invention is the coating of rutile TiO 2 nanoparticles in suspension with SiO 2 and AI2O3.

Predloženi izum sodi na področje koloidne kemije, podrobneje pa obsega suspenzije nanodelcev TiO2 v kristalni strukturi rutila, s poudarkom na njihovi površinski obdelavi, z uporabo natrijevega silikata in natrijevega aluminata kot reagentov za oplaščenje nanodelcev s tankimi sloji hidratiziranega silicijevega in aluminijevega oksida (SiO2 in A12O3).The present invention relates to the field of colloidal chemistry and more specifically comprises suspensions of TiO 2 nanoparticles in the crystalline structure of rutile, with emphasis on their surface treatment, using sodium silicate and sodium aluminate as coatings for nanoparticles with thin layers of hydrated silica and aluminum 2 (SiO 2). and A1 2 O3).

PODROČJE TEHNIKETECHNICAL FIELD

Izum omogoča kontrolirano oplaščevanje nanodelcev v obliki suspenzije TiO2 s tankimi sloji hidratiziranega aluminijevega in silicijevega oksida (SiO2 in AI2O3). Odločitev o proizvodnji nanodelcev TiO2, ki daje izključno izdelke v obliki suspenzije, temelji na skrbi za zdrave pogoje dela zaposlenih pri proizvodnji in uporabi ter preprečevanju negativnih vplivov na okolje (emisija nano delcev). Oplaščevanje temelji na principu hidrolize natrijevega silikata (Na2SiO3) in natrijevega aluminata (NaA102). Namen oplaščevanja nanodelcev TiO2 z anorganskimi oksidi je omejitev tvorbe prostih radikalov na površini TiO2 in sprememba elektrokinetičnih lastnosti. Površinska obdelava ima za posledico spremembo površinskega naboja in s tem povečano disperzibilnost v polarnih medijih. Površinska obdelava z neaktivnimi anorganskimi materiali rezultira v pripravi suspenzij brez večjih aglomeratov. S tem se poviša stopnja transparentnosti (premazov, ki vsebujejo oplaščene nanodelce TiO2) v vidnem delu spektra in poveča pokrivnost barv/lakov/premazov ter zaščita osnovnega substrata. Oplaščeni nanodelci TiO2 obranijo svoje tehnološke in uporabne lastnosti, ob tem pa izkazujejo še višjo aplikativno vrednost, saj je vključitev UV-absorberjev, kot je TiO2, učinkovit način za izboljšanje UV-odpomosti materialov. Oplaščeni nanodelci TiO2 v kristalni strukturi rutila služijo kot UV-absorberji, zanje pa obstajajo različna področja aplikacij: kozmetika, plastika, barve, laki, premazi, tekstilije, itd. Oplaščenje po izumu je cenovno ugodno.The invention provides a controlled coating of TiO2 nanoparticles with thin layers of hydrated aluminum and silica (SiO 2 and AI2O3). The decision to produce TiO2 nanoparticles, which exclusively produces suspension products, is based on the concern for healthy working conditions of employees in the production and use and the prevention of negative environmental impacts (nano-particle emission). The coating is based on the principle of hydrolysis of sodium silicate (Na 2 SiO3) and sodium aluminate (NaA10 2 ). The purpose of coating TiO 2 nanoparticles with inorganic oxides is to limit the formation of free radicals on the TiO 2 surface and to change the electrokinetic properties. Surface treatment results in a change in surface charge and thus an increased dispersibility in polar media. Surface treatment with inactive inorganic materials results in the preparation of suspensions without major agglomerates. This increases the degree of transparency (coatings containing TiO 2 coated nanoparticles) in the visible part of the spectrum and increases the coverage of paints / varnishes / coatings and the protection of the base substrate. Coated TiO 2 nanoparticles defend their technological and usable properties while demonstrating even greater applicability, since the incorporation of UV absorbers such as TiO 2 is an effective way to improve the UV resistance of materials. Coated TiO 2 nanoparticles in the crystalline structure of rutile serve as UV absorbers, and there are various fields of application for them: cosmetics, plastics, paints, varnishes, coatings, textiles, etc. The coating according to the invention is affordable.

-2Nano titanov dioksid (TiO2) je eden od novih sodobnih materialov. V primerjavi s pigmentnim TiO2 ima spremenjene lastnosti. Nanodelci TiO2 se od pigmentnega TiO2 razlikujejo po velikosti in fizikalno-kemijskih lastnostih, zato je tudi njihova uporaba drugačna od pigmentnega. Velikost delcev, specifična površina, oblika del cev ter kristalna struktura so ključni parametri, ki vplivajo na lastnosti in uporabnost končnega izdelka. V smislu kristalne strukture je TiO2 snov z več znanimi polimorfi. Izmed vseh kristalnih struktur TiO2 pa sta pomembnejša le rutil in anatas. Glavni lastnosti nano TiO2 sta absorbcija UV-svetlobe in fotokatalitska aktivnost. Že pigmentni TiO2 je fotokatalitsko aktiven, ta lastnost pa je pri nanodelcih TiO2 še veliko bolj izrazita. Nanodelci TiO2 se najpogosteje uporabljajo kot UV absorberji in fotokatalizatorji. Nanodelci TiO2 v kristalni strukturi anatas imajo visoko fotokatalitsko aktivnost, zato jih uporabljamo kot samočistilna sredstva, baktericide pri čiščenju odpadnih voda in tudi kot polprevodnike pri izdelavi fotocelic. Nanodelci TiO2 v kristalni strukturi rutila pa so odlični UV-absorberji, in jih dodajamo različnim barvam in premazom, saj s tem dosežemo boljšo UV in vremensko obstojnost. Lastnosti nanodelcev TiO2 je mogoče izboljšati z oplaščanjem le-teh z drugimi materiali. Površinsko obdelavo TiO2 oz. oplaščevanje dosežemo s hidrolizo oksidov na površino TiO2 nanodelca.-2Nano titanium dioxide (TiO 2 ) is one of the new modern materials. Compared to pigment TiO 2 has changed properties. TiO 2 nanoparticles differ in size and physicochemical properties from pigment TiO 2 , so their use is different from pigment. Particle size, specific surface area, tube part shape and crystal structure are key parameters that affect the properties and usability of the finished product. In terms of crystalline structure, TiO 2 is a substance with several known polymorphs. Of all the TiO 2 crystal structures, however, only rutile and anatas are more important. The main properties of nano TiO 2 are UV light absorption and photocatalytic activity. Already pigmented TiO 2 is photocatalytically active, and this property is even more pronounced in TiO 2 nanoparticles. TiO 2 nanoparticles are most commonly used as UV absorbers and photocatalysts. TiO 2 nanoparticles in the crystal structure of anatas have high photocatalytic activity, so they are used as self-cleaning agents, bactericides in wastewater treatment and also as semiconductors in photocell production. TiO 2 nanoparticles in the crystalline structure of rutile are excellent UV absorbers and are added to different colors and coatings to achieve better UV and weather resistance. The properties of TiO2 nanoparticles can be improved by coating them with other materials. Surface treatment of TiO 2 or. the coating is achieved by hydrolysis of the oxides to the surface of the TiO 2 nanoparticle.

