SI22808A - Colour for lowering temperature of insolated surfaces - Google Patents
Colour for lowering temperature of insolated surfaces Download PDFInfo
- Publication number
- SI22808A SI22808A SI200800167A SI200800167A SI22808A SI 22808 A SI22808 A SI 22808A SI 200800167 A SI200800167 A SI 200800167A SI 200800167 A SI200800167 A SI 200800167A SI 22808 A SI22808 A SI 22808A
- Authority
- SI
- Slovenia
- Prior art keywords
- color
- pigment
- binder
- azo
- tio2
- Prior art date
Links
Landscapes
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
Abstract
Description
Barva za znižanje temperature osončenih površinColor to reduce the temperature of sunlit surfaces
Področje tehnikeThe field of technology
Predmet izuma je barva oz. barvni premaz za znižanje temperature osončenih površin ter površina oz. substrat z naneseno barvo po izumu. Izum sodi med tehnične rešitve v gradbeništvu, fasadah in kemiji polimernih premazov, podrobneje v pripravo premazov za znižanje temperature pločevinastih fasad ali streh sončnega obsevanja na osnovi spektralne selektivnosti. Se podrobneje izum sodi med premaze na pločevinastem substratu, izdelane iz zmesi mineralnih belih pigmentov in pretežno organskih snovi za obarvanje, ki zagotavljajo končni barvni ton.The object of the invention is color or. color coating to reduce the temperature of sunlit surfaces and surface or surface. the substrate with the applied color according to the invention. The invention is one of the technical solutions in construction, facades and chemistry of polymer coatings, more specifically in the preparation of coatings for reducing the temperature of sheet metal facades or roofs of solar irradiation on the basis of spectral selectivity. More specifically, the invention relates to sheet metal substrate coatings made from a mixture of mineral white pigments and predominantly organic coloring agents to provide the final color tone.
Tehnični problemA technical problem
Pri pločevinastih fasadah in strehah v običajnih temnih barvnih odtenkih, ker je absorpcija vidne svetlobe nad 60%, opažamo kar nekaj slabosti. V poletnih mesecih imajo objekti s tovrstnimi zunanjimi površinami toplotne dobitke, zaradi česar je potrebno takšne prostore hladiti, posledica pa je povečana poraba električne energije. Poleg tega imamo v poletnih mesecih dva ekstremna vremenska pojava, ki nimata pozitivnega vpliva na temno obarvan kovinski substrat. Zaradi močnega sončnega sevanja v poletnih mesecih, ki ga temno obarvani kovinski substrati absorbirajo, prihaja do prekomernega pregrevanja substrata, zaradi česar se le-ta razteza. Ko pa pride do nevihte in na substrat pade hladen dež, se le-ta začne ohlajati in krčiti. Zaradi ekstremnih temperaturnih razlik, tudi do 60°C, je proces krčenja hiter in lahko pride na stikih do poškodbe substrata, kar rezultira v hitrejše propadanje kovinskega substrata, na primer pocinkane jeklene pločevine.For sheet metal facades and roofs in the usual dark colors, because the absorption of visible light is above 60%, there are quite a few disadvantages. In the summer months, buildings with such external surfaces have thermal gains, which makes it necessary to cool such spaces, resulting in increased electricity consumption. In addition, there are two extreme weather events in the summer that do not have a positive effect on the dark colored metal substrate. Due to the strong solar radiation absorbed by the dark colored metal substrates in the summer, the substrate overheats and causes the substrate to overheat. However, when there is a storm and cold rain falls on the substrate, it begins to cool and shrink. Due to extreme temperature variations, even up to 60 ° C, the shrinkage process is rapid and can cause damage to the substrate, resulting in faster degradation of the metal substrate, such as galvanized steel sheets.
Pocinkane jeklene pločevine, ki se uporabljajo za fasade imajo izjemno neugoden absorpcijski spekter, ki ravno v infrardečem območju 800-1200 nm, kjer sonce najmočneje seva, absorbirajo tudi več kot 70% vpadle svetlobe. Premazi vseh barv do neke mere prepuščajo barvo substrata. To še posebej velja za svetle barve. Razumljivo je, da mora barva, ki naj bi odbila čim več vpadle energije v IR področju, biti tam zelo svetla. Ker komercialno uspešna barva ne more biti poljubno debela, da bi dosegla pokritje absorpcijskega traku substrata med 800-1200 nm, želimo doseči optimalno kritnost z izbiro pigmentov ter njihovo optimalno koncentracijo.Galvanized sheet steel used for facades has an extremely unfavorable absorption spectrum, which absorbs more than 70% of the incident light in the infrared region of 800-1200 nm, where the sun is the strongest radiation. Coatings of all colors leave the substrate color to some extent. This is especially true for bright colors. It is understandable that the color that is supposed to repel as much energy as possible in the IR region should be very bright there. Since commercially viable paint cannot be arbitrarily thick to achieve coverage of the substrate absorption band between 800-1200 nm, we want to achieve optimum coverage by selecting pigments and their optimum concentration.
