SI23510A - Improved synthesis of biosynthetic product by ordered assembly of biosynthetic enzymes guided by the nucleotide sequence motif template - Google Patents
Improved synthesis of biosynthetic product by ordered assembly of biosynthetic enzymes guided by the nucleotide sequence motif template Download PDFInfo
- Publication number
- SI23510A SI23510A SI201000337A SI201000337A SI23510A SI 23510 A SI23510 A SI 23510A SI 201000337 A SI201000337 A SI 201000337A SI 201000337 A SI201000337 A SI 201000337A SI 23510 A SI23510 A SI 23510A
- Authority
- SI
- Slovenia
- Prior art keywords
- nucleic acid
- biosynthetic pathway
- program
- binding
- sequence
- Prior art date
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Izboljšana sinteza produkta biosinteze z usmerjenim sestavljanjem biosintetskih encimov na motivu nukleotidnega zaporedjaImproved synthesis of biosynthesis product by targeted assembly of biosynthetic enzymes based on nucleotide sequence motif
Področje izumaFIELD OF THE INVENTION
Področje izuma je izboljšana sinteza produktov, kar je doseženo z usmerjenim sestavljanjem himemih proteinov, kateri so sestavljeni iz biosintetskih encimov oziroma drugih funkcionalnih polipeptidov ter vezavnih domen za nukleinske kisline. Usmerjeno sestavljanje himemih proteinov temelji na vezavi na prepoznavna mesta na programski nukleinski kislini. Izum je biotehnološki izum.FIELD OF THE INVENTION Improved product synthesis is achieved by directed assembly of chymic proteins, which are composed of biosynthetic enzymes or other functional polypeptides and nucleic acid binding domains. Directed assembly of chimeric proteins is based on binding to recognizable sites on program nucleic acid. The invention is a biotechnological invention.
Stanje tehnikeThe state of the art
Za industrijske aplikacije so biosintetske poti iz večjega števila encimov spremenjene na način, da dosegajo večji donos želenih biosintetskih produktov. Izboljšanje učinkovitosti biosintetskih poti z namenom doseganja večjih donosov končnega produkta je v zadnjih letih izredno zanimivo. Do danes so bile razvite različne strategije optimizacije. Donosi končnih produktov biosintetskih poti so bili izboljšani s: i) povečevanjem količine dostopnega substrata in/ali prekomernim izražanjem encimov limitnih korakov; ii) dodajanjem heterolognih encimov z boljšimi kinetičnimi lastnostmi; iii) onemogočanjem vejitve biosintetske poti; iv) kompartmentalizacijo biosintetskih poti z usmerjanjem encimov določene biosintetske poti v specifične celične kompartmente oziroma umetne kompartmente (e.g. metabolosomi), ali; v) približevanjem biosintetskih encimov z usmerjenim sestavljanjem na proteinskem ogrodju (WO 2009/108774). Medtem ko obstaja mnogo prednosti proteinskega ogrodja, je takšen pristop omejen s številom razpoložljivih kombinacij peptidnih povezovalcev, poleg tega p^ takšen pristop ne omogoča nadzora prostorske razporeditve in orientacije biosintetskih encimov.For industrial applications, biosynthetic pathways from a large number of enzymes have been modified in such a way as to achieve a higher yield of the desired biosynthetic products. Improving the efficiency of biosynthetic pathways in order to achieve higher yields of the final product has been extremely interesting in recent years. To date, various optimization strategies have been developed. The yields of the biosynthetic pathway end products were improved by: i) increasing the amount of substrate available and / or overexpressing the enzymes of the limit steps; ii) adding heterologous enzymes with better kinetic properties; iii) disabling the branching of the biosynthetic pathway; iv) compartmentalization of biosynthetic pathways by targeting enzymes of a particular biosynthetic pathway into specific cellular compartments or artificial compartments (eg metabolosomes), or; v) approximation of biosynthetic enzymes with targeted assembly on a protein framework (WO 2009/108774). While there are many advantages to a protein framework, such an approach is limited by the number of combinations of peptide linkers available, and such an approach does not control the spatial distribution and orientation of biosynthetic enzymes.
Nobena od zgoraj naštetih rešitev ne omogoča optimalne ureditve biosintetskih encimov, ki bi dala željen vrstni red biosintetskih reakcij. V živih celicah so encimi biosintetskih poti in drugi funkcionalni polipeptidi pogosto omejeni prek mikrolokacije z multiencimskimi kompleksi ali sidrnimi mehanizmi. Takšen tip organizacije poveča lokalno koncentracijo encimov in učinkovitost biosintetskih poti. Za doseganje optimalne koncentracije posameznih encimov in pospeševanje tvorbe multiencimskih kompleksov, sta bila prirejena dva različna pristopa: i) usmerjanje encimov na mikrolokacije oz. ciljanje organelov; in ii) tvorba multiencimskih kompleksov na polipeptidnem ogrodju (WO 2009/108774).None of the above solutions enables the optimal arrangement of biosynthetic enzymes to give the desired order of biosynthetic reactions. In living cells, biosynthetic pathway enzymes and other functional polypeptides are often restricted via microlocation by multi-enzyme complexes or anchoring mechanisms. This type of organization increases the local concentration of enzymes and the efficiency of biosynthetic pathways. In order to achieve optimal concentration of individual enzymes and accelerate the formation of multi-enzyme complexes, two different approaches have been adopted: i) targeting the enzymes to microlocations, or. targeting organelles; and ii) formation of multi-enzyme complexes on the polypeptide framework (WO 2009/108774).
Vendarle pa ima proteinsko ogrodje mnogo slabosti in omejitev.However, the protein framework has many disadvantages and limitations.
Čeprav lahko programiramo število in porazdelitev encimov v multiencimskem kompleksu z zaporedjem polipeptidnega ogrodja, je pri tem tridimenzionalna razporeditev encimov nepredvidljiva zaradi fleksibilnosti dimerizacijskih domen (Slika 1 in 2). Poleg tega je načrtovanje polipeptidnega ogrodja z vezanimi proteinskimi domenami lahko težko zaradi omejenega števila dimerizacijskih domen, še dodatno pa obstajajo za vsako dimerizacijsko domeno specifični pogoji, pod katerimi se zvija in tvori funkcionalne interakcije.Although the number and distribution of enzymes in a multi-enzyme complex can be programmed with the sequence of a polypeptide framework, the three-dimensional distribution of enzymes is unpredictable due to the flexibility of the dimerization domains (Figures 1 and 2). In addition, the design of a polypeptide framework with bound protein domains can be difficult due to the limited number of dimerization domains, and in addition there are specific conditions for each dimerization domain under which functional interactions are twisted and formed.
Povzetek izumaSummary of the Invention
Problema urejanja biosintetskih poti v urejeno zaporedje biosintetskih encimov ne moremo rešiti z vezavo na proteinsko ogrodje. Rešitev je molekula nukleinske kisline z motivi zaporedij, imenovana tudi programska nukleinska kislina, ki določa ureditev himemih proteinov, biosintetskih encimov ali drugih funcionalnih polipeptidov, povezanih z vezavnimi domenami, za nukleinske kisline.The problem of arranging biosynthetic pathways into an ordered sequence of biosynthetic enzymes cannot be solved by binding to a protein framework. The solution is a nucleic acid molecule with sequence motifs, also called program nucleic acid, which determines the regulation of chemistry proteins, biosynthetic enzymes, or other functional polypeptides associated with binding domains for nucleic acids.
Izumitelji odkrivajo, da je mogoče po želji določati tridimenzionalno ureditev biosintetskih encimov ali drugih funkcionalnih polipeptidov s programsko nukleinsko kislino. Izumitelji so načrtovali himeme polipeptide, sestavljene iz vezavnih domen za nukleinske kisline in biosintetskega encima ali drugega funcionalnega polipeptida. Omenjeni himemi proteini se vežejo na tarčni motiv nukleinske kisline prek vezavne domene za nukleinske kisline. Programska nukleinska kislina določa vrstni red tarčnih motivov in tako zaporedje ter prostorsko ureditev biosintetskih encimov ali drugih funkcionalnih polipeptidov. Takšna urejena biosintetska pot himemih biosintetskih encimov ali drugih funkcionalnih polipeptidov, vodena s programsko nukleinsko kislino, poveča donos biosintetskega produkta te poti v primerjavi s proteinskim ogrodjem, ki preprosto tvori skupke encimov brez specifičnega reda.The inventors have discovered that it is possible to determine, if desired, the three-dimensional arrangement of biosynthetic enzymes or other functional polypeptides with programmatic nucleic acid. The inventors designed chimeric polypeptides composed of nucleic acid binding domains and a biosynthetic enzyme or other functional polypeptide. Said heme proteins bind to the target nucleic acid motif via the nucleic acid binding domain. Programmatic nucleic acid determines the order of the target motifs and thus the sequence and spatial arrangement of biosynthetic enzymes or other functional polypeptides. Such an ordered biosynthetic pathway of chemical biosynthetic enzymes or other functional polypeptides, guided by a program nucleic acid, increases the yield of the biosynthetic product of this pathway compared to a protein framework that simply forms clusters of enzymes in no specific order.
Uporaba programske nukleinske kisline za imobilizacijo in določanje vrstnega reda himemih biosintetskih encimov ali drugih funkcionalnih polipeptidov zagotavlja eno ali več naslednjih možnosti: i) poveča učinkovitost fluksa oziroma pretoka biosintetske poti, ii)The use of program nucleic acid to immobilize and determine the order of chemical biosynthetic enzymes or other functional polypeptides provides one or more of the following options: i) increase the flux or flow efficiency of the biosynthetic pathway, ii)
optimizira metabolni fluks skozi pot, iii) zmanjša metabolno breme gostiteljske celice, iv) omogoča možnost alternativnih vejitev metabolnih poti in tako nastanek novih produktov, v) dovoljuje reprogramiranje vrstnega reda himemih encimov znotraj organizma, če dodamo drugačno programsko nukleinsko kislino.optimizes metabolic flux through the pathway, iii) reduces host cell metabolic burden, iv) allows for alternative branching of metabolic pathways, thus creating new products, v) permitting reprogramming of the order of the enzyme enzymes within the organism if a different program nucleic acid is added.
Zaporedje programske nukleinske kisline nosi več kot dva tarčna elementa. Ti elementi predstavljajo specifične ligande oziroma tarče vezavnih domen za nukleinske kisline. Ko je programska nukleinska kislina prisotna v raztopini s himemimi proteini, se himemi proteini vežejo na tarčne elemente znotraj programskega zaporedja in tvorijo kompleks protein-nukleinska kislina, kar omogoči nastanek multiproteinskega kompleksa. Ureditev himemih proteinov znotraj takšnega kompleksa je predvidljiva zaradi: i) razvrščanje tarčnih motivov je definirano z zaporedjem nukleinske kisline zaradi znane tridimenzionalne zgradbe nukleinskih kislin, ii) ker je vrstni red motivov predvidljiv, omogoča urejeno razvrstitev himemih proteinov, iii) takšno urejeno razvrščanje himemih proteinov določa vrstni red biosintetskih reakcij, ta pa je definiran z nukleotidnim zaporedjem programske nukleinske kisline in tako je zmanjšan čas, potreben za difuzijo intermediatov reakcije med različnimi encimi biosintetske poti. Izumitelji zaključujejo, daje za takšno sestavljanje biosintetskih poti koristno imeti veliko število vezavnih domen za nukleinske kisline. Za motive iz 9 nukleotidov obstaja na primer kar 262144 kombinacij, ki jih lahko prepoznajo različne vezavne domene, kar pa omogoča izredno visoko variabilnost sestavljanja biosintetskih poti.The nucleic acid sequence carries more than two target elements. These elements represent specific ligands or targets of nucleic acid binding domains. When the program nucleic acid is present in the solution with the chemical proteins, the chemical proteins bind to the target elements within the program sequence and form a protein-nucleic acid complex, allowing the formation of a multiprotein complex. The arrangement of chimeric proteins within such a complex is predictable because of: i) the classification of the target motifs is defined by the nucleic acid sequence due to the known three-dimensional nucleic acid structure, ii) because the order of the motifs is predictable, allows orderly sorting of the chemistry proteins, iii) such orderly classification of the chemistry proteins determines the order of biosynthetic reactions, which is defined by the nucleotide sequence of programmed nucleic acid and thus reduces the time required for diffusion of reaction intermediates between different enzymes of the biosynthetic pathway. The inventors conclude that for such assembly of biosynthetic pathways it is advantageous to have a large number of nucleic acid binding domains. For example, for 9 nucleotide motifs, there are as many as 262144 combinations that can be recognized by different binding domains, which allows for extremely high variability in biosynthetic pathway assembly.
Pričujoč izum ima številne prednosti pred proteinskim ogrodjem. Programska nukleinska kislina nima težav z zorenjem in urejeno zaporedje nukleotidov lahko izberemo po želji. Vezava vezavnih domen za nukleinske kisline na tarčno zaporedje nukleotidov je dobro okarakterizirana. Zaradi bližine himemih proteinov, vezanih na programsko nukleinsko kislino, so drugi polipeptidi, ki bi lahko preusmerili sintezo, prostorsko izključeni iz multiencimskega kompleksa. Vezava vseh komponent biosintetske poti poteka pod istimi pogoji, saj so lahko vse vezavne domene, uporabljene pri sestavljanju himemih proteinov osnovane na istem tipu proteinov in interagirajo s tarčnimi nukleotidi z istim načinom interakcij. Nasprotno morajo biti pri proteinskem ogrodju uporabljeni različni tipi dimerizacijsih domen, ki se pravilno zvijajo in interagirajo pod različnimi pogoji. Izum ima tudi to prednost, da lahko usmerja nastanek različnih reakcijskih produktov v odvisnosti od zaporedja programske nukleinske kisline, ki jo dodamo v produkcijske celice oziroma reakcijski medij, kjer različno zaporedje programske DNK povzroči različen vrstni red vezave himemih biosintetskih encimov.The present invention has many advantages over the protein framework. Programmatic nucleic acid has no ripening problems and the ordered nucleotide sequence can be selected as desired. The binding of nucleic acid binding domains to the target nucleotide sequence is well characterized. Due to the proximity of the programmatic nucleic acid-bound proteins, other polypeptides that could reverse the synthesis are spatially excluded from the multi-enzyme complex. The binding of all components of the biosynthetic pathway takes place under the same conditions, since all the binding domains used in the assembly of the protein chemistry can be based on the same type of protein and interact with the target nucleotides by the same interaction mode. Conversely, different types of domain dimerization must be used in the protein framework, which twist and interact correctly under different conditions. The invention also has the advantage that it can direct the formation of different reaction products depending on the sequence of program nucleic acid added to the production cells or reaction medium, where different sequence of program DNA causes different order of binding of the biosynthetic enzymes.
Pričujoč izum predstavlja metodo produkcije spojin biosintetskih poti, ki vključuje kultivacijo genetsko spremenjenih gostiteljskih celic, spremenjenih tako, da izražajo himeme proteine, sestavljene iz encimov biosintetske poti ali drugih funkcionalnih polipetidov, povezanih z vezavnimi domenami za nukleinske kisline, ter zaporedja programske nukleinske kisline, ki umerja ureditev himemih proteinov v multiencimske biosintetske komplekse.The present invention provides a method for the production of compounds of biosynthetic pathways, which includes the cultivation of genetically modified host cells modified to express chimeric proteins composed of enzymes of the biosynthetic pathway or other functional polypeptides linked to nucleic acid binding domains, and sequences of program nucleic acids that calibrates the arrangement of chemical proteins into multi-enzyme biosynthetic complexes.
Pričujoč izum se nanaša na procese, ki vključujejo vsaj tri do približno 100 korakov biosintetskih reakcij. Trije koraki so minimalna velikost, kjer se vrstni red reakcijskih procesov lahko razlikuje. Trije koraki na primer lahko uredijo reakcijske korake 1,2,3 tudi v vrstni red 1,3,2 ali 3,1,2.The present invention relates to processes involving at least three to about 100 steps of biosynthetic reactions. The three steps are the minimum size where the order of the reaction processes may vary. For example, three steps can arrange reaction steps 1,2,3 in the order of 1,3,2 or 3,1,2.
Še ena uporaba izuma vključuje uporabo himemih proteinov, sestavljenih iz encimov biosintetske poti ali drugih funkcionalnih polipetidov, povezanih z vezavnimi domenami za nukleinske kisline, produciranih v gostiteljskih celicah in izoliranih iz njih, ter zaporedja programske nukleinske kisline, ki umerja ureditev himemih proteinov v multiencimske biosintetske komplekse. V tem načinu je biosintetska pot sestavljena in vitro, bodisi v raztopini bodisi z imobilizacijo programske DNK na drugo molekulo ali na trdno fazo. Za izvedbo biosintetske reakcije mora biti in vitro sestavljeni kompleks inkubiran pod pogoji, ki podpirajo biosintezo, dodan pa mora biti potreben substrat ter kofaktorji, potrebni za biosintetsko reakcijo, oziroma kompleks encimov za generacijo teh kofaktorjev.Another use of the invention involves the use of chimeric proteins composed of enzymes of the biosynthetic pathway or other functional polypeptides linked to the binding domains for nucleic acids produced in and isolated from host cells, and a programmed nucleic acid sequence that calibrates the regulation of chimeric proteins into multi-enzyme biosynthetic complexes. In this mode, the biosynthetic pathway is assembled in vitro, either in solution or by immobilizing program DNA to another molecule or to a solid phase. In order to carry out a biosynthetic reaction, an in vitro compound complex must be incubated under conditions that support biosynthesis, and the necessary substrate and cofactors required for the biosynthetic reaction or the enzyme complex for the generation of these cofactors must be added.
Pričujoč izum predstavlja opis načrtovanja programske nukleinske kisline za in vivo in in vitro uporabo. Predstavljene so genetsko spremenjene gostiteljske celice, ki združujejo zaporedje programske nukleinske kisline in zaporedje, ki kodira himeme proteine, sestavljene iz encimov biosintetske poti ali drugih funkcionalnih polipeptidov, povezanih z vezavnimi domenami za nukleinske kisline, ki se vežejo na specifične tarčne elemente znotraj programske nukleinske kisline.The present invention provides a description of programming nucleic acid for in vivo and in vitro use. Genetically engineered host cells are presented that combine a program nucleic acid sequence and a sequence that encodes chimeric proteins composed of biosynthetic pathway enzymes or other functional polypeptides linked to nucleic acid binding domains that bind to specific target elements within the program nucleic acid .
Pričujoč izum predstavlja nukleinsko kislino, ki vsebuje zaporedje programske nukleinske kisline za uporabo v metodi za izboljšanje donosa biosintetskih produktov.The present invention provides a nucleic acid comprising a program nucleic acid sequence for use in a method for improving the yield of biosynthetic products.
Pričujoč izum omogoča načrtovanje bioprocesov za produkcijo specifičnih končnih produktov z izključevanjem drugih polipeptidov, ki bi lahko preusmerili sintezo proti neželenim produktom, zaradi bližine funkcionalnih domen himemih proteinov, vezanih na programsko nukleinsko kislino.The present invention allows for the design of bioprocesses for the production of specific end products by excluding other polypeptides that could shift synthesis toward unwanted products due to the proximity of the functional domains of the chemical nucleic acid-bound proteins.