Vodno steklo je po kemični sestavi natrijev silikat (Na2SiO3). Nastaja pri raztapljanju kremenčevega peska s sodo. Na2SiO3 je topen v vodi. Stabilen je v alkalnem mediju, pri vrednostih pH večjih od pH 10. Pod to vrednostjo se začne hidroliza, Na2SiO3 hidrolizira in izloča se SiO2. V odvisnosti od pogojev hidrolize oksida lahko pri površinski obdelavi s SiO2 nastanejo nanodelci z različnimi karakteristikami. Hidroliza pri kislem oz. nevtralnem pH vodi do nastanka amorfnega SiO2 nanosa, ki ga sestavljajo submikronski delci, povezani v strukturi gela. Nastali nanos omogoča boljšo disperzibilnost (TiO2) delcev v mediju in posledično izboljšanje optičnih lastnosti. Pri nevtralnih oz. šibko kislih pogojih nastajajo nanosi z nižjo stopnjo sijaja oz. leska - matiranje. Počasna hidroliza pri alkalnem pH pa vodi do nastanka gostejšega, steklu podobnega SiO2 nanosa, in ima za posledico izboljšanje obstojnosti oz. trajnosti delca.Water glass is chemically composed of sodium silicate (Na 2 SiO 3 ). It is formed by dissolving quartz sand with soda. Na 2 SiO 3 is water soluble. It is stable in alkaline medium at pH values greater than pH 10. Below this value, hydrolysis begins, Na 2 SiO 3 hydrolyzes and SiO 2 is eliminated. Depending on the conditions of the hydrolysis of the oxide, nanoparticles with different characteristics can be formed during surface treatment with SiO 2 . Hydrolysis at acidic or acidic. neutral pH leads to the formation of an amorphous SiO 2 coating consisting of submicron particles bound in the gel structure. The resulting coating allows for better dispersibility (TiO 2 ) of the particles in the medium and consequently an improvement in the optical properties. For neutral or weakly acidic conditions result in deposits with a lower degree of gloss or. gloss - matt. Slow hydrolysis at alkaline pH, however, leads to a denser glassy SiO 2 coating, which results in improved durability. durability of the particle.

Natrijev aluminat (NaA102) je pomembna anorganska kemikalija. Deluje kot učinkovit vir aluminijevega oksida za številne industrijske in tehnične aplikacije. Brezvodni natrijev aluminat je bela kristalinična snov s formulo NaA102, Na2O · A12O3, oz. Na2Al2O4. Natrijev aluminat je razpoložljiv tako v raztopini kot tudi v trdni obliki. Proizvajajo ga z raztapljanjemSodium aluminate (NaA10 2 ) is an important inorganic chemical. It acts as an efficient source of aluminum oxide for many industrial and technical applications. Anhydrous sodium aluminate is a white crystalline substance of the formula NaA10 2 , Na 2 O · A1 2 O 3 , resp. At 2 Al 2 O4. Sodium aluminate is available in both solution and solid form. They produce it by dissolving it

-3aluminijevega hidroksida v raztopini NaOH. NaAlCE je prav tako kot Na2SiC>3 topen v vodi. Vodna raztopina NaAlCE je stabilna v alkalnem mediju, pri vrednostih pH večjih od pH 10. Pod to vrednostjo se začne hidroliza, NaAlCE hidrolizira in izloča se AI2O3. Površinska obdelava s hidratiziranim aluminijevim oksidom je verjetno najpogostejša površinska obdelava TiO2- Hidratiziran aluminijev oksid lahko hidrolizira iz natrijevega aluminata, ki reagira s kislino. Morfologija nanosa je odvisna od pogojev oplaščevanja. Hidratizirani aluminijevi oksidi, ki hidrolizirajo iz natrijevega aluminata pri kislih pogojih, so amorfne oblike. Hidratizirani AI2O3 delci na površini nanodelca T1O2 povzročajo zmanjšanje privlačnih sil med delci in izboljšajo disperzibilnost. V primeru večplastne površinske obdelave je AI2O3 najpogosteje zadnji nanos.Of -3 aluminum hydroxide in NaOH solution. Like Na2SiC> 3, NaAlCE is soluble in water. The aqueous NaAlCE solution is stable in an alkaline medium, at pH values greater than pH 10. Below this value, hydrolysis begins, NaAlCE hydrolyzes and AI2O3 is secreted. Surface treatment with hydrated alumina is probably the most common surface treatment of TiO2- Hydrated alumina can be hydrolyzed from acid-reacting sodium aluminate. The application morphology depends on the coating conditions. Hydrated aluminum oxides which hydrolyze from sodium aluminate under acidic conditions are amorphous forms. Hydrated AI2O3 particles on the surface of the T1O2 nanoparticle cause a decrease in the attractive forces between the particles and improve the dispersibility. In the case of multilayer surface treatment, AI2O3 is most often the last application.

ZNANO STANJE TEHNIKEKnown state of the art

Lastnosti nanodelcev T1O2 je mogoče izboljšati z oplaščanjem le-teh z drugimi materiali. Najpogosteje uporabljene površinske obdelave so: obdelava s S1O2, AI2O3 in/ali ZrO2. Za izdelavo plasti oksidov pri kontroliranih sintezah so znani različni pristopi na molekularnem nivoju. Sinteza T1O2 lahko poteče po različnih metodah, vendar je pomembnejša izmed njih solgel tehnika, ki dopušča oblikovanje mikrostrukture pri različni izbiri vrste prekurzorja in procesnih pogojev. Kljub vsem prednostim, kijih ponuja sol-gel postopek, pa številne obstoječe industrijske proizvodnje TiCE-SiCE kompozitov pri tem sinteznem načinu najpogosteje ovirajo faktorji kot so: uporaba dragih in nevarnih kemikalij pri sol-gel postopku; dolgi sintezni časi.The properties of T1O2 nanoparticles can be improved by coating them with other materials. The most commonly used surface treatments are: treatment with S1O2, AI2O3 and / or ZrO2. Different approaches at the molecular level are known to produce oxide layers in controlled syntheses. The synthesis of T1O2 can proceed by different methods, but the more important of these is the solgel technique, which allows the formation of a microstructure in different choice of precursor type and process conditions. Despite all the advantages offered by the sol-gel process, many existing industrial production of TiCE-SiCE composites in this synthesis mode are most often hindered by factors such as: the use of expensive and hazardous chemicals in the sol-gel process; long synthesis times.