-2Naloga izuma je doseči občutno znižanje temperature osončene površine v primerjavi z znanimi barvnimi premazi, ki tudi želijo znižati temperaturo z odbijanjem IR dela sončnega obsevanja. Komercialne hladne barve komaj opazno znižajo temperaturo zaradi skoraj izključne rabe anorganskih pigmentov, ki sicer zagotavljajo dolgo življenjsko dobo, ne omogočajo pa znatnejšega odboja IR. Takšne barve z mineralnimi pigmenti odbijajo do okoli 15% vpadnega sončnega obsevanja pri temnih odtenkih. Naloga izuma je barva oz. barvni premaz, ki bo ob upoštevanju neugodnih optičnih lastnosti substrata v enem sloju dosegel odbojnost vsaj 30% vpadnega sončnega toplotnega obsevanja pri temnih, vendar ne-čmih odtenkih barve.The object of the invention is to achieve a significant reduction in the temperature of the sunlit surface in comparison with the known color coatings, which also wish to lower the temperature by reflecting the IR portion of the sun irradiation. Commercial cold colors barely noticeably lower the temperature due to the almost exclusive use of inorganic pigments, which, while providing long life, do not allow for a significant IR reflection. Such mineral pigment colors reflect up to about 15% of the incident sunlight in dark shades. It is an object of the invention to color or. a color coating which, taking into account the unfavorable optical properties of the substrate in one layer, will achieve a reflectivity of at least 30% of the incident solar thermal irradiation in dark but not shades of color.
Stanje tehnikeThe state of the art
Patentna prijava US 2005/0129964 opisuje pripravo večslojnega barvnega nanosa na kovinskem substratu, pri čemer ima spodnji sloj za zunanjo uporabo vlogo zaščite kovine pred korozijo, hkrati pa reflektira 60% sončne svetlobe v območju med 320 in 1200 nm valovne dolžine. Vrhnji sloj za zunanjo uporabo pa je lahko poljubne barve in reflektira v območju med 400 in 700 nm manj kot 60% sončne energije, v območju NIR (700 - 1200 nm) pa reflektira več kot 60% sončne energije. Slabost takšnega reflektivnega premaza je večslojno nanašanje, kar je s stališča industrijske rabe zapleteno in nezaželeno. Poleg tega omenjena rešitev ne obravnava aplikacije na absorbcijsko-refleksivno zahtevnejšem kovinskem substratu, kot je korozijsko nezaščitena pocinkana pločevina, ki se v gradbeništvu najpogosteje uporablja za izdelavo strešnih in fasadnih panelov. Ta substrat ima namreč ravno v območju med 800 in 1200 nm močan absorpcijski trak.US Patent Application No. 2005/0129964 describes the preparation of a multilayer color coating on a metal substrate, the lower layer for outdoor use having the role of protecting the metal against corrosion, while reflecting 60% of sunlight in the range between 320 and 1200 nm wavelength. The top layer for outdoor use, however, can be any color and reflect in the range of 400 to 700 nm less than 60% of solar energy, and in the NIR range (700 - 1200 nm) reflect more than 60% of solar energy. The disadvantage of such a reflective coating is the multilayer application, which is complex and undesirable from the point of view of industrial use. In addition, the solution does not address the application of an absorbent-reflexively more demanding metal substrate, such as corrosion-resistant galvanized sheet metal, which is most commonly used in the construction of roofing and facade panels. This substrate has a strong absorption band exactly between 800 and 1200 nm.
V patentu US 6521038 B2 je opisana priprava enoslojnega NIR refleksivnega obarvanega premaza. Premaz je narejen na osnovi belih NIR reflektirajočih anorganskih ali organskih pigmentov, ki so prevlečeni z NIR neabsorbirajočimi barvili. Tako barvila lahko reflektirajo ali prepuščajo NIR valovanje do belih pigmentov, kjer se le-to odbije. Učinkovitost omenjenega premaza je odvisna od njegove debeline in v primeru slabe kritnosti tudi od substrata, kar pa izumitelji v patentu posebej ne omenjajo. Tako so v primeru številka 22 učinkovitost njihovih premazov merili na idealnem refleksivnem substratu, in sicer na aluminijevih ploščicah, pri čemer ima idealen substrat velik vpliv, saj je iz rezultatov poskusa razbrati, da premaz nima dobre kritnosti in zato substrat prispeva k refleksiji. Poleg tega so določevali učinkovitost premaza z merjenjem temperature na površini vzorcev in zraka, pri čemer so uporabili za obsevanje pretežno infrardečo luč z močjo 250W. V realnosti k segrevanju površine prispevajoUS 6521038 B2 discloses the preparation of a single-layer NIR reflective colored coating. The coating is based on white NIR reflective inorganic or organic pigments coated with NIR non-absorbent dyes. Thus, dyes can reflect or transmit NIR waves to the white pigments where they are reflected. The effectiveness of said coating depends on its thickness and, in the case of poor coverage, also on the substrate, which is not specifically mentioned by the inventors in the patent. Thus, in case number 22, the effectiveness of their coatings was measured on an ideal reflective substrate, namely aluminum plates, with the ideal substrate having a great impact, since the results of the experiment show that the coating does not have good coverage and therefore the substrate contributes to reflection. In addition, they determined the effectiveness of the coating by measuring the surface temperature of the specimens and the air, using a predominantly 250W infrared light for irradiation. In reality, surfaces contribute to warming
-3tako infrardeča svetloba (50%), kot tudi vidna (45%) in UV svetloba (5%). Zato so rezultati njihovega poskusa številka 17 bistveno boljši, kot če bi bili vzorci izpostavljeni sončni svetlobi.-3 both infrared light (50%) as well as visible (45%) and UV light (5%). Therefore, the results of their experiment number 17 are significantly better than if the samples were exposed to sunlight.
