SI22669A - ZnO NANOPARTICLES AND NANOWIRES WITH ORGANOPHILIC SURFACE AND THEIR NANOCOMPOSITES WITH POLYMETHYL METACRYLATE - Google Patents

ZnO NANOPARTICLES AND NANOWIRES WITH ORGANOPHILIC SURFACE AND THEIR NANOCOMPOSITES WITH POLYMETHYL METACRYLATE Download PDF

Info

Publication number
SI22669A
SI22669A SI200700294A SI200700294A SI22669A SI 22669 A SI22669 A SI 22669A SI 200700294 A SI200700294 A SI 200700294A SI 200700294 A SI200700294 A SI 200700294A SI 22669 A SI22669 A SI 22669A
Authority
SI
Slovenia
Prior art keywords
zno
nanocomposites
methacrylic
zinc
preparation
Prior art date
Application number
SI200700294A
Other languages
Slovenian (sl)
Inventor
Alojz Anĺ˝Lovar
Orel Zorica Crnjak
Majda ŽIgon
Original Assignee
Kemijski inštitut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemijski inštitut filed Critical Kemijski inštitut
Priority to SI200700294A priority Critical patent/SI22669A/en
Priority to PCT/SI2008/000055 priority patent/WO2009064260A2/en
Publication of SI22669A publication Critical patent/SI22669A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The subject of the invention are nanoparticles and nanowires of zinc oxide (ZnO) with organophylic surface, synthesised in various diols in the presence of para-toluene sulphonic acid (p-TsOH), and their nanocomposites with polymethyl metacrylate (PMMA), prepared without additional modification of ZnO particle surface. The procedure of preparation of nano-ZnO is carried out by hydrolysis of a zinc compound in various diols in the presence of para-toluene sulphonic acid as catalyst and comprises the following steps: mixing and sonification of the solution for 5 to 60 minutes; heating of the solution for 30 to 90 minutes at temperatures between 100 and 300 degrees Celsius; settling of the zinc oxide compound for up to 24 hours; separation of the suspension from the precipitate; washing of the suspension; drying of the suspension. The preparation of nanocomposites composed of a metacrylic or acrylic polymer and unmodified nano-ZnO consists of the following steps: preparation of the mixture of a metacrylic or acrylic monomer, initiator and zinc(II) oxide; mixing and sonification for 5 to 60 minutes; optionally partial polymerisation of MMA; optionally repeated addition of 0.1 to 40% of the initiator; transfer into a mould; polymerisation at a temperature between 35 and 80 degrees Celsius; cooling down of the polymer and its separation from the mould.

Description

Predmet izumaThe subject of the invention

Predmet izuma so nanodelci in nanožičke cinkovega oksida - ZnO z organofilno površino, sintetizirani v različnih diolih v prisotnosti para-toluen sulfonske kisline (p-TsOH) in njihovi nanokompoziti s polimetil metakrilatom (PMMA), pripravljeni brez dodatne modifikacije površine ZnO delcev. ZnO nanodelci in nanožičke so uporabni kot polprevodno polnilo v PMMA za različne elektronske aplikacije; kot svetlobni in UV pretvorniki v nanokompozitih s PMMA matrico za solarno tehniko; kot UV absorberji in svetlobni stabilizatorji za pleksi steklo za zunanjo uporabo, v neprozornih nanokompozitih s PMMA za zunanjo uporabo in v premaznih sistemih, ki imajo kot vezivo PMMA ali kopolimere, v katerih prevladuje metakrilni ali akrilni polimer.The object of the invention are zinc oxide - ZnO nanoparticles and ZnO nanoparticles synthesized in various diols in the presence of para-toluene sulfonic acid (p-TsOH) and their nanocomposites with polymethyl methacrylate (PMMA) prepared without further modification of the ZnO particle surface. ZnO nanoparticles and nanowires are useful as a semiconductor filler in PMMA for various electronic applications; as light and UV converters in nanocomposites with PMMA matrix for solar engineering; as UV absorbers and light stabilizers for exterior plexiglass, in opaque PMMA exterior nanocomposites and in coating systems having PMMA or copolymers dominated by methacrylic or acrylic polymer.