Pomembnejši publikaciji, v katerih so avtorji kot vir SiCE in AI2O3 kjer so kot za oplaščenje nanodelcev T1O2 uporabili natrijev silikat (Na2SiCE) in natrijev aluminat (NaAlCE), sta omenjeni v nadaljevanju.Important publications in which the authors have used sodium silicate (Na2SiCE) and sodium aluminate (NaAlCE) as the SiCE and AI2O3 source as the coatings for T1O2 nanoparticles are mentioned below.

S. R. Frerichs in W. H. Morrison sta raziskala površinsko obdelavo nanodelcev TiO2 s S1O2 in AI2O3 v prisotnosti citronske kisline. Pri svojem delu sta avtorja za pripravo gošče uporabila nanodelce T1O2 v obliki prahu. Površinska obdelava obsega: pripravo gošče nanodelcev T1O2; dodatek citronske kisline; dodatek vira kovinskega oksida izbranega iz skupine, ki jo sestavljajo vir AI2O3 in vir SiCE; končna obdelava površinsko obdelanih nanodelcev T1O2. Hidroliza S1O2 je potekala pri povišani T (T-30-100°C) pri pH - 7. Po površinski obdelavi z Na2SiO3 in NaAlCE sta delce posušila, zdrobila in presejala. Oplaščeni nanodelci T1O2 so imeli vsebnost -44% S1O2 in ~ 6% AI2O3. Delci, oplaščeni po opisanem postopku, so izkazovali visoko svetlobno stabilnost in so imeli manjšo težnjo k aglomeraciji.S. R. Frerichs and W. H. Morrison investigated the surface treatment of TiO2 nanoparticles with S1O2 and AI2O3 in the presence of citric acid. In their work, the authors used T1O2 nanoparticles in powder form to prepare the slurry. Surface treatment comprises: preparation of a slurry of T1O2 nanoparticles; citric acid supplement; addition of a metal oxide source selected from the group consisting of AI2O3 source and SiCE source; surface treatment of T1O2 surface treated nanoparticles. S1O2 hydrolysis was carried out at elevated T (T-30-100 ° C) at pH - 7. After surface treatment with Na2SiO3 and NaAlCE, the particles were dried, crushed and sieved. The coated T1O2 nanoparticles had a content of −44% S1O2 and 66% AI2O3. The particles coated according to the described procedure exhibited high light stability and had a less tendency to agglomerate.

C. R. Bettler in M. P. Deibold pa sta raziskala postopek za izdelavo visoko obstojnega pigmenta T1O2, ki se enostavneje dispergira. Postopek obsega naslednje korake: segrevanje gošče delcev T1O2 do T=85-100°C; dodajanje citronske kisline; uravnavanje pH na pH>10; dodajanje vodne razoptopine Na2SiO3; nevtralizacija gošče z mineralno kislino (dušikova, klorovodikova ali žveplova kislina); uravnavanje T (T=55-90°C); dodajanje vodne razoptopine NaAlCh; uravnavanje pH na 5-9 z z mineralno kislino (dušikova, klorovodikova ali žveplova kislina).C. R. Bettler and M. P. Deibold, however, investigated a process for the production of a highly persistent T1O2 pigment that is more easily dispersible. The process comprises the following steps: heating the slurry of T1O2 particles to T = 85-100 ° C; addition of citric acid; adjusting pH to pH> 10; addition of aqueous Na2SiO3 solution; neutralization of the slurry with mineral acid (nitric, hydrochloric or sulfuric acid); regulation T (T = 55-90 ° C); addition of aqueous NaAlCh solution; adjusting the pH to 5-9 z with a mineral acid (nitric, hydrochloric or sulfuric acid).

V literaturi ni zaslediti podatkov o opisanem načinu modifikacije nepraškastih nanodelcev TiO2. Prav tako ni zaslediti pojasnitve stabilnosti Na2SiC>3 in NaAlCk prekurzorjev pri različnih pH pogojih z uporabo titracijskega pristopa in pojasnitve elektrokinetičnih lastnosti nanodelcev T1O2, ki vplivajo na določitev procesnih pogojev in končno na rezultat oplaščevanja. Prav tako ni zaslediti podatkov o vplivu pranja površinsko obdelanih nanodelcev T1O2. Opisan način modifikacije se od ostalih postopkov oplaščevanja razlikuje v tem, da postopek ne vključuje faze sušenja in posledično praškastih delcev, ki imajo negativen vpliv na zaposlene pri proizvodnji, uporabnike in na okolje. Oplaščeni nanodelci T1O2 bodo za različne aplikacije na voljo v suspenziji in ne v obliki prahu. S tem se izognemo stroškom segrevanja pri kalcinaciji in aglomeraciji oplaščenih nanodelcev, ki nastopi pri kalcinaciji.There is no information available in the literature on the described modification of TiO2 powderless nanoparticles. There is also no explanation for the stability of Na2SiC> 3 and NaAlCk precursors under different pH conditions using a titration approach and an explanation of the electrokinetic properties of T1O2 nanoparticles, which influence the determination of process conditions and ultimately the coating result. There is also no evidence of the washing effect of surface-treated T1O2 nanoparticles. The modification described above differs from other coating processes in that the process does not include the drying phase and, consequently, powder particles, which have a negative impact on production employees, users and the environment. Coated T1O2 nanoparticles will be available in suspension rather than powder form for various applications. This avoids the heating costs of calcining and agglomeration of the coated nanoparticles that occurs during calcination.

OPIS IZUMADESCRIPTION OF THE INVENTION

Izum dodatno pojasnjujejo slike:The invention is further explained by the figures:

Slika 1: TEM posnetek neobdelanih nanodelcev TiO2 s kristalno strukturo rutila.Figure 1: TEM image of untreated TiO2 nanoparticles with crystalline rutile structure.

Slika 2: TEM posnetek submikronskih S1O2 delcev nastalih po izvedbenem primeru A, povezanih v strukturo gela.Figure 2: TEM image of submicron S1O2 particles formed after embodiment A bound to the gel structure.

Slika 3: TEM posnetek oplaščenih nanodelcev T1O2 s kristalno strukturo rutila, z amorfno plastjo hidratiziranega S1O2, nastalega s hidrolizo Na2SiO3 po izvedbenem primeru C, ki enakomerno prekriva površino T1O2 nanodelcev.Figure 3: TEM image of coated T1O2 nanoparticles having a crystalline rutile structure, with an amorphous layer of hydrated S1O2 formed by hydrolysis of Na2SiO3 according to embodiment C, which uniformly covers the surface of T1O2 nanoparticles.

-5Slika 4: TEM posnetek oplaščenih nanodelcev TiO2 s kristalno strukturo rutila, z amorfno plastjo hidratiziranega S1O2 in AI2O3 nastalega po izvedbenem primeru D, ki enakomerno prekrivata površino nanodelcev TiO2 .-5Figure 4: TEM image of coated TiO2 nanoparticles with a crystalline rutile structure, with an amorphous layer of hydrated S1O2 and AI2O3 formed after embodiment D, which uniformly cover the surface of TiO2 nanoparticles.