Povzetek izumaSummary of the Invention
Opisani izum rešuje problem pregrevanja pločevinastih fasad in streh. Na pločevino je nanesena barva, ki je zasnovana na kombinaciji anorganskih belih in organskih/anorganskih barvnih snovi za obarvanje. Beli pigmenti [pigment white 6] TiO2 in [pigment white 4] ZnO so izbrani po njihovi prostorninski vsebnosti v polimernem vezivu, običajno med 10% in 20%, pri tem pa je [pigment white 6] TiO2 izbran izmed velikosti med 150 nm in 600 nm, pigment [pigment white 4] ZnO pa med 200 nm in 800 nm. Beli pigmenti v premazu odbijejo najmanj 60% sončne svetlobe v bližnjem infrardečem delu spektra od 800 do 2500 nm. Snovi za obarvanje pa so izbrane tako, da absorbirajo v povprečju najmanj 60% vpadne svetlobe v področju valovnih dolžin vidne svetlobe od 380 do 700 nm, pri tem je vsaj ena snov za obarvanje izbrana tako, da vgrajena v vezivo prepušča svetlobo valovnih dolžin bližnje infrardeče svetlobe od 800 do 2500 nm.The present invention solves the problem of overheating of sheet metal facades and roofs. Paint is applied to the sheet, which is based on a combination of inorganic white and organic / inorganic coloring agents. [Pigment white 6] TiO2 and [pigment white 4] ZnO pigments are selected by their volume content in a polymeric binder, typically between 10% and 20%, with [pigment white 6] TiO2 selected from a size between 150 nm and 600 nm, and pigment white pigment 4 ZnO between 200 nm and 800 nm. White pigments in the coating reflect at least 60% of the sunlight in the near infrared range of 800 to 2500 nm. However, the coloring matter is selected to absorb, on average, at least 60% of the incident light in the visible light wavelength range from 380 to 700 nm, with at least one coloring substance selected so as to allow light of near-infrared wavelengths embedded in the binder. of light from 800 to 2500 nm.
Podrobni opis izumaDETAILED DESCRIPTION OF THE INVENTION
Slike prikazujejo:Pictures show:
Slika 1: diagram refleksije korozijsko zaščitene jeklene pločevine:Figure 1: Reflection diagram of corrosion-proof steel sheet:
A) S280+AZ150 (to pomeni 55% Al in 43,4% Zn) po ENI0326 standardu;A) S280 + AZ150 (i.e. 55% Al and 43.4% Zn) according to ENI0326 standard;
B) S280+ZA265 (to pomeni 95% Zn in 5% Al) po ENI 0326 standardu.B) S280 + ZA265 (i.e. 95% Zn and 5% Al) according to ENI 0326 standard.
Slika 2: diagram refleksije primera 1.Figure 2: Example 1 reflection diagram.
Slika 3: diagram refleksije primera 3.Figure 3: Reflection diagram of Example 3.
Slika 4: diagram komercialne hladne barve - Beckers RAL 7016.Figure 4: Commercial cold paint diagram - Beckers RAL 7016.
Termin »temne barve« v opisu tega izuma pomeni barve z najmanj 60% odstotno absorpcijo vidne svetlobe.The term "dark colors" in the description of the present invention means colors with at least 60% absorption of visible light.
Fasade, strehe, pločevinasti paneli narejene iz jeklene pločevine korozijsko zaščitene s cink aluminijevim slojem, imajo absorpcijski trak v bližnje infrardečem območju med 800 in 1200 nm kot prikazuje Slika 1. Na zaščitni površini, narejeni iz optično manj ugodne cinkove ali cink-aluminijeve zlitine po sliki 1, krivulja B, se odbija v povprečju manj kot 50% vpadle svetlobe v bližnje infrardečem območju med 800 in 1200 nm. V območju med 1200 in 2500 nm se delež absorbcije zmanjša, poveča se odboj, in sicer je odboj v povprečju več kot 50% vpadleFacades, roofs, sheet metal panels made of corrosion-protected steel sheet with zinc aluminum layer have absorption band in the near infrared range between 800 and 1200 nm as shown in Figure 1. On a protective surface made of optically less zinc or zinc-aluminum alloy according to Figure 1, curve B, reflects on average less than 50% of the incident light in the near infrared range between 800 and 1200 nm. In the range of 1200 to 2500 nm, the absorption fraction decreases and the reflectance increases and the reflectance averages more than 50%.
-4svetlobe. Ravno zaradi omenjenega absorpcijskega traku je potrebno z barvo, ki naj v območju med 800 in 1200 nm valovnih dolžin odbija svetlobo, zagotoviti kritnost, da se prepreči absorpcijski vpliv substrata. V omenjenem območju je mogoče svetlobo odbiti z belimi pigmenti, kot je na primer [pigment white 6] TiO2 ali [pigment white 4] ZnO. Zaželena velikost pigmenta [pigment white 6] TiO2 je med 150 in 600 nm, za pigment [pigment white 4] ZnO pa med 200 nm in 800 nm, saj je pri manjši oziroma večji velikosti delcev slabša kritnost pobarvane površine. Navedeno sledi iz Mie teorije sipanja svetlobe. Optimalno teoretično velikost smo iskali za doseganje čim večje kritnosti pri valovni dolžini 1000 nm vpadne svetlobe, upoštevaje lomne količnike sodelujočih sestavin pri navedeni valovni dolžini. Zaradi praktičnih težav pri doseganju popolne disperznosti so uporabljeni nekoliko manjši delci od čiste teoretične napovedi. Zaželeno je, da je prostominska vsebnost belega pigmenta v suhem polimernem vezivu najmanj 10%, ker je pri manjši vsebnosti kritnost pri dani debelini veziva preslaba zaradi premajhne gostote delcev pigmenta, na katerih se sipa svetloba. Zaželeno je tudi, da prostominska vsebnost belega pigmenta v suhem polimernem vezivu ne preseže 20%, ker se pri večjih koncentracijah pojavi skupinsko optično vedenje delcev, in posledično znižanje kritnosti zaradi prevelike količine pigmenta. Optimalna prostominska količina belega pigmenta ali pigmentov, če imamo zmes, v suhem polimernem vezivu je okoli 15%. Za substrate iz pločevine prevlečene s cink-aluminijevo zlitino je za vsaj minimalno pokritje absorpcijskega traku potrebna končna debelina pokrivnega sloja v debelini vsaj 30 pm z optimalno koncentracijo belega pigmenta [pigment white 6] TiO2, ki ima za sedaj edini zadovoljivo kritnost pri sprejemljivi ceni zaradi ustreznosti lomnega količnika. Z opisanim dosežemo povprečno odbojnost v področju valovnih dolžin od 800-1200 nm najmanj 60%, kar zadošča za cilj bistvenega znižanja temperature.