Izum se navezuje na genetsko spremenjene gostiteljske celice, ki izražajo himeme proteine in/ali podvajajoče se zaporedje programske nukleinske kisline.The invention relates to genetically engineered host cells expressing chimeric proteins and / or a duplicate nucleic acid sequence.
Izum se navezuje tudi na metodo, uporabljeno za produkcijo spojine katerekoli biosintetske poti, ki zahteva bližino biosintetskih encimov za sintezo te spojine.The invention also relates to a method used to produce a compound of any biosynthetic pathway that requires proximity to biosynthetic enzymes for the synthesis of that compound.
Izum se navezuje tudi na procese kot so procesiranje informacij, kemijska razgradnja, signaliziranje in podobnoThe invention also relates to processes such as information processing, chemical degradation, signaling and the like
Kratek opis slik:Short description of the pictures:
Slika 1: Shematski prikaz prednosti uporabe programske nukleinske kisline.Figure 1: Schematic illustration of the benefits of using program nucleic acid.
Slika 2: Vpliv zaporedja distančnika med tarčnimi elementi/motivi nukleinske kisline.Figure 2: Effect of spacer sequence between target elements / nucleic acid motifs.
Slika 3: Himemi proteini, biosintetski encimi povezani z vezavnimi domenami za nukleinske kisline, se vežejo na tarčni element nukleinske kisline. Vse preizkušene vezavne domene Znf_Zif268, Znf_Blues, ZnfPBSII, ZnfHivC in NicTAL (Tabela 1) se specifično vežejo na tarčni element nukleinske kisline in zavira izražanje reporterskega proteina β-galaktozidaze. [Α] Preizkušeni so bili Znf_Zif268, Znf_Blues, Znf_PBSII, ZnfHivC in NicTAL (Tabela 1). [Β] Vezavne domene specifično prepoznavajo tarčne elemente nukleinske kisline. Specifičen tarčni element je bil zamenjan z elementom, specifičnim za drugo vezavno domeno. Izražanje reporterskega protein β-galaktozidaze ni bilo zavrto, ko je bil uporabljen drug tarčni element nukleinske kisline.Figure 3: Chemistry proteins, biosynthetic enzymes linked to nucleic acid binding domains, bind to the target nucleic acid element. All tested binding domains of Znf_Zif268, Znf_Blues, ZnfPBSII, ZnfHivC and NicTAL (Table 1) bind specifically to the target nucleic acid element and inhibit the expression of the β-galactosidase reporter protein. [Α] Znf_Zif268, Znf_Blues, Znf_PBSII, ZnfHivC, and NicTAL were tested (Table 1). [Β] Binding domains specifically recognize target nucleic acid elements. The specific target element was replaced by an element specific to another binding domain. Expression of the β-galactosidase reporter protein was not inhibited when another target nucleic acid element was used.
Slika 4: In vitro vezava vezavnih domen za nukleinske kisline na tarčno nukleinsko kislino. [Α] Hibridizacija programske nukleinske kisline je bila izvedena z injiciranjem 0.5-2 μΜ do 300 s za doseganje končnega odziva 300 RU. Vezava himemih proteinov je bila opazovana z injiciranjem različnih koncentracij himemih proteinov 1 min, čemur je sledil 5 s disociacijski korak. Regeneracija je bila dosežena z dvemi 30 s injiciranji 50 mM NaOH in 24 s injiciranjem 0.5% SDS. [Β] Himemi protein od zgoraj: ZnfGlil, Znf_Zif268, ZnfBlues, • ·Figure 4: In vitro binding of nucleic acid binding domains to the target nucleic acid. [Α] Program nucleic acid hybridization was performed by injecting 0.5-2 μΜ for up to 300 s to achieve a final response of 300 RU. Binding of heme proteins was observed by injecting different concentrations of heme proteins for 1 min, followed by a 5 s dissociation step. Regeneration was achieved by two 30 s injections of 50 mM NaOH and 24 s injections of 0.5% SDS. [Β] Top protein chemistry: ZnfGlil, Znf_Zif268, ZnfBlues, • ·
ZnfHivC, ZnfPBSII, ZnfJazz. [C] DNK je bila vezana na začetku cikla in himemi protein so bili injicirani 1 min drug za drugim v dveh različnih zaporedjih: povezana črta: Znf Jazz, ZnfBlues, Znf_Zif268, Znf PBSII, Znf HivC and ZnfGlil; prekinjena črta: ZnfGlil, Znf PBSII, Znf HivC, Znf Jazz, Znf Blues and Znf_Zif268. Rezultati kažejo, daje vezava himemih proteinov v prikazanih zaporedjih šibkejša, če je ZnfGlilinjiciran prvi.ZnfHivC, ZnfPBSII, ZnfJazz. [C] DNA was bound at the beginning of the cycle and the chyme protein was injected 1 min one after the other in two different sequences: linked line: Znf Jazz, ZnfBlues, Znf_Zif268, Znf PBSII, Znf HivC and ZnfGlil; dashed line: ZnfGlil, Znf PBSII, Znf HivC, Znf Jazz, Znf Blues and Znf_Zif268. The results show that the binding of chimeric proteins is weaker in the sequences shown if ZnfGliniquitinated first.
Slika 5. In vitro vezava nukleinsko kislinskih vezavnih domen na sekvenco nukleinske kisline - programske DNK. Vezava posameznih vezavnih domen za nukleinske kisline Znf Jazz, Znf Blues, Znf_Zif268, Znf PBSII, Znf HivC in Znf Glil je bila določena s testom zamika elektroforezne mobilnosti na agaroznem gelu. Puščice kažejo pozicijo kompleksa proteinDNK.Figure 5. In vitro binding of nucleic acid binding domains to nucleic acid sequence - programmatic DNA. The binding of individual binding domains to the nucleic acids Znf Jazz, Znf Blues, Znf_Zif268, Znf PBSII, Znf HivC, and Znf Glil was determined by agarose gel electrophoresis mobility shift assay. The arrows indicate the position of the proteinDNA complex.
Slika 6. In vivo rekonstitucija dveh nefunkcionalnih polovic zelenega flourescentnega proteina (poimenovano split_GFP) povezanih z vezavnimi domenami za nukleinske kisline v prisotnosti programske DNK. [Α] shematski prikaz rekonstitucije split_GFPjev. [Β] 75 ng plazmida, ki je vseboval his značko-Znf Glil-povezovalni peptid- nCFP in 75 ng plazmida, ki je vseboval cCFP- povezovalni peptid-ZnfHIVC-hisznačka, sta bila ko-transficirana z 350ng programa nukleinske kisline (Program SPR, split, FRET; tabela 1). Emisija CFPja (475 nm) je bila detektirana po vzbujanju pri 433 nm. [C] 75 nm vsakega plazmida s split YFP himemim proteinom (hisznačka- Znf_PBSII_povezovalni peptid-nYFP in cYFPpovezovalni peptid-Znf_Zif268-povezovalni peptid-hisznačka) je bilo ko-transficiranega z 350 ng plazmida s programom nukleinske kisline (Program SPR, split, FRET; tabela 1). YFP emisijski signal pri 529 nm je bil zmerjen po vzbujanju pri 513 nm pod konfokalnim mikroskopom.Figure 6. In vivo reconstitution of two non-functional halves of a green fluorescent protein (named split_GFP) linked to nucleic acid binding domains in the presence of programmatic DNA. [Α] schematic of reconstitution split_GFPjev. [Β] 75 ng of plasmid containing his ZnF badge Glil-binding peptide-nCFP and 75 ng of plasmid containing cCFP-binding peptide-ZnfHIVC-tag were co-transfected with 350ng of nucleic acid program (SPR Program) , split, FRET; Table 1). CFPja emission (475 nm) was detected after excitation at 433 nm. [C] 75 nm of each plasmid with a split YFP chimeric protein (His-Znf_PBSII_-binding peptide-nYFP and cYFP-binding peptide-Znf_Zif268-binding peptide-His) was co-transfected with 350 ng of plasmid, FRET Nucleic Acid Program (FRET program) Table 1). The YFP emission signal at 529 nm was measured after excitation at 513 nm under a confocal microscope.
Slika 7. In vitro rekonstitucija dveh nefunkcionalnih split-GFPjev povezanih z vezavnimi domenami za nukleinske kisline v prisotnosti programske DNK. Lizati HEK293 celic, ki so bile transficirane s plazmidi, ki so kodirali his_značka_Znf_Glil -povezovalni peptid-nCFP in cCFP-povezovalni peptid-Znf HIVC-his značka ali his_značka-Znf_PBSII_povezovalni peptid-nYFP in cYFP- povezovalni peptid-Znf_Zif268-povezovalni peptid-his značka so bili zmešani s 50μg programske DNK (Program SPR, split, FRET; tabela 1). Po 18 urah inkubacije na 4° C se je opazoval fluorescentni spekter za CFP in YFP. Emisijski vrhi so označeni s puščicami.Figure 7. In vitro reconstitution of two non-functional split-GFPs linked to nucleic acid binding domains in the presence of programmatic DNA. Lysates of HEK293 cells transfected with plasmids encoding his_Znf_Glil-binding peptide-nCFP and cCFP-binding peptide-Znf HIVC-his tag or his-tag-Znf_PBSII_binding peptide-nYFP binding-peptide-nYFP badge were mixed with 50μg of program DNA (SPR program, split, FRET; Table 1). After 18 hours of incubation at 4 ° C, the fluorescence spectrum for CFP and YFP was observed. The emission peaks are indicated by arrows.
Slika 8. In vivo rekonstitucija dveh parov split flourescenčnih proteinov (split CFP in split YFP) je bila pokazana s FRET metodo. HEK293 celice so bile ko-tranficirane s plazmidi, ki so kodirali hisznačka-ZnfGlil-povezovalni peptid-nCFP, cCFP-povezovalni peptidZnfHIVC-hisznačka, hisznačka-ZnfPBSIIjpovezovalni peptid-nYFP, cYFP-povezovalni peptid-Znf_Zif268-povezovalni peptid-hisznačka in s plazmidom, ki je vseboval programsko DNK (Program SPR, split, FRET, tabela 1). [A. levo zgoraj] Prikaz rekonstitucije CFP iz split CFPjev. Eksitacija pri 453 nm, emisija od 470 dO 510 nm. [A. desno zgoraj] Prikaz rekonstitucije YFP iz split YFPjev. Eksitacija pri 415 nm, emisija od 525 do 560 nm. [A. levo spodaj] Hkraten prikaz CFP in YFP od zgoraj. [A. desno spodaj] Iste celice obarvane z barvilom Hoechst 34580. Puščice kažejo na celice, ki kažejo FRET signal, kar dokazuje kolokalizacijo vseh štirih split GFP fuzij znotraj celičnega jedra. [B. levo zgoraj] Prikaz donorja, rekonstituiran CFP pred deaktivacijo fluorofora photobleaching. [A. desno zgoraj] Prikaz prejemnika, rekonstituiranega mCitrinina po deaktivaciji fluorofora. Beljeno območje je označeno s puščicami. [B. levo spodaj] Prikaz donorja, rekonstituiranega CFP po deaktivaciji fluorofora. Povečana flourescenca donorja po deaktivaciji fluorofora prejemnika je označena s puščicami.Figure 8. In vivo reconstitution of two pairs of split fluorescent proteins (split CFP and split YFP) was demonstrated by the FRET method. HEK293 cells were co-transfected with plasmids that encoded hissign-ZnfGlil-binding peptide-nCFP, cCFP-binding peptideZnfHIVC-hissign, hissign-ZnfPBSIIj-binding peptide-nYFP, cYFP-peptide-bindingZYZP2 , which contained programming DNA (SPR program, split, FRET, Table 1). [A. top left] Displays CFP reconstitution from split CFPs. Excitation at 453 nm, emission from 470 dO 510 nm. [A. top right] View YFP reconstitution from split YFPjev. Excitation at 415 nm, emission from 525 to 560 nm. [A. bottom left] Simultaneous representation of CFP and YFP from above. [A. bottom right] The same cells stained with Hoechst 34580 dye. Arrows point to cells showing the FRET signal, demonstrating the colocalization of all four split GFP fusions within the cell nucleus. [B. left top] Donor view reconstituted CFP before photobleaching fluorophore deactivation. [A. top right] View recipient of reconstituted mCitrinin after fluorophore deactivation. The bleached area is indicated by arrows. [B. left bottom] View of donor reconstituted CFP after fluorophore deactivation. Increased donor fluorescence after recipient fluorophore deactivation is indicated by arrows.
Slika 9. Biosinteza violaceina v prisotnosti programske DNK. Prekonočne kulture E. coli s plazmidi, ki kodirajo himeme proteina ZnfBlues-povezovalni peptid-vioA, Znf_Zif268povezovalni peptid-vioB, Znf-PBSII-povezovalni peptid-vioE, Znf-HivC-povezovalni peptidvioD, ZnfGlil-povezovalni peptid- vioC (tabela 1) z ali brez plazmida ki vsebuje programska DNK (tabela 1, program za biosintezo (123456) ali program za biosintezo (341256)). Po 17,5 urah je bila narejena ekstrakcija, TLC analiza in določila se je količina violaceina. Količina violaceina proizvedenega v prisotnosti programske DNK (program za biosintezo 123456) je bila veliko večja kot v primeru programske DNK (program za biosinteza 341256) oz. ko v E. coli ni bilo prisotnega programa.Figure 9. Biosynthesis of violacein in the presence of programmatic DNA. Cross cultures of E. coli with plasmids encoding the protein chymes ZnfBlues-binding peptide-vioA, Znf_Zif268 binding peptide-vioB, Znf-PBSII-binding peptide-vioE, Znf-HivC-binding peptidvioD, ZnfGlil-binding peptide-vioC with or without plasmid containing program DNA (Table 1, biosynthesis program (123456) or biosynthesis program (341256)). After 17.5 hours, extraction, TLC analysis was performed and the amount of violacein was determined. The amount of violacein produced in the presence of program DNA (biosynthesis program 123456) was much higher than in the case of program DNA (biosynthesis program 341256) or. when no program was present in E. coli.
Podroben opis izuma:Detailed description of the invention:
Definicije:Definitions:
Izraz “program / programska nukleinska kislina / programsko nukleotidno zaporedje / zaporedje programske DNK” se nanaša na nukleinsko kislino, ki vsebuje tarčno zaporedje nukleotidov poljubne dolžine in števila, katero prepoznavajo vezavne domene za nukleinske kisline. Te tarčne sekvence so ločene z nukleotidnimi zaporedji poljubnih dolžin imenovani distančniki. Programje lahko v gostiteljsko celico vnesen kot tak ali pa vstavljen v poljuben vektor in pomnožen v gostiteljski celici.The term "program / program nucleic acid / program nucleotide sequence / program DNA sequence" refers to a nucleic acid containing a target sequence of nucleotides of any length and number recognized by the nucleic acid binding domains. These target sequences are separated by nucleotide sequences of arbitrary lengths called spacers. The software can be inserted into the host cell as such, or inserted into any vector and multiplied in the host cell.
Izraz “tarča / tarčno nukleotidno zaporedje / motiv tarčnega nukleotidnega zaporedja“, uporabljen v tekstu, se nanaša na nukleotidno zaporedje poljubne dolžine, ki je substrat za vezavne domene nukleinskih kislin.The term "target / target nucleotide sequence / target nucleotide sequence motif" used throughout the text refers to a nucleotide sequence of any length that is a substrate for nucleic acid binding domains.
Izraz “vezavni faktor / vezavna domena za nukleinske kisline” se nanaša na katerokoli molekulo s sposobnostjo, da se veže na nukleinske kisline. Vezavni faktorje lahko naraven ali umetno konstruiran celoten protein ali le segment proteina s sposobnostjo, da se veže na specifično zaporedje nukleotidov nukleinske kisline. V tem izumu je nukleinsko kislinski vezavni element uporabljen kot nosilec encimov, ki so vključeni v biosintezno pot ali kateri drug funkcionalni polipeptid. Vezavna domena nukleinskih kislin je povezana z molekulo encima s kemijsko vezjo. To se doseže s povezovalnim peptidom. Vezavna domena za nukleinske kisline se veže na eno ali več specifičnih mest na programu nukleinsko kislinske sekvence in zagotavlja visoko lokalno koncentracijo in pravilno prostorsko pozicijo encimov vključenih v biosintezno pot.The term "nucleic acid binding factor / binding domain" refers to any molecule with the ability to bind to nucleic acids. The binding factors can be a natural or artificially engineered whole protein or just a segment of a protein with the ability to bind to a specific nucleotide sequence of a nucleic acid. In the present invention, the nucleic acid binding element is used as a carrier for enzymes involved in the biosynthetic pathway or any other functional polypeptide. The nucleic acid binding domain is linked to an enzyme molecule by a chemical bond. This is achieved by the binding peptide. The nucleic acid binding domain binds to one or more specific sites on the nucleic acid sequence program and provides a high local concentration and correct spatial position of the enzymes involved in the biosynthetic pathway.
Izraz “distančnik / zaporedje distančnika” se nanaša na zaporedje nukleotidov poljubne dolžine, ki loči tarčna nukleotidna zaporedja.The term spacer / spacer sequence refers to a sequence of nucleotides of any length that separates the target nucleotide sequences.
Uporabljen izraz “nukleinska kislina” se nanaša na polimerno obliko nukleotidov poljubne dolžine, ribonukleotidov ali deoksiribonukleotidov in ni omejena na eno, dva ali več verižno DNK ali RNK, genomsko DNK, cDNK, DNK- RNK hibride ali polimere s fosfotiolirano hrbtenico, iz purinskih in pirimidinskih baz ali drugih naravnih, kemijskih ali biokemijskih modificiranih, nenaravnih ali derivatiziranih nukleotidnih baz.The term "nucleic acid" refers to a polymeric form of nucleotides of any length, ribonucleotides or deoxyribonucleotides and is not limited to one, two or more strands of DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids or polymers with phosphothiolated backbone pyrimidine bases or other natural, chemical or biochemical modified, unnatural or derivatized nucleotide bases.
Izraz “polipeptid”, “protein”, “peptid”, se nanaša na polimerno obliko aminokislin poljubnih dolžin, ki lahko vključuje običajne in neobičajne aminokisline, kemično ali biokemično modificirane ali derivatizirane aminokisline in polipeptide z modificirano peptidno hrbtenico. Izraz “funkcionalni polipeptid”, uporabljen tu, se nanaša na polipeptid poljubne dolžine, ki izraža kakršnokoli funkcijo kot so nastanek strukture, usmerjanje na specifično lokacijo, ciljanje organelov, olajšanje in sprožitev kemijskih reakcij, vezava na druge funkcionalne polipetide. Izraz “encim biosintezne poti”, uporabljen tu, se nanaša na polipeptid poljubne dolžine, ki ima sposobnost formacije nove kemijske vezi.The term "polypeptide", "protein", "peptide" refers to a polymeric form of amino acids of any length that may include ordinary and unusual amino acids, chemically or biochemically modified or derivatized amino acids and polypeptides with a modified peptide backbone. The term "functional polypeptide" as used herein refers to an polypeptide of any length that expresses any function such as structure formation, site-specific targeting, organelle targeting, facilitation and initiation of chemical reactions, binding to other functional polypeptides. The term "biosynthetic pathway enzyme" as used herein refers to an polypeptide of any length capable of forming a new chemical bond.
