SI23519A - Magnetic system for absolute force measurment with improved linearity - Google Patents

Magnetic system for absolute force measurment with improved linearity Download PDF

Info

Publication number
SI23519A
SI23519A SI201000306A SI201000306A SI23519A SI 23519 A SI23519 A SI 23519A SI 201000306 A SI201000306 A SI 201000306A SI 201000306 A SI201000306 A SI 201000306A SI 23519 A SI23519 A SI 23519A
Authority
SI
Slovenia
Prior art keywords
force
magnetic
magnetic field
permanent magnet
field probe
Prior art date
Application number
SI201000306A
Other languages
Slovenian (sl)
Inventor
Janez Trontelj
mid BlaĹľ Ĺ
Original Assignee
UNIVERZA V LJUBLJANI, FAKULTETA ZA ELEKTROTEHNIKO Laboratorij za Mikroelektroniko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIVERZA V LJUBLJANI, FAKULTETA ZA ELEKTROTEHNIKO Laboratorij za Mikroelektroniko filed Critical UNIVERZA V LJUBLJANI, FAKULTETA ZA ELEKTROTEHNIKO Laboratorij za Mikroelektroniko
Priority to SI201000306A priority Critical patent/SI23519A/en
Priority to AT362011A priority patent/AT510532A1/en
Publication of SI23519A publication Critical patent/SI23519A/en

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

The object of the invention is a magnetic system for absolute force measurement with improved linearity. That force is therefore the input and the electric signal is an output. The magnetic system consists of: magnetic field probe (103, 203) that measures absolute magnetic field, first permanent magnet (102,202) with a fixed position relative to the magnetic field probe (103, 203) and second permanent magnet (101, 201) that changes its position according to the applied force (107, 207).

Description

Magnetni sistem za merjenje absolutne sile z izboljšano linearnostjoMagnetic system for measuring absolute force with improved linearity

Predmet izuma je magnetni sistem za merjenje absolutne sile z izboljšano linearnostjo. Predlagani izum spada v področje magnetnih sistemov, podrobneje v področje brezkontaktnih magnetnih sistemov s sondo polja za merjenje magnetnega signala in za ustvarjanje izhodnega signalnega odziva v odvisnosti od sile. Sila je torej vhod in električni signal je izhod.The subject of the invention is a magnetic system for measuring absolute force with improved linearity. The present invention falls within the field of magnetic systems, more specifically in the field of contactless magnetic systems with a field probe for measuring a magnetic signal and for generating an output signal response as a function of force. So the force is the input and the electrical signal is the output.

Opis stanja tehnikeDescription of the prior art

Razni brezkontaktni magnetni sistemi za merjenje sile na tržišču se uporabljajo v gospodinjskih aparatih, motornem inženiringu itd. V takih sistemih je eno (ali več) gibljivo telo, ki na en ali drug način vpliva na magnetno poljsko jakost na mestu sonde polja. Magnetna sonda polja, to je Hallov element, generira električni izhodni signal, ki se ga zlahka naknadno obdela.Various non-contact magnetic force measuring systems on the market are used in household appliances, motor engineering, etc. In such systems, there is one (or more) moving body that in one way or another affects the magnetic field strength at the location of the field probe. The magnetic field probe, that is, the Hall element, generates an electrical output signal that can be easily processed afterwards.

Glavni problem brezkontaktnih magnetnih sistemov je nelinearnost. Na primer, enostavni magnetni sistem, ki ga sestavljata le en permanentni magnet in sonda polja. Tak sistem se lahko uporabi kot senzor zračnega tlaka. Običajno je tu zatesnjena membrana in vzmet, ki deluje nasprotno sili. Namesto vzmeti se uporablja tudi elastična membrana /1/. Pritisnjeni tlak prisili magnet, kije pritrjen na vzmet, da se premakne bližje k sondi magnetnega polja. Razmerje med pritisnjenim tlakom in razdaljo med sondo magnetnega polja in trajnim je linearno, ker je vzmet, ki se zoperstavi sili tlaka, linearna. Magnetno polje v odvisnosti od razdalje med magnetom in sondo je v bistvu nelinearno.The main problem with contactless magnetic systems is nonlinearity. For example, a simple magnetic system consisting of only one permanent magnet and a field probe. Such a system can be used as an air pressure sensor. Usually, there is a sealed diaphragm and a spring that acts in the opposite direction. An elastic diaphragm / 1 / is also used instead of a spring. Pressed pressure forces the magnet attached to the spring to move closer to the magnetic field probe. The relationship between the pressure pressed and the distance between the magnetic field probe and the permanent is linear, because the spring that resists the pressure force is linear. The magnetic field is essentially nonlinear depending on the distance between the magnet and the probe.