Slika 5: SEM posnetek neopranih opalščenih nanodelcev TiO2 s kristalno strukturo rutila, z amorfno plastjo hidratiziranega S1O2, nastalega s hidrolizo Na2SiO3 po izvedbenem primeru B, ki enakomerno prekriva površino nanodelcev TiO2 in kristali soli, nastalih v reakcijah med površinsko obdelavo.Figure 5: SEM image of unwashed TiO2 nanoparticles with crystalline rutile structure, with an amorphous layer of hydrated S1O2 formed by hydrolysis of Na2SiO3 according to embodiment B, which uniformly covers the surface of TiO2 nanoparticles and salt crystals formed during surface treatment reactions.

Slika 6: SEM posnetek opranih oplaščenih nanodelcev TiO2 s kristalno strukturo rutila, z amorfno plastjo hidratiziranega S1O2, nastalega s hidrolizo Na2SiC>3 po izvedbenem primeru C, ki enakomerno prekriva površino T1O2 nanodelcev.Figure 6: SEM image of washed coated TiO2 nanoparticles with crystalline rutile structure, with an amorphous layer of hydrated S1O2 formed by hydrolysis of Na2SiC> 3 according to embodiment C, which uniformly covers the surface of T1O2 nanoparticles.

Slika 7: SEM posnetek opranih opalščenih nanodelcev TiO2 s kristalno strukturo rutila, z amorfno plastjo hidratiziranega S1O2 in AI2O3 nastalega po izvedbenem primeru D, ki enakomerno prekrivata površino nanodelcev TiO2.Figure 7: SEM image of washed lined TiO2 nanoparticles with crystalline rutile structure, with an amorphous layer of hydrated S1O2 and AI2O3 formed after embodiment D, which uniformly cover the surface of TiO2 nanoparticles.

tt

Pričujoči izum opisuje oplaščevanje nanodelcev T1O2 s tankimi sloji hidratiziranega amorfnega aluminijevega in silicijevega oksida (S1O2 in AI2O3). Bistvo oplaščevanja nanodelcev T1O2 po izumu so kontrolirani pogoji, ki vodijo do oblikovanja homogenih slojev hidratiziranih oksidov na površini nanodelcev T1O2, kar se odraža v spremembi elektrokinetičnih lastnosti nanodelcev T1O2. Fizikalno-kemijsko so bili določeni in nadalje uporabljeni pogoji, ki vodijo do želene morfologije in lastnosti nanosov. V primeru kontroliranega oplaščevanja delcev T1O2, so nastali na površini le-teh homogeni nanosi, ki v celoti prekrivajo površino delcev. Prednost opisanega postopka je tudi v tem, da ne vključuje končne faze kalcinacije.The present invention describes the coating of T1O2 nanoparticles with thin layers of hydrated amorphous aluminum and silica (S1O2 and AI2O3). The essence of the coating of T1O2 nanoparticles according to the invention is controlled conditions that lead to the formation of homogeneous layers of hydrated oxides on the surface of T1O2 nanoparticles, which is reflected in the change in the electrokinetic properties of T1O2 nanoparticles. Physico-chemical conditions were determined and further applied that lead to the desired morphology and properties of the deposits. In the case of controlled coating of T1O2 particles, homogeneous deposits have formed on the surface of them, completely covering the surface of the particles. The advantage of the process described is that it does not include the final calcination phase.

Za površinsko obdelavo je uporabljena suspenzija nanodelcev T1O2 z masno koncentracijo γ = 100 - 300 g/L. Povprečna velikost posameznega nanodelca T1O2 v suspenziji je 80x20 nm. Specifična površina nanodelcev T1O2 je 130 m2/g. Z analizo elektrokinetičnih lastnosti je bila določena izoelektrična točka (IET) nanodelcev T1O2, ki se nahaja pri vrednosti pH ~ 6,5. Dvig vrednosti pH suspenzije nanodelcev T1O2 iz močno kislega na pH 10,5 se doseže z dodatkom baze. Kot baza za uravnavanje pH medija se uporablja 10-60 ut. % natrijev hidroksid. Stabilizacija suspenzije nanodelcev T1O2 z bazičnim pH se izvaja v razponu temperatur med 40 in 100 °C in v času dveh ur ali manj. Kot stabilizacijsko sredstvo, ki preprečuje aglomeracijo nanodelcev T1O2 v pH območju blizu izoelektrične točke, se doda 0,5 - 2 ut.% citronske kisline. Reakcija s citronsko kislino poteka v razponu temperatur med 40 in 100 °C in v časuFor surface treatment, a suspension of T1O2 nanoparticles with a mass concentration of γ = 100 - 300 g / L was used. The average size of each T1O2 nanoparticle in suspension is 80x20 nm. The specific surface area of T1O2 nanoparticles is 130 m 2 / g. The analysis of electrokinetic properties determined the isoelectric point (IET) of T1O2 nanoparticles, which is located at pH ~ 6.5. Increasing the pH of the suspension of T1O2 nanoparticles from strongly acidic to pH 10.5 is achieved by the addition of a base. 10-60 wt. Is used as a base for pH adjustment. % sodium hydroxide. Stabilization of the suspension of T1O2 nanoparticles with a basic pH is carried out in the temperature range between 40 and 100 ° C and for two hours or less. 0.5 - 2% by weight of citric acid is added as a stabilizing agent to prevent the agglomeration of T1O2 nanoparticles in the pH range near the isoelectric point. The reaction with citric acid takes place in the temperature range between 40 and 100 ° C and over time