Izraz “ himemi protein” uporabljen tu, ima splošen pomen in se nanaša na polimerno obliko aminokislin poljubne dolžine, sestavljeno iz več kot enega proteina/domene/segmenta, po možnosti povezanega enega z drugim preko povezovalca poljubne dolžine preferenčno sestavljenega iz 1 do 40 aminokislin in da je vsaj en protein/domena/segment nukleotidni vezavni faktor, celoten ali vezavna domena drugi pa je encim v biosintezni poti oz. kak drug funkcionalen polipeptid, celoten ali aktivna domena.The term "heme protein" as used herein has a general meaning and refers to a polymeric form of amino acids of any length composed of more than one protein / domain / segment, possibly linked to one another via a linker of any length preferentially composed of 1 to 40 amino acids, and that at least one protein / domain / segment is a nucleotide binding factor and the whole or binding domain is the other enzyme in the biosynthesis pathway. any other functional polypeptide, whole or active domain.
Izraz “ heterologni” se nanaša na kontekst genetsko modificiranih gostitelj skih celic in se nanaša na polipeptid za katerega velja vsaj ena izmed naslednjih trditev: (a) polipeptid je tuj (“eksogen”) za gostiteljsko celico (v naravi ga v njej ne najdemo); (b) polipeptid je v naravi prisoten (“endogen”) v danem gostitelj skem mikroorganizmu ali gostiteljski celici, ampak je proizveden v nenaravnih (več kot pričakovano oziroma v večjih količinah, kot je najdeno v naravi) količinah v celici ali se razlikuje v nukleotidni sekvenci od endogene nukleotidne sekvence tako, da je isti protein (ima isto oziroma znatno podobno aminokislinsko sekvenco) kot endogen proizveden v nenaravnih (več kot pričakovano oziroma več kot je najdeno v naravi) količinah v celici.The term "heterologous" refers to the context of genetically modified host cells and refers to a polypeptide to which at least one of the following is true: (a) the polypeptide is foreign ("exogenous") to the host cell (not found in nature) ; (b) the polypeptide is naturally occurring (“endogenous”) in a given host micro-organism or host cell, but is produced in unnatural (greater than expected or greater amounts than found in nature) quantities in the cell or varies in nucleotide sequences from the endogenous nucleotide sequence such that the same protein (having the same or substantially similar amino acid sequence) as the endogen is produced in unnatural (more than expected or more than is found in nature) amounts in the cell.
Izraz “homologen” uporabljen tu, se nanaša na proteine ali nukleinske kisline z ohranjeno aminokislinsko ali nukleotidno sekvenco, preferenčno z vsaj 50 % sorodnostjo, z minimumom 20% ohranjenosti, determinirana s proteinsko ali nukleinsko kislinskimi primerjalnimi tehnikami, ki so znane strokovnjakom na področju. Homologni proteini so okarakterizirani z opravljanjem enakih funkcij v celici. Homologne nukleinske kisline so kodirajoče za homologne proteine.The term "homologous" as used herein refers to proteins or nucleic acids with a conserved amino acid or nucleotide sequence, preferably with at least 50% affinity, with a minimum of 20% conservation determined by protein or nucleic acid comparative techniques known to those skilled in the art. Homologous proteins are characterized by performing the same functions in the cell. Homologous nucleic acids are coding for homologous proteins.
Izraz “rekombinanten” uporabljen tu, pomeni, daje določena nukleinska kislina (DNK ali RNK) produkt raznih kombinacij kloniranja, restrikcij in/ali ligacij, ki vodijo do konstrukta ki ima strukturno kodirajoče ali nekodirajoče sekvence različne od endogenih nukleinskih kislin v naravnih sistemih. Generalno se lahko DNK sekvenca, ki kodira strukturno kodirajočo sekvenco lahko združi iz cDNK fragmentov ali iz kratkih oligonukleotidnih povezovalcev ali iz sintetičnih oligonukleotidov, iz katerih dobimo sintetično nukleinsko kislino, ki se lahko izraža iz rekombinantne transkripcij ske enote v celice ali v ne-celičniThe term "recombinant" as used herein means that a particular nucleic acid (DNA or RNA) is the product of various combinations of cloning, restriction and / or ligation leading to a construct having structurally coding or non-coding sequences different from endogenous nucleic acids in natural systems. Generally, a DNA sequence encoding a structural coding sequence can be assembled from cDNA fragments or from short oligonucleotide linkers or from synthetic oligonucleotides from which synthetic nucleic acid is obtained that can be expressed from recombinant transcription units into cells or into non-cellular cells
transkripciji in translacijskem sistemu. Takšna sekvenca se lahko uporabi v obliki odprtega bralnega okvirja in ne prihaja do motenj zaradi internih ne-prevedenih sekvenc oz intronov, ki so navadno prisotni v evkariontskih genih. Genomska DNK, ki vsebuje pomembne sekvence se lahko uporabi tudi za formacijo rekombinantnega gena ali transkripcijske enote. Sekvence ne-prevedene DNK so lahko prisotne na 5' ali 3' strani odprtega bralnega okvirja, kjer takšne sekvence ne vplivajo na manipulacijo ali ekspresijo kodirajočih regij in lahko delujejo kot modulatoiji produkcije želenih produktov prek različnih mehanizmov (glej DNK regulatome sekvence, spodaj).transcription and translation systems. Such a sequence can be used in the form of an open reading frame and does not interfere with internal non-translated sequences or introns that are usually present in eukaryotic genes. Genomic DNA containing important sequences can also be used to form a recombinant gene or transcriptional unit. Non-translated DNA sequences may be present on the 5 'or 3' side of the open reading frame, where such sequences do not affect the manipulation or expression of the coding regions and may act as modulators of the production of the desired products through various mechanisms (see DNA regulatory sequences, below).
Izraz “gostiteljska celica” uporabljen tu, se nanaša na in vivo ali in vitro evkariontsko ali prokariontsko celico, na celični ali multiceliČni organizem (celična linija) kultiviran kot unicelična entiteta, ki je oziroma je bila uporabljena kot prejemnik nukleinske kisline (ekspresijski vektor, ki vsebuje nukleotidno sekvenco, ki kodira enega ali več genskih produktov biosintezne poti kot npr. genski produkti mevalonatne poti) in vključuje potomce originalne celice, ki je bila gensko spremenjena z nukleinsko kislino. Seveda potomci ene celice niso nujno kompletno identični staršem v morfološki obliki in v celotnem DNK komplementu, zaradi posledic naravnih, naključnih ali načrtovanih mutacij. “Gensko spremenjena gostiteljska celica” (tudi “rekombinantna gostiteljska celica”) je gostiteljska celica v katero je bila vnesena heterologna nukleinska kislina, ekspresijski vektor. Na primer, prokariontska gostiteljska celica je gensko spremenjena gostiteljska celica (bakterija), ki je nastala z vnosom heterologne nukleinske kisline, kar pomeni, da je to eksogena nukleinska kislina, ki je tuja (normalno ni prisotna v naravi) prokariontski gostiteljski celici, ali rekombinatna nukleinska kislina, ki normalno ni prisotna v prokariotski gostiteljski celice ali evkariontska gostiteljska celica, kije genetsko modificirana. Evkariontska gostiteljska celica nastane genetsko spremenjena gostiteljska celica tako, da je v primemo evkariontsko gostiteljsko celico vnesena heterologna nukleinska kislina, to je eksogena nukleinska kislina, ki je tuja evkariotnski gostiteljski celice ali rekombinantna nukleinska kislina, ki navadno ni prisotna v evkariotnski gostiteljski celici.The term "host cell" as used herein refers to an in vivo or in vitro eukaryotic or prokaryotic cell, to a cell or multicellular organism (cell line) cultured as a unicellular entity, or used as a nucleic acid recipient (expression vector that contains a nucleotide sequence encoding one or more gene products of the biosynthetic pathway such as the mevalonate pathway gene products) and includes the offspring of an original cell that has been genetically modified by a nucleic acid. Of course, the offspring of a single cell are not necessarily completely identical to the parent in morphological form and in the entire DNA complement, due to the consequences of natural, accidental or planned mutations. A "genetically modified host cell" (also a "recombinant host cell") is a host cell into which a heterologous nucleic acid, an expression vector, has been introduced. For example, a prokaryotic host cell is a genetically engineered host cell (bacterium) that is formed by the introduction of a heterologous nucleic acid, meaning that it is an exogenous nucleic acid that is a foreign (not normally present in nature) prokaryotic host cell, or recombinant a nucleic acid not normally present in a prokaryotic host cell or a eukaryotic host cell that is genetically modified. A eukaryotic host cell produces a genetically modified host cell by introducing a heterologous nucleic acid into a primordial eukaryotic host cell, that is, an exogenous nucleic acid, which is a foreign eukaryotic host cell or a recombinant nucleic acid that is not normally present in the eukaryotic host.
Izraz “biosintezna pot” uporabljen tu, se nanaša na sekvenco encimskih in drugih reakcij preko katerih se neka spojina pretvarja v drugo z nastajanjem novih kovalentnih vezi v organizmu ali in vitro.The term "biosynthesis pathway" as used herein refers to a sequence of enzymatic and other reactions through which a compound is converted to another by forming new covalent bonds in the body or in vitro.
Izraz “in vitro” uporabljen tu, se nanaša na proces, ki ne poteka v živih organizmih oz celicah ampak v kontroliranem okolju.The term "in vitro" as used herein refers to a process that takes place not in living organisms or cells but in a controlled environment.
Izraz “povezovalni peptid” se nanaša na kratko aminokislinsko sekvenco, katere vloga je lahko le ločevanje posameznih domen fuzijskih proteinov. Vloga povezovalnega peptida v fuzijskem proteinu pa je lahko tudi predstavitev cepitvenega mesta ali mesta za postranslacijske modifikacije, vključno s predstavitvijo mest za izboljšano procesiranje antigenov. Dolžina povezovalnega peptida ni omejena, a je normalno dolg do 20 aminokislin.The term "binding peptide" refers to a short amino acid sequence whose role can only be the separation of individual fusion protein domains. The role of the binding peptide in the fusion protein may also be the presentation of the cleavage site or site for post-translational modifications, including the presentation of sites for improved antigen processing. The binding peptide is not limited in length but is normally up to 20 amino acids long.
Normalno je heterologna nukleinska kislina vnesena v ekspresijski vektor. Primerni vektorji so: plazmidi, virusni vektorji in drugi. Ekspresijski vektorji kompatibilni z gostiteljskimi celicami so dobro znani strokovnjakom na tem področju in vsebujejo potrebne kontrolne elemente za transkripcijo in translacijo nukleinskih kislin. Tipično ekspresijski vektor vsebuje kaseto z antibiotično rezistenco, sekvenco za himemi protein pod promotorjem primernim za vodeno ekspresijo v gostitelj ski celice, poliadenilacijski signal in transkripcij ski terminator.Normally, a heterologous nucleic acid is introduced into an expression vector. Suitable vectors are: plasmids, viral vectors and others. Host cell-compatible expression vectors are well known to those skilled in the art and contain the necessary control elements for transcription and translation of nucleic acids. Typically, the expression vector comprises a cassette with antibiotic resistance, a sequence for the heme protein under the promoter suitable for guided expression into the ski cell host, a polyadenylation signal, and a transcription ski terminator.
Metoda za sintezo biosintetskega produkta/prekurzoriaMethod for the synthesis of a biosynthetic product / precursor
Ta izum zagotavlja metodo za sintezo produkta ali prekurzorja biosintetske poti v gensko spremenjeni gostiteljski celici ali in vitro. Metoda vključuje gojenje gensko spremenjenih gostiteljskih celic v ustreznih pogojih, kjer gensko spremenjeni gostitelj vključuje: a) nukleinske kisline z nukleotidnim zaporedjem, ki kodira za tri ali več vezavnih faktorjev, ki so povezani z encimi biosintetske poti ali drugimi funkcionalnimi polipeptidi, in b) nukleinsko kislino z enim ali več programskimi nukleotidnimi zaporedji.The present invention provides a method for the synthesis of a product or precursor of a biosynthetic pathway in a genetically modified host cell or in vitro. The method involves the cultivation of genetically modified host cells under suitable conditions, wherein the genetically modified host includes: a) nucleic acids with a nucleotide sequence encoding for three or more binding factors associated with biosynthetic pathway enzymes or other functional polypeptides, and b) nucleic acids acid with one or more program nucleotide sequences.
V drugem izvedbenem primeru izuma metoda vključuje tvorbo produkta in vitro. In vitro metoda vključuje: a) vsaj tri ali več vezavnih faktorjev, ki so povezani s himemimi encimi biosintetske poti ali drugimi funkcionalnimi polipeptidi, b) nukleinsko kislino z enim ali več programskimi nukleotidnimi zaporedji in c) substrat prvega encima in kofaktorji, prisotne v zmesi.In another embodiment of the invention, the method involves the formation of the product in vitro. The in vitro method includes: a) at least three or more binding factors that are associated with the biosynthetic pathway chemical enzymes or other functional polypeptides, b) a nucleic acid with one or more program nucleotide sequences, and c) a substrate of the first enzyme and cofactors present in the mixture .
Vezavni faktor veže tarčni element nukleinske kisline znotraj programskega nukleotidnega zaporedja z zadostno afiniteto, kar zagotavlja povezavo med himemimThe binding factor binds the target nucleic acid element within the program nucleotide sequence with sufficient affinity to provide a link between the chemical
encimom biosintetske poti in programskim nukleotidnim zaporedjem. Afiniteta med himemim encimom biosintetske poti in programskim nukleotidnim zaporedjem je dovolj visoka, da so himemi encimi biosintetske poti ali ostali funkcionalni polipeptidi imobilizirani na programskem nukleotidnem zaporedju. Zaporedje programske nukleinske kisline določa zaporedje sosednjih vezavnih faktorjev in s tem tudi zaporedje sosednjih himemih encimov ali ostalih funkcionalnih polipeptidov. Zaporedje tarčnih elementov nukleinske kisline z vezanimi funkcionalnimi polipeptidi je lahko urejeno v takem zaporedju, kot v določeni biosintetski reakciji. Prav tako je lahko zaporedje tarčnih elementov nukleinske kisline z ustreznimi funkcionalnimi polipeptidi spremenjeno s spreminjanjem vrstnega reda sosednjih tarčnih zaporedij v programskem nukleotidnem zaporedju, kar zagotavlja drugačno zaporedje sosednjih biosintetskih encimov ali drugih funkcionalnih polipeptidov. Gojenje gostiteljskih celic poteka tako, daje substrat prvega encima bodisi: a) prisoten v celici ali b) se ga celicam dodaja od zunaj. Encimi biosintetske poti se sintetizirajo v celici in bodisi a) pretvarjajo substrat v produkt v celici, ali b) se izločijo iz celice in zunaj celice pretvarjajo substrat v produkt.biosynthetic pathway enzyme and program nucleotide sequence. The affinity between the biosynthetic pathway chemical enzyme and the program nucleotide sequence is high enough that the chemical enzymes of the biosynthetic pathway or other functional polypeptides are immobilized on the program nucleotide sequence. The sequence of a program nucleic acid determines the sequence of adjacent binding factors and thus the sequence of adjacent chemical enzymes or other functional polypeptides. The sequence of the nucleic acid target elements with the bound functional polypeptides can be arranged in such sequence as in a particular biosynthetic reaction. Likewise, the sequence of target nucleic acid elements with the corresponding functional polypeptides can be altered by changing the order of adjacent target sequences in the program nucleotide sequence, providing a different sequence of adjacent biosynthetic enzymes or other functional polypeptides. The host cell is grown in such a way that the substrate of the first enzyme is either: a) present in the cell or b) added to the cells from the outside. The enzymes of the biosynthetic pathway are synthesized in the cell and either a) convert the substrate into a product in the cell, or b) excrete from the cell and convert the substrate into the product outside the cell.
Uporaba programskega nukleotidnega zaporedja za imobilizacijo encimov biosintetske poti zagotavlja vsaj enega od sledečih učinkov: povečano učinkovitost biosintetske poti in optimiziran metabolni tok, zmanjšane metabolne obremenitve in koncentracija potencialno strupenih prostih intermediatov v citosolu, možnost alternativne vejitve metabolnih poti, ki vodi do novih produktov procesa biosinteze. Programsko nukleotidno zaporedje omogoča uravnoteženo encimsko aktivnost. Na primer, programsko nukleotidno zaporedje se lahko spremeni tako, da vključuje več ponovitev tarčnih elementov nukleinskih kislin za himeme polipeptide, ki imajo nižjo aktivnost pri pretvarjanju substrata, kar povzroči večje število ponovitev himemih polipeptidov, ki imajo nižjo aktivnost pri pretvarjanju substrata, kot tistih z višjo aktivnostjo. To je prednost v primerih, ko encim z nižjo aktivnostjo katalizira stopnjo biosintetkse poti, ki omejuje hitrost. Uporaba programskega nukleotidnega zaporedja poveča učinkovitost in optimizira metabolni tok z zmanjšanjem razdalje med encimi, ki so udeleženi v biosintetski poti; zaradi povečane učinkovitosti in optimiziranega metabolnega toka, je lahko donos produkta enak ali višji z manjšo količino encima. Sinteza manjše količine encima v gostiteljski celici predstavlja prednost, saj zagotavlja manjšo metabolno obremenitev gostiteljske celice. Ker je pretvorba intermediatov biosintetske poti učinkovitejša z uporabo programskega nukleotidnega zaporedja, se količina/koncentracija intermediatov biosintetske » · poti v citosolu ali citoplazmi zmanjša. Zmanjšana količina prostih intermediatov biosintetske poti predstavlja prednost, ko so ti intermediati strupeni za gostiteljsko celico.The use of a software nucleotide sequence to immobilize biosynthetic pathway enzymes provides at least one of the following effects: increased biosynthetic pathway efficiency and optimized metabolic flux, reduced metabolic loads and the concentration of potentially toxic free intermediates in the cytosol, the possibility of alternative branching of the metabolic pathways leading to new products of the biosynthesis process . The program nucleotide sequence provides balanced enzyme activity. For example, a program nucleotide sequence may be modified to include more repetitions of target nucleic acid elements for himme polypeptides having lower substrate conversion activity, resulting in a greater number of repetitions of himme polypeptides having lower substrate conversion activity than those with higher activity. This is advantageous in cases where a lower activity enzyme catalyzes the rate-limiting rate of the biosynthetic pathway. The use of a program nucleotide sequence increases efficiency and optimizes metabolic flux by reducing the distance between enzymes involved in the biosynthetic pathway; owing to increased efficiency and optimized metabolic flux, the product yield may be equal or higher with less enzyme content. Synthesis of a smaller amount of enzyme in a host cell is an advantage as it provides a smaller metabolic load for the host cell. As the conversion of biosynthetic pathway intermediates is more efficient using the program nucleotide sequence, the amount / concentration of biosynthetic pathway intermediates in the cytosol or cytoplasm is reduced. The reduced amount of free intermediates of the biosynthetic pathway is an advantage when these intermediates are toxic to the host cell.