Za linearni električni izhod je potrebno vpeljati kompliciran linearizacijski algoritem. To pomeni dodatne stroške, ker je potrebno izvesti kalibracije za vsak ločen magnetni sistem. Sprememba temperature direktno vpliva na meritve, ker temperaturni koeficient magneta ni zanemarljiv. To zahteva tudi algoritem za temperaturno kompenzacijo magneta.For linear electrical output, a complicated linearization algorithm must be introduced. This entails additional costs because it is necessary to perform calibrations for each separate magnetic system. The temperature change directly affects the measurements because the temperature coefficient of the magnet is not negligible. This also requires a magnet temperature compensation algorithm.

Ozadje izumaBACKGROUND OF THE INVENTION

Cilj izuma je predlagati sistem, ki ima izboljšano linearno obnašanje izhodnega električnega signala. To zmanjša zapletenost linearizacije in s tem končnih stroškov. Istočasno se izboljša temperaturna odvisnost zaradi narave sistema.It is an object of the invention to propose a system having an improved linear behavior of the output electrical signal. This reduces the complexity of linearization and thus the final cost. At the same time, the temperature dependence due to the nature of the system improves.

Brezkontaktni magnetni sistem bi moral ostati enostaven, lahek za sestavljanje in z omejenim - tako malo kot je možno - številom komponent. Predlagan merilni princip mora dovoljevati relativno lahko uvedbo v končni sistem, ki je primeren za produkcijo.The non-contact magnetic system should remain simple, easy to assemble and with a limited - as few as possible - number of components. The proposed measurement principle must allow for a relatively easy introduction into a final system suitable for production.

OpisDescription

Predlagan brezkontaktni sistem transformira mehansko silo v električni signal. Sila je torej vhodThe proposed contactless system transforms the mechanical force into an electrical signal. Force is therefore the entrance

-2in električni signal je izhod.-2and the electrical signal is the output.

Izum bo sedaj razložen bolj detajlno z opisom izvedbe in sklicujoč se na priložene risbe, ki predstavljajo:The invention will now be explained in more detail with a description of the embodiment and with reference to the accompanying drawings, which represent:

Risba 1: sistem po izumu,Figure 1: the system of the invention,

Risba 2: graf, ki predstavlja razmerje med magnetno silo (Fm) in razdaljo med gibljivim magnetom in sondo polja (x),Figure 2: graph representing the ratio of the magnetic force (F m ) to the distance between the moving magnet and the field probe (x),

Risba 3: graf, ki predstavlja razmerje med izhodom (out) sonde magnetnega polja in razdaljo med gibljivim magnetom in sondo polja,Figure 3: graph representing the ratio of the output of the magnetic field probe to the distance between the moving magnet and the field probe,

Risba 4: graf, ki predstavlja razmerje med izhodom (out) sonde magnetnega polja in magnetno silo (Fm)Figure 4: graph representing the ratio of the output (out) of the magnetic field probe to the magnetic force (F m )

Risba 5: magnetni sistem, ki uporablja magnetno privlačno siloFigure 5: A magnetic system using a magnetically attractive force

Risba 6: graf, ki predstavlja razmerje med magnetno silo (Fm) in razdaljo med gibljivim magnetom in sondo polja (x),Figure 6: graph representing the relationship between the magnetic force (F m ) and the distance between the moving magnet and the field probe (x),

Risba 7: graf, ki predstavlja razmerje med izhodom (out) sonde magnetnega polja in razdaljo med gibljivim magnetom in sondo polja,Figure 7: graph representing the relationship between the output of the magnetic field probe and the distance between the moving magnet and the field probe,

Risba 8: graf, ki predstavlja razmerje med izhodom (out) sonde magnetnega polja in magnetno silo (Fm)Figure 8: graph representing the ratio of the output (out) of the magnetic field probe to the magnetic force (F m )

Sistem, kot je prikazan na risbi 1 in risbi 5 sestavljajo tri osnovne komponente:The system as shown in Figure 1 and Figure 5 consists of three basic components:

- sonda magnetnega polja, ki meri absolutno magnetno polje,- magnetic field probe measuring absolute magnetic field,

- prvi permanentni magnet s fiksnim položajem glede na sondo magnetnega polja,- first permanent magnet with fixed position relative to magnetic field probe,

- drugi permanentni magnet, ki spreminja svoj položaj glede na pritisnjeno silo.- a second permanent magnet that changes its position with respect to the force exerted.