-4light. It is precisely because of the aforementioned absorption band that it is necessary to provide coverage with a color that, in the range of 800 to 1200 nm, reflects the coverage to prevent the absorption effect of the substrate. In the mentioned region light can be reflected by white pigments such as [pigment white 6] TiO2 or [pigment white 4] ZnO. The desired pigment white 6 TiO2 size is between 150 and 600 nm and for the pigment white 4 ZnO between 200 nm and 800 nm, because the smaller or larger particle size decreases the coverage of the painted surface. The following follows from Mie light scattering theory. The optimal theoretical magnitude was sought to obtain maximum coverage at 1000 nm of incident light, taking into account the refractive indexes of the participating constituents at the indicated wavelength. Due to practical difficulties in achieving perfect dispersion, slightly smaller particles than pure theoretical prediction are used. It is desirable that the content of white pigment in the dry polymer binder is at least 10%, since the lower content of the coating at the given thickness of the binder is too weak due to the low density of the light-scattering pigment particles. It is also desirable that the content of white pigment in the dry polymeric binder does not exceed 20%, because at higher concentrations, the collective optical behavior of the particles occurs and consequently a decrease in the coverage due to the excess amount of pigment. The optimum amount of white pigment or pigments, if mixed, in the dry polymer binder is about 15%. For zinc-aluminum-coated metal substrates, a minimum coating thickness of at least 30 pm with an optimal concentration of TiO2 pigment white, which at present has the only satisfactory coverage at an acceptable price, is required for at least a minimum coverage of the absorbent layer. the adequacy of the refractive index. This results in an average reflectance in the wavelength range of 800-1200 nm of at least 60%, which is sufficient to substantially reduce the temperature.
Za substrate iz pločevine prekrite z npr. aluminij-cinkovo zlitino ali substrate s predbarvano tanko polimerno protikorozijsko plastjo po sliki 1, krivulja A, ki jo opredeli vsaj 55% odbojnost na traku od 800-1200 nm, ter več kot 50% v območju od 1200-2500 nm, pa zadošča tudi raba pigmentov z nižjim lomnim količnikom kot npr. [pigment white 4] ZnO. Znižanje kritnosti je v primeru optično manj zahtevnega aluminij-cinkovega substrata po sliki 1, krivulja A, z dobro refleksivnostjo celo ekonomično, saj je potrebno za doseganje najmanj 60% absorpcije vidne svetlobe dodati manj tehnično zahtevnih organskih snovi za obarvanje. Vendar pa je znižanje vsebnosti belega pigmenta pod prostorsko vsebnost 10% zopet nezaželeno, ker bel pigment ali njegova zmes sodeluje pri zaščiti organskih snovi za obarvanje ter polimernega veziva predFor sheet metal substrates covered with e.g. Aluminum-zinc alloy or substrates with a pre-painted thin polymeric anti-corrosion layer according to Figure 1, curve A defined by at least 55% reflectance on a band of 800-1200 nm and more than 50% in the range of 1200-2500 nm is also sufficient the use of pigments with a lower refractive index than e.g. [pigment white 4] ZnO. In the case of the optically less demanding aluminum-zinc substrate according to Figure 1, curve A, curve A with good reflectivity is even economical, since less technically demanding coloring matter is required to achieve at least 60% absorption of visible light. However, reducing the white pigment content below 10% by volume is again undesirable because the white pigment or its mixture is involved in protecting the organic coloring agents and polymer binder from
-5poškodbami zaradi UV sončnega obsevanja. V tem primeru je boljša odločitev za dodajanje manj kritnega [pigment white 4] ZnO. V primeru optično manj zahtevnega aluminij-cinkovega substrata je torej primerno uporabiti zmes pigmentov [pigment white 6] TiO2 in [pigment white 4] ZnO tako, da je zagotovljena ustrezna kritnost pri njuni najmanj 10% prostominski vsebnosti. Izjemoma je mogoče pokrivni sloj izdelati tudi s čistim [pigment white 4] ZnO. Pri primeru optično manj zahtevnega aluminij-cinkovega substrata je mogoče tudi znižati debelino pokrivnega sloja na vsaj 20 pm.-5 damage caused by UV radiation. In this case, the better decision is to add less pigment white 4 ZnO. In the case of an optically less demanding aluminum-zinc substrate, it is therefore appropriate to use a mixture of [pigment white 6] TiO2 and [pigment white 4] ZnO pigments in such a way as to ensure adequate coverage of at least 10% by volume. Exceptionally, the coating layer can also be made with pure [pigment white 4] ZnO. In the case of an optically less demanding aluminum-zinc substrate, it is also possible to reduce the thickness of the coating layer to at least 20 pm.
V primeru rabe mešanice pigmentov ZnO in TiO2, se delež TiO2 prilagodi potrebni kritnosti glede na svetlost substrata, delež ZnO pa zapolni preostali prostor do skupno največ 15% oz. 20% vol. deleža v celotnem suhem filmu barve.In the case of a mixture of ZnO and TiO2 pigments, the TiO2 content is adjusted to the required coverage according to the luminance of the substrate, and the ZnO content fills the remaining space up to a total of 15% or more. 20% vol. share in the total dry film of color.