V nekaterih izvedbenih primerih so na programskem nukleotidnem zaporedju imobilizirani vsaj trije himemi biosintetski encimi ali drugi funkcionalni polipeptidi. Prvi himemi funkcionalni encim ali polipeptid proizvede prvi produkt, ki je substrat naslednjega himemega encima ali drugega funkcionalnega polipeptida. Himerni proteini, encimi biosinteske poti ali drugi funkcionalni polipeptidi so postavljeni v medsebojno bližino. Na ta način je efektivna koncentracija prvega produkta visoka in drugi himemi encim biosintetske poti lahko učinkovito deluje na prvi produkt.In some embodiments, at least three chemically biosynthetic enzymes or other functional polypeptides are immobilized on a program nucleotide sequence. The first chimeric functional enzyme or polypeptide produces the first product that is a substrate of the next chimeric enzyme or other functional polypeptide. Chimeric proteins, biosynthetic pathway enzymes, or other functional polypeptides are positioned in proximity to each other. In this way, the effective concentration of the first product is high and the second chemistry enzyme of the biosynthetic pathway can effectively act on the first product.
Trije ali več (to je trije, štirje, pet, šest, sedem ali več) funkcionalnih polipeptidov je lahko mobiliziranih na programsko zaporedje nukleotidov. V nekaterih izvedbenih primerih programsko zaporedje nukleinskih kislin vključuje (v smeri 5' proti 3') a) eno ponovitev elementa tarčnega zaporedja nukleotidov za prvi himemi polipeptid ali encim biosintetske poti, b) eno ponovitev elementa tarčnega zaporedja nukleotidov za drugi himemi polipeptid ali encim biosintetske poti, in c) eno ponovitev elementa tarčnega zaporedja nukleotidov za tretji himemi polipeptid ali encim biosintetske poti. V drugih izvedbenih primerih programsko zaporedje nukleinskih kislin vključuje (v smeri 5' proti 3') a) eno ponovitev elementa tarčnega zaporedja nukleotidov za prvi himemi polipeptid ali encim biosintetske poti in b) dve ali več (to je dve, tri, štiri ali več) ponovitvi elementa tarčnega zaporedja nukleotidov za drugi himemi encim biosintetske poti ali drugi funkcionalni polipeptid. Na ta način se lahko spreminja razmerje kateregakoli himemega funkcionalnega polipeptida v biosintetski poti. Na primer, razmerje med prvim in drugim himemim polipeptidom biosintetske poti lahko znaša od približno 0,1:10 do približno 10:0,1, in razmerje med drugim in tretjim polipeptidom od približno 0,1:10 do približno 10:0,1 in tako naprej.Three or more (i.e., three, four, five, six, seven, or more) functional polypeptides may be mobilized to the nucleotide program sequence. In some embodiments, the nucleic acid program sequence includes (in the 5 'vs. 3' direction) a) one repetition of the target nucleotide sequence element for the first chemistry polypeptide or enzyme of the biosynthetic pathway, b) one repetition of the target nucleotide sequence element for the second chemistry polypeptide or enzyme biosynthetic and c) one repetition of the target nucleotide sequence element for the third chimeric polypeptide or biosynthetic pathway enzyme. In other embodiments, the nucleic acid program sequence includes (in the 5 'vs. 3' direction) a) one repetition of the target nucleotide sequence element for the first chimeric polypeptide or biosynthetic pathway enzyme, and b) two or more (i.e. two, three, four or more) ) repeating an element of the target nucleotide sequence for another chemistry biosynthetic pathway enzyme or other functional polypeptide. In this way, the ratio of any chemically functional polypeptide in the biosynthetic pathway can be altered. For example, the ratio of the first to second chimeric polypeptide of the biosynthetic pathway may range from about 0.1: 10 to about 10: 0.1, and the ratio between the second and third polypeptides from about 0.1: 10 to about 10: 0.1 and so on.
V nekaterih izvedbenih primerih so na programski nukleinski kislini imobilizirani vsaj trije ali več (to je trije, štirje, pet, šest, sedem ali več) himemi encimi biosintetske poti. Prvi himemi encim biosintetske poti proizvede prvi produkt, ki je substrat za drugi produkt, ki je substrat za tretji produkt biosintetske poti himemih encimov: V teh izvedbenih primerih zaporedje tarčnih nukleotidnih zaporedij v programski nukleinski kislini določa vrstni red in število kopij himemih encimov biosintetske poti.In some embodiments, at least three or more (i.e., three, four, five, six, seven or more) chimeric enzymes of the biosynthetic pathway are immobilized on the program nucleic acid. The first biosynthetic pathway enzyme produces the first product, which is the substrate for the second product, which is the substrate for the third biosynthetic pathway product: In these embodiments, the sequence of target nucleotide sequences in the program nucleic acid determines the order and number of copies of the biosynthetic pathway enzymes.
Načrtovanje programskega nukleotidnega zaporedjaProgramming nucleotide sequence programming
Programsko nukleotidno zaporedje je načrtovano tako, da razporedi encime biosintetske poti v funkcionalen kompleks. Programsko nukleotidno zaporedje je sestavljeno iz treh ali več tarčnih nukleotidnih elementov za vezavo vezavnih faktorjev. Vezava vezavnih faktorjev nukleinskih kislin, ki so povezani s himemimi encimi biosintetskih poti, na tarčni nukleotidni element, zagotavlja imobilizacijo encima na programsko nukleotidno zaporedje. Vsak tarčni element ima odgovarjajočega vezavnega partnerja v himemem encimu biosintetske poti ali v funkcijskem polipeptidu. Dani tarčni nukleotidni element je lahko neposredno soseden drugemu tarčnemu nukleotidnemu elementu ali pa je od njega ločen z nukleotidnim vmesnikom.The program nucleotide sequence is designed to arrange enzymes of the biosynthetic pathway into a functional complex. A program nucleotide sequence consists of three or more target nucleotide elements for binding binding factors. Binding of the nucleic acid binding factors that are linked to the biochemical enzymes of the biosynthetic pathway to the target nucleotide element ensures immobilization of the enzyme to the program nucleotide sequence. Each target element has a corresponding binding partner in the biosynthetic pathway chemical enzyme or functional polypeptide. A given target nucleotide element may be directly adjacent to or separated from another target nucleotide element by a nucleotide interface.
Programsko nukleotidno zaporedje je lahko in vivo vključeno v različne tipe gostitelj skih celic v različnih oblikah. Primeri različnih oblik programskega nukleotidnega zaporedja so, vendar niso omejeni na, bakulovirusne vektorje, bakteriofagne vektorje, plazmide, fagmide, kozmide, fozmide, bakterijske umetne kromosome, virusne vektorje (na primer, vendar ne omejeni na virusne vektorje na osnovi virusa vakcinije, poliovirusa, adenovirusa, AA, SV40, virusa herpesa in podobno), umetne kromosome na osnovi Pl, plazmide iz kvasovk, umetne kromosome kvasovk in druge vektorje. Programsko nukleotidno zaporedje je lahko vklučeno v različne gostiteljske celice, tudi kot linearna molekula nukleinske kisline. Vse te oblike programskega nukleotidnega zaporedja se lahko uporabijo tudi in vitro. Če je programsko nukleotidno zaporedje vsaj delno sestavljeno iz RNA, se lahko uporablja per se, lahko pa se uporablja tudi DNA, ki kodira za programsko nukleotidno zaporedje. DNA, ki kodira za programsko zaporedje nukleinskih kislin, ki se lahko uporablja in vitro ali in vivo, obstaja v različnih oblikah, kot našteto, vendar ne omejeno na primere zgoraj.The program nucleotide sequence can be involved in vivo in different types of host cells in different forms. Examples of various forms of program nucleotide sequence are, but are not limited to, baculovirus vectors, bacteriophage vectors, plasmids, phagmids, cosmids, fosmids, bacterial artificial chromosomes, viral vectors (for example, but not limited to vaccine virus vectors, polioviruses adenoviruses, AA, SV40, herpes virus and the like), Pl-based artificial chromosomes, yeast plasmids, yeast artificial chromosomes and other vectors. The program nucleotide sequence can be incorporated into various host cells, even as a linear nucleic acid molecule. All these forms of program nucleotide sequence can also be used in vitro. If the program nucleotide sequence is at least partially composed of RNA, it can be used per se, or DNA encoding the program nucleotide sequence can be used. DNA encoding a nucleic acid program sequence that can be used in vitro or in vivo exists in various forms as listed but not limited to the examples above.
V produkcijskem sistemu je lahko programsko nukleotidno zaporedje prisotno v eni ali večih kopijah. Več kopij ene programskega nukleotidnega zaporedja lahko zagotovi večje število funkcionalnih biosintetskih kompleksov, sestavljenih iz imobiliziranih himemih encimov biosintetske poti. Posamezne kopije programskih nukleotidnih zaporedij so lahko prisotne na eni ali več molekulah nukleinske kisline. Zato povečanje števila posameznih molekul nukleinskih kislin zagotavlja tudi večje število kopij programskega nukleotidnega zaporedja v produkcijskem sistemu.In a production system, a program nucleotide sequence may be present in one or more copies. Multiple copies of one program nucleotide sequence can provide a greater number of functional biosynthetic complexes composed of immobilized chemistry enzymes of the biosynthetic pathway. Individual copies of program nucleotide sequences may be present on one or more nucleic acid molecules. Therefore, increasing the number of individual nucleic acid molecules also provides a greater number of copies of the program nucleotide sequence in the production system.
Na primer, vendar ne omejeno na ta primer, bakterijska gostitelj ska celica se lahko transformira s plazmidi, ki se samostojno podvojujejo, ali katerim drugim tipom nukleinske kisline, ki vsebuje programsko nukleotidno zaporedje v eni ali večih kopijah, kar torej zagotavlja višje celokupno število programskih nukleotidnih zaporedij v produkcijskem sistemu. Plazmid, ki vsebuje eno ali več kopij programskega nukleotidnega zaporedja, je lahko prisoten v sistemu v eni ali večih kopijah (na primer, vendar ne omejeno na plazmid z velikim številom kopij, s katerim se transformira bakterijska celica). Višje števile plazmidov v produkcijskem sistemu z eno ali večimi kopijami programskega nukleotidnega zaporedja tudi zagotavlja višje celokupno število kopij programskega nukleotidnega zaporedja v produkcijskem sistemu.For example, but not limited to, a bacterial host cell may be transformed with self-duplicating plasmids or any other type of nucleic acid containing a program nucleotide sequence in one or more copies, thereby providing a higher overall program number nucleotide sequences in the production system. A plasmid containing one or more copies of a program nucleotide sequence may be present in the system in one or more copies (for example, but not limited to a large copy number plasmid that transforms a bacterial cell). Higher numbers of plasmids in a production system with one or more copies of the program nucleotide sequence also provide a higher total number of copies of the program nucleotide sequence in the production system.
Na primer, vendar ne omejujoče, je lahko bakterijska gostiteljska celica transformirana z nukleotidnim zaporedjem, ki kodira za eno verižno, dvo verižno, deloma dvo verižno večverižno ali deloma večverižno molekulo RNA. Programsko nukleotidno zaporedje je lahko prisotno v eni ali večih kopijah na posamezni molekuli RNA. Več kopij programskega nukleotidnega zaporedja na posamezni molekuli RNA zagotavlja višje celokupno število kopij programskega nukleotidnega zaporedja v produkcijskem sistemu. Tudi kodirajoče zaporedje za molekulo RNA je lahko v produkcijskem sistemu prisotno v eni ali več kopijah. Višje število kopij kodirajočega zaporedja za molekulo RNA zagotavlja višje število molekul RNA v produkcijskem sistemu in torej tudi višje število programskih nukleotidnih zaporedij v produkcijskem sistemu. Celokupno število posameznih molekul RNA v produkcijskem sistemu se lahko regulira s promotorji, ki se uporabljajo za uravnavanje prepisovanja kodirajočih nukleotidnih zaporedij v molekule RNA, ki so sestavljene iz ene ali večih kopij programskega nukleotidnega zaporedja. Močnejši promotorji zagotavljajo višje število kopij RNA molekul v produkcijskem sistemu in torej zagotavljajo višje celokupno število posameznih programskih nukleotidnih zaporedij v produkcijskem sistemu. Višje celokupno število programskih nukleotidnih zaporedij zagoravlja višje število funkcionalnih biosintetskih kompleksov, ki so sestavljeni iz imobiliziranih himemih encimov biosintetske poti.For example, but not limitingly, a bacterial host cell may be transformed by a nucleotide sequence encoding for a single stranded, double stranded, partly double stranded multilayered or partly multilayered RNA molecule. A program nucleotide sequence may be present in one or more copies on a single RNA molecule. Multiple copies of a program nucleotide sequence on a single RNA molecule provide a higher total number of copies of a program nucleotide sequence in a production system. Also, the coding sequence for an RNA molecule may be present in the production system in one or more copies. A higher copy number of the coding sequence for an RNA molecule provides a higher number of RNA molecules in the production system and therefore a higher number of program nucleotide sequences in the production system. The total number of individual RNA molecules in a production system can be regulated by promoters used to regulate the transcription of coding nucleotide sequences into RNA molecules consisting of one or more copies of a program nucleotide sequence. Stronger promoters provide a higher copy number of RNA molecules in the production system and therefore provide a higher total number of individual program nucleotide sequences in the production system. A higher total number of program nucleotide sequences combines a higher number of functional biosynthetic complexes, which are composed of immobilized chemistry enzymes of the biosynthetic pathway.
Programsko nukleotidno zaporedje je sestavljeno iz vsaj treh tarčnih nukleotidnih zaporedij, torej se vsaj trije odgovarjajoči vezavni elementi v treh himemih encimih biosintetske poti vežejo na programsko nukleotidno zaporedje. Programsko nukleotidno zaporedje ima eno, dve ali več kopij vsakega tarčnega nukleotidnega elementa. Vsak tarčni nukleotidni element je torej lahko prisoten v eni ali večih kopijah. Te kopije so lahko neposredno ena poleg druge ali ločene z nukleotidnim distančnikom. Ponovitve tarčnih elementov so lahko ločene tudi z enim ali večimi drugimi tarčnimi elementi, ki so lahko prisotni v eni ali večih kopijah. Če so v programskem nukleotidnem zaporedju prisotni le trije tarčni nukleotidni elementi, so lahko različni, kar zagotavlja pravilno prostorsko razporeditev ali visoko lokalno koncentracijo dveh različnih himernih encimov biosintetske poti ali drugih funkcionalnih polipeptidov. Če so na programskem nukleotidnem zaporedju prisotni le trije tarčni nukleotidni elementi, so lahko iste vrste, kar zagotavlja pravilno prostorsko organizacijo ali visoko lokalno koncentracijo za tri kopije istega himernega biosintetskega encima.The program nucleotide sequence consists of at least three target nucleotide sequences, that is, at least three corresponding binding elements in the three chemical enzymes of the biosynthetic pathway bind to the program nucleotide sequence. The program nucleotide sequence has one, two or more copies of each target nucleotide element. Each target nucleotide element may therefore be present in one or more copies. These copies may be directly next to each other or separated by a nucleotide spacer. Replicates of target elements may also be separated by one or more other target elements, which may be present in one or more copies. If only three target nucleotide elements are present in the program nucleotide sequence, they may be different, which ensures the correct spatial distribution or high local concentration of two different chimeric enzymes of the biosynthetic pathway or other functional polypeptides. If only three target nucleotide elements are present on a program nucleotide sequence, they can be of the same species, providing the correct spatial organization or high local concentration for three copies of the same chimeric biosynthetic enzyme.
Specifični tarčni nukleotidni element določa nukleotidno zaporedje od 5' proti 3' koncu molekule nukleinske kisline. Na dvoverižnem programskem nukleotidnem zaporedju ali dvoverižnem odseku programskega nukleotidnega zaporedja je lahko tarčno nukleotidno zaporedje tudi reverzni komplement zaporedja prvotnega tarčnega nukleotidnega zaporedja. Isti vezavni faktor se lahko veže na tarčni nukleotidni element in njegov reverzni komplement, a v različni orientaciji in na drugi strani programskega nukleotidnega zaporedja. Zato se lahko reverzni komplement tarčnega nukleotidnega zaporedja uporabi namesto tarčnega nukleotidnega zaporedja, če sta dva himema encima biosintetske poti ali dva druga funkcionalna polipeptida prevelika, da bi se lahko vezala na programsko nukleotidno zaporedje neposredno eden poleg drugega, ali pa za dosego drugačne prostorske razporeditve dveh kopij istega himernega encima biosintetske poti ali drugega funkcionalnega polipeptida na programskem nukleotidnem zaporedju.The specific target nucleotide element determines the nucleotide sequence from the 5 'to 3' end of the nucleic acid molecule. On a two-stranded program nucleotide sequence or a two-stranded program nucleotide sequence section, the target nucleotide sequence may also be a reverse complement to the sequence of the original target nucleotide sequence. The same binding factor can bind to the target nucleotide element and its reverse complement, but in a different orientation and on the other side of the program nucleotide sequence. Therefore, the reverse complement of the target nucleotide sequence can be used instead of the target nucleotide sequence if two biosynthetic pathway enzyme chymes or two other functional polypeptides are too large to bind to the program nucleotide sequence directly next to each other, or to achieve a different spatial arrangement of the two copies of the same chimeric enzyme of the biosynthetic pathway or other functional polypeptide on a program nucleotide sequence.
Nukleotidni distančnik je lahko postavljen med dva tarčna nukleotidna elementa, da zagotavlja dovolj prostora za velike himerne encime biosintetske poti ali druge funkcionalne polipeptide, ki delujejo v sosledju v biosintetski poti. V dvoverižnem programskem nukleotidnem zaporedju ali dvoverižnem odseku programskega nukleotidnega zaporedja lahko nukleotidni distančnik tudi zagotavlja pravilno prostorsko razporeditev dveh sosednjih ali bližnjih encimov biosintetske poti ali drugih funkcionalnih polipeptidov. Programsko nukleotidno zaporedje je lahko na primer dvoverižno DNA zaporedje, ki tvori vijačnico. Zato se lahko s spreminjanjem dolžine nukleotidnega vmesnika doseže različna prostorskaA nucleotide spacer may be positioned between two target nucleotide elements to provide sufficient space for large chimeric enzymes of the biosynthetic pathway or other functional polypeptides acting sequentially in the biosynthetic pathway. In a two-stranded program nucleotide sequence or a two-stranded program nucleotide sequence section, the nucleotide spacer may also provide the correct spatial arrangement of two adjacent or nearby enzymes of the biosynthetic pathway or other functional polypeptides. For example, a program nucleotide sequence may be a double stranded DNA sequence that forms a helix. Therefore, varying the spatial length can be achieved by changing the length of the nucleotide interface
razporeditev imobiliziranih himemih encimov biosintetske poti ali pa večja razdalja med dvema sosednjima himemima encimoma biosintetske poti (Slika 2).distribution of immobilized biosynthetic pathway enzyme enzymes, or greater distance between two adjacent biosynthetic pathway enzyme enzymes (Figure 2).