Znano stanje tehnikeThe prior art

V zadnjem času so raziskave usmerjene v okoljsko sprejemljivo sintezo nanodelcev in drugih nanostruktur ter v pripravo nanokompozitov iz nanodelcev ter različnih matric po postopkih, ki so primerni za industrijsko aplikacijo. Ena od okoljsko sprejemljivih poti za sintezo nanodelcev ZnO je hidroliza v različnih diolih. Tako patentna prijava KR20050043442 opisuje sintezo ZnO prahu v glikolu. Znanstvena literature, navedena pod zaporednimi številkami od 1 do 6 opisuje sintezo ZnO v različnih alkoholih. V glavnem gre za postopke priprave ZnO v različnih mono in diolih brez dodatka ali z dodatkom kisline ali baze kot katalizatorja. Slabost nano ZnO, sintetiziranega v monoalkoholih, je slabša organofilnost površine zaradi česar je potrebna dodatna modifikacija površine za pripravo nanokompozitov. Dodatna modifikacija površine podraži takšno nanopolinilo in lahko tudi poslabša določene lastnosti nanokompozita. Slabost postopkov sinteze ZnO v monoalkoholih in diolih brez dodatka p-TsOH, če želimo sintetizirati ZnO z velikostjo delcev pod 100 nm, je nizka koncentracija izhodne spojine. Zaradi nizke koncentracije izhodne spojine je poraba topil pri sintezi takšnih nanodelcev zelo velika, kar zopet močno podraži takšno nanopolnilo.Recently, research has focused on the environmentally friendly synthesis of nanoparticles and other nanostructures, and on the preparation of nanocomposites from nanoparticles and various matrices following procedures suitable for industrial application. One of the environmentally acceptable pathways for the synthesis of ZnO nanoparticles is hydrolysis in various diols. Thus, patent application KR20050043442 describes the synthesis of ZnO powder in glycol. The scientific literature cited under order numbers 1 to 6 describes the synthesis of ZnO in various alcohols. It mainly involves the preparation of ZnOs in various mono and diols without or with the addition of acid or base as a catalyst. The disadvantage of nano ZnO synthesized in monoalcohols is the poorer organophilicity of the surface, which necessitates additional surface modification for the preparation of nanocomposites. Additional modification of the surface makes such a nanopolymer more expensive and may also impair certain properties of the nanocomposite. A disadvantage of ZnO synthesis processes in monoalcohols and diols without the addition of p-TsOH, in order to synthesize ZnO with a particle size below 100 nm, is the low concentration of the starting compound. Due to the low concentration of the starting compound, the consumption of solvents in the synthesis of such nanoparticles is very high, which again significantly increases the cost of such nanoparticle.

-2V literaturi ni zaslediti postopka sinteze ZnO v diolih z uporabo p-TsOH kot katalizatorja. V literaturi, našteti od številke 7 do 13 so opisane priprave polimernih nanokompozitov s ZnO, pripravljenim v različnih monoalkoholih. Vsi avtorji uporabljajo dodatno površinsko modifikacijo delcev ZnO za doseganje homogene porazdelitve ZnO v PMMA matrici.. Dodatna modifikacija običajno poslabša temperaturno stabilnost - kot primer v literature pod št. 13 - in tudi mehanske lastnosti nanokompozita, saj ima večina modifikatorjev mehčalni učinek. V strokovni literaturi ni zaslediti opisa uporabe ZnO, sintetiziranega v diolih za pripravo nanokompozitov s PMMA.-2 The process of ZnO synthesis in diols using p-TsOH as a catalyst has not been reported in the literature. The literature listed from Nos. 7 to 13 describes the preparation of polymeric ZnO nanocomposites prepared in various monoalcohols. All authors use additional surface modification of ZnO particles to achieve a homogeneous ZnO distribution in the PMMA matrix. Additional modification usually impairs temperature stability - as exemplified in the literature under no. 13 - and also the mechanical properties of the nanocomposite, since most modifiers have a softening effect. No description of the use of ZnO synthesized in diols for the preparation of PMMA nanocomposites has been found in the professional literature.

Literatura:Literature:

1. L.R.Collins, S.E. Taylor, J. Mat. Chem., 2, 1992,12771. L.R.Collins, S.E. Taylor, J. Mat. Chem., 2, 1992, 1277

2. D. Jezequel, J. Guenot, N. Jouini, F. Fievet, J. Mat. Res., 10(1), 1995, 77-832. D. Jezequel, J. Guenot, N. Jouini, F. Fievet, J. Mat. Res., 10 (1), 1995, 77-83

3. C. Feldman, Scripta Mater., 44, 2001,2193-21963. C. Feldman, Scripta Mater., 44, 2001,2193-2196

4. C. Feldman, J. Merikhi, J. Coli. Interf. Sci., 223, 2000, 229-2344. C. Feldman, J. Merikhi, J. Coli. Interf. Sci., 223, 2000, 229-234

5. M.M. Demir, R.M. Munoz-Espi, I. Lieberwirth, G. Wegner,. J. Mat. Chem., 16, 2006, 2940-29475. М.М. Demir, R.M. Munoz-Espi, I. Lieberwirth, G. Wegner,. J. Mat. Chem., 16, 2006, 2940-2947