Spodnji volumski delež skupne količine belih pigmentov smo izkustveno ugotovili pri 10% za debeline barvne oslojitve med 20 in 50 mikrometrov. Pri debelinah oslojitve do 100 mikrometrov, ki so značilne za praškaste barvne sisteme pa je ta meja lahko znižana do 5% za potrebe doseganja kritnosti absorpcijskega pasu zink-aluminijevega substrata. Slednje zmanjšanje sledi iz povečanja debeline. Zgornja meja volumskega deleža belih pigmentov je vedno pri približno 20%, ker se kritnost pri večjih deležih slabša zaradi medsebojnega delovanja pigmentnih zrn. Podatek je znan iz literature in se tudi ujema z našimi izkustvi. Na intervalu deležev 15%-20% se kritnost le malo spreminja, zato se v praksi odločamo največ za 15% delež belih pigmentov v oslojitvi.The lower volume fraction of the total amount of white pigments was tested empirically at 10% for dye thicknesses between 20 and 50 micrometers. However, at a thickness of up to 100 micrometers characteristic of powder color systems, this limit may be reduced by up to 5% to cover the zinc-aluminum substrate absorption band. The latter decrease follows from the increase in thickness. The upper limit for the volume ratio of white pigments is always at about 20%, because the coverage of the higher proportions deteriorates due to the interaction of the pigment grains. The information is known from the literature and also matches our experience. The coverage ratio varies slightly from 15% -20%, so in practice we decide on a maximum of 15% white pigments in release.
Bela pigmenta TiO2 in ZnO sta komercialno na voljo v granulacijah od 10 pa do več 1000 nm. Iz literature razberemo, daje optimalna velikost zrn za doseganje kritnosti nasproti vidni svetlobi valovne dolžine 560 nm v okolici 250 nm. Zrna manjša od 150 nm se uporabljajo za interakcijo z UV svetlobo, npr. za kreme za sončenje. Beli pigmenti za vidno svetlobo so na trgu na voljo v granulacijah med 150 in 500 nm. Odstopanja od teoretičnega optimuma so razumljiva, če upoštevamo dejstvo, da pigmentna zrna v polimernih oslojitvah ne nastopajo kot popolne disperzije, temveč kot skupki aglomeratov pigmentnih zrn in posameznih pigmentnih zrn. Slednje je posledica nepopolnosti postopkov mešanja in dispergiranja. Nekateri načini dispergiranja dosegajo boljše rezultate praktične kritnosti pri manjših zrnih od teoretičnih, nekateri pa pri večjih.The white pigments TiO2 and ZnO are commercially available in granulations from 10 up to 1000 nm. From the literature, we can see that the optimal grain size for reaching the coverage against visible light is 560 nm in the 250 nm environment. Grains smaller than 150 nm are used to interact with UV light, e.g. for sunscreens. White pigments for visible light are available on the market in granulations between 150 and 500 nm. The deviations from the theoretical optimum are understandable considering the fact that the pigment grains do not appear as complete dispersions in the polymer discharges but as aggregates of pigment grain agglomerates and individual pigment grains. The latter is due to the incompleteness of the mixing and dispersing processes. Some dispersions achieve better practical coverage results in smaller grains than theoretical ones, and some in larger ones.
Ker smo v našem primeru želeli doseči največjo kritnost pri 1000 nm valovne dolžine svetlobe, je bilo potrebno ugotoviti nov teoretični optimum velikosti pigmentnih zrn.Since in our case we wanted to achieve maximum coverage at 1000 nm wavelength of light, it was necessary to establish a new theoretical optimum of pigment grain size.
-6Za ta cilj smo uporabili komercialni simulator sipanja svetlobe na sferičnem delcu po znani Mie aproksimaciji. Preizkusili smo premere zrn od 150-800 nm za TiO2 in 250 do 2500 nm za ZnO. Najintenzivnejšo teoretično kritnost smo dobili pri 400 nm za TiO2 in med 500 in 1000 nm za ZnO. Izračune smo izvedli po sledečih predpostavkah:-6For this purpose, we used a commercial light scattering simulator on a spherical particle according to the well-known Mie approximation. Grain diameters of 150–800 nm for TiO2 and 250 to 2500 nm for ZnO were tested. The most intense theoretical coverage was obtained at 400 nm for TiO2 and between 500 and 1000 nm for ZnO. The calculations were performed on the following assumptions:
Lomni količnik veziva (približno akrilno vezivo): n=1.5,Refractive index of the binder (approximate acrylic binder): n = 1.5,
Lomni količnik TiO2 (VIS): n=2.7,TiO2 refractive index (VIS): n = 2.7,
Lomni količnik TiO2 (1000 nm): n=2.5,TiO2 refractive index (1000 nm): n = 2.5,
Lomni količnik ZnO (VIS in lOOOnm); n=2.0.ZnO refractive index (VIS and lOOOnm); n = 2.0.
Za pripravo obarvanih pokrivnih slojev je po izumu uporabljena ena ali kombinacija več različnih organskih snovi za obarvanje, kot so: perion, antrakinon, ftalocianin, pyrazolone, azo, azomethine-azo in perylene. Barvila so uporabljena v kombinaciji z belimi pigmenti ali izjemoma tudi samostojno, pri čemer so delci belega pigmenta običajno v disprezni zmesi z barvili. Tako pripravljeni obarvani pokrivni sloji v aplicirani debelini absorbirajo v povprečju najmanj 60% vpadle vidne svetlobe v področju valovnih dolžin vidne svetlobe od 380 do 700 nm, kar pomeni, da so ti premazi temnejših odtenkov. V bližnjem infrardečem delu spektra med 800 in 1200 nm pa omenjene organske snovi za obarvanje prepuščajo svetlobo, tako da ne prispevajo bistveno k absorpciji v infrardečem področju. Dodatno so lahko za določitev barvne nianse dodani k organskim snovem za obarvanje in belim pigmentom še znani anorganski barvni pigmenti, kot sta npr. Sicotan in Sicopal proizvajalca BASF.One or a combination of several different organic coloring agents, such as: perion, anthraquinone, phthalocyanine, pyrazolone, azo, azomethine-azo and perylene, is used to prepare the colored coating layers according to the invention. Dyestuffs are used in combination with white pigments or, exceptionally, independently, with white pigment particles typically in a dystopic mixture with colorants. The colored coatings thus prepared absorb, on average, at least 60% of the incident visible light in the wavelength range of visible light from 380 to 700 nm, which means that these coatings are darker. However, in the near infrared part of the spectrum between 800 and 1200 nm, the mentioned organic coloring agents transmit light so that they do not significantly contribute to the absorption in the infrared region. In addition, inorganic color pigments, such as, for example, colorants may be added to determine the color shade to organic coloring agents and white pigments. Sicotan and Sicopal by BASF.