Posamezno programsko nukleotidno zaporedje ima splošno formulo [((X or X’)n Sp)]m, kjer je Xn tarčno nukleotidno zaporedje, Xn' je reverzni komplement tarčnega nukleotidnega zaporedja, S je neobvezen nukleotidni vmesnik poljubne dolžine, m je celo število večje ali enako 3 in predstavlja število tarčnih nukleotidnih zaporedij z neobveznim nukleotidnim vmesnikom v programskem nukleotidnem zaporedju, n označuje tip tarčnega nukleotidnega elementa (na primer XI, X2 in tako naprej) in predstavlja različne posamezne tarčne nukleotidne elemente, p označuje tip nukleotidnega vmesnika (na primer Sl, S2 in tako naprej) in predstavlja različne posamezne nukleotidne vmesnike. Posamezna tarčna nukleotidna zaporedja v programskem nukleotidnem zaporedju so lahko poljubne dolžine in so odvisna od odgovarjajočih vezavnih elemenov. Uporabimo lahko na primer cinkove prste s tremi prsti. V teh primerih je dolžina tarčnega nukleotidnega zaporedja običajno, a ne vedno, 9 ali 10 nukleotidov.Each program nucleotide sequence has the general formula [((X or X ') n Sp)] m, where Xn is a target nucleotide sequence, Xn' is a reverse complement of the target nucleotide sequence, S is an optional nucleotide interface of any length, m is an integer greater or equal to 3 and represents the number of target nucleotide sequences with an optional nucleotide interface in the program nucleotide sequence, n indicates the type of target nucleotide element (for example XI, X2 and so on) and represents the various individual target nucleotide elements, p indicates the type of nucleotide interface (e.g. Fig. S2 and so on) and represents different individual nucleotide interfaces. Individual target nucleotide sequences in the program nucleotide sequence may be of any length and depend on the corresponding binding elements. For example, zinc fingers with three fingers can be used. In these cases, the target nucleotide sequence length is usually, but not always, 9 or 10 nucleotides.
V nekaterih izvedbenih primerih izuma ima programsko nukleotidno zaporedje splošno formulo (X1)(S1)(X2)(S2)(X3)(S3)(X4), kjer je XI prvo tarčno nukleotidno zaporedje za vezavo prvega himemega encima biosintetske poti; kjer je X2 drugo tarčno nukleotidno zaporedje za vezavo drugega himernega encima biosintetske poti; kjer je X3 tretje tarčno nukleotidno zaporedje za vezavo tretjega himemega encima biosintetske poti; kjer je X4 četrto tarčno nukleotidno zaporedje za vezavo četrtega himemega encima biosintetske poti; kjer je Sl, če je prisoten, prvi nukleotidni vmesnik, ki zagotavlja pravilno prostorsko orientacijo sosednjih himemih encimov biosintetske poti; kjer je S2, če je prisoten, drugi nukleotidni vmesnik, ki zagotavlja pravilno prostorsko orientacijo sosednjih himemih encimov biosintetske poti; kjer je S3, če je prisoten, tretji nukleotidni vmesnik, ki zagotavlja pravilno prostorsko orientacijo sosednjih himemih encimov biosintetske poti.In some embodiments of the invention, the program nucleotide sequence has the general formula (X1) (S1) (X2) (S2) (X3) (S3) (X4), wherein XI is the first target nucleotide sequence for the binding of the first biosynthetic pathway enzyme; wherein X2 is a second target nucleotide sequence for binding another chimeric enzyme of the biosynthetic pathway; wherein X3 is a third target nucleotide sequence for binding the third heme chemical enzyme of the biosynthetic pathway; wherein X4 is a fourth target nucleotide sequence for binding the fourth chimeric enzyme of the biosynthetic pathway; wherein Sl, if present, is the first nucleotide interface providing the correct spatial orientation of adjacent biosynthetic pathway enzyme enzymes; where S2, if present, is a second nucleotide interface providing the correct spatial orientation of adjacent biosynthetic pathway enzyme enzymes; where S3, if present, is the third nucleotide interface that provides the correct spatial orientation of adjacent biosynthetic pathway enzyme enzymes.
V nekaterih drugih izvedbenih primerih ima programsko nukleotidno zaporedje formulo (X1)(S1)(X2)(S1)(X2)(S1)(X3), kjer je XI prvo tarčno nukleotidno zaporedje za vezavo prvega himemega encima biosintetske poti; kjer je X2 drugo tarčno nukleotidno zaporedje za vezavo drugega himemega encima biosintetske poti; kjer je X3 tretje tarčno nukleotidno zaporedje za vezavo tretjega himemega encima biosintetske poti; kjer je Sl, če je prisoten, nukleotidni vmesnik istega tipa med vsakim parom tarčnih nukleotidnih zaporedij.In some other embodiments, the program nucleotide sequence has the formula (X1) (S1) (X2) (S1) (X2) (S1) (X3), wherein XI is the first target nucleotide sequence for binding the first chimeric enzyme of the biosynthetic pathway; wherein X2 is a second target nucleotide sequence for the binding of a second chimeric enzyme of the biosynthetic pathway; wherein X3 is a third target nucleotide sequence for binding the third heme chemical enzyme of the biosynthetic pathway; where Sl, if present, is a nucleotide interface of the same type between each pair of target nucleotide sequences.
Zaporedno ponavljajoče tarčno nukleotidno zaporedje (v tem primeru X2) lahko zagotavlja višjo lokalno koncentracijo himemega encima, ki katalizira stopnjo biosintetske poti, ki omejuje hitrost. Rezultat tega je povečana učinkovitost metabolnega toka poti. Zaporedno ponavljajoče tarčno nukleotidno zaporedje (v tem primeru X2) lahko zagotavlja tudi povečano stopnjo dimerizacije (ali multimerizacije, če se specifično tarčno nukleotidno zaporedje ponovi več kot dvakrat zaporedoma) dimemih (ali multimemih) himemih proteinov biosintetske poti. Zaporedno ponavljajoče tarčno nukleotidno zaporedje (v tem primem X2) lahko zagotavlja tudi povečano učinkovitost metabolnega toka v biosintetskih poteh, kjer en encim deluje na substrat več kot enkrat zaporedoma.A sequentially repeated target nucleotide sequence (in this case, X2) may provide a higher local concentration of the chemical enzyme that catalyzes the rate of the rate-limiting biosynthetic pathway. This results in increased efficiency of metabolic pathway flow. Sequentially repeating the target nucleotide sequence (in this case X2) may also provide an increased degree of dimerization (or multimerization if the specific target nucleotide sequence is repeated more than twice in a row) of the dimeric (or multimemic) chimeric proteins of the biosynthetic pathway. A sequentially repeated target nucleotide sequence (in this example X2) may also provide increased metabolic flux efficiency in biosynthetic pathways where one enzyme acts on the substrate more than once in a row.
V nekaterih drugih izvedbenih primerih ima programsko zaporedje nukleinskih kislin formulo (X1)(S1)(X2)(S2)(X1)(S3)(X3), kjer je XI prvo tarčno nukleotidno zaporedje za vezavo prvega himemega encima biosintetske poti in se ponovi v programskem nukleotidnem zaporedju, a ne neposredno za prvo ponovitvijo; kjer je X2 drugo tarčno nukleotidno zaporedje za vezavo drugega himemega encima biosintetske poti; kjer je X3 tretje tarčno nukleotidno zaporedje za vezavo tretjega himemega encima biosintetske poti; kjer je Sl, če je prisoten, prvi nukleotidni vmesnik, ki zagotavlja pravilno prostorsko orientacijo sosednjih himemih encimov biosintetske poti; kjer je S2, če je prisoten, drugi nukleotidni vmesnik, ki zagotavlja pravilno prostorsko orientacijo sosednjih himemih encimov biosintetske poti; kjer je S3, če je prisoten, tretji nukleotidni vmesnik, ki zagotavlja pravilno prostorsko orientacijo sosednjih himemih encimov biosintetske poti. To programsko nukleotidno zaporedje se lahko uporabi za izboljšanje učinkovitosti biosintetskih poti, kjer en himemi encim biosintetske poti (v tem primem himemi encim biosintetske poti, ki se veže na tarčno nukleotidno zaporedje XI) v biosintetski poti nastopa več kot enkrat, a ne v neposrednem sosledju.In some other embodiments, the nucleic acid program sequence has the formula (X1) (S1) (X2) (S2) (X1) (S3) (X3), wherein XI is the first target nucleotide sequence for binding the first biosynthetic pathway enzyme and is repeated in the program nucleotide sequence but not directly behind the first iteration; wherein X2 is a second target nucleotide sequence for the binding of a second chimeric enzyme of the biosynthetic pathway; wherein X3 is a third target nucleotide sequence for binding the third heme chemical enzyme of the biosynthetic pathway; wherein Sl, if present, is the first nucleotide interface providing the correct spatial orientation of adjacent biosynthetic pathway enzyme enzymes; where S2, if present, is a second nucleotide interface providing the correct spatial orientation of adjacent biosynthetic pathway enzyme enzymes; where S3, if present, is the third nucleotide interface that provides the correct spatial orientation of adjacent biosynthetic pathway enzyme enzymes. This program nucleotide sequence can be used to improve the efficiency of biosynthetic pathways, where one chemistry enzyme of the biosynthetic pathway (hereinafter, the chemistry enzyme of the biosynthetic pathway that binds to the target nucleotide sequence XI) occurs more than once in the biosynthetic pathway, but not in direct succession .
Načrtovanje vezavnih faktorjevDesign of binding factors
Izum se nanaša na himeme polypeptide, sestavljene iz faktorja za vezavo nukleinske kisline (v nadaljevanju NABF) in encima biosintetske poti ali drugega funkcionalnega polipeptida, ki sta med seboj povezana z aminokislinskim povezovalcem. NABF so lahko bodisi naravnega izvora ali umetno načrtovani in so lahko izolirani iz kateregakoli organizma. NABF je lahko katerikoli polipeptid, domena, protein ali proteinski segment, ki vsebuje vsaj en motiv, ki prepoznava nukleinske kisline. NABF interagira z nukleinskimi kislinami tako, da specifično prepoznava nukleotidno zaporedje. Primeri polipeptidov z NABF vsebujejo, a niso omejeni na: motiv vijačnica-zanka-vijačnica, cinkov prst, levcinska zadrga, winged helix, krilata vij ačnica-zanka-vijačnica, motiv vij ačnica-zanka-vijačnica in HMG-zaporedje.The invention relates to chimeric polypeptides consisting of a nucleic acid binding factor (hereinafter NABF) and an enzyme of the biosynthetic pathway or other functional polypeptide, which are linked to each other by an amino acid linker. NABFs can be either of natural origin or artificially designed and can be isolated from any organism. NABF can be any polypeptide, domain, protein or protein segment that contains at least one nucleic acid recognition motif. NABF interacts with nucleic acids by specifically recognizing the nucleotide sequence. Examples of NABF polypeptides include, but are not limited to: helix-loop-helix motif, zinc finger, leucine zipper, winged helix, wing-helix-loop-helix, helix-loop-helix motif, and HMG sequence.
Polipeptidi z osnovnim motivom vij ačnica-zanka-vijačnica se delijo v faktorje z levcinsko zadrgo, faktorje z motivom vij ačnica-zanka vijačnica, faktorje z motivom vijačnicazanka-vijačnica in levcinsko zadrgo, NF-1, F-X in bHSH. Določa jih struktura dveh avijačnic, ki sta med seboj povezani z zanko. Transkripcij ski dejavniki, ki vključujejo to domeno, se običajno v dimemi obliki vežejo na konsenzno palindromno zaporedje (CACGTG), ki se imenuje tudi E-zaporedje. Transkripcij ski dejavniki bHLH se vežejo na nepalindromska zaporedja, ki so pogosto podobna E-zaporedju.Polypeptides with the basic helix-loop-helix motif are divided into leucine zipper factors, helix-loop helix motif factors, helix-helix and leucine zipper motif factors, NF-1, F-X and bHSH. They are determined by the structure of the two loopholes connected by a loop. Transcriptional factors that involve this domain are typically bound in the dimethyl form to the consensus palindromic sequence (CACGTG), also called the E-sequence. The bHLH transcription factors bind to non-palindromic sequences, which are often similar to the E-sequence.
V nekaterih drugih izvedbenih primerih so NABF izbrani iz nadrazreda DNAvezavnih domen, ki koordinirajo cinkov ion. Ta nadrazred je razdeljen v podrazrede: cinkov prst Cys4 tipa jedrnega receptorja, različni cinkovi prsti Cys4, cinkovi prsti Cys2His2, cinkovi prsti z jedrom Cys6-Zn in cinkovi prsti druge sestave. Posamezne domene cinkovega prsta se običajno pojavljajo v tandemskih ponovitvah z dvema, tremi ali več prsti, kar sestavlja DNA-vezavno domeno proteina. Te tandemske razporeditve cinkovih prstov se lahko vežejo v veliki žleb molekule DNA, običajno vsake tri baze pare. α-vijačnica vsake domene lahko z nukleotidi v molekuli nukleinske kisline tvori interakcije, ki so specifične na nukleotidno zaporedje; aminokislinski ostanki zgoraj omenjene α-vijačnice lahko interagirajo s 4 ali več nukleotidi, s čimer tvorijo prekrivajoč se vzorec interakcij s sosednjimi cinkovimi prsti.In some other embodiments, NABFs are selected from a superclass of DNA-binding domains that coordinate the zinc ion. This subclass is divided into subclasses: Cys4 core receptor type zinc finger, various Cys4 zinc fingers, Cys2His2 zinc fingers, Cys6-Zn zinc fingers, and other composition zinc fingers. Individual zinc finger domains usually occur in tandem repeats with two, three, or more fingers, which is the DNA binding domain of the protein. These tandem zinc finger arrangements can bind into a large groove of a DNA molecule, usually every three base pairs. the α-helix of each domain can form nucleotide sequence-specific interactions with nucleotides in the nucleic acid molecule; the amino acid residues of the aforementioned α-helix can interact with 4 or more nucleotides, thereby forming an overlapping pattern of interactions with adjacent zinc fingers.
V nekaterih drugih izvedbenih primerih so NABF izbrani iz nadrazreda z motivom vij ačnica-zanka-vijačnica, ki se deli na šest razredov: homeodomena, fork head / winged helix, dejavniki toplotnega šoka, triptofanski klaster in TEA-domene. Vijačnica-zankavijačnica je glavni strukturni motiv, sposoben vezave na DNA. Obe α-vijačnici prepoznavata in vežeta molekulo DNA, ena vijačnica je na N-, druga pa na C-koncu motiva.In some other embodiments, NABFs are selected from the parent-loop loop-helix motif, which is divided into six classes: homeodomain, fork head / winged helix, heat shock factors, tryptophan cluster, and TEA domains. The helix-loop is the main structural motif capable of binding to DNA. Both α-helices recognize and bind a DNA molecule, one helix is at the N- and the other at the C-end of the motif.
Četrti nadrazred NABF predstavljajo faktorji z beta-ogrodjem, ki interagirajo z malim žlebom. Nadalje se deli v naslednje razrede: RHR, STAT, p53, MADS, transkripcij ski faktorji z beta-sodčkom in α-vijačnico, TATA-vezavni proteini, heteromemi CCAAT faktorji, grainyhead, dejavniki ohladitvenega šoka in Runt.The fourth NABF class is represented by beta-framework factors that interact with the small groove. It is further divided into the following classes: RHR, STAT, p53, MADS, beta-barrel and α-helical transcription factors, TATA-binding proteins, heteromemic CCAAT factors, grainyhead, cooling shock factors and Runt.
Pomembni so tudi ostali transkripcijski faktorji, ki se vežejo na specifična nukleotidna zaporedja, kot na primer mutirani restrikcij ski encimi brez restrikcij ske aktivnosti a s sposobnostjo prepoznavanja zaporedja.Other transcription factors that bind to specific nucleotide sequences are also important, such as mutated restriction enzymes without restriction activity but with the ability to recognize the sequence.
Ta izum se nanaša, vendar se ne omejuje na polipeptide z domeno cinkovega prsta, ki tvori manjšo, neodvisno zvito domeno, ki vsebuje cinkov ion in prepozna specifično nukleotidno zaporedje. Domene cinkovega prsta običajno obstajajo kot tandemske ponovitve z vsaj dvema, tremi ali večimi cinkovimi prsti, ki skupaj sestavljajo DNA-vezavno domeno proteina. Vsak prst prepozna in se veže na mesta, sestavljena iz treh baznih parov. Za specifično vezavo so odgovorni aminokislinski preostanki na mestih 1, 2, 3 in 6 v a-vijačnici znotraj manjše domene cinkovega prsta. Z modularnim pristopom ali kombinatoriko lahko pomnožimo ponovljene manjše domene in dosežemo karakteristično vezavo z variacijami v nekaterih ključnih aminokislinskih preostankih. Tako se prsti s specifičnostjo za različne triplete kombinira za dosego specifične prepoznave daljših nukleotidnih zaporedij. S kombiniranjem vsaj dveh ali več domen cinkovih prstov lahko minimaliziramo nespecifično vezavo na nukleinske kisline, prisotne v gostiteljskem organizmu in povečamo specifičnost vezave polipeptidov, ki vsebujejo cinkove prste, na programsko nukleinsko kislino.The present invention relates, but is not limited to, polypeptides with a zinc finger domain that forms a smaller, independent coiled domain that contains a zinc ion and recognizes a specific nucleotide sequence. Zinc finger domains usually exist as tandem repeats with at least two, three or more zinc fingers that together make up the DNA-binding domain of the protein. Each finger recognizes and binds to places consisting of three base pairs. Amino acid residues at sites 1, 2, 3, and 6 in the α-helix within the smaller zinc finger domain are responsible for specific binding. A modular approach or combinatorics can multiply repeated smaller domains and achieve characteristic binding by variations in some key amino acid residues. Thus, soil with specificity for different triplets is combined to achieve specific recognition of longer nucleotide sequences. By combining at least two or more zinc finger domains, we can minimize the non-specific binding to nucleic acids present in the host organism and increase the specificity of binding of zinc finger containing polypeptides to program nucleic acid.
Domene cinkovega prsta so stabilne strukture, katerih konformacija se pri vezavi na tarčo le redko spremeni. V tem izumu so funkcionalni polipeptidi povezani z vsaj enim povezovalnim zaporedjem, ki je kovalentno povezan s posameznim encimom biosintetske poti. Povezovalno zaporedje določa položaj encima biosintetske poti ali drugega funkcionalnega polipeptida glede na domeno cinkovega prsta in glede na sosednji encim biosintetske poti ali drugi funkcionalen polipeptid. Povezovalna zaporedja se lahko razlikujejo v dolžini in aminokislinskem zaporedju in zagotavljajo, da kovalentno vezan encim lahko tvori pravilno terciarno strukturo in tako ohrani svojo biološko funkcijo.Zinc finger domains are stable structures whose conformation rarely changes when bound to a target. In the present invention, functional polypeptides are linked to at least one binding sequence that is covalently linked to a single enzyme of the biosynthetic pathway. The linking sequence determines the position of the enzyme biosynthetic pathway or other functional polypeptide relative to the zinc finger domain and relative to the adjacent enzyme biosynthetic pathway or other functional polypeptide. The binding sequences can vary in length and amino acid sequence and ensure that the covalently bound enzyme can form the correct tertiary structure and thus maintain its biological function.