-6dveh ur ali manj ob sočasnem mešanju pri 150 do 400 obratih/min. Kot prekurzorja sta uporabljena Na2SiO3; 10-30 ut.% (ysi02 = 220 g/L) in NaAlCh; 10-30 ut.% (yai2O3 = 280,3 g/L). Sinteza nanosa nanodelcev S1O2 iz natrijevega silikata z dodatkom mineralne kisline. Kot mineralna kislina za izobarjanje S1O2 nanodelcev uporablja 10-60 ut. % žveplova kislina. Izoboritev nanodelcev S1O2 je dosežena pri vrednosti pH 7, pri kateri se suspenzija meša v času treh ur ali manj. Kot iniciator hidrolize in kondenzacije se uporabi razredčena H2SO4, saj bi lahko koncentrirana kislina povzročila lokalno oz. homogeno nukleacijo S1O2, kar pa je v našem primeru neželen pojav. Sinteza nanosa nanodelcev AI2O3 iz natrijevega aluminata se izvede s simultanim dodatkom mineralne kisline pri vrednosti pH med 6,5 in 7,5. Nastala suspenzija meša v razponu temperatur med 40 in 100 °C in v času ene ure ali manj. kot sredstvi za uravnavanje pogojev pH pa 10 -60 ut. % mineralna žveplova kislina in 10 - 60 ut. % NaOH. Pred postopkom površinske obdelave sta bila oba prekurzorja analizirana z uporabo titracij, medtem ko so bile nanodelcem T1O2 določene elektrokinetične lastnosti oz. izoelektrična točka (IET). Določena je bila vrednost pH vodnega Na2SiO3 (ysiO2 = 220 g/L), ki je za 1 ut. % Na2SiO3 raztopino znašal 10,3, medtem ko je pH nerazredčene vodne Na2SiO3 11,7. Alkalna raztopina je bila titrirana s Chci = 0,1 mol/L. Na2SiO3 raztopina je bila pri vrednosti pH 10,5 še stabilna, medtem ko pri vrednosti pH <10 raztopina ni več stabilna, kar dokazuje tudi potek krivulje in prevojne točke. pH vrednost razredčenega vodnega NaAlCE je ~ 11,5, z dodajanjem kisline oz. nižanjem vrednosti pH pa nastopi hidroliza hidratiziranega AI2O3. IET nanodelcev TiC>2 se je določila z uporabo aparata za določanje naboja delcev (PCD). IET je pri pH 6,5. Pri dani vrednosti pH je stabilnost vodne suspenzije T1O2 najnižja, nanodelci T1O2 imajo visoko težnjo k aglomeraciji. Površinski naboj delcev pogojuje stabilnost disperzij, zato se naboj na površini delcev ustvari z uravnavanjem pH na pH 10,5. Pri tej vrednosti pH pa se je določila tudi stabilnost obeh prekurzorjev, kar zagotavlja optimalne pogoje, pri katerih bodo nastali homogeni tanki sloji hidratiziranega aluminijevega in silicijevega oksida (S1O2 in A^CE), ki bodo v celoti pokrili površino posameznih nanodelcev T1O2 in ne aglomeratov.-6hours or less with agitation at 150 to 400 rpm. Na2SiO 3 were used as precursors ; 10-30 wt% (ysi02 = 220 g / L) and NaAlCh; 10-30 wt% (yai2O3 = 280.3 g / L). Synthesis of S1O2 nanoparticles from sodium silicate with mineral acid addition. As a mineral acid, it uses 10-60 wt% to recover S1O2 nanoparticles. % sulfuric acid. The elimination of S1O2 nanoparticles is achieved at pH 7 at which the suspension is stirred for three hours or less. Diluted H2SO4 is used as the initiator of hydrolysis and condensation, since concentrated acid could cause local or homogeneous nucleation of S1O2, which in our case is a side effect. Synthesis of the coating of AI2O3 nanoparticles from sodium aluminate is carried out with the simultaneous addition of mineral acid at a pH between 6.5 and 7.5. The resulting suspension is stirred over a temperature range of 40 to 100 ° C and for an hour or less. and as a means of regulating pH conditions, 10 -60 wt. % mineral sulfuric acid and 10 - 60 wt. % NaOH. Prior to the surface treatment process, both precursors were analyzed using titrations, while the T1O2 nanoparticles were determined to have electrokinetic properties or. isoelectric point (IET). The pH of aqueous Na2SiO 3 (ysiO2 = 220 g / L) was determined to be 1 wt. % Na2SiO 3 solution was 10.3, while the pH of undiluted aqueous Na2SiO 3 was 11.7. The alkaline solution was titrated with Chci = 0.1 mol / L. The Na2SiO 3 solution was still stable at pH 10.5, while at pH <10 the solution was no longer stable, as evidenced by the course of the curve and the turning point. The pH value of the dilute aqueous NaAlCE is ~ 11.5, with the addition of acid or. lowering the pH results in the hydrolysis of hydrated AI2O3. The IET of TiC> 2 nanoparticles was determined using a Particle Charge Detector (PCD). The IET is at pH 6.5. At a given pH value, the stability of the T1O2 aqueous suspension is lowest, and the T1O2 nanoparticles have a high tendency to agglomerate. The surface charge of the particles determines the stability of the dispersions, so the charge on the surface of the particles is created by adjusting the pH to pH 10.5. At this pH, the stability of both precursors was also determined, providing optimum conditions under which homogeneous thin layers of hydrated aluminum and silicon oxide (S1O2 and A ^ CE) will be formed, which will completely cover the surface of individual T1O2 nanoparticles rather than agglomerates. .

Po končani površinski obdelavi se delci še operejo na centrifugi, s čimer se odstranijo vsebovane nečistoče, predvsem različne soli, nastale pri reakcijah površinske obdelave nanodelcev T1O2.After the surface treatment is completed, the particles are further washed on a centrifuge, removing the impurities contained, in particular the various salts formed by the surface treatment of the T1O2 nanoparticles.

Izvedbeni primer A:Example A:

V čašo se natoči 500 mL destilirane vode, pH se uravna na pH 9,5 - 10,5 z dodajanjem 10 - 60 ut. % NaOH. Sočasno segrevamo pri temperaturi 40 -100 °C Pri tej pH-vrednosti je Na2SiO3 še500 mL of distilled water is poured into the beaker and the pH is adjusted to pH 9.5 - 10.5 by adding 10 - 60 wt. % NaOH. At the same time, it is heated to a temperature of 40 -100 ° C At this pH, Na2SiO 3 is still present

-7stabilen. Počasi (po kapljicah) se doda 10-30 ut.% Na2SiO3. Na2SiC>3 je v tem primeru predstavljal vir SiO2. Suspenzijo se meša 5-30 minut, nakar se doda 10-60 ut. % H2SO4, dokler ni dosežena vrednosti pH 6,5 - 7,5. Suspenzija smo pri tej vrednosti pH meša 0,5 - 4 ure, da se izobori ves SiO2. Sledi zorenje.-7stable. Slowly (dropwise) 10-30 wt% Na2SiO3 is added. At 2 SiC> 3 in this case represented the source of SiO 2 . The suspension was stirred for 5-30 minutes, then added 10-60 wt. % H2SO4 until a pH of 6.5-7.5 is reached. The suspension was stirred at this pH for 0.5 to 4 hours to recover all SiO 2 . Maturation follows.