Sonda magnetnega polja in prvi permanentni magnet imata fiksen medsebojni položaj. Drugi permanentni magnet se giblje ustrezno pritisnjeni sili glede na prvi permanentni magnet in sondo magnetnega polja. Permanentna magneta sta usmerjena tako, da je magnetna sila med njima privlačna ali usmerjena tako, da je magnetna sila med njima odbojna.The magnetic field probe and the first permanent magnet have a fixed mutual position. The second permanent magnet moves with a properly pressured force relative to the first permanent magnet and the magnetic field probe. Permanent magnets are oriented in such a way that the magnetic force between them is attractive or oriented so that the magnetic force between them is repulsive.

Hallov element je zelo primerna naprava za merjenje magnetnega polja in se ga zato lahko uporablja kot sondo magnetnega polja. Je zelo občutljiv na spremembe jakosti magnetnega polja. Lahko zazna zelo majhne spremembe magnetnega polja in je zato primeren za sisteme, kjer so gradienti magnetnega polja majhni. Njegov izhod je napetost, ki je linearno odvisna od magnetnega polja.The Hall element is a very suitable device for measuring the magnetic field and can therefore be used as a magnetic field probe. It is very sensitive to changes in the magnetic field strength. It can detect very small changes in the magnetic field and is therefore suitable for systems where the magnetic field gradients are small. Its output is a voltage that is linearly dependent on the magnetic field.

Obstaja mnogo materialov, ki so primerni za izdelavo Hallovega elementa, vendar je stroškovno najbolj učinkovit silicij. Omogoča enostavno in ekonomsko integracijo ter jeThere are many materials that are suitable for the Hall element, but the most cost effective is silicon. It facilitates easy and economic integration and is

-3kompatibilen s standardnimi polprevodniškimi proizvodnimi procesi. Z integracijo v standardne CMOS procese se lahko uporabi v tako imenovanih pametnih senzorjih.-3compatible with standard semiconductor manufacturing processes. By integrating it into standard CMOS processes, it can be used in so-called smart sensors.

Uporaba magnetne odbojne sileUse of magnetic repulsive force

Sonda 103 magnetnega polja je prikazana v magnetnem sistemu 100 na risbi 1. Nameščena je v bližini fiksnega permanentnega magneta 102. Permanentni magnet 102 proizvaja fiksno magnetno polje na mestu sonde 103 magnetnega polja.The magnetic field probe 103 is shown in the magnetic system 100 in Figure 1. It is located near the fixed permanent magnet 102. The permanent magnet 102 produces a fixed magnetic field at the location of the magnetic field probe 103.

Drugi permanentni magnet 101 je nameščen na drugi strani sonde 103 magnetnega polja tako, da je sonda 103 magnetnega polja med 102 in 101. Magnetni poli obeh permanentnih magnetov so obrnjeni eden proti drugemu tako, da obstaja odbojna sila. Razdalja 104 med sondo 103 magnetnega polja in drugim permanentnim magnetom 101 je odvisna od velikosti in magnetizacijske jakosti obeh permanentnih magnetov ter območja vhodne sile 107.The second permanent magnet 101 is mounted on the other side of the magnetic field probe 103 such that the magnetic field probe 103 is between 102 and 101. The magnetic fields of the two permanent magnets are facing each other so that there is a repulsive force. The distance 104 between the probe 103 of the magnetic field and the second permanent magnet 101 depends on the size and magnetization strength of both permanent magnets and the area of the input force 107.

Mehanska sila 107 potiska drugi permanentni magnet 101 v smeri 106 proti sondi magnetnega polja in prvemu permanentnemu magnetu 102. Gibanje drugega permanentnega magneta naj bo mehansko omejeno na eno os samo v smeri 106.The mechanical force 107 pushes the second permanent magnet 101 in the direction 106 toward the magnetic field probe and the first permanent magnet 102. The movement of the second permanent magnet should be mechanically limited to one axis only in the 106 direction.