Število himemih encimov biosintetske poti ali drugih funkcionalnih polipeptidov, vezanih na NABF, je lahko, a ni omejeno na tri, štiri, pet ali več in je lahko različno od števila posameznih tarčnih nukleotidnih elementov na programskem nukleotidnem zaporedju. Število himemih encimov biosintetske poti ali drugih funkcionalnih polipeptidov, povezanih z NABF je odvisno od števila korakov v biosintetski poti. Če biosintetska pot zahteva tri, štiri, pet različnih encimov ali drugih funkcionalnih polipeptidov za pretvorbo substrata v produkt ali prekurzor, bodo v programsko nukleotidno zaporedje vključeni vsaj trije, štirje, pet različnih vezavnih elementov v določenem vrstnem redu.The number of chemical enzymes of the biosynthetic pathway or other functional polypeptides bound to NABF may be, but is not limited to, three, four, five or more, and may be different from the number of individual target nucleotide elements on a program nucleotide sequence. The number of chemical enzymes of the biosynthetic pathway or other functional polypeptides associated with NABF depends on the number of steps in the biosynthetic pathway. If the biosynthetic pathway requires three, four, five different enzymes or other functional polypeptides to convert a substrate into a product or precursor, at least three, four, five different binding elements in a specific order will be included in the program nucleotide sequence.
V nekaterih izvedbenih primerih našega izuma se lahko kot programsko nukleotidno zaporedje uporabi molekule RNA. V tem primeru se uporabijo NABF, ki prepoznavajo specifično zaporedje RNA. Ti so lahko, a niso omejeni na: RNA prepozavni motiv (motiv RRM, RBD oz. RNP), heterogena jedrna RNP K-homologna domena (KH-domena), domena cinkovega prsta (najbolje karakterizirane domene cinkovega prsta, ki vežejo molekulo RNA, so tiste ki spadajo v tip CCHH in CCCH, lahko pa se uporabi tudi druge tipe) in domene Pumilio (Puf).In some embodiments of our invention, RNA molecules may be used as program nucleotide sequences. In this case, NABFs that recognize a specific RNA sequence are used. These may, but are not limited to: RNA recognition motif (RRM, RBD or RNP motif), heterogeneous core RNP K-homology domain (KH-domain), zinc finger domain (best characterized zinc finger domains that bind an RNA molecule, are those of the CCHH and CCCH type, but other types) and Pumilio (Puf) domains may be used.
Čeprav se lahko RNA-vezavne domene, ki prepoznavajo specifične sekundarne strukture na molekulah RNA, uporabi tudi kot NABF (na primer, a ne omejeno na Sl domene), so najprimernejše RNA-vezavne domene, ki prepoznavajo določeno zaporedje (na primer, a ne omejeno na RNA vezavne domene cinkovega prsta). Izumitelji predlagajo uporabo RNA-vezavnih domen, ki prepoznavajo specifična zaporedja dvoverižne RNA, saj omogočajo pravilno prostorsko razporeditev. Metode za načrtovanje cinkovih prstov, ki se vežejo na specifično dvoverižno RNA-zaporedje, so opisane v literaturi.Although RNA-binding domains that recognize specific secondary structures on RNA molecules can also be used as NABF (for example, but not limited to Sl domains), RNA-binding domains that recognize a specific sequence (e.g., but not restricted to the zinc finger RNA binding domains). The inventors propose the use of RNA-binding domains that recognize specific sequences of double-stranded RNAs as they allow proper spatial arrangement. Methods for the design of zinc fingers that bind to a specific double-stranded RNA sequence are described in the literature.
Načrtovanje biosintetskih noti.Design of biosynthetic notes.
Ta izum se nanaša na metodo za povečanje donosa produktov biosinteze. Ta metoda združuje: (i) programsko nukleotidno zaporedje; in (ii) himeme proteine z encimom biosintetske poti ali drugim funkcionalnim polipeptidom in NABF. Obe potrebni komponenti (i) in (ii) se lahko združita (i) in vitro, v raztopini v prisotnosti substratov in kofaktorjev za encime biosintetske poti, ali (ii) se lahko vstavita in izražata v gostiteljskih celicah in vivo.The present invention relates to a method for increasing the yield of biosynthesis products. This method combines: (i) a program nucleotide sequence; and (ii) chimeric proteins with a biosynthetic pathway enzyme or other functional polypeptide and NABF. The two necessary components (i) and (ii) can be combined (i) in vitro, in solution in the presence of substrates and cofactors for enzymes of the biosynthetic pathway, or (ii) can be inserted and expressed in host cells in vivo.
V izvedbenem primeru biosintetska pot pomeni, katerokoli encimsko kaskado, ki tvori novo kemijsko vez na substratu v določenem vrstnem redu, t.j. kot se pojavlja v naravi ali umetno načrtovanem. Umetno načrtovana biosintetska pot se nanaša na sintezo produkta, nepoznanega v naravi ali pa encimi biosintetske poti niso iz istega organizma ali pa so se pridobili z genskimi manipulacijami.In the embodiment, the biosynthetic pathway means any enzyme cascade that forms a new chemical bond on the substrate in a particular order, i.e. as it occurs in nature or artificially designed. An artificially designed biosynthetic pathway refers to the synthesis of a product unknown in nature or the enzymes of the biosynthetic pathway are not from the same organism or have been obtained through genetic manipulation.
Izum se nanaša na biosintetsko pot, na katerokoli sklopljeno encimsko reakcijo, ki se mora izvajati sosledno z vsaj tremi ali večimi encimi. Biosintetska pot (tok, učinkovitost) je lahko izmerjena z merjenjem koncentracije prekurzorjev in končnih produktov s primernimi metodami, ki so poznane strokovnjakom na tem področju.The invention relates to a biosynthetic pathway, to any coupled enzyme reaction which must be carried out concurrently with at least three or more enzymes. The biosynthetic pathway (flow, efficiency) can be measured by measuring the concentration of precursors and end products by suitable methods known to those skilled in the art.
Izum se nanaša na katerokoli biosintetsko pot, kar vključuje, a ni omejeno na:The invention relates to any biosynthetic pathway, which includes, but is not limited to:
• katabolne ali anabolne poti, • primarne metabolne poti, kot na primer, a ne omejeno na sintezo aminokislin, maščobnih kislin, ogljikovih hidratov, pirimidinov in purinov, • sekundarne metabolne poti, kot na primer, a ne omejeno na sintezo sekundarnih metabolitov z biološko aktivnostjo in farmakološkimi lastnostmi (poliketidi), neobičajnih peptidov, hormonov, terpenoidov (karotenoidov,...), pigmentov (violacein,melanin, ...) i. t. d.• catabolic or anabolic pathways, • primary metabolic pathways, such as but not limited to the synthesis of amino acids, fatty acids, carbohydrates, pyrimidines, and purines, • secondary metabolic pathways, such as, but not limited to, the synthesis of secondary metabolites by biological activity and pharmacological properties (polyketides), unusual peptides, hormones, terpenoids (carotenoids, ...), pigments (violacein, melanin, ...) i. t. d.
Encimi karotenoidne biosintetske potiCarotenoid biosynthetic pathway enzymes
Karotenoidi spadajo v kategorijo tetraterpenoidov. Astaksantin, zeaksantin inkantaksantin so derivati β-karotena in njihova biosintezo katalizirajo encimi karotenoidne biosintetske poti: crtE, crtB, črti, crtY, crtO, crtZ, kjer vrstni red in udeležba encimov vodijo v sintezo različnih produktov. Na primer, biosintetska pot, ki vključuje crtE, crtB, črti, crtY, crtO, crtZ, vodi v sintezo astaksantina, crtE, crtB, črti, crtY, crtZ vodijo v sintezo zeaksantina, crtE, crtB, črti, crtY, crtO pa v sintezo kantaksantina.Carotenoids fall into the category of tetraterpenoids. Astaxanthin, zeaxanthin incantaxanthin are β-carotene derivatives and their biosynthesis is catalyzed by the carotenoid biosynthetic pathway enzymes: crtE, crtB, lines, crtY, crtO, crtZ, where the order and participation of enzymes lead to the synthesis of different products. For example, a biosynthetic pathway involving crtE, crtB, lines, crtY, crtO, crtZ leads to astaxanthin synthesis, crtE, crtB, lines, crtY, crtZ lead to zeaxanthin synthesis, crtE, crtB, lines, crtY, crtO synthesis of canthaxanthin.
Violaceinska biosintetska potViolacein biosynthetic pathway
Geni za biosintezo pigmenta violaceina so v operonu, ki sestoji iz genov vioE, vioD, vioC, vioB, in vioA. VioA je od FAD odvisna 1-triptofan oksidaza, ki sintetizira IPA imin. Ta je substrat encima VioB, hemoprotein oksidaze, ki ga pretvori v spojino z neznano kemijsko formula (spojina X). VioE je nedavno odkrit protein brez karakteriziranih homologov in je ključni encim v sintezi violaceina. Deluje tako, da spojino X pretvori v intermediate, ki jih lahko kot substrat uporabita encima VioD in VioC, oba sta od FAD-odvisni monooksigenazi, ki hidroksilirata te spojine in tako vodita v nastanek violaceina.Viocein pigment biosynthesis genes are in an operon consisting of the genes vioE, vioD, vioC, vioB, and vioA. VioA is a FAD-dependent 1-tryptophan oxidase that synthesizes IPA imine. It is a substrate of the enzyme VioB, a hemoprotein oxidase, which converts it to a compound of unknown chemical formula (compound X). VioE is a recently discovered protein without characterized homologs and is a key enzyme in the synthesis of violacein. It works by converting compound X into intermediates that can be used as a substrate by the enzymes VioD and VioC, both of which are FAD-dependent monooxygenases that hydroxylate these compounds, leading to the formation of violacein.
Resveratrolna biosintetska potResveratrol biosynthetic pathway
Resveratrol (3, 5, 4’-transhidroksistilben) je rastlinski polifenol. Resveratrolna biosintetska pot sestoji iz štirih encimov: fenilalanin/amoniak-liaze (PAL) in cimetova kislina4-hidroksilaza, ki ju lahko nadomesti encim tirozin/amoniak-liaza (TAL), 4-kumarat/CoAligaza (4CL) in stilben-sintaza (STS). Prva dva encima, PAL in C4H, pretvorita fenilalanin v p-kumamo kislino (4-kumamo kislino). Tretji encim, 4CL, poveže p-kumamo kislino s pantotensko skupino koencima A (CoA), kar da product 4-kumaroil-CoA. Zadnji encim v poti, STS, katalizira kondenzacijo molekule 4-kumaroil-CoA in treh molekul malonil-CoA v resveratrol.Resveratrol (3, 5, 4′-transhydroxystilbene) is a plant polyphenol. The resveratrol biosynthetic pathway consists of four enzymes: phenylalanine / ammonia-lyase (PAL) and cinnamic acid 4-hydroxylase, which can be replaced by the enzyme tyrosine / ammonia-lyase (TAL), 4-coumarate / CoAligase (4CL) and stilben synthase (STS). ). The first two enzymes, PAL and C4H, convert phenylalanine into p-cumic acid (4-cumic acid). The third enzyme, 4CL, binds p-cumanoic acid to the pantothenic group coenzyme A (CoA), yielding the product 4-coumaroyl-CoA. The last enzyme in the pathway, STS, catalyzes the condensation of 4-coumaroyl-CoA and three malonyl-CoA molecules into resveratrol.
V tem izumu so encimi iz posamezne biosintetske poti, kot na primer biosintetske poti za sintezo violaceina, resveratrola ali karotenoidov, spojeni z NABF. S sosledno vezavo the encimov na programsko nukleotidno zaporedje lahko določimo zaporedje encimskih reakcij. To omogoča hitrejše in bolj učinkovite reakcije in tudi predstavlja možnost sinteze novih produktov s preurejanjem vrstnega reda encimskih reakcij (n. p. r.: če je vrstni red encimov 13-2 je končni produkt različen, kot če je vrstni red 1-2-3). Prednost našega izuma je možnost sinteze umetnih spojin z želenimi lastnostmi.In the present invention, enzymes from an individual biosynthetic pathway, such as biosynthetic pathways for the synthesis of violacein, resveratrol or carotenoids, are coupled to NABF. By sequential binding of the enzymes to the program nucleotide sequence, the sequence of enzymatic reactions can be determined. This allows for faster and more efficient reactions and also represents the possibility of synthesizing new products by rearranging the order of enzymatic reactions (eg, if the order of enzymes is 13-2, the end product is different than if the order is 1-2-3). An advantage of our invention is the ability to synthesize artificial compounds with the desired properties.
Rekombinantna DNARecombinant DNA
V izumu so se uporabljale standardne molekulamo-biološke metode, ki so v splošnem poznane strokovnjakom na tem področju.The invention employed standard molecular biological methods generally known to those skilled in the art.
Izumljeni protein se lahko sintetizirajo z izražanjem DNA, ki kodira za te proteine, v primernem gostitelj skem organizmu. DNA, ki kodira za proteine, se vstavi v primeren ekspresijski vektor. Primerni vektorji vključujejo, vendar niso omejeni na plazmide, virusne vektorje in drugo. Ekspresijski vektorji, ki so kompatibilni z gostiteljskim organizmov, so poznani strokovnjakom na tem področju in vključujejo primerne kontrolne elemente za prepisovanje in prevajanje nukleotidnega zaporedja.The invented protein can be synthesized by expressing the DNA encoding for these proteins in a suitable host organism. The protein coding DNA is inserted into a suitable expression vector. Suitable vectors include, but are not limited to, plasmids, viral vectors, and more. Expression vectors that are compatible with the host organisms are known to those skilled in the art and include suitable control elements for transcribing and translating the nucleotide sequence.
Ekspresijski vektorje lahko pripravljen za izražanje v prokariontskih in evkariontskih celicah. Prokariontske celice so na primer bakterije, največkrat Escherichia coli. N izumu so se prokariontske celice uporabile za produkcijo dovoljšne količine nukleinskih kislin. Ekspresijski vektorji v splošnem vključujejo kontrolne elemente, ki so operativno povezani z DNA iz izuma, ki kodira za proteine. Kontrolni elementi so izbrani tako, da povzročijo učinkovito in tkivno-specifično izražanje. Promotor je lahko konstitutiven ali inducibilen, odvisno od želenega vzorca izražanja. Promotor je lahko nativen ali tujega izvora (ne obstaja v celicah, v katerih je uporabljen. Promotor mora biti izbran tako, da deluje v tarčnih celicah gostitelj skega organizma. Poleg tega so vključeni tudi iniciacijski signali za učinkovito translacijo himemih proteinov, kar pomeni ATG in ustrezna zaporedja. Kadar vektor, uporabljen v izumu, vključuje dva ali več bralnih okvirjev, morajo biti bralni okvirji neodvisno operativno povezani s kontrolnimi elementi, kontrolni elementi pa morajo biti isti ali različni, odvisno od želj ene produkcije proteinov.Expression vectors can be prepared for expression in prokaryotic and eukaryotic cells. For example, prokaryotic cells are bacteria, most commonly Escherichia coli. In the invention, prokaryotic cells have been used to produce a sufficient amount of nucleic acids. Expression vectors generally include control elements operatively linked to the DNA of the protein-coding invention. Control elements are selected to induce efficient and tissue-specific expression. The promoter may be constitutive or inducible, depending on the pattern of expression desired. The promoter may be native or of foreign origin (does not exist in the cells in which it is used. The promoter must be selected to function in the target cells of the host organism. In addition, initiation signals are included to efficiently translate the chemical proteins, meaning ATG and When the vector used in the invention includes two or more reading frames, the reading frames must be independently operatively linked to the control elements and the control elements must be the same or different depending on the desired protein production.
Primeri:Examples:
Kloniranje in čiščenje polipetidovCloning and purification of polypeptides
DNK zaporedja vezavnih domen za nukleinske kisline in biosintetskih encimov ali drugih funkcionalnih polipeptidov, opisanih zgoraj, so bila načrtovana na osnovi aminokislinskih zaporedij izbranih proteinskih domen s pomočjo orodja Designer v programu DNA 2.0 Inc. Orodje Designer omogoča uporabniku načrtovanje fragmentov DNK in optimizacijo izražanja v želenih gostitelj iških organizmih (npr. E.coli) z za organizem specifičnim optimiziranjem kodonov. Geni so bili naročeni pri podjetju GENEART AG (Im Gewerbepark B32, D-93059 Regensburg), izrezani z restrikcijskimi encimi in klonirani v primeren vektor, ki vsebuje primerna regulatoma zaporedja, s standardnim postopkom, ki ga uporabljajo strokovnjaki s področja. DNK zaporedja razpolovljenih fluorescentnih proteinov so bila pomnožena s PCR, kot matrica so bila uporabljena DNK zaporedja fluorescentnih proteinov. Uporabljeni vektorji vključujejo komercialne vektorje pET, pBluescript, pCDNA, pSBlA2 (pSBlA2 http://partsregistry.Org/Part:pSB 1A2) pSBlC3 (http://partsregistry.org/wiki/index.php?title:=Part:pSB 1C3), pSB 1AK3 (http://partsregistry.org/wiki/index.php?title=Part:pSB 1AK3), in plazmidna vektorja v nizkih kopijah pSB4K5 (http://partsregistry.Org/Part:pSB4K5) in pSB4C5 (http://partsregistry.Org/Part:pSB4C5), ki nosijo vse potrebne lastnosti, kot so odpornost proti antibiotiku, mesto začetka podvojevanja in poliklonsko mesto.The DNA sequences of the nucleic acid binding domains and biosynthetic enzymes or other functional polypeptides described above were designed based on the amino acid sequences of the selected protein domains using the Designer tool in DNA 2.0 Inc. The Designer tool allows the user to design DNA fragments and optimize expression in desired host organisms (eg E.coli) with organism-specific codon optimization. Genes were ordered from GENEART AG (Im Gewerbepark B32, D-93059 Regensburg), excised by restriction enzymes, and cloned into a suitable vector containing appropriate sequence regulators using a standard procedure used by those skilled in the art. The DNA sequences of the half-fluorescent proteins were amplified by PCR, as the template DNA sequences of the fluorescent proteins were used. The vectors used include commercial vectors pET, pBluescript, pCDNA, pSBlA2 (pSBlA2 http://partsregistry.Org/Part:pSB 1A2) pSBlC3 (http://partsregistry.org/wiki/index.php?title : = Part: pSB 1C3 ), pSB 1AK3 (http://partsregistry.org/wiki/index.php?title=Part:pSB 1AK3), and plasmid vectors in low copies of pSB4K5 (http://partsregistry.Org/Part:pSB4K5) and pSB4C5 ( http://partsregistry.Org/Part:pSB4C5) that carry all the necessary properties such as antibiotic resistance, duplicate start site, and polyclonal site.