6. T. Ahmad, S. Vadiya, N. Sarkar, S. Ghosh, A. Ganguli, Nanotechnology, 17, 2006, 123612406. T. Ahmad, S. Vadiya, N. Sarkar, S. Ghosh, and A. Ganguli, Nanotechnology, 17, 2006, 12361240

7. M.M. Demir, M. Memesa, P. Castignolles, G. Wegner, Macromol. Rapid Comm., 27, 2006, 763-7707. М.М. Demir, M. Memesa, P. Castignolles, G. Wegner, Macromol. Rapid Comm., 27, 2006, 763-770

8. S.C. Liufu, H.N. Xiao, Υ.Ρ. Li, Polym. Deg, Stabil., 87, 2005, 103-1108. S.C. Liufu, H.N. Xiao, Υ.Ρ. Li, Polym. Deg, Stabil., 87, 2005, 103-110

9. M.M. Demir, K. Koynov, U. Akbey, C. Burbeck, I. Park, I. Liebenvirth, G. Wegner, Macromolecules, 40, 2007,1089-11009. М.М. Demir, K. Koynov, U. Akbey, C. Burbeck, I. Park, I. Liebenvirth, G. Wegner, Macromolecules, 40, 2007,1089-1100

10. V. Khrenov, M. Klapper, M. Koch, K. Mullen, Macromol. Chem. Phys., 206, 2005, 95-10110. V. Khrenov, M. Klapper, M. Koch, K. Mullen, Macromol. Chem. Phys., 206, 2005, 95-101

11. E. Tang, G. Cheng, X. Pang, X. Ma, F. Xing, Colloid Polym. Sci., 284, 2006, 422-42811. E. Tang, G. Cheng, X. Pang, X. Ma, F. Xing, Colloid Polym. Sci., 284, 2006, 422-428

12. N. Lu, X. Lu, X. Jin, C. Lu, Polym. Int., 56, 2007, 138-14312. N. Lu, X. Lu, X. Jin, C. Lu, Polym. Int., 56, 2007, 138-143

13. P. Liu, Z. Su, J. Macromol. Sci. PartB, Physics, 45, 2006, 131-13813. P. Liu, Z. Su, and J. Macromol. Sci. PartB, Physics, 45, 2006, 131-138

Cilj izumaThe object of the invention

Cilj izuma je sintetiza polinila na osnovi nanodelcev ZnO z velikostjo delcev pod 100 nm z ozko porazdelitvijo velikosti in z definirano obliko, npr. kroglice, žičke itd., ki imajo organofilnoIt is an object of the invention to synthesize ZnO nanoparticles based on particle size below 100 nm with a narrow size distribution and with a defined shape, e.g. beads, wires, etc. that have organophilic

-3površino po postopku, ki omogoča sintezo nano ZnO z velikostjo delcev pod 100 nm pri koncentracijah izhodne spojine najmanj 0,1 mol/L. Cilj izuma so tudi homogeni nanokompoziti metakrilatov ali akrilatov in navedenega polnila na osnovi ZnO, z izboljšano UV, svetlobno in temperaturno obstojnostjo ob bolj ali manj nespremenjenih mehanskih lastnostih ter preprost postopek priprave takšnih nanokompozitov s polimerizacijo metakrilnega ali akrilnega monomera v masi ali z ulivanjem iz raztopine metakrilnega ali akrilnega polimera, ki so po potrebi lahko tudi transparentni.-3 Surface by a process that allows the synthesis of nano ZnO with a particle size below 100 nm at concentrations of the starting compound of at least 0.1 mol / L. The invention also provides homogeneous nanocomposites of methacrylates or acrylates and said ZnO-based filler, with improved UV, light and temperature stability with more or less unchanged mechanical properties, and a simple process for preparing such nanocomposites by polymerizing methacrylic or acrylic monomer in bulk or by casting from a solution or by casting methacrylic or acrylic polymer, which may also be transparent if necessary.

Opis izumaDescription of the invention

Izum bo opisan s pomčjo izvedbenih primerov in slik, ki prikazujejo:The invention will be described by way of embodiments and illustrations showing:

Slika 1: TEM mikrografiji nanodelcev ZnO, sintetiziranih po poliolnem postopku brez dodatka ptoluen sulfonske kisline v: a) dietilen glikolu (DEG), b) tetraetilen glikolu (TEG)Figure 1: TEM micrographs of ZnO nanoparticles synthesized by a polyol process without the addition of ptoluene sulfonic acid in: a) diethylene glycol (DEG), b) tetraethylene glycol (TEG)