Naraščajoča sila 107 zmanjša razdaljo 104 med drugim permanentnim magnetom 101 in sondo magnetnega polja 103 in tudi razdaljo do prvega permanentnega magneta 102. Zmanjšana razdalja med permanentnima magnetoma 101 in 102 pomeni tudi povečanje odbojne sile med magnetoma. Ravnotežje magnetnega sistema je doseženo, ko sta si enaki vhodna mehanska sila 107 in odbojna magnetna sila. Območje gibanja drugega permanentnega magneta je omejeno na 105. Razdalja 105 je manjša od 104, ker najmanjša razdalja lahko varira zaradi mehanskih in magnetnih nestabilnosti.The increasing force 107 decreases the distance 104 between the second permanent magnet 101 and the magnetic field probe 103 and also the distance to the first permanent magnet 102. The reduced distance between the permanent magnets 101 and 102 also means an increase in the repulsive force between the magnets. The equilibrium of a magnetic system is reached when the input mechanical force 107 and the repulsive magnetic force are equal. The range of motion of the second permanent magnet is limited to 105. The distance 105 is less than 104 because the minimum distance can vary due to mechanical and magnetic instabilities.

Oba permanentna magneta 102, 101 in območje spremenljive razdalje 105 so izbrani glede na jakost in območje vhodne sile.Both permanent magnets 102, 101 and variable distance range 105 are selected according to the strength and the range of the input force.

Uporaba magnetno privlačne sileUse of magnetically attractive force

Magnetni sistem 200, ki uporablja magnetno privlačno silo, ima enake komponente kot magnetni sistem, ki uporablja magnetno odbojno silo, z izjemo, da sta si nasprotna magnetna pola permanentnih magnetov obrnjena eden proti drugemu kot je prikazano na risbi 5.A magnetic system 200 that uses a magnetically attractive force has the same components as a magnetic system that uses a magnetic repulsive force, except that the opposite magnetic poles of the permanent magnets are facing each other as shown in Figure 5.

Mehanska sila 207 vleče permanentni magnet 201 v smeri 206 proč od sonde magnetnega polja 203 in tudi proč od drugega permanentnega magneta 202, ki ima fiksen položaj. Naraščajoča sila povečuje razdaljo med dvema permanentnima magnetoma 201 in 202. Magnetna privlačna sila se z razdaljo spreminja in ravnotežje je doseženo, ko sta si mehanska sila in magnetna privlačna sila enaki. Minimalna razdalja je 204 in maksimalna je 205.The mechanical force 207 pulls the permanent magnet 201 in the direction 206 away from the magnetic field probe 203 and also away from the second permanent magnet 202 which has a fixed position. The increasing force increases the distance between the two permanent magnets 201 and 202. The magnetic attraction force varies with distance and the equilibrium is reached when the mechanical force and the magnetic attraction force are equal. The minimum distance is 204 and the maximum is 205.

Oba permanentna magneta 202, 201 in območje spremenljive razdalje so izbrani glede na jakost in območje vhodne sile.Both the permanent magnets 202, 201 and the variable distance range are selected according to the strength and range of the input force.

Gibanje drugega permanentnega magneta mora biti omejeno le na eno os, to je na os, kiThe movement of the second permanent magnet must be limited to only one axis, that is, the axis which

-4sovpada z magnetizacijskim vektorjem obeh permanentnih magnetov. Velika prednost magnetnega sistema, ki uporablja magnetno privlačno silo je, da sta permanentna magneta samo-centrirna. Vsak odmik gibljivega magneta 201 od osi avtomatsko potegne magnet proti osi. Mehansko vodilo, ki preprečuje kakršnokoli gibanje proč od osi, kot je to v sistemu, ki uporablja magnetno odbojno silo, ni potrebno. To pomeni, da ni nikakršnega trenja magneta z vodilom ali katerimkoli drugim mehanskim delom, ki preprečuje odmik od osi.-4 coincides with the magnetization vector of both permanent magnets. The great advantage of a magnetic system that uses a magnetically attractive force is that the permanent magnets are self-centering. Each movement of the moving magnet 201 from the axis automatically pulls the magnet towards the axis. A mechanical guide that prevents any movement away from the axle, such as in a system that uses magnetic repulsive force, is unnecessary. This means that there is no friction of the magnet with the guide or any other mechanical part that prevents the axis from moving away.