Metode molekularne biologije (fragmentacija DNK z restrikcij skimi encimi, pomnoževanje DNK z verižno reakcijo s polimerazo - PCR, PCR ligacija, določanje koncentracije DNK, agarozna gelska elektroforeza, čiščenje fragmentov DNK iz agaroznih gelov, ligacija fragmentov DNK v vektor, transformacija kemijsko kompetentnih celic E.coli DH5a, izolacija plazmidne DNK s komercialno dostopnimi kiti, presejanje in selekcija) so bile uporabljene za pripravo DNK konstruktov. Vsi postopki so bili izvedeni pod sterilnimi pogoji (aseptična tehnika). Odseki DNK so bili analizirani z restrikcijsko analizo in sekvenciranjem.Molecular biology methods (DNA fragmentation by restriction enzymes, DNA amplification by polymerase chain reaction with polymerase - PCR, PCR ligation, determination of DNA concentration, agarose gel electrophoresis, purification of DNA fragments from agarose gels, ligation of DNA fragments into vector, transformation of chemically competent cells E .coli DH5a, plasmid DNA isolation with commercially available putty, screening and selection) were used to prepare DNA constructs. All procedures were performed under sterile conditions (aseptic technique). DNA sections were analyzed by restriction analysis and sequencing.
Postopki molekularnega kloniranja so strokovnjakom področja dobro znani in so opisani v podrobnostih v kateremkoli priročniku molekularne biologije.Molecular cloning procedures are well known to those skilled in the art and are described in detail in any manual of molecular biology.
DNK konstrukti in ustrezni himemi proteini so opisani v Tabeli 1. Vsi DNK konstrukti imajo start kodon (ATG) pred histidinskim označevalcem oziroma kodirajočo regijo. Konstrukti z zapisom za himeme proteine so bili klonirani v vektor pET19b z namenom doseganja visokega izražanja, ali v pSB4K5 in pSB4C5 z namenom spremljati produkcijo karotenoidov in violaceina in vivo. Ekspresij ska kaseta v smeri 5' proti 3' vključuje T7 promotor, poliklonsko mesto za fuzijske proteine in T7 terminator. Ti regulatomi elementi omogočajo izražanje proteina v prokariotski celični liniji E.coli, ki vsebuje genetski zapis za T7 RNK polimerazo.The DNA constructs and the corresponding heme proteins are described in Table 1. All DNA constructs have a start codon (ATG) in front of the histidine marker or coding region. The constructs for the chimeric proteins were cloned into the pET19b vector for high expression, or into pSB4K5 and pSB4C5 to monitor the production of carotenoids and violacein in vivo. The 5 'to 3' expression cassette includes a T7 promoter, a polyclonal fusion protein site, and a T7 terminator. These regulatory elements allow expression of a protein in the E. coli prokaryotic cell line that contains the genetic record for T7 RNA polymerase.
DNK konstrukti so bili pripravljeni z uporabo metod molekularne biologije, ki so opisane v kateremkoli priročniku molekularne biologije in znane strokovnjakom področja. Plazmidi ter končni in vmesni konstrukti so bili transformirani v celice bakterije E.coli DH5a ali BL21 (DE3) pLysS.DNA constructs were prepared using molecular biology methods described in any manual of molecular biology and known to those skilled in the art. Plasmids and final and intermediate constructs were transformed into E. coli DH5a or BL21 (DE3) pLysS cells.
Več konstruktov je bilo pripravljenih z namenom dokazovanja izvedljivosti produkcije himemih proteinov, navedenih v Tabeli 1.Several constructs were prepared to demonstrate the feasibility of producing the chimeric proteins listed in Table 1.
Plazmidi, ki kodirajo odprte bralne okvirje fuzijskih proteinov v Tabeli 1 (SEQ ID No. 52 do SEQ ID No. 57) so bili s kemijsko transformacijo transformirani v kompetentne celice E.coli BL21 (DE3) pLysS. Izbrane bakterijske kolonije, zrastle na LB ploščah z ustreznim antibiotikom (ampicilin), so bile inokulirane v 10 ml LB gojišča z dodanim ustreznim antibiotikom. Po večurni inkubaciji pri 37°C je bilo ΙΟ-ΙΟΟμΙ inokuliranih v 100 ml izbranega gojišča in preko noči stresano pri 37°C. Prekonočna kultura je bila razredčena 20-50-krat do OD600 med 0.1 in 0.2. Erlenmajerice s 500 ml razredčene kulture so bile stresane pri 25°C do OD600 med 0.6 in 0.8, ko je bilo izražanje proteinov inducirano z dodatkom lmM IPTG Štiri ure po indukciji je bila kultura centrifugirana in bakterijske celice resuspendirane v liznem pufru (lOmM Tris pH 8.0, IM NaCl, 0.1% deoksiholat, 0.1 mM cinkov sulfat in dodatek koktejla proteaznih inhibitorjev) in zamrznjene pri -80°C preko noči. Odtajene suspenzije celic so bile nato lizirane s soniciranjem in centrifugirane. Precipitat (celične membrane, inkluzij ska telesca) in supematant so bili testirani za izražanje konstruktov z SDS-PAGE in Westem prenosom, kot primarna protitelesa pa so bila uporabljena anti-His tag protitelesa, če je bilo to potrebno. Fuzijski proteini so bili večinoma prisotni v netopnem delu (inkluzijska telesca), kije vseboval >80% izbranega proteina. Inkluzijska telesca so bila dvakrat sprana z liznim pufrom, dvakrat z IM ureo in 10 mM Tris pH 8.0 ter dvakrat z 2M ureo in 10 mM Tris pH 8.0. Običajno je bil rezultat takšnega postopka >95% čistost proteina. Očiščena inkluzijska telesca so bila raztopljena v 8M urei in 50 mM Tris pH 8.0 ter očiščena z uporabo Ni-NTA kolone. Čiščenje pod denaturirajočimi pogoji je potekalo po navodilih proizvajalca. Proteini so bili izprani z 8 M ureo, 50 mM Tris pH 8.0 in 250 mM imidazolom. Ponovno zvijanje proteinov je bilo izvedeno z dializo proti pufru s 50 mM Tris pH 8.0, 500mM NaF, 500 μΜ ZnSC>4, 5 mM DTT, 0.005% Tvveen in 10% glicerolom. Dializa je bila izvedena vsaj dvakrat po 4 ure pri 4°C brez stresanja. Po zaključku procesa je bil dializat previdno prenešen iz dializnih cevk v centrifugirke. Proteini, ki se niso ponovno zvili, so pri centrifugiranju pri 10000 rpm precipitirali in se tako ločili od ponovno zvitih proteinov v topni fazi. Koncentracija proteinov je bila izmerjena s spektrofotometrijo in metodo po Bradfordu, velikost proteinov pa je bila določena z SDS-PAGE/Commasie barvanjem in Westem blotom z anti-His tag protitelesi.Plasmids encoding the open reading frames of fusion proteins in Table 1 (SEQ ID No. 52 to SEQ ID No. 57) were transformed into competent E. coli BL21 (DE3) pLysS cells by chemical transformation. Selected bacterial colonies grown on LB plates with the appropriate antibiotic (ampicillin) were inoculated into 10 ml of LB medium with the appropriate antibiotic added. After an overnight incubation at 37 ° C, ΙΟ-ΙΟΟμΙΟΟ was inoculated into 100 ml of the selected medium and shaken overnight at 37 ° C. Cross culture was diluted 20-50 times to OD600 between 0.1 and 0.2. 500 ml diluted culture flasks were shaken at 25 ° C to OD600 between 0.6 and 0.8 when protein expression was induced by the addition of lmM IPTG Four hours after induction, the culture was centrifuged and the bacterial cells were resuspended in lysis buffer (lOmM Tris pH 8.0 , IM NaCl, 0.1% deoxycholate, 0.1 mM zinc sulphate and protease inhibitor cocktail addition) and frozen at -80 ° C overnight. Thawed cell suspensions were then lysed by sonication and centrifuged. The precipitate (cell membranes, body inclusion) and the supernatant were tested for expression of the constructs by SDS-PAGE and West transfer, and anti-His tag antibodies were used as primary antibodies when needed. Fusion proteins were mostly present in the insoluble part (inclusion bodies), which contained> 80% of the selected protein. Inclusion bodies were washed twice with lysis buffer, twice with IM urea and 10 mM Tris pH 8.0 and twice with 2M urea and 10 mM Tris pH 8.0. Typically, the result of this process was> 95% protein purity. Purified inclusion bodies were dissolved in 8M urea and 50 mM Tris pH 8.0 and purified using a Ni-NTA column. Cleaning under denaturing conditions was performed according to the manufacturer's instructions. Proteins were washed with 8 M urea, 50 mM Tris pH 8.0, and 250 mM imidazole. Protein retraining was performed by dialysis buffer with 50 mM Tris pH 8.0, 500mM NaF, 500 μΜ ZnSC> 4, 5 mM DTT, 0.005% Tvveen and 10% glycerol. Dialysis was performed at least twice after 4 hours at 4 ° C without shaking. Upon completion of the process, the dialysate was carefully transferred from the dialysis tubes to the centrifuges. Non-recurrent proteins were precipitated by centrifugation at 10,000 rpm to separate from the recurrent proteins in the soluble phase. Protein concentration was measured by spectrophotometry and Bradford method, and protein size was determined by SDS-PAGE / Commasie staining and Western blotting with anti-His tag antibodies.
Tabela 1: Sestava plazmidov, pripravljenih za demonstracijo izumaTable 1: Composition of plasmids prepared for demonstration of the invention
18 crtE pSBlA218 drawing pSBlA2
Himerni proteiniChimeric proteins
Vezava vezavnih domen na tarčni element nukleinske kislineBinding of binding domains to the target nucleic acid element
Metoda merjenja aktivnosti encima β-galaktozidazeMethod for measuring β-galactosidase enzyme activity
Bakterijske kulture s plazmidnimi konstrukti, navedenimi v Tabeli 1, so bile inokulirane v 10 ml LB gojišča z dodanimi 5 μΐ IM IPTG (izopropil-P-D-tio-galaktozid) in naraščajočimi koncentracijami (0%, 0.0025%, 0.1% in 1%) L-arabinoze in inkubirane v stresalniku pri 180 rpm in 37°C 18 ur. Bakterijska gostota je bila določena z merjenjem optične gostote (OD600). Meritve β-galaktozidazne aktivnosti so bile izvedene v čitalcu mikrotitrskih plošč, predgretem na 28°C. 5 μΐ vsake kulture je bilo prenešenih v luknjice 96delne mikrotitske plošče s prozornim dnom, nato pa je bilo dodanih 100 μΐ Z-pufra s kloroformom (Z-pufer: 0,06 M Na2HPO4 χ 7H20, 0,04 M NaH2PO4 χ H20, 0,1 M KC1, 0,001 M MgSO4x7H2O, pH 7; Z-pufer s kloroformom: Z-pufer, 1% β-merkaptoetanol, 10% kloroform). Bakterijske celice so bile lizirane z dodatkom 50 μΐ Z-pufra z SDS (Z-pufer, 1.6 SDS), čemur je sledila inkubacija 10 min pri 28°C. 50 μΐ 0.4% raztopine ONPG v Z-pufru je bilo dodanih v vsako luknjico in razlike v OD405 so bile izmerjene v 30 sec intervalih v obdobju 20 minut.Bacterial cultures with plasmid constructs listed in Table 1 were inoculated into 10 ml LB medium with 5 μΐ IM IPTG (isopropyl-PD-thio-galactoside) added and increasing concentrations (0%, 0.0025%, 0.1% and 1%) L-arabinose and incubated in a shaker at 180 rpm and 37 ° C for 18 hours. Bacterial density was determined by measuring optical density (OD600). Measurements of β-galactosidase activity were performed in a microtiter plate reader preheated to 28 ° C. 5 μΐ of each culture was transferred to the wells of 96-well transparent bottom microtiter plates and then 100 μΐ Z-buffer with chloroform was added (Z-buffer: 0.06 M Na2HPO4 χ 7H20, 0.04 M NaH2PO4 χ H20, 0 , 1 M KC1, 0.001 M MgSO4x7H2O, pH 7; Z-chloroform buffer: Z-buffer, 1% β-mercaptoethanol, 10% chloroform). Bacterial cells were lysed by the addition of 50 μΐ Z-buffer with SDS (Z-buffer, 1.6 SDS), followed by incubation for 10 min at 28 ° C. 50 μΐ 0.4% of the ONPG solution in Z-buffer was added to each well and OD405 differences were measured at 30 sec intervals over a 20-min period.
RezultatiResults
Da bi ugotovili, ali se transkripcijski faktorji (NABF) (cinkovi prsti Zif 268, Blues, PBSII, HivC) in His-Nictal, vežejo na ustrezne DNK tarče tudi in vivo, smo načrtovali reporterski sistem. Reporter vsebuje plazmid zgrajen iz a) lacZ pod sintetičnim promotorjem, ki vsebuje DNK vezavno mesto za določen DNK vezavni protein in b) ustrezen DNK vezavni protein pod arabinoznim promotorjem. Uspešna vezava NABF na sintetični promotor prepreči transkripcijo lacZ, kar se kaže v nižji β-galaktozidazni aktivnosti. Kulture E. coli s plazmidi z različnimi NABF so rastle čez noč v LB mediju z naraščajočimi koncentracijami arabinoze. βgalaktozidazna aktivnost je bila izmerjena, kot je opisano v tekstu. Za vse preizkušene konstrukte se je izkazalo, da se je aktivnost β-galaktozidaze zmanjšala sorazmerno z naraščajočo koncentracijo arabinoze. Odtod sledi, da se NABF (Tabela 1) veže na tarčni DNK element znotraj sintetičnega promotorja in vivo (Slika 3A). Nadalje, β-galaktozidazna aktivnost je ostala nespremenjena v prisotnosti neustreznega NABF in DNK tarče (npr. Blues tarčni element Blues_O je bil zamenjan s PBSII tarčnim elementom PBSIIO, in HivCO tarčni element z Glil_O tarčnim elementom), s čimer smo pokazali specifičnost našega sistema za testiranje NABF (Slika 3B).To determine whether transcription factors (NABFs) (zinc fingers Zif 268, Blues, PBSII, HivC) and His-Nictal bind to the corresponding DNA targets in vivo, we designed a reporter system. The reporter comprises a plasmid constructed from a) lacZ under a synthetic promoter containing a DNA binding site for a particular DNA binding protein and b) a corresponding DNA binding protein under the arabinose promoter. Successful binding of NABF to the synthetic promoter inhibits lacZ transcription, as evidenced by lower β-galactosidase activity. E. coli cultures with plasmids with different NABFs were grown overnight in LB medium with increasing concentrations of arabinose. βgalactosidase activity was measured as described in the text. For all constructs tested, β-galactosidase activity was shown to decrease in proportion to increasing arabinose concentration. It follows that NABF (Table 1) binds to the target DNA element within the synthetic promoter in vivo (Fig. 3A). Furthermore, β-galactosidase activity remained unchanged in the presence of inappropriate NABF and DNA target (e.g., Blues_O target element was replaced with PBSII target element PBSIIO, and HivCO target element with Glil_O target element), thus demonstrating the specificity of our system for NABF testing (Fig. 3B).
Površinska plazmonska resonanca (SPR)Surface plasmon resonance (SPR)
SPR analizo smo izvedli na Biacore T100 (Ge Healthcare). Series S senzorski čip SA (Ge Healthcare) je bil imobiliziran z biotinilirano eno verižno DNK probo pri lOOnM koncentraciji, s čimer smo dosegli končno koncentracijo pribl. 300 RU. Hibridizacija komplementarne DNK (programsko DNK zaporedje z vezavnimi mesti za cinkove prste HivC, Zif268, Jazz, Blues, PBSII, Glil) je bila izvedena z vbrizganjem 0,5-2 μΜ v nanašalni pufer (lOmM HEPES, 150 mM NaCI, 0,lmM EDTA, 0,005% P20, pH 7,4) za do 300s, s čimer je bil dosežen končni odziv pribl. 300 RU. Vezavo analita smo spremljali z vbrizganjem različnih koncentracij analita za 1 min, čemur je po 5 min sledila disociacija. Regeneracijo površine čipa smo dosegli z dvema 30 s vbrizgoma 50 mM NaOH in enim 24 s vbrizgom 0,5% SDS. Zatem smo vbrizgali novo DNA, s čimer smo dobili svežo vezavno podlago.SPR analysis was performed on a Biacore T100 (Ge Healthcare). The Series S sensor chip SA (Ge Healthcare) was immobilized with biotinylated single stranded DNA probe at a lOOnM concentration, yielding a final concentration of approx. 300 RU. Complementary DNA hybridization (programmatic DNA sequencing with HivC zinc finger binding sites, Zif268, Jazz, Blues, PBSII, Glil) was performed by injecting 0.5-2 μΜ into the deposition buffer (lOmM HEPES, 150 mM NaCI, 0, lmM EDTA, 0.005% P20, pH 7.4) for up to 300s, resulting in a final response of approx. 300 RU. Analyte binding was monitored by injecting different concentrations of the analyte for 1 min, followed by dissociation after 5 min. Regeneration of the chip surface was achieved with two 30 s injections of 50 mM NaOH and one 24 s injection of 0.5% SDS. Subsequently, new DNA was injected to give a fresh binding base.
Series S senzorski čip CM5 (Ge Healthcare) je bil imobiliziran s 3000 RU avidina prek vezave na aminokislinski ostanek po proizvajalčevem protokolu. Karboksimetilirana površina CM5 čipa je bila aktivirana s 7 min vbrizgom 1:1 NHS:EDC. Avidin v Na-acetatu pri pH 5,5 je bil nato vbrizgan v več kratkih pulzih do končnega odziva 3000 RU. Avidin je bil vezan le v drugi pretočni celici, saj je prva služila kot referenčna podlaga za odštevanje nespecifične vezave analitov na dekstranski matriks senzorskega čipa. Nezreagirana mesta na senzorski površini so bila blokirana s 7 min vbrizgom 1 M etanolamina (pH 8,5).The Series S sensor chip CM5 (Ge Healthcare) was immobilized with 3000 RU of avidin via binding to an amino acid residue according to the manufacturer's protocol. The carboxymethylated surface of the CM5 chip was activated by a 7 min injection of 1: 1 NHS: EDC. Avidin in Na-acetate at pH 5.5 was then injected in several short pulses until a final response of 3000 RU. Avidin was bound only in the second flow cell, as the first served as the reference basis for subtracting the non-specific binding of the analytes to the dextran matrix of the sensor chip. Unreacted sites on the sensor surface were blocked with a 7 min injection of 1 M ethanolamine (pH 8.5).
Rezultati:Results:
In vitro vezava. himernih proteinov, biosintetskih encimov vezanih na NABF na programsko DNK (Slika 4). Slika 4A predstavlja vezavo programske DNK, nato himemega proteina, ki vsebuje Glil NABF in regeneracijo podlage-čipa. Hibridizacija DNK je bila izvedena z do 300s vbrizgavanjem 0,5-2 μΜ do končnega odziva 300 RU. Vezavo analita smo spremljali z vbrizganjem različnih koncentracij analita za 1 min, čemur je sledila 5 min regeneracija. Regeneracijo smo dosegli z dvema 30 s vbrizgoma 50 mM NaOH in 24 s vbrizgom 0,5% SDS.In vitro binding. chimeric proteins, biosynthetic enzymes bound to NABF on programmatic DNA (Figure 4). Figure 4A shows the binding of program DNA, followed by a chemically derived protein containing Glil NABF and substrate-chip regeneration. DNA hybridization was performed with up to 300s injection of 0.5–2 μΜ until a final response of 300 RU. Analyte binding was monitored by injecting different concentrations of the analyte for 1 min, followed by 5 min regeneration. Regeneration was achieved with two 30 s injections of 50 mM NaOH and 24 s injections of 0.5% SDS.