Slika 2: Rentgenski diffaktogram vzorca ZnO sintetiziranega po poliolnem postopku brez p-TsOH Slika 3: FTIR spekter vzorca ZnO prahu, sintetiziranega po poliolnem postopku brez p-TsOH Slika 4: TEM mikrografije delcev nano ZnO, sintetiziranih z dodatkom p-TsOH v različnih diolih: a) BD, b)TEG, c)DEG, d)EG, e)PDFigure 2: X-ray diffractogram of a ZnO sample synthesized by a polyol process without p-TsOH Figure 3: FTIR spectrum of a ZnO powder sample synthesized by a polyol process without p-TsOH Figure 4: TEM micrographs of nano ZnO particles synthesized by the addition of p-TsOH in different diols : a) BD, b) TEG, c) DEG, d) EG, e) PD

Slika 5: Rentgenski difraktogram nano ZnO prahu, sintetiziranega z dodatkom p-TsOHFigure 5: X-ray diffractogram of nano ZnO powder synthesized with the addition of p-TsOH

Slika 6: FTIR spekter nano ZnO prahu, sintetiziranih z dodatkom p-TsOHFigure 6: FTIR spectrum of nano ZnO powders synthesized by the addition of p-TsOH

Slika 7: TEM mikrografiji nanokompozitov PMMA/ZnO - ZnO sintetiziran v DEG:Figure 7: TEM micrographs of PMMA / ZnO - ZnO nanocomposites synthesized in DEG:

Slika 8: UV-vis spektri nanokompozitov PMMA/ZnO z različnimi deleži ZnO: A) 1%, B) 0,1%, C) 0,01%, D) 0,01%, E) 0%Figure 8: UV-vis spectra of PMMA / ZnO nanocomposites with different ZnO content: A) 1%, B) 0.1%, C) 0.01%, D) 0.01%, E) 0%

Slika 9: DTG krivulje nanokompozitov PMMA/ZnO z različnimi deleži ZnOFigure 9: DTG curves of PMMA / ZnO nanocomposites with different ZnO proportions

Slika 10: TEM mikrografiji nanokompozitov PMMA/ZnO - ZnO sintetiziran v TEGFigure 10: TEM micrographs of PMMA / ZnO nanocomposites - ZnO synthesized in TEG

Slika 11: TEM mikrografije nanokompozitov PMMA/ZnO - ZnO sintetiziran v različnih diolih: a)Figure 11: TEM micrographs of PMMA / ZnO - ZnO nanocomposites synthesized in different diols: a)

BD, b) TEG, c) DEG, d) EGBD, b) TEG, c) DEG, d) EG

Slika 12: UV-vis spektri nanokompozitov PMMA/ZnO ( ZnO sintetiziran v različnih diolih v prisotnosti ρ-TsOH): A)0,01%; B) 0,1% C)l%, D)0%Figure 12: UV-vis spectra of PMMA / ZnO nanocomposites (ZnO synthesized in different diols in the presence of ρ-TsOH): A) 0.01%; B) 0.1% C) l%, D) 0%

Slika 13: DTG krivulje nanokompozitov PMMA/ZnO (ZnO sintetiziran v prisotnosti p-TsOH) z različnimi koncentracijami ZnOFigure 13: DTG curves of PMMA / ZnO nanocomposites (ZnO synthesized in the presence of p-TsOH) with different ZnO concentrations

-4Slika 14: TEM mikrografija nanokompozita PMMA/ZnO (ZnO sintetiziran v PD v prisotnosti pTsOH) pripravljenega po postopku preko predpolimera (Postopek B)-4Figure 14: TEM micrograph of PMMA / ZnO nanocomposite (ZnO synthesized in PD in the presence of pTsOH) prepared by prepolymer process (Procedure B)

Slika 15: UV-vis spektra nanokompozita PMMA/ZnO (konc. ZnO = 0,1 %) v odvisnosti od postopka priprave: A) priprava direktno iz monomera (Postopek A), B) priprava preko predpolimera (Postopek B), C) vzorec brez ZnOFigure 15: UV-vis spectrum of PMMA / ZnO nanocomposite (ZnO conc = 0.1%) depending on the preparation process: A) preparation directly from the monomer (Process A), B) preparation via the prepolymer (Process B), C) sample without ZnO

Slika 16: UV-vis spektri nanokompozita PMMA/ZnO (ZnO sintetiziran v EG) v odvisnosti od koncentracije ZnO: A) komercialno pleksi steklo, B) nanokompozit PMMA/ZnO (0,05% ZnO sintetiziran v EG) pripravljen po postopku C, C) vzorec brez ZnOFigure 16: UV-vis spectra of PMMA / ZnO nanocomposite (ZnO synthesized in EG) as a function of ZnO concentration: A) commercial plexiglass, B) PMMA / ZnO nanocomposite (0.05% ZnO synthesized in EG) prepared by process C, C) sample without ZnO

Slika 17: TEM mikrografija nanokompozita PMMA/ZnO pripravljenega po postopku ulivanja iz raztopineFigure 17: TEM micrograph of PMMA / ZnO nanocomposite prepared by casting from solution