Delovanje magnetnega sistemaOperation of the magnetic system

Uporaba magnetno odbojne sileUse of magnetically repulsive force

Zunanja mehanska sila prisili drugi permanentni magnet 101, da se pomakne bližje k sondi magnetnega polja 103 in fiksnemu permanentnemu magnetu 102. Za vsako razdaljo med gibljivim magnetom in sondo polja sta mehanska sila in magnetna odbojna sila enaki, če naj bo sistem stabilen.The external mechanical force forces the second permanent magnet 101 to move closer to the magnetic field probe 103 and the fixed permanent magnet 102. For each distance between the moving magnet and the field probe, the mechanical force and the magnetic repulsive force are equal if the system is to be stable.

Razmerje med magnetno silo Fm in razdaljo x med gibljivim magnetom 101 in sondo polja 103 je prikazano na risbi 2. To je nelinearna funkcija. Razdalja med xmin in xmax je razdalja 105, katere območje je posledica območja zunanje sile.The relationship between the magnetic force F m and the distance x between the moving magnet 101 and the field probe 103 is shown in Figure 2. This is a nonlinear function. The distance between x m and and x max is the distance 105, the area of which is due to the external force region.

Razmerje med izhodom sonde 103 magnetnega polja in razdaljo med gibljivim magnetom 101 in sondo polja 103 je prikazano na sliki 3. Ravno tako je to nelinearna funkcija.The relationship between the output of the magnetic field probe 103 and the distance between the moving magnet 101 and the field probe 103 is shown in Figure 3. It is also a nonlinear function.

Ker je vhod magnetnega sistema zunanja mehanska sila in je izhod električni izhod sonde magnetnega polja, je razmerje med tema dvema spremenljivkama prikazano na risbi 3. Razmerje je zelo blizu linearnega. Odstopanja od linearnosti so majhna in so plod neidealnosti. Linearno razmerje je prikazano na risbi 4.Since the input of the magnetic system is an external mechanical force and the output is the electrical output of the magnetic field probe, the relationship between these two variables is shown in Figure 3. The ratio is very close to linear. Deviations from linearity are small and are the fruits of non-ideality. The linear relationship is shown in Figure 4.

Temperaturni koeficient poceni magnetov običajno ni zanemarljiv. Če imata oba magneta negativni temperaturni koeficient, se magnetno polje zmanjšuje z naraščajočo temperaturo. Rezultat je tudi zmanjšana odbojna sila in razdalja med obema magnetoma se zmanjša na razdaljo, kjer je magnetna sila spet enaka zunanji sili. Zaradi te situacije ostane izhod sonde magnetnega polja relativno nespremenjen, ker mora biti prisotno enako magnetno polje za dano magnetno silo, to je, mora biti enako zunanji magnetni sili.The temperature coefficient of cheap magnets is usually not negligible. If both magnets have a negative temperature coefficient, the magnetic field decreases with increasing temperature. The result is also a reduced repulsive force and the distance between the two magnets is reduced to a distance where the magnetic force is again equal to the external force. Due to this situation, the output of the magnetic field probe remains relatively unchanged because the same magnetic field for the given magnetic force must be present, that is, it must be equal to the external magnetic force.

Za položaj xmax z risbe 3 mora biti pritisnjena začetna zunanja sila, ker mora nasprotovati magnetni sili med dvema permanentnima magnetoma. To se lahko reši s šibko vzmetjo, začetno zunanjo mehansko silo, itd. Čeprav pa mora biti med delovanjem magnetna sila dominantna.The initial external force must be depressed for the position of max max in Figure 3 because it must counteract the magnetic force between the two permanent magnets. This can be solved by a weak spring, initial external mechanical force, etc. Although, during operation, the magnetic force must be dominant.

Uporaba magnetno privlačne sileUse of magnetically attractive force

Sistem 200, ki uporablja magnetno privlačno silo, kot je prikazano na risbi 5, delujeenako kot magnetni sistem, ki uporablja magnetno odbojno silo, samo daje polariteta gibljivega magneta 201 spremenjena.A system 200 that uses a magnetically attractive force, as shown in Figure 5, acts in the same way as a magnetic system that uses a magnetic repulsive force, only that the polarity of the moving magnet 201 is changed.