Vezava analita na programsko DNK in vezava sveže DNK za vsak protein sta predstavljena na Sliki 4B. Analiti od zgoraj: Glil, Zif268, Blues, ZNF_HivC, PBSII, Jazz.The binding of the analyte to program DNA and the binding of fresh DNA to each protein are presented in Figure 4B. Top analytes: Glil, Zif268, Blues, ZNF_HivC, PBSII, Jazz.
Zaporedna vezava NABF na programsko DNK je predstavljena na Sliki 4C. DNK je bila ujeta v začetku cikla in proteini vbrizgani za 1 min eden za drugim v dveh različnih zaporedjih. Polna črta: ZnfJazz, Znf Blues, Znf_Zif268, ZnfPBSII, ZnfHivC in Znf Glil; črtkana črta: Znf Glil, Znf PBSII, Znf HivC, Znf Jazz, ZnfBlues in Znf_Zif268. Vezava vseh analitov v zaporedju je pokazala, da je bila vezava analitov šibkejša, če je bil Glil vbrizgan kot prvi.The sequential binding of NABF to programmatic DNA is presented in Figure 4C. DNA was captured at the beginning of the cycle and proteins were injected 1 min one after the other in two different sequences. Full line: ZnfJazz, Znf Blues, Znf_Zif268, ZnfPBSII, ZnfHivC, and Znf Glil; dashed line: Znf Glil, Znf PBSII, Znf HivC, Znf Jazz, ZnfBlues, and Znf_Zif268. Binding of all analytes in the sequence indicated that the binding of the analytes was weaker if Glil was injected than the former.
EMSA - elektroforezni test mobilnostiEMSA - electrophoresis mobility test
Specifična DNK vezava sintetičnih domen iz cinkovih prstov na programsko nukleinsko kislino je bila preizkušena z elektroforeznim testom mobilnosti. 1 pg očiščenih proteinov je bil inkubiran z različnimi količinami programske nukleinske kisline - 500ng, 750ng, lOOOng - za 3 ure. Vzorci redčeni z ultra čisto laboratorijsko vodo do 20 μΐ so bili nanešeni na 2,0% agarozni gel, predhodno barvan z etidijevim bromidom. Elektroforeza vzorcev je tekla 40 minut pri konstantni napetosti 70V. Kompleksi nukleinska kislina - protein so bili vidni pod UV lučjo.The specific DNA binding of synthetic domains from zinc fingers to program nucleic acid was tested by electrophoresis mobility assay. 1 pg of purified protein was incubated with different amounts of programmed nucleic acid - 500ng, 750ng, lOOOng - for 3 hours. Samples diluted with ultra-pure laboratory water to 20 μΐ were applied to a 2.0% agarose gel previously stained with ethidium bromide. The electrophoresis of the samples was run for 40 minutes at a constant voltage of 70V. Nucleic acid-protein complexes were visible under UV light.
Rezultati:Results:
Potovanje z etidijevim bromidom obarvane programske nukleinske kisline je bilo odvisno od prisotnosti NABF (t.j. DNK vezavna domena iz cinkovih prstov), kar je pomenilo počasnejše potovanje v primerjavi s samo programsko nukleinsko kislino (Slika 5). Ti podatki predstavljajo vezavo NABF na specifična tarčna zaporedja v DNK programu (Slika 5).Travel with ethidium bromide of stained program nucleic acid was dependent on the presence of NABF (i.e., the zinc finger DNA binding domain), which implied a slower travel compared to programmatic nucleic acid alone (Figure 5). These data represent NABF binding to specific target sequences in the DNA program (Fig. 5).
Konfokalna mikroskopijaConfocal microscopy
Leica TCS SP5 laserski konfokalni mikroskop je bil uporabljen za detekcijo himemih razpolovljenih fluorescentnih (t.j. NABF vezan na nCFP, NABF vezan na cCFP) proteinov in rekonstitucijo FRET-a na programski nukleinski kislini in vivo. Transficirane HEK293 celice, gojene preko noči v mikroskopski posodici na 37°C so bile postavljene na vrh objektiva,A Leica TCS SP5 laser confocal microscope was used to detect half-fluorescence (i.e., NABF bound to nCFP, NABF bound to cCFP) proteins and reconstitution of FRET on program nucleic acid in vivo. Transfected HEK293 cells cultured overnight in a 37 ° C microscope dish were placed on top of the lens,
kamor smo nanesli kapljico imerzijskega olja. Celice smo vzbujali s 433 nm za CFP in 515 nm za YFP. FRET smo določili z metodologijo proizvajalca mikroskopa (FRET AB in FRET SE čarovnika v Leica LAS AF programskem paketu).where we applied a drop of immersion oil. Cells were excited with 433 nm for CFP and 515 nm for YFP. FRET was determined using the microscope manufacturer's methodology (FRET AB and FRET SE wizard in the Leica LAS AF software package).
Split, FRET eksperimentiSplit, FRET experiments
HEK293 celice smo transficirali z sesalskim ekspresijskim vektorjem z geni za razpolovljene fluorescentne fuzijske proteine pod CMV promotorjem. Transfekcijo smo izvedli z jetPEI™ transfekcijskim reagentom, celice pa končno fiksirali s 4% paraformaldehidom. Rekonsitucijo razpolovljenih fluorescentnih proteinov, kot tudi FRET efekt, smo opazovali pod konfokalnim mikroskopom (opisano pod Konfokalna mikroskopija”). CFP (Znf Glil-povezovalni peptid-nCFP in cCFP-povezovalni peptidZnf HivC) in YFP (ZnfPBSII-povezovalni peptid-nYFP in cYFP-povezovalni peptidZnf_Zif268) sta bila rekonstiuirana samo v prisotnosti specifične, a ne naključne, programske nukleinske kisline.HEK293 cells were transfected with a mammalian expression vector with genes for half-fluorescent fusion proteins under the CMV promoter. Transfection was performed with jetPEI ™ transfection reagent and cells were finally fixed with 4% paraformaldehyde. Reconstitution of half-fluorescent proteins as well as the FRET effect was observed under a confocal microscope (described under Confocal microscopy ”). CFP (Znf Glil-binding peptide-nCFP and cCFP-binding peptideZnf HivC) and YFP (ZnfPBSII-binding peptide-nYFP and cYFP-binding peptideZnf_Zif268) were reconstituted only in the presence of specific, but not random, acid.
Rezultati:Results:
Razpolovljeni fluorescentni proteini se vežejo na sosednja tarčna nukleotidna zaporedja, ko so plazmidi z geni za razpolovljene fluorescentne proteine transficirani hkrati s plazmidom, ki nosi tarčno programsko nukleinsko kislino. Ker razpolovljeni fluorescentni proteini ne morejo tvoriti fukcionalnega kromofora in vivo po naključju, je fluorescentni signal posledica vezave himemega proteina na DNK programsko nukleotidno zaporedje.Semi-fluorescent proteins bind to adjacent target nucleotide sequences when plasmids with genes for half-fluorescent proteins are transfected simultaneously with a plasmid carrying the target program nucleic acid. Because half-fluorescent proteins are unable to form a functional chromophore in vivo by chance, the fluorescent signal is due to the binding of the heme protein to the DNA program nucleotide sequence.
Rekonstitucija razpolovljenega GFP Slika 6 kaže in vivo rekonstitucijo dveh nefunkcionalnih fluoroforov (split-GFP-ja) vezana na NABF samo v pristnosti programskega nukleotidnega zaporedja (Slika 6a).Reconstitution of half-GFP Figure 6 shows in vivo reconstitution of two non-functional fluorophores (split-GFPs) bound to NABF only in the authenticity of the program nucleotide sequence (Figure 6a).
Plazmida, vsakega po 75ng, z geni za Znf Glil-povezovalni peptid-nCFP in cCFPpovezovalni peptid- Znf_HIVC, sta bila kotransficirana s 350ng programske DNK v HEK293 celice. Emisijski signal turkiznega fluorescentnega proteina smo opazovali tako, da smo celice vzbujali s 433nm lasersko svetlobo (Slika 6b).Plasmids, 75ng each, with genes for Znf Glil-binding peptide-nCFP and cCFP-binding peptide-Znf_HIVC were cotransfected with 350ng of program DNA into HEK293 cells. The emission signal of turquoise fluorescent protein was observed by exciting cells with 433nm laser light (Fig. 6b).
Plazmida, vsakega po 75ng, z geni za Znf PBSII-povezovalni peptid-nYFP in cYFPpovezovalni peptid Znf_Zif268) sta bila kotransficirana s 350ng programske DNK v HEK293Plasmids, 75ng each, with Znf genes PBSII-binding peptide-nYFP and cYFP-binding peptide Znf_Zif268) were cotransfected with 350ng program DNA in HEK293
celice. Emisijo YFP z vrhom pri 529nm smo opazovali pod konfokalnim mikroskopom (Slika 6C).cells. YFP emission with a peak at 529nm was observed under a confocal microscope (Fig. 6C).
Rekonstitucija razpolovljenih GFP-jev in vitro.. HEK293 celice so bile kotransficirane z ZnfGlil-povezovalni peptid-nCFP in cCFP-povezovalni peptid-ZnfHIVC ter Znf PBSIIpovezovalni peptid-nYFP in cYFP-povezovalni peptid Znf_Zif268. Celice so bile po 72 urah gojenja lizirane v 150 μΐ Promega pasivni pufer za liziranje celic, potem pa smo lizatom dodali 50μg programske nukleinske kisline. Funkcionalni fluorofor je bil v prisotnosti DNK programa opazen po 18 h rasti na 4°C. To smo detektirali s pomočjo PerkinElmer LS55 luminiscentnega spektrometra.Reconstitution of half-GFPs in vitro .. HEK293 cells were cotransfected with ZnfGlil-binding peptide-nCFP and cCFP-binding peptide-ZnfHIVC and Znf PBSII-binding peptide-nYFP and cYFP-binding peptide Znf_Zif2. Cells were lysed in 150 μΐ Promega passive cell lysis buffer after 72 hours of cultivation and then 50 μg of program nucleic acid was added to the lysates. Functional fluorophore was observed in the presence of DNA program after 18 h growth at 4 ° C. This was detected using a PerkinElmer LS55 luminescent spectrometer.
Učinkovitost FRET-a. Učikovitost FRET-a za štiri himeme proteine, razpolovljene GFP-je povezane z NABF, v prisotnosti programske DNK je predstavljena v Tabeli 2. FRET smo izmerili s pomočjo FRET AB čarovnika v LAS AF programu, ki omogoča mikroskopiranje na Leica TCS SP5 laserskem konfokalnem mikroskopu. Emisijska signala v CFP in YFP kanalu sta bila nastavljena. Akceptor je bil uničen s 515 nm laserjem, FRET učinkovitost v uničenem področju pa odtod izračunana. HEK293 celice so bile transfecirane s programsko DNK in Znf Glil-povezovalni peptid-nCFP, cCFP-povezovalni peptid-Znf HIVC, Znf PBSIIpovezovalni peptid-nYFP, Znf_cYFP-povezovalni peptid-Znf_Zif268. Za negativno kontrolo so bile celice tranficirane s citosolnima CFP in YFP brez DNA vezavnih faktorjev, in za pozitivno kontrolo s CFP povezanim z YFP s povezovalnim peptidom.The effectiveness of FRET. The FRET efficacy for the four NABF-associated GFP half-protein GFPs in the presence of program DNA is presented in Table 2. FRET was measured using the FRET AB wizard in a LAS AF program that allows microscopy on a Leica TCS SP5 laser confocal microscope . Emission signals in the CFP and YFP channels were set. The acceptor was destroyed by a 515 nm laser, and the FRET efficiency in the destroyed area was then calculated. HEK293 cells were transfected with software DNA and Znf Glil-binding peptide-nCFP, cCFP-binding peptide-Znf HIVC, Znf PBSII-binding peptide-nYFP, Znf_cYFP-binding peptide-Znf_Zif268. For negative control, cells were transfected with cytosolic CFP and YFP without DNA binding factors, and for positive control with CFP associated with YFP with the binding peptide.
Tabela 2: Učinkovitost FRET-a štirih razpolovljenih GFP-jev, vsak povezan z drugim DNA vezavnim faktorjem.Table 2: FRET efficiency of four half-GFPs, each linked to a different DNA binding factor.
FRET positive control FRET negative control FRET on a DNA program ± 2 1 ± 1 4 ± 2FRET positive control FRET negative control FRET on a DNA program ± 2 1 ± 1 4 ± 2
Sinteza violaceinaSynthesis of violacein
Prekonočne kulture E. coli s plazmidi, ki kodirajo himeme proteine (glej Tabelo 1, kombinacije konstruktov ZnfBlues-povezovalni peptid-vioA, Znf_Zif268-povezovalni peptid-vioB, ZnfPBSII-povezovalni peptid-vioE, ZnfHivC-povezovalni peptid-vioD, Znf Glil-povezovalni peptid-vioC) z ali brez plazmida, ki kodira DNK program (glej Tabelo 1, program biosinteza (123456) ali program biosinteza (341256)) so bile redčene v svež Luria Bertani gojišče do OD600 0,05 in ob prisotnosti ustreznih antibiotikov rastle na 37°C. Ob • · · · · « različnih časih med rastjo smo vzorčili fermentacij ske brozge (skupaj 3 ml). Reprezentativna točka (17,5 h) je vidna na Sliki 9. Bakterije so bile lizirane z dodatkom istega volumna (1,5 ml) 10% SDS, violacein pa je bil ekstrahiran z etil acetatom (1:1 vol, vol). Po kratkem vorteksiranju, je bila organska faza zbrana in absorbcijski spekter pri 575 nm izmerjen. Vzorci so bili analizirani na TLC, kvantitativna analiza pa je bila izvedena z denziometrijo pri 575 nm po neposredni spektralni analizi s HPTLC. Violacein je bil identificiran tudi z masno spektrometrijo. Primerjali smo količino produkcije violaceina z ali brez programske DNK ali v prisotnosti pomešanega DNK (Slika 9).Cross-culture E. coli cultures with plasmids encoding the chimeric proteins (see Table 1, construct combinations of ZnfBlues-binding peptide-vioA, Znf_Zif268-binding peptide-vioB, ZnfPBSII-binding peptide-vioE, ZnfHivC-binding peptide-vioD, Znf Glil binding peptide-vioC) with or without a plasmid encoding a DNA program (see Table 1, biosynthesis program (123456) or biosynthesis program (341256)) were diluted in fresh Luria Bertani medium to OD600 0.05 and grown in the presence of appropriate antibiotics. at 37 ° C. At different times during growth, fermentation broths (3 ml in total) were sampled. A representative point (17.5 h) is visible in Figure 9. Bacteria were lysed by addition of the same volume (1.5 ml) of 10% SDS, and violacein was extracted with ethyl acetate (1: 1 vol, vol). After short vortexing, the organic phase was collected and the absorbance spectrum at 575 nm was measured. Samples were analyzed by TLC, and quantitative analysis was performed by densiometry at 575 nm after direct spectral analysis by HPTLC. Violacein was also identified by mass spectrometry. We compared the amount of violacein production with or without programming DNA or in the presence of mixed DNA (Figure 9).
Medtem ko je predstavljen izum opisan s sklicevanjem na specifična utelešenja tega izuma, mora biti strokovnjakom s področja razumljivo, da so lahko manjše spremembe upravičene in in ekvivalenti nadomeščeni, ne da bi se pretirano oddaljili od pravega duha in namena izuma. Prav tako je lahko narejenih mnogo sprememb z namenom prilagoditi določeno situacijo, material, sestavo materiala, proces, procesne korake ali korake k cilju, duhu in obsegu tega izumaWhile the present invention is described with reference to the specific embodiments of the invention, it should be understood by those skilled in the art that minor changes can be justified and the equivalents can be replaced without departing excessively from the true spirit and purpose of the invention. Many changes can also be made to adapt a particular situation, material, material composition, process, process steps or steps to the object, spirit and scope of this invention
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201000337A SI23510A (en) | 2010-10-22 | 2010-10-22 | Improved synthesis of biosynthetic product by ordered assembly of biosynthetic enzymes guided by the nucleotide sequence motif template |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201000337A SI23510A (en) | 2010-10-22 | 2010-10-22 | Improved synthesis of biosynthetic product by ordered assembly of biosynthetic enzymes guided by the nucleotide sequence motif template |
Publications (1)
Publication Number | Publication Date |
---|---|
SI23510A true SI23510A (en) | 2012-04-30 |
Family
ID=45992899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201000337A SI23510A (en) | 2010-10-22 | 2010-10-22 | Improved synthesis of biosynthetic product by ordered assembly of biosynthetic enzymes guided by the nucleotide sequence motif template |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI23510A (en) |
-
2010
- 2010-10-22 SI SI201000337A patent/SI23510A/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6588995B2 (en) | Three component CRISPR / Cas composite system and its use | |
Orelle et al. | Protein synthesis by ribosomes with tethered subunits | |
Hecker et al. | Binary 2in1 vectors improve in planta (co) localization and dynamic protein interaction studies | |
Vijayachandran et al. | Robots, pipelines, polyproteins: enabling multiprotein expression in prokaryotic and eukaryotic cells | |
Salim et al. | Requirement of upstream Hfq-binding (ARN) x elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY | |
JP2006517090A5 (en) | ||
JP2006517090A (en) | Synthetic gene | |
CN111315883B (en) | Two-component vector library system for rapid assembly and diversification of open reading frames of full-length T cell receptors | |
WO2006019876A2 (en) | Production of fusion proteins by cell-free protein synthesis | |
Girish et al. | Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing | |
Dubin et al. | A versatile set of tagged expression vectors to monitor protein localisation and function in Dictyostelium | |
US20220403363A1 (en) | Adapter system for nonribosomal peptide synthetases and polyketide synthases | |
JP2024138381A (en) | PPR protein with reduced aggregation and uses thereof | |
KR101350355B1 (en) | Recombinant plasmid for light-switchable gene expression, transformant and method for controlling gene expression using same | |
JP2019523005A (en) | Targeted in situ protein diversification by site-specific DNA cleavage and repair | |
Lee et al. | Screening of cell‐penetrating peptides using mRNA display | |
CN112813049A (en) | Fusion protein for live cell RNA marking and application | |
WO2012053985A1 (en) | Improved synthesis of biosynthetic product by ordered assembly of biosynthetic enzymes guided by the nucleotide sequence motif template | |
SI23510A (en) | Improved synthesis of biosynthetic product by ordered assembly of biosynthetic enzymes guided by the nucleotide sequence motif template | |
WO2015106067A2 (en) | Lucigen yellow (lucy), a yellow fluorescent protein | |
WO2020241876A1 (en) | Efficient ppr protein production method and use thereof | |
EP4061853A1 (en) | Split-enzyme system to detect specific dna in living cells | |
Juillot et al. | Signalling to the nucleus under the control of light and small molecules | |
Luan et al. | Seamless site-directed mutagenesis in complex cloned DNA sequences using the RedEx method | |
Wu et al. | Recombinant Protein Purification by Self‐Cleaving Elastin‐like Polypeptide Fusion Tag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20120510 |
|
KO00 | Lapse of patent |
Effective date: 20170727 |