Slika 18: UV- vis spektra nanokompozita PMMA/ZnO pripravljenega po postopku ulivanja iz raztopine: A) nanokompozit PMMA/ZnO (0,1% ZnO), B) vzorec brez ZnOFigure 18: UV-spectrum of PMMA / ZnO nanocomposite prepared by casting from solution: A) PMMA / ZnO nanocomposite (0.1% ZnO), B) sample without ZnO

Izum so nanodelci ZnO, velikosti od 20 do 300 nm, z organofilno površino, sintetizirani v različnih diolih in njihovi prozorni ali neprozorni nanokompoziti z metakrilnimi ali akrilnimi polimeri, pripravljeni s polimerizacijo metakrilnih in akrilnih monomerov v masi ali z ulivanjem iz polimernih raztopin.The invention is a ZnO nanoparticle of size 20 to 300 nm with an organophilic surface synthesized in different diols and their transparent or opaque nanocomposites with methacrylic or acrylic polymers prepared by polymerization of methacrylic and acrylic monomers in bulk or by casting from polymer solutions.

Bistvo postopka priprave nano delcev in nanožičk cinkovega (II) oksida - ZnO je hidroliza cinkove spojine iz skupine: Zn(CH3COO)2x2H2O, Zn(C5H7O2)xH2O, ZnC2O4xH2O, ZnSO4x7H2O, Zn(NO3)2x6H2O, Zn(PO4)2, ZnCl2, ZnBr2 v prisotnosti katalizatorja, para toluen sulfonske kisline (p-TsOH), v različnih diolih iz skupine: etilen glikol - EG, 1,2-propan diol - PD, 1,4-butan diol BD, di(etilen glikol) - DEG ali tetra(etilen glikol) - TEG pri temperaturah med 100 in 300 °C. V diol se doda zatehtano količino cinkove spojine v koncentraciji od 0,005 - 5 mol/L, preračunano količino deionizirane vode (0,5 do 4 mol H2O na mol Zn) in p-TsOH v koncentraciji od 0,001 do 2 mol/L. Zmes se sonicira 5-60 min in se jo med stalnim mešanjem segreva 30 - 90 min pri temperaturi med 100 in 300 °C. Po eni uri se suspenzijo ZnO prelije v čašo in pusti 24 ur, da se produkt usede. Če je suspenzija stabilna, se jo centrifugira. Nastali produkt se dvakrat sonicira v etanolu (spiranje) in centrifugira. Spran produkt se posuši na zraku.The essence of the process for the preparation of zinc (II) oxide - ZnO nanoparticles and nanoparticles is the hydrolysis of a zinc compound from the group: Zn (CH3COO) 2x2H2O, Zn (C5H 7 O2) xH2O, ZnC 2 O 4 xH 2 O, ZnSO 4 x7H2O, Zn (NO3 ) 2 x6H 2 O, Zn (PO 4 ) 2, ZnCl 2 , ZnBr2 in the presence of a catalyst, a pair of toluene sulfonic acid (p-TsOH), in different diols of the group: ethylene glycol - EG, 1,2-propane diol - PD , 1,4-butane diol BD, di (ethylene glycol) - DEG or tetra (ethylene glycol) - TEG at temperatures between 100 and 300 ° C. To the diol is added a weighed amount of zinc compound at a concentration of 0.005 - 5 mol / L, a calculated amount of deionized water (0.5 to 4 mol H2O per mol Zn) and p-TsOH at a concentration of 0.001 to 2 mol / L. The mixture is sonicated for 5-60 minutes and heated for 30-90 minutes at constant temperature between 100 and 300 ° C while stirring continuously. After one hour, the ZnO suspension was poured into a beaker and allowed to settle for 24 hours. If the suspension is stable, it is centrifuged. The resulting product was sonicated twice in ethanol (washing) and centrifuged. The washed product is air-dried.