V okviru izuma je predlagana uporaba znanih veziv. To so: akrilna, epoksi, poliuretanska, estrska, silikonska, PVC, PVDF, PVF(F), SP-SI, SP ali akrilno poliuretanska veziva. Izum se z navedenimi vezivi ne omejuje, saj ga je mogoče izvesti tudi na drugih polimernih vezivih. Izbrano vezivo naj v aplicirani debelini 0,03 mm prepušča v povprečju vsaj 75% vpadle svetlobe valovnih dolžin 380-2500 nm. Pri tem so v vezivo lahko dodani še reološki, stabilizacijski in drugi dodatki za vezivo. V vezivu se poleg tega lahko nahajajo še omakalna oz. disperzna sredstva.The invention proposes the use of known binders. These are: acrylic, epoxy, polyurethane, ester, silicone, PVC, PVDF, PVF (F), SP-SI, SP or acrylic polyurethane binders. The invention is not limited to the aforementioned binders, since it can also be carried out on other polymeric binders. The selected binder should allow an average of at least 75% of the incident light of wavelengths 380-2500 nm in the applied thickness of 0.03 mm. Rheological, stabilizing and other binder additives may also be added to the binder. The binder may also contain wetting or wetting agents. dispersing agents.
-7Izvedbeni primeri-7Product examples
Primer 1 (slika 2):Example 1 (Figure 2):
Priprava premaza (sestava):Preparation of coating (composition):
delov 6924 Unihel paste 01 bele, s 70% ut. delov TiO2 pigmenta Kemira 920 srednjega premera 350 nm (pasta Helios d.d.), delov polimernega veziva Mobihel 2KHS (Helios d.d.), delov trdilca Mobihel 2K 1100 (Helios d.d.), delov perylene Paliogen Schwarz L0086 pigmenta (BASF) delov Butil acetataparts 6924 Unihel paste 01 white, with 70% wt. parts of TiO2 pigment Kemira 920 medium diameter 350 nm (Helios paste d.d.), parts of Mobihel 2KHS polymer binder (Helios d.d.), parts Mobihel 2K 1100 hardener (Helios d.d.), parts perylene Paliogen Schwarz L0086 pigment (BASF) parts Butyl acetate
Substrat; jeklena pločevina prevlečena s cink-aluminijevo zlitino.Substrate; zinc-aluminum alloy steel sheet.
Premaz je nanešen na substrat z jekleno režo višine 0,12 mm.The coating is applied to a substrate with a steel slot of 0.12 mm height.
Po utrjevanju v peči 30 min. Na temperaturi 60°C dobimo 0,05 mm suhega filma pokrivnega sloja.After curing in the oven for 30 min. At 60 ° C, a 0.05 mm dry film of the coating layer is obtained.
Primer 2:Example 2:
Priprava premaza (sestava):Preparation of coating (composition):
delov ZnO pigmenta tip F (Samson Chem d.o.o.), srednji premer 150 nm, delov polimernega veziva Mobihel 2KHS (Helios d.d.), delov trdilca Mobihel 2K 1100 (Helios d.d.), delov perylene Paliogen Schvvarz L0086 pigmenta (BASF) delov Butil acetataparts ZnO pigment type F (Samson Chem d.o.o.), medium diameter 150 nm, parts polymer Mobihel 2KHS (Helios d.d.), parts hardener Mobihel 2K 1100 (Helios d.d.), parts perylene Paliogen Schvvarz L0086 pigment (BASF) parts Butyl acetate
Substrat; jeklena pločevina prevlečena s cink-aluminijevo zlitino.Substrate; zinc-aluminum alloy steel sheet.
ZnO pigment je bil predhodno dispergiran na disolverju in nato še na mlinu s cirkonijevimi kroglicami.The ZnO pigment was previously dispersed on a disolver and then on a zirconia ball mill.
Premaz je nanešen na substrat z jekleno režo višine 0,12 mm.The coating is applied to a substrate with a steel slot of 0.12 mm height.
Po utrjevanju v peči 30 min 60°C dobimo 0,05 mm suhega filma pokrivnega sloja.After curing in the oven for 30 min 60 ° C, 0.05 mm of dry film of the coating layer is obtained.
Primer 3 (slika 3):Example 3 (Figure 3):
Priprava premaza (sestava):Preparation of coating (composition):
masnih delov TiO2 pigmenta (11,5 % vol.) Kemira 920 srednjega premera 350 nm 15 masnih delov perylene Paliogen Schwarz L0086 pigmenta (BASF) masnih delov veziva Poliester 20-1 Color d.d.parts by weight of TiO2 pigment (11.5% vol.) Kemira 920 medium diameter 350 nm 15 parts by weight of perylene Paliogen Schwarz L0086 pigment (BASF) by weight of binder Polyester 20-1 Color d.d.
-8Substrat; jeklena pločevina prevlečena s cink-aluminijevo zlitino.-8Substrate; zinc-aluminum alloy steel sheet.