Risba 6 se nanaša na sistem, ki uporablja magnetno privlačno silo in prikazuje razmerjeFigure 6 refers to a system that uses a magnetically attractive force to show the relationship

-5med magnetno silo in razdaljo x, ki je nelinearno. Sila ima maksimalno vrednost pri xmin in najnižjo pri xmax. Risba 7 kaže razmerje med izhodom sonde magnetnega polja in razdaljo x, kije ravno tako nelinearno. Dve nelinearnosti kompenzirata ena drugo in razmerje med magnetno silo kot vhodom in električnim izhodom sonde magnetnega polja 203 je zelo blizu linearnemu. Linearno razmerje je prikazano na risbi 8.-5 between the magnetic force and the distance x, which is nonlinear. The force has a maximum value at x min and a minimum at x max . Figure 7 shows the relationship between the output of the magnetic field probe and the distance x, which is also non-linear. The two nonlinearities compensate for each other and the relationship between the magnetic force as the input and the electrical output of the magnetic field probe 203 is very close to linear. The linear relationship is shown in Figure 8.

Ravno tako ima temperaturni koeficient permanentnih magnetov malo ali nič vpliva na električni izhod sonde magnetnega polja.Also, the temperature coefficient of the permanent magnets has little or no effect on the electrical output of the magnetic field probe.

Za položaj xmin iz risbe 7 mora biti pritisnjena začetna zunanja sila, ker mora nasprotovati magnetni sili med dvema permanentnima magnetoma 201 in 202 (risba 5). To se lahko reši z vzmetjo, začetno zunanjo mehansko silo, itd. Čeprav pa mora biti med delovanjem magnetna sila dominantna.The initial external force must be pressed for the position x mi n in Figure 7 because it must counteract the magnetic force between the two permanent magnets 201 and 202 (Figure 5). This can be solved by a spring, initial external mechanical force, etc. Although, during operation, the magnetic force must be dominant.

Referenčni patenti [1] EP 1420237 - Robustno zapisovanje tlaka z vključenim permanentnim magnetom in Hallovim pretvornikom; Izumitelj BUERGER FRANK in ostali; Datum publikacije; 19.5.2004 [2] EP 2021738 - Linearni magnetni senzor položaja z izboljšano linearnostjo izhodne karakteristične krivulje; Izumitelj: WOLF MARCO in ostali; Datum publikacije; 6.12.2007 [3] EP 0884572 - Pretvornik tlaka; Izumitelj BOGNAR FRANCOIS in ostali; Datum publikacije: 16.12.1998Reference Patents [1] EP 1420237 - Robust Pressure Recording with Permanent Magnet Included and Hall Inverter; The inventor of BUERGER FRANK et al; Date of publication; 5/19/2004 [2] EP 2021738 - Linear magnetic position sensor with improved linearity of output characteristic curve; Inventor: WOLF MARCO et al; Date of publication; 12/6/2007 [3] EP 0884572 - Pressure transducer; Inventor BOGNAR FRANCOIS et al; Publication Date: 16.12.1998

Claims (3)

1. Magnetni sistem za merjenje absolutne sile z izboljšanima linearnostjo in temperaturnim koeficientom, ki vsebuje:1. Magnetic absolute force measuring system with improved linearity and temperature coefficient, comprising: - sondo magnetnega polja (103, 203) s fiksnim položajem, ki meri absolutno magnetno polje in ustvari izhodni električni signalni odziv v odvisnosti od sile, kjer je s tem sila vhod in električni signal izhod,- a fixed-position magnetic field probe (103, 203) that measures the absolute magnetic field and produces an output electrical signal response as a function of the force where the force is an input and an electrical signal, - prvi permanentni magnet (102, 202) s fiksnim položajem glede na sondo magnetnega polja (103, 203); in- a first permanent magnet (102, 202) with a fixed position relative to the magnetic field probe (103, 203); and - drugi permanentni magnet (101, 201), ki spreminja svoj položaj glede na prvi permanentni magnet (102,202) in do sonde magnetnega polja (103,203) glede na pritisnjeno silo (107,207), pri čemer je gibanje drugega permanentnega magneta (101,201) mehansko omejeno le na eno os v smeri (106, 206).- a second permanent magnet (101, 201) that changes its position with respect to the first permanent magnet (102,202) and to a magnetic field probe (103,203) with respect to the applied force (107,207), the movement of the second permanent magnet (101,201) being mechanically restricted only one axis in the direction (106, 206). 2. Sistem po zahtevku 1, pri čemer sta omenjena drugi permanentni magnet (101, 201) in prvi permanentni magnet (102,202) orientirana tako, da je magnetna sila med njima bodisi odbojna ali privlačna.The system of claim 1, wherein said second permanent magnet (101, 201) and the first permanent magnet (102,202) are oriented such that the magnetic force between them is either repulsive or attractive. 3. Magnetni sistem po zahtevku 2 s permanentnima magnetoma, orientiranima tako, da je magnetna sila med njima privlačna, kar zagotavlja avtomatsko samocentriranje.3. The magnetic system of claim 2 with permanent magnets oriented in such a way that the magnetic force between them is attractive, which provides automatic self-centering.
SI201000306A 2010-10-05 2010-10-05 Magnetic system for absolute force measurment with improved linearity SI23519A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201000306A SI23519A (en) 2010-10-05 2010-10-05 Magnetic system for absolute force measurment with improved linearity
AT362011A AT510532A1 (en) 2010-10-05 2011-01-12 MAGNETIC SYSTEM FOR ABSOLUTE POWER MEASUREMENT WITH IMPROVED LINEARITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI201000306A SI23519A (en) 2010-10-05 2010-10-05 Magnetic system for absolute force measurment with improved linearity