-5Bistvo postopka priprave nanokompozitov PMMA ali drugega metakrilnega ali akrilnega polimera in ZnO je, da za pripravo nanokompozitov po postopkih, opisanih v izvedbenih primerih (Postopki A, B in C), uporabimo nemodificiran ZnO, pripravljen s hidrolizo v diolih,. Po vseh postopkih nastanejo nanokompoziti z večinoma homogeno porazdelitvijo delcev v PMMA matrici. V čaši se zmeša zatehtano količino MMA in/ali drugega monomera iz skupine metakrilatov ali akrilatov: metil, etil, izopropil, n-propil, n-butil, t-butil, n-pentil, n-heksil, fenil, naftil, etilheksil, oleil, palmitil, stearil metakrilat ali akrilat; iniciator (koncentracija od 0,01 do 1% in nano ZnO v koncentraciji od 0,0001 do 10 %. Zmes se sonicira 5-60 min in se jo nato ali prenese direktno v steklen kalup in polimerizira do zaključka reakcije pri 35 do 90 °C od 1 do 24 ur ali pa se jo prenese v reaktor in izvede delno polimerizacijo MMA pri temperaturi 35 - 80 °C eno do dve uri brez soniciranja ali s stalnim soniciranjem. Nato se doda še 20 % iniciatoija in zmes prenese v steklen kalup. Zmes v kalupu se ponovno sonicira 5-60 min in nato kalup prenese v vodno kopel, kjer monomer polimerizira do zaključka polimerizacije pri temperaturi 35 - 90 °C od 1 do 24 ur. Po končani polimerizaciji se kalup ohladi in loči nastali kompozit iz kalupa.-5The essence of the process for the preparation of PMMA nanocomposites or other methacrylic or acrylic polymer and ZnO is that unmodified ZnO prepared by hydrolysis in diols is used to prepare nanocomposites according to the procedures described in embodiments (Methods A, B and C). After all the processes, nanocomposites are formed with a largely homogeneous particle distribution in the PMMA matrix. Mix a weighed amount of MMA and / or other monomer from the methacrylate or acrylate group in the beaker: methyl, ethyl, isopropyl, n-propyl, n-butyl, t-butyl, n-pentyl, n-hexyl, phenyl, naphthyl, ethylhexyl, oleyl, palmityl, stearyl methacrylate or acrylate; initiator (0.01 to 1% concentration and nano ZnO at a concentration of 0.0001 to 10%. The mixture is sonicated for 5-60 min and then either transferred directly into a glass mold and polymerized until completion of the reaction at 35 to 90 °. C or transferred to the reactor for 1 to 24 hours and partially polymerized the MMA at 35-80 ° C for one to two hours without sonication or continuous sonication, then 20% of the initiation was added and the mixture was transferred to a glass mold. The mixture in the mold is sonicated again for 5-60 minutes and then the mold is transferred to a water bath where the monomer is polymerized to completion of polymerization at a temperature of 35-90 ° C for 1 to 24 hours After completion of polymerization, the mold is cooled and the resulting composite is separated from the mold.

Za pripravo nanokompozita iz raztopine metakrilnega ali akrilnega polimera (Postopek D izvedbeni primeri) se v čaši zmeša raztopino PMMA in/ali drugega metakrilnega ali akrilnega polimera iz skupine: poli (metil, etil, izopropil, n-propil, n-butil, t-butil, n-pentil, n-heksil, fenil, naftil, etilheksil, oleil, palmitil in stearil metakrilat ali akrilat) v organskem topilu in nano ZnO po zahtevku 2 v koncentraciji od 0,0001 do 10 %, nakar se zmes dispergira z dispergimim mešalom pri 200 do 20000 obr/min 20 - 360 sek in nato se zmes sonicira 5-60 min. in jo zatem ulije v kalup ali nabrizga na primemo podlago in posuši.For the preparation of a nanocomposite from a solution of methacrylic or acrylic polymer (Method D embodiments), a solution of PMMA and / or other methacrylic or acrylic polymer from the group is mixed in the beaker: poly (methyl, ethyl, isopropyl, n-propyl, n-butyl, t- butyl, n-pentyl, n-hexyl, phenyl, naphthyl, ethylhexyl, oleyl, palmityl and stearyl methacrylate or acrylate) in an organic solvent and nano ZnO according to claim 2 at a concentration of 0.0001 to 10%, after which the mixture is dispersed with a dispersant stirrer at 200 to 20000 rpm for 20 - 360 sec and then the mixture is sonicated for 5-60 min. and then poured it into a mold or sprayed it on a suitable base and dried.

Sintetizirani nanokompozitni materiali imajo veliko sposobnost absorbcije v območju UV spektra od 280 do 380 nm, medtem ko so, če so ustrezno pripravljeni, transparentni za vidno svetlobo. PMMA nanokompoziti z 0,1 in 1 % ZnO absorbirajo od 95 do 99,5% vpadne UV svetlobe, tisti z 0,01 % ZnO pa 80 do 95 % UV svetlobe. Sintetizirani nanokompoziti imajo tudi izboljšano temperaturno obstojnost, saj se začetna temperatura razpada dvigne za 30 - 40 °C, če material vsebuje 1 % nano ZnO. Pri dodatku ZnO v koncentraciji 0,1 % ali več se izboljša tudi udarnaThe synthesized nanocomposite materials have a high absorption capacity in the UV spectrum of 280 to 380 nm, and, when properly prepared, are transparent to visible light. PMMA nanocomposites with 0.1 and 1% ZnO absorb 95 to 99.5% of the incident UV light, and those with 0.01% ZnO 80-95% UV light. The synthesized nanocomposites also have improved thermal stability, since the initial decay temperature rises by 30-40 ° C if the material contains 1% nano ZnO. With the addition of ZnO at a concentration of 0.1% or more, the impact is also improved

-6žilavost nanokompozita za 5 do 10 %. Že zelo nizke koncentracije močno izboljšajo obstojnost na sončno svetlobo saj se ΔΕ zmanjša z 10-11 za čisti PMMA na vrednosti od 1 do 6 za nanokompozite PMMA/ZnO.-6 toughness of nanocomposites by 5 to 10%. Very low concentrations greatly improve the resistance to sunlight as ΔΕ decreases from 10-11 for pure PMMA to values from 1 to 6 for PMMA / ZnO nanocomposites.