Izvedbeni primer B:Example B:

V čašo se natoči 500 mL pripravljene suspenzije rutilnih nanodelcev TiO2 z masno koncentracijo γ = 100 - 300 g/L, ki je bila predhodno dispergirana z uporabo dispergatorja Ultra Turrax T25 (IKA, Nemčija) pri 8000 - 13500 obratih/min. Suspenzija rutilnih nanodelcev TiO2 po sintezi je močno kisla (pH ~ 0). Suspenziji se ob mešanju s propelerskim mešalom pri 150 400 obratih/min doda 0,5 - 2 ut. % citronske kisline v obliki raztopine. Delci se lahko med postopkom površinske obdelave pri prehodu preko izoelektrične točke močno zaglomerirajo in so kot taki neprimerni za oplaščenje s SiO2. Pri oplaščevanju nanodelcev TiO2 s SiO2 je potrebno preprečiti aglomeracijo delcev, torej pripraviti stabilno suspenzijo v vodi. Aglomeracija se lahko prepreči z vezavo citronske kisline na površino. Kislina, vezana na površini, sterično preprečuje aglomeracijo nanodelcev, hkrati pa zagotovi na njihovi površini visok naboj, ki prispeva k elektrostatski stabilizaciji suspenzije (elektrosteričena stabilizacija). Mešanica je bila segreta na 40 - 100 °C, ob mešanju pri 150 - 400 obratih/min 0,5 - 2 uri. Med tem se je citronska kislina kemijsko vezala na površino nanodelcev. pH vrednost suspenzije je bila nato uravnana na pH 10,5 z dodajanjem 10 - 60 ut. % NaOH. Pri tej pH-vrednosti imajo delci na površini visok negativni naboj, kar se kaže kot visok ζ-potencial, ki preprečuje njihovo močno aglomeriranje. Suspenzijo se meša 0,5 - 2 uri, z namenom doseganja enakomerne porazdelitve naboja na površini nanodelcev TiO2. Ob nadaljnjem segrevanju in mešanju se dodaja 10-30 ut.% Na2SiO3. Na2SiO3 v tem primeru predstavlja vir SiO2. Suspenzijo je potrebno mešati 5-30 minut, nakar se doda 10-60 ut. % H2SO4, dokler ni dosežena vrednosti pH 7. Pri tej vrednosti pH se suspenzija 0,5 - 3 ure meša, z namenom izločitve vsega SiO2. Sledi zorenje in centrifugiranje.Pour 500 mL of a prepared suspension of rutile TiO 2 nanoparticles with a mass concentration of γ = 100 - 300 g / L previously dispersed using an Ultra Turrax T25 dispersant (IKA, Germany) at 8000 - 13500 rpm. The suspension of rutile TiO 2 nanoparticles after synthesis is strongly acidic (pH ~ 0). 0.5 - 2 wt. Is added to the suspension when mixed with the propeller mixer at 150 400 rpm. % citric acid in solution form. The particles can be highly agglomerated during surface treatment during the isoelectric point transition and as such are unsuitable for SiO 2 coating. When coating TiO 2 nanoparticles with SiO 2, it is necessary to prevent particle agglomeration, ie to prepare a stable suspension in water. Agglomeration can be prevented by binding citric acid to the surface. The acid bound on the surface sterically prevents the nanoparticles from agglomerating, while providing a high charge on their surface, which contributes to the electrostatic stabilization of the suspension (electrostatic stabilization). The mixture was heated to 40 - 100 ° C, with stirring at 150 - 400 rpm for 0.5 - 2 hours. Meanwhile, citric acid chemically bound to the surface of the nanoparticles. The pH of the suspension was then adjusted to pH 10.5 by adding 10-60 wt. % NaOH. At this pH, the particles on the surface have a high negative charge, which is manifested as a high potencial-potential that prevents their agglomeration. The suspension was stirred for 0.5 - 2 hours in order to obtain a uniform charge distribution on the TiO 2 nanoparticle surface. With further heating and stirring, 10-30 wt% on 2 SiO3 is added. Na 2 SiO3 in this case represents the source of SiO 2 . The suspension should be stirred for 5-30 minutes, then added 10-60 wt. % H 2 SO4 until a pH of 7 is reached. At this pH, the suspension is stirred for 0.5 - 3 hours to eliminate all SiO 2 . This is followed by maturation and centrifugation.

Izvedbeni primer C:Example C:

Začetek Izvedbenega postopka B je enak Izvedbenemu postopku B. Po zorenju sledi centrifugiranje in pranje. Postopek pranja oplaščenih nanodelcev TiO2 je pomembna faza, saj se s pranjem odstranijo nastale soli pri reakcijah hidrolize SiO2 in ostale nečistoče, ki bi lahko imele negativen vpliv na aplikativne lastnosti opšlaščenih nanodelcev TiO2.The start of Execution Procedure B is the same as Execution Procedure B. After maturation, centrifugation and washing follow. The washing process of the coated TiO 2 nanoparticles is an important stage as the washing removes the resulting salts in the SiO 2 hydrolysis reactions and other impurities that could have a negative effect on the applicability properties of the coated TiO 2 nanoparticles.

-8Izvedbeni primer D:-8Example D:

Začetek Izvedbenega postopka B je enak Izvedbenemu postopku A. Po 0,5 - 3 urah mešanja suspenzije pri nevtralni vrednosti pH, ko se izobori ves SiO2, se oplaščevanje nadaljuje z dodajanjem 10 - 30 ut. % NaA102, s simultanim dodajanjem 10-60 ut. % H2SC>4, s čimer smo ohranjali pH vrednost pri 6,5 - 7,5. Suspenzija se nato meša in segrevamo pri konstantni temperaturi še 10-60 minut. Sledi zorenje in pranje površinsko obdelanih TiO2 nanodelcev, kjer se odstranijo nastale soli pri reakcijah izobarjanja SiO2 in A12C>3 in ostale nečistoče.The start of Execution Procedure B is the same as Execution Procedure A. After 0.5 - 3 hours of stirring the suspension at a neutral pH value, once all SiO 2 is depleted, the coating is continued by adding 10-30 wt. % NaA10 2 , with 10-60 wt. % H 2 SC> 4, maintaining the pH at 6.5-7.5. The suspension is then stirred and heated at a constant temperature for another 10-60 minutes. This is followed by the maturation and washing of the surface-treated TiO 2 nanoparticles, where the resulting salts are removed by the SiO 2 and A1 2 C> 3 and> impurity reactions.

Oplaščevanje rutilnih nanodelcev po izumu je torej značilen po tem, da se kisla suspenzija nanodelcev TiO2 prevede v stabilno suspenzijo z bazičnim pH z dodatkom ustrezne količine citronske kisline v raztopljeni obliki, da poteka reakcija s citronsko kislino v razponu temperatur med 40 in 100 °C in v času dveh ur ali manj ob sočasnem mešanju pri 150 do 400 obratih/min, da se dvig vrednosti pH iz močno kislega na pH 10,5 doseže z dodatkom baze, da se stabilizacija suspenzije nanodelcev TiO2 z bazičnim pH izvaja v razponu temperatur med 40 in 100 °C in v času dveh ur ali manj, da je izvedena sinteza nanosa nanodelcev SiO2 iz natrijevega silikata z dodatkom mineralne kisline, daje izoboritev dosežena pri vrednosti pH 7, pri kateri se suspenzija meša v času treh ur ali manj, daje izvedena sinteza nanosa nanodelcev A12O3 iz natrijevega aluminata s simultanim dodatkom mineralne kisline pri vrednosti pH med 6,5 in 7,5, da se nastala suspenzija meša v razponu temperatur med 40 in 100 °C in v času ene ure ali manj, da je možno oplaščene nanodelce TiO2 očistiti s centrifugiranjem, pri čemer se cikel centrifugiranja lahko večkrat ponovi.Coating of the rutile nanoparticles of the invention is therefore characterized in that the acidic suspension of TiO2 nanoparticles is converted into a stable suspension with a basic pH by adding an appropriate amount of citric acid in dissolved form to react with citric acid in the temperature range between 40 and 100 ° C and for two hours or less while stirring at 150 to 400 rpm to raise the pH from strongly acidic to pH 10.5 by adding a base to stabilize the suspension of TiO2 nanoparticles with a basic pH in the temperature range between 40 and at 100 ° C and for two hours or less that the synthesis of the deposition of SiO2 nanoparticles from sodium silicate with the addition of mineral acid is carried out, yielding a pH of 7 at which the suspension is stirred for three hours or less, that the synthesis is carried out application of A1 2 O3 sodium aluminate nanoparticles with the simultaneous addition of mineral acid at a pH between 6.5 and 7.5 to mix the resulting suspension over a temperature range of between 40 and 100 ° C, and for one hour or less, that the coated TiO2 nanoparticles can be purified by centrifugation, the cycle of spinning being repeated several times.