Premaz smo nanesli na substrat z Gemma opremo za prašno lakiranje.The coating was applied to the substrate with Gemma powder coating equipment.
Po utrjevanju v peči 10 min 180°C smo dobili 0,08 mm suhega filma pokrivnega sloja.After curing in the oven for 10 min 180 ° C, a 0.08 mm dry film of the coating layer was obtained.
Poskus:Attempt:
Merjenje temperature na površini obarvane pločevine:Temperature measurement on the surface of colored sheet:
Na toplotno izolacijo iz ekspandiranega polistirena debeline 10 cm je bil postavljen vzorec jeklene pločevine debeline 0,6 mm, prevlečene s cink-aluminijevo zlitino, po sliki 1, krivulja B, premazano s sivo barvo RAL 7016 treh različnih proizvajalcev, ter dveh barvnih premazov po izumu temno sive barve približno RAL 7016. Vzorec klasične ne-hladne barve RAL 7016 proizvajalca Helios z refleksijo sončnega obsevanja 7.0%. Vzorec komercialne hladne barve RAL 7016 proizvajalca Beckers z refleksijo sončnega obsevanja 19,4%. Vsi vzorci so bili istočasno izpostavljeni sončni svetlobi v zunanjem okolju, kjer ni bilo vetra in bližnjih zgradb, ki bi lahko vplivale na rezultat meritev. Temperatura tik pod površino pločevine je bila merjena s termo členi 30 minut po osvetlitvi. Po tem času je bila temperatura že ustaljena.A sample of 0.6 mm thick steel sheet coated with zinc-aluminum alloy according to Figure 1, curve B, gray-coated RAL 7016 from three different manufacturers, and two colored coatings of dark gray RAL 7016 sample. Helios classic non-cold color sample of Helios with a sun reflection of 7.0%. Beckers commercial cold paint sample RAL 7016 with 19.4% solar irradiation reflection. All samples were simultaneously exposed to sunlight in an external environment where there was no wind and nearby buildings that could affect the measurement result. The temperature just below the surface of the sheet was measured by thermo links 30 minutes after illumination. By this time the temperature was already stable.
Rezultati meritev so zbrani v tabeli 1. Rezultati kažejo, daje temperatura na površini primerov 1, kjer je refleksija sončnega obsevanja 38,2% in 3, kjer je refleksija sončnega obsevanja 35,0%, to je substrata z barvnim premazom po izumu za 12-13°C nižja od tiste s klasično sivo barvo, oziroma skoraj za 10°C nižja od komercialno dostopnih hladnih barv RAL 7016.The results of the measurements are summarized in Table 1. The results show that the surface temperature of cases 1, where the solar reflectance is 38.2% and 3, where the solar reflectance is 35.0%, that is, the substrate with the color coating of the invention for 12 -13 ° C lower than that of classic gray, or almost 10 ° C lower than commercially available RAL 7016 cool colors.
Tabela 1Table 1
Barva oz. barvni premaz za znižanje temperature osončenih površin po izumu je torej značilna po tem, da ima suhi film barve prostominsko vsebnost belega pigmenta [pigment white 6] TiO2 v vezivu med 10% in 20% preferenčno pa okoli 15%, pri tem je [pigment white 6] TiO2 izbranColor or. The color coating for reducing the temperature of the sunlit surfaces of the invention is therefore characterized in that the dry paint film has a pigment white 6 [TiO2] content in the binder of between 10% and 20%, preferably about 15%, with [pigment white 6] TiO2 selected
-9izmed velikosti med 150 nm in 600 nm preferenčno pa okoli 400 nm, daje vezivo izbrano iz skupine akrilnih, epoksi, poliuretanskih, estrskih, silikonskih, PVC, PVDF, PVF(F), SP-S1, SP ali akrilno poliuretanskih veziv, ter da je vsaj ena snov za obarvanje izbrana izmed perion, antrakinon, ftalocianin, pyrazolone, azo, azomethine-azo in perylene organskih snovi za obarvanje. V okviru izuma je tudi barva oz. barvni premaz, ki je značilen po tem, da ima barva prostominsko vsebnost belih pigmentov v polimernem vezivu med 10% in 20% preferenčno pa okoli 15%, pri tem je [pigment white 6] TiO2 izbran izmed velikosti med 150 nm in 600 nm preferenčno pa okoli 400 nm s vsebnostjo 5% do 20%, pigment [pigment white 4] ZnO pa med 200 nm in 800 nm preferenčno pa okoli 600 nm s vsebnostjo 0% do 15%, daje vezivo izbrano iz skupine akrilnih, epoksi, poliuretanskih, estrskih, silikonskih, PVC, PVDF, PVF(F), SP-SI, SP ali akrilno poliuretanskih veziv, ter da je vsaj ena snov za obarvanje izbrana izmed perion, antrakinon, ftalocianin, pyrazolone, azo, azomethine-azo in perylene organskih snovi za obarvanje. V navedenih primerih je na površino oz. za svetlobo nepropusten substrat, prednostno jeklena pločevina korozijsko zaščitena s cinkom ali cink aluminijevim slojem nanešena navedena barva v enem sloju debeline suhega filma od 30 μηα do 50 μην V tem primeru barvo nanašamo z mokrim postopkom po tehnologiji pršenja ali s coil coat postopkom.-9from a size between 150 nm and 600 nm, preferably about 400 nm, the binder is selected from the group of acrylic, epoxy, polyurethane, ester, silicone, PVC, PVDF, PVF (F), SP-S1, SP or acrylic polyurethane binders, and that at least one staining substance is selected from perion, anthraquinone, phthalocyanine, pyrazolone, azo, azomethine-azo and perylene organic staining agents. The invention also includes color or a color coating, characterized in that the color has a white-pigment content in the polymeric binder of between 10% and 20%, preferably about 15%, with [pigment white 6] TiO2 selected from a size between 150 nm and 600 nm preferentially about 400 nm with a content of 5% to 20% and a pigment white pigment 4 ZnO between 200 nm and 800 nm, preferably about 600 nm with a content of 0% to 15%, gives a binder selected from the group of acrylic, epoxy, polyurethane, ester, silicone, PVC, PVDF, PVF (F), SP-SI, SP or acrylic polyurethane binders, and that at least one coloring agent is selected from perions, anthraquinone, phthalocyanine, pyrazolone, azo, azomethine-azo and perylene organic substances for coloring. In the above cases, the surface or for light-impermeable substrate, preferably steel sheet corrosion-protected with zinc or zinc aluminum layer, apply the specified color in one layer of dry film thickness from 30 μηα to 50 μην. In this case, paint is applied by wet spray method or coil coat process.