Nanokompoziti pripravljeni s polimerizacijo v metakrilnega ali akrilnega monomera v masi se lahko uporabljajo kot UV in svetlobno stabilizirani neprozorni ali prozorni materiali, vključno pleksi steklo v solarni tehniki, za zasteklitev, za fasadne obloge, za zaščitne ograje ob avtocestah in na področjih kjer prihaja do velike UV in svetlobne ter toplotne obremenitve. Nanokompoziti, pripravljeni z ulivanjem raztopine metakrilnega ali akrilnega polimera, se uporabljajo kot UV in svetlobno stabilizirani neprozorni ali prozorni premazi na področjih kjer prihaja do velike UV in svetlobne ter toplotne obremenitve.Nanocomposites prepared by polymerization into methacrylic or acrylic monomer masses can be used as UV and light-stabilized opaque or transparent materials, including plexiglass in solar technology, for glazing, for facade cladding, for highway enclosures and in high-rise areas UV and light and heat loads. Nanocomposites prepared by casting a solution of methacrylic or acrylic polymer are used as UV and light stabilized opaque or transparent coatings in areas where high UV and light and heat loads occur.

V okviru izuma je priprava nano ZnO nedefiniranih in definiranih ID in 3D oblik, to so nanokroglice in nanožičke in različne stopnje kristaliničnosti z organofilno plastjo na površini delcev po poliolnem postopku v različnih diolih z dodatkom p-TsOH kot katalizatorja. Prednost uporabe p-TsOH je velika ponovljivost sintez v smislu velikosti in oblike nanodelcev ZnO. Z dodatkom p-TsOH lahko ponovljivo sintetiziramo delce ZnO z definirano velikostjo med 20 in 50 nm, ki imajo povečano stopnjo kristaliničnosti v primerjavi s ZnO, sintetiziranim brez p-TsOH. Z dodatkom p-TsOH lahko sintezo nanodelcev velikosti 20 - 50 nm izvedemo pri koncentraciji prekurzorja do 5 mol/L, kar omogoča velike prihranke pri količini topila in energiji. Prednosti uporabe diolov pred monoalkoholi so višja viskoznost medija, kar zmanjšuje aglomeracijo delcev, in višje vrelišče, kar omogoča pripravo nanodelcev z večjo stopnjo kristaliničnosti. Zaradi organofilne plasti se ZnO delci enakomerno dispergirajo v polimetakrilni ali poliakrilni matrici, kar omogoča pripravo njihovih homogenih nanokompozitov brez dodatne modifikacije površine. Modifikacija površine močno dvigne ceno nanodelcev, ki je že sama po sebi visoka, kar močno zmanjša njihovo potencialno uporabo v praksi. Nano ZnO, sintetiziran po poliolnem postopku, se brez dodatne modifikacije homogeno dispergira v PMMA matrici do koncentracije 10 %.The invention provides the preparation of nano ZnO undefined and defined ID and 3D forms, i.e. nanoparticles and nanowires and different degrees of crystallinity with an organophilic layer on the particle surface by a polyol process in different diols with the addition of p-TsOH as a catalyst. The advantage of using p-TsOH is the high reproducibility of syntheses in terms of size and shape of ZnO nanoparticles. By the addition of p-TsOH, ZnO particles with a defined size between 20 and 50 nm can be reproducibly synthesized, which have an increased crystallinity compared to ZnO synthesized without p-TsOH. With the addition of p-TsOH, the synthesis of 20-50 nm nanoparticles can be carried out at a precursor concentration of up to 5 mol / L, resulting in large savings in solvent volume and energy. The advantages of using diols over monoalcohols are the higher viscosity of the medium, which reduces the agglomeration of the particles, and the higher boiling point, which enables the preparation of nanoparticles with a higher degree of crystallinity. Due to the organophilic layer, ZnO particles are uniformly dispersed in a polymethacrylic or polyacrylic matrix, which allows the preparation of their homogeneous nanocomposites without additional surface modification. Surface modification greatly raises the price of nanoparticles, which is inherently high, which greatly reduces their potential application in practice. Nano ZnO synthesized by the polyol process is homogeneously dispersed in the PMMA matrix to a concentration of 10% without further modification.