Suspenzija nanodelcev TiO2 je masne koncentracije TiO2 med 100 in 300 g/L ter ima kislo vrednost pH. Kot stabilizator se uporabi citronska kislina med 0,5 in 2 ut.%. Kot baza za uravnavanje pH medija se uporablja 10 - 60 ut. % natrijev hidroksid. Vir SiO2 predstavlja 10 - 30 ut.% natrijev silikat masne koncentracije SiO2 220 g/L. Kot mineralna kislina za izobarjanje SiO2 nanodelcev uporablja 10-60 ut. % žveplova kislina. Vir A12C>3 predstavlja 10-30 ut.% natrijev aluminat masne koncentracije ALO3 280 g/L. Kot mineralna kislina zaThe suspension of TiO 2 nanoparticles has a mass concentration of TiO 2 between 100 and 300 g / L and has an acidic pH value. Citric acid between 0.5 and 2% by weight is used as a stabilizer. 10 - 60 wt. % sodium hydroxide. The SiO 2 source represents 10 - 30% by weight of sodium silicate with a SiO 2 concentration of 220 g / L. As the mineral acid to izobarjanje SiO 2 nanoparticles used 10-60 wt. % sulfuric acid. Source A1 2 C> 3 represents 10-30% by weight of sodium aluminate with an ALO3 mass concentration of 280 g / L. As a mineral acid for

-9izobarjanje AI2O3 nanodelcev uporablja 10-60 ut. % žveplova kislina. S centrifugiranjem nevtraliziranih suspenzij oplaščenih nanodelcev TiO2 se odstranijo soli, nastale med nevtralizacijo z bazo in kislino.-9Displacement of AI2O3 nanoparticles uses 10-60 wt. % sulfuric acid. Centrifugation of the neutralized suspensions of the coated TiO 2 nanoparticles removes the salts formed during neutralization with the base and the acid.

Claims (8)

1. Oplaščevanje rutilnih nanodelcev TiO2 v suspenziji s SiO2 in AfCfi pri čemer razvoj postopka izhaja iz kisle suspenzije nanodelcev TiO2 v kristalni strukturi, značilen po tem, da se kisla suspenzija nanodelcev TiO2 prevede v stabilno suspenzijo z bazičnim pH z dodatkom ustrezne količine citronske kisline v raztopljeni obliki, da poteka reakcija s citronsko kislino v razponu temperatur med 40 in 100 °C in v času dveh ur ali manj ob sočasnem mešanju pri 150 do 400 obratih/min, da se dvig vrednosti pH iz močno kislega na pH 10,5 doseže z dodatkom baze, da se stabilizacija suspenzije nanodelcev TiO2 z bazičnim pH izvaja v razponu temperatur med 40 in 100 °C in v času dveh ur ali manj, da je izvedena sinteza nanosa nanodelcev SiO2 iz natrijevega silikata z dodatkom mineralne kisline, daje izoboritev dosežena pri vrednosti pH 7, pri kateri se suspenzija meša v času treh ur ali manj, daje izvedena sinteza nanosa nanodelcev ΑΕΟ3 iz natrijevega aluminata s simultanim dodatkom mineralne kisline pri vrednosti pH med 6,5 in 7,5, da se nastala suspenzija meša v razponu temperatur med 40 in 100 °C in v času ene ure ali manj, da je možno oplaščene nanodelce TiO2 očistiti s centrifugiranjem, pri čemer se cikel centrifugiranja lahko večkrat ponovi.Coating of rutile TiO 2 nanoparticles in suspension with SiO 2 and AfCfi, the process being developed from an acidic suspension of TiO 2 nanoparticles in a crystalline structure, characterized in that the acid suspension of TiO2 nanoparticles is converted into a stable suspension with a basic pH by adding an appropriate amount citric acid in dissolved form to react with citric acid in the temperature range between 40 and 100 ° C and stirring at 150 to 400 rpm for two hours or less in order to raise the pH from strongly acidic to pH 10 , 5 with the addition of a base that stabilization of the suspension of TiO2 nanoparticles with a basic pH is carried out in the temperature range between 40 and 100 ° C and for two hours or less that a synthesis of the sodium silicate nanoparticles with the addition of mineral acid is carried out, recovery achieved at pH 7 at which the suspension is stirred for three hours or less gives a synthesis of the deposition of ΑΕΟ3 nanoparticles from sodium aluminate with simultaneous addition of mineral acid at a pH of between 6.5 and 7.5 so that the resulting suspension is stirred over a temperature range of 40 to 100 ° C and for one hour or less to allow the coated TiO2 nanoparticles to be purified by centrifugation, the spin cycle can be repeated several times. 2. Oplaščevanje po zahtevku 1, značilno po tem, daje suspenzija nanodelcev TiO2 masne koncentracije TiO2 med 100 in 300 g/L ter ima kislo vrednost pH.Coating according to claim 1, characterized in that the suspension of TiO2 nanoparticles has a mass concentration of TiO 2 between 100 and 300 g / L and has an acidic pH value. 3. Oplaščevanje po zahtevku 1, značilno po tem, da se kot stabilizator uporabi citronska kislina med 0,5 in 2 ut.%.Coating according to claim 1, characterized in that citric acid between 0.5 and 2% by weight is used as a stabilizer. 4. Oplaščevanje po zahtevku 1, značilno po tem, da se kot baza za uravnavanje pH medija uporablja 10-60 ut. % natrijev hidroksid.Coating according to claim 1, characterized in that 10-60 wt. % sodium hydroxide. 5. Oplaščevanje po zahtevku 1, značilno po tem, da vir SiO2 predstavlja 10 - 30 ut.% natrijev silikat masne koncentracije SiO2 220 g/L.5. The coating techniques according to claim 1, characterized in that the source of SiO 2 representing 10 - 30 wt.% Sodium silicate the mass concentration of SiO 2 of 220 g / L. 6. Oplaščevanje po zahtevku 1, značilno po tem, da se kot mineralna kislina za izobarjanje SiO2 nanodelcev uporablja 10-60 ut. % žveplova kislina.Coating according to claim 1, characterized in that 10-60% by weight is used as a mineral acid for the recovery of SiO 2 nanoparticles. % sulfuric acid. -117. Oplaščevanje po zahtevku 1, značilno po tem, da vir AI2O3 predstavlja 10-30 ut.% natrijev aluminat masne koncentracije AI2O3 280 g/L.-117. Coating according to claim 1, characterized in that the source of AI2O3 represents 10-30% by weight of sodium aluminate with a mass concentration of AI2O3 280 g / L. 8. Oplaščevanje po zahtevku 1, značilno po tem, da se kot mineralna kislina za izobarjanje AI2O3 nanodelcev uporablja 10-60 ut. % žveplova kislina.Coating according to claim 1, characterized in that 10-60% by weight is used as a mineral acid for the recovery of AI2O3 nanoparticles. % sulfuric acid. 9. Oplaščevanje po zahtevku 1, značilno po tem, da se s centrifugiranjem nevtraliziranih suspenzij oplaščenih nanodelcev TiO2 odstranijo soli, nastale med nevtralizacijo z bazo in kislino.Coating according to claim 1, characterized in that by centrifuging the neutralized suspensions of the coated TiO 2 nanoparticles, salts formed during neutralization with the base and acid are removed.
SI201000397A 2010-11-19 2010-11-19 COATING OF TiO2 RUTILE NANOPARTICLES IN A SUSPENSION WITH HYDRATED SiO2 AND Al2O3 SI23547A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201000397A SI23547A (en) 2010-11-19 2010-11-19 COATING OF TiO2 RUTILE NANOPARTICLES IN A SUSPENSION WITH HYDRATED SiO2 AND Al2O3
PCT/SI2011/000064 WO2012067590A1 (en) 2010-11-19 2011-11-18 Coating of tio2 rutile nanoparticles in a suspension with hydrated sio2 and ai2o3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201000397A SI23547A (en) 2010-11-19 2010-11-19 COATING OF TiO2 RUTILE NANOPARTICLES IN A SUSPENSION WITH HYDRATED SiO2 AND Al2O3