Barva oz. barvni premaz po izumu je v tretji izvedbi značilen po tem, da ima barva prostominsko vsebnost belega pigmenta [pigment white 6] TiO2 v vezivu med 5% in 15% preferenčno pa okoli 10%, pri tem je [pigment white 6] TiO2 izbran izmed velikosti med 150 nm in 600 nm preferenčno pa okoli 400 nm, da je vezivo izbrano iz skupine akrilnih, epoksi, poliuretanskih, estrskih, PVDF, PVF(F), SP-SI, SP ali akrilno poliuretanskih veziv, ter da je vsaj ena snov za obarvanje izbrana izmed perion, antrakinon, ftalocianin, pyrazolone, azo, azomethine-azo in perylene organskih snovi za obarvanje. Na površino oz. za svetlobo nepropusten substrat, prednostno jeklena pločevina korozijsko zaščitena s cinkom ali cink aluminijevim slojem je nanešena navedena barva v enem sloju debeline suhega filma od 50 μιη do 100 μην V tem primeru barvo nanašamo s tehnologijo praškastega barvanja.Color or. The color coating according to the invention is in the third embodiment, characterized in that the color has a content of white pigment [pigment white 6] TiO2 in the binder between 5% and 15%, preferably about 10%, with [pigment white 6] TiO2 selected from sizes between 150 nm and 600 nm, preferably about 400 nm, that the binder is selected from the group of acrylic, epoxy, polyurethane, ester, PVDF, PVF (F), SP-SI, SP or acrylic polyurethane binders, and that at least one substance is present for coloring selected from perion, anthraquinone, phthalocyanine, pyrazolone, azo, azomethine-azo and perylene organic coloring agents. To the surface or. for light impermeable substrate, preferably steel sheet corrosion-protected with zinc or zinc aluminum layer, the specified color is applied in one layer of dry film thickness from 50 μιη to 100 μην. In this case, the paint is applied by powder coating technology.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200800167A SI22808A (en) | 2008-06-30 | 2008-06-30 | Colour for lowering temperature of insolated surfaces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200800167A SI22808A (en) | 2008-06-30 | 2008-06-30 | Colour for lowering temperature of insolated surfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
SI22808A true SI22808A (en) | 2009-12-31 |
Family
ID=41462283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200800167A SI22808A (en) | 2008-06-30 | 2008-06-30 | Colour for lowering temperature of insolated surfaces |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI22808A (en) |
-
2008
- 2008-06-30 SI SI200800167A patent/SI22808A/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cozza et al. | NIR-reflecting properties of new paints for energy-efficient buildings | |
KR100404313B1 (en) | Coating material with reflective properties | |
Thongkanluang et al. | Preparation and characterization of Cr2O3–TiO2–Al2O3–V2O5 green pigment | |
WO2021003777A1 (en) | Radiation refrigeration functional coating and application thereof | |
Berdahl et al. | Preliminary survey of the solar reflectance of cool roofing materials | |
Synnefa et al. | On the development, optical properties and thermal performance of cool colored coatings for the urban environment | |
CA2475474C (en) | Plane metal component | |
Revel et al. | Nanobased coatings with improved NIR reflecting properties for building envelope materials: Development and natural aging effect measurement | |
US10131838B2 (en) | Compositions for cooling materials exposed to the sun | |
Orel et al. | Silicone-based thickness insensitive spectrally selective (TISS) paints as selective paint coatings for coloured solar absorbers (Part I) | |
MXPA97005382A (en) | Material of covering with repellent properties in two interval of length of onday absorbent properties in a third intervalode length of or | |
CN114539841A (en) | Radiation-cooled element comprising a coating with nano-or micro-particles | |
Xue et al. | The methods for creating energy efficient cool gray building coatings—Part I: Preparation from white and black pigments | |
Qin et al. | The methods for creating building energy efficient cool black coatings | |
CN102040878B (en) | Infrared reflexive aggregate and preparation method thereof | |
US6734224B2 (en) | Heat radiation shield coating composition | |
Qin et al. | The optical properties of black coatings and their estimated cooling effect and cooling energy savings potential | |
EP3006513B1 (en) | Heat-reflective composition | |
Thongkanluang et al. | Preparation and using of high near-infrared reflective green pigments on ceramic glaze | |
CN112646426A (en) | Light yellow refrigeration coating and preparation method and application thereof | |
SI22808A (en) | Colour for lowering temperature of insolated surfaces | |
KR20160130961A (en) | Automatic color changing paint for saving energy and coating layer using thereof | |
EP2778204B1 (en) | Infrared reflective film, infrared reflective paint, and infrared reflector | |
JP2002012683A (en) | Thermal insulating colored sheet | |
JP2001262072A (en) | Light and heat-proofing coating material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20100119 |
|
KO00 | Lapse of patent |
Effective date: 20120131 |