Publications (1)

Publication Number Publication Date
SI23519A true SI23519A (en) 2012-04-30

Family

ID=45992905

Family Applications (1)

Application Number Title Priority Date Filing Date
SI201000306A SI23519A (en) 2010-10-05 2010-10-05 Magnetic system for absolute force measurment with improved linearity

Country Status (2)

Country Link
AT (1) AT510532A1 (en)
SI (1) SI23519A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101081B4 (en) 2012-02-09 2023-08-31 Univerza V Ljubljani Fakulteta Za Elektrotehniko Method and device for measuring force

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026153A (en) * 1975-08-08 1977-05-31 Pall Corporation Magnetic pressure indicator with sampling ports
DE8120655U1 (en) * 1981-07-15 1982-02-18 Robert Bosch Gmbh, 7000 Stuttgart PRESSURE SENSOR
US6670805B1 (en) * 2000-09-22 2003-12-30 Alliant Techsystems Inc. Displacement sensor containing magnetic field sensing element between a pair of biased magnets movable as a unit
DE102004011591A1 (en) * 2004-03-10 2005-09-29 Robert Bosch Gmbh connecting element
DE102005016432B3 (en) * 2005-04-05 2006-11-16 Bizerba Gmbh & Co. Kg force measuring device
DE102006024680B4 (en) * 2006-05-26 2016-04-28 Leopold Kostal Gmbh & Co. Kg A position
JP2009229453A (en) * 2008-02-28 2009-10-08 Seiko Epson Corp Pressure detection device and pressure detecting method

Also Published As

Publication number Publication date
AT510532A1 (en) 2012-04-15

Similar Documents

Publication Publication Date Title
EP0629834B1 (en) Displacement sensor
KR101325542B1 (en) Magnetic force sensor
US20070120556A1 (en) Magnetic position sensor for a mobile object with limited linear travel
EP1367401A4 (en) Current sensor and overload current protective device comprising the same
EP3084456A1 (en) Magnetic field sensor and method for sensing relative location of the magnetic field sensor and a target object along a movement line
NO20073692L (en) Sliding door with a magnetic operating system with a track painting system
KR101352308B1 (en) Sensor circuit
EP2438391B1 (en) Temperature tolerant magnetic linear displacement sensor
EP1977207B1 (en) Accurate pressure sensor
US7710107B2 (en) Force or field balance device and method for measuring position
SI23519A (en) Magnetic system for absolute force measurment with improved linearity
US7199578B2 (en) Measurement device including a hall sensor disposed in a magnetic tube
CN216718524U (en) High-precision low-temperature drift open-loop hall current sensor
WO2007053519A3 (en) Non-destructive evaluation via measurement of magnetic drag force
Roumenin et al. Linear displacement sensor using a new CMOS double-hall device
CN115469251A (en) Fully-integrated closed-loop Hall sensor device
CA2023677A1 (en) Acceleration sensor and acceleration sensing system
Wang et al. Electromagnetic position measurement system immune to ferromagnetic disturbances
CN105606877B (en) A kind of closed loop TMR current sensor
CN204303770U (en) A kind of chip sticks together checkout gear
EP3892973A3 (en) Force sensor
MX2023001332A (en) Magnetic door position detection apparatus.
EP1176325A2 (en) Magnetic bearing apparatus
JP2002277308A (en) Liquid surface level detection device
KR101185095B1 (en) Apparatus for temperature compensation of magnetism

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20120507

KO00 Lapse of patent

Effective date: 20140603