Publications (1)

Publication Number Publication Date
SI23547A true SI23547A (en) 2012-05-31

Family

ID=45563487

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201000397A SI23547A (en) 2010-11-19 2010-11-19 COATING OF TiO2 RUTILE NANOPARTICLES IN A SUSPENSION WITH HYDRATED SiO2 AND Al2O3

Country Status (2)

Country Link
SI (1) SI23547A (en)
WO (1) WO2012067590A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877393A (en) * 2015-04-08 2015-09-02 攀钢集团攀枝花钢铁研究院有限公司 Titanium dioxide with low oil absorption and preparation method of titanium dioxide
CN106629748A (en) * 2015-12-10 2017-05-10 孝感嘉瑞应用科技开发有限公司 Nano-silica sol with novel structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111234567B (en) * 2020-03-18 2021-11-05 中南大学 Inorganic coating process for preparing high-weather-resistance titanium dioxide
CN111484756B (en) * 2020-05-22 2022-02-08 中信钛业股份有限公司 Method for improving dispersion stability of alumina-coated titanium dioxide
CN113234336A (en) * 2021-05-18 2021-08-10 浙江天女集团制漆有限公司 Preparation method of inorganic composite ultraviolet absorbent
CN116285425A (en) * 2022-12-15 2023-06-23 宜宾天原海丰和泰有限公司 Titanium dioxide silicon-aluminum coating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179857B2 (en) * 1998-08-20 2007-02-20 Rhodia Chimie Use of titanium dioxide as anti-UV agent in a rubber composition
US6783586B2 (en) * 2001-11-01 2004-08-31 E. I. Du Pont De Nemours And Company Easy to disperse, high durability TiO2 pigment and method of making same
US20050129634A1 (en) * 2003-12-16 2005-06-16 Frerichs Scott R. Passivated nano-titanium dioxide particles and methods of making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877393A (en) * 2015-04-08 2015-09-02 攀钢集团攀枝花钢铁研究院有限公司 Titanium dioxide with low oil absorption and preparation method of titanium dioxide
CN106629748A (en) * 2015-12-10 2017-05-10 孝感嘉瑞应用科技开发有限公司 Nano-silica sol with novel structure

Also Published As

Publication number Publication date
WO2012067590A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
CN102226043B (en) Preparation method of titanium pigment used in ship paint
Lin et al. Surface characteristics of hydrous silica-coated TiO2 particles
SI23547A (en) COATING OF TiO2 RUTILE NANOPARTICLES IN A SUSPENSION WITH HYDRATED SiO2 AND Al2O3
JP5231553B2 (en) Transparent and stable titanium dioxide sol
JP3696993B2 (en) Method for producing titanium dioxide pigment
US6653356B2 (en) Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof
JP5363459B2 (en) Preparation of titanium dioxide pigments treated with coprecipitated mixed oxides
CN100506922C (en) Method for producing high covering power titanium dioxide pigment
FI66417B (en) FOERFARANDE FOER FRAMSTAELLNING AV TITANDIOXIDPIGMENT INNEHAOLLANDE ZIRKONIUM OCH ANVAENDNING AV DYLIKA PIGMENT VID FAERGNING AV LACK PLASTER OCH SPINNFIBRER
US3515566A (en) Process for producing coated titanium dioxide pigment
Wilhelm et al. On-line tracking of the coating of nanoscaled silica with titania nanoparticles via zeta-potential measurements
FI124294B (en) Process for the preparation of a highly dispersible microcrystalline titanium dioxide product, the product and its use
AU2007322294B2 (en) Improved process for manufacturing zirconia-treated titanium dioxide pigments
JPH04214030A (en) Manufacture of titanium dioxide
KR20070039111A (en) Method for post-treating titanium dioxide pigments
US3146119A (en) Pigment treatment
JP2010512437A (en) Method for surface treatment of solid particles, especially titanium dioxide pigment particles
Dong et al. Investigation on the film-coating mechanism of alumina-coated rutile TiO2 and its dispersion stability
Sun et al. Preparation of a microsphere SiO2/TiO2 composite pigment: The mechanism of improving pigment properties by SiO2
JPS5930749B2 (en) Titanium dioxide pigment composition and its manufacturing method
JPS6345123A (en) Fine powder titanium dioxide composition
Veronovski TiO2 applications as a function of controlled surface treatment
JPS6149250B2 (en)
TW201805370A (en) A method for treating titanium dioxide particles, a titanium dioxide particle and uses of the same
JP5456951B2 (en) Method for producing oxide film-coated fine particles

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20120613

KO00 Lapse of patent

Effective date: 20201124