Novost je tudi nano ZnO v obliki nanožičk dolžine 30 - 500 nm in premera 5-30 nm, sintetiziran po poliolnem postopku z dodatkom p-TsOH in pri visokih koncentracijah prekurzorja (0,1 -5Another novelty is the ZnO nano in the form of nanoparticles of 30 - 500 nm in length and 5-30 nm in diameter, synthesized by a polyol process with the addition of p-TsOH and at high precursor concentrations (0.1 -5

-Ίmol/L). Nanožičke ZnO imajo prav tako organofilno plast na površini delcev, ki omogoča pripravo nanokompozitov brez dodatne modifikacije površine.-Ίmol / L). ZnO nanowires also have an organophilic layer on the particle surface that allows the preparation of nanocomposites without additional surface modification.

Novost so prozorni nanokompoziti polimetkrilatov ali poliakrilatov s ZnO z izboljšano UV in svetlobno obstojnostjo, to je svetlobno in UV obstojno pleksi steklo in tudi neprozorni nanokompoziti na metakrilni ali akrilni osnovi, pripravljeni s polimerizacijo v masi ali iz raztopine polimetakrilatov ali poliakrilatov po postopkih opisanih v izvedbenih primerih. Organofilna plast na površini delcev učinkovito dispergira Sintetizirani nanoZnO je zelo učinkovit UV absorber, saj že dodatek 0,05 % kvantitativo absorbira UV svetlobo v UV območju od 290 do 370 nm, kar je bistveno bolje od podatkov v literaturi kjer dosegajo 60-70 % absorbcijo UV svetlobe pri dodatku 10 do 30 % ZnO. Dodatek 0,05 do 0,1 % nano ZnO, sintetiziranega po poliolnem postopku močno izboljša obstojnost na sončno svetlobo (sun test) saj se sprememba barve ΔΕ z 10 - 11 za čisto pleksi steklo zmanjša na vrednosti od 1 do 5. Poleg tega dodatek od 0,1 do 1 % nano ZnO zviša začetno temperaturo razpada za 20 do 40 °C, kar pomeni, da se za toliko dvigne tudi temperaturno območje uporabe teh materialov. Poleg tega dodatek nemodificiranega nano ZnO ne poslaša temveč izboljša žilavost kompozita za 5 do 10 %.Novelty is transparent nanocomposites of polymethacrylates or polyacrylates with ZnO with improved UV and light resistance, that is, light and UV resistant plexiglass and also opaque nanocomposites on a methacrylic or acrylic basis, prepared by polymerization in mass or from a solution of polymethacrylates or polyacrylates. cases. Organophilic layer on the particle surface effectively dispersed Synthesized nanoZnO is a very effective UV absorber, since the addition of 0.05% quantitatively absorbs UV light in the UV range from 290 to 370 nm, which is significantly better than the literature data where 60-70% absorption is achieved UV light with the addition of 10 to 30% ZnO. The addition of 0.05 to 0.1% nano ZnO synthesized by the polyol process greatly improves the resistance to sunlight as the color change ΔΕ from 10 - 11 for pure plexiglass is reduced to values from 1 to 5. In addition from 0.1 to 1% nano ZnO raises the initial decay temperature by 20 to 40 ° C, which means that the temperature range of use of these materials also rises. In addition, the addition of unmodified ZnO nano does not delay but improves the toughness of the composite by 5 to 10%.

Izvedbeni primeriImplementation examples

Izvedbeni primeri patenta ne omejujejo, temveč ga le pojasnjujejo.The embodiments of the patent do not limit, but merely explain.

1) Sinteza nano ZnO z dodatkom deionizirane vode1) Synthesis of nano ZnO with the addition of deionized water

V di(etilen glikolu) DEG ali v tetra(etilen glikolu) TEG se doda zatehtano količino (konc. = 0,005 - 5 mol/L) Zn(CH3COO)2x2H2O, in preračunano količino deionizirane vode (0,05 - 4 mol H2O na 1 mol Zn). Zmes se sonicira 5-60 min in jo med stalnim mešanjem segreva 30 - 90 min pri temperaturi med 100 in 300 °C. Po eni uri se suspenzijo ZnO prelije v čašo in pusti 24 ur, da se produkt usede. Če je suspenzija stabilna se jo centrifugira pri 3000 do 12000 obr/min 1 do 24 ur. Nastali produkt se dvakrat sonicira v etanolu (spiranje) in ga centrifugira pri 3000 do 12000 obr/min 1 do 24 ur. Spran produkt se posuši na zraku.In di (ethylene glycol) DEG or in tetra (ethylene glycol) TEG, add the measured amount (conc = 0.005 - 5 mol / L) of Zn (CH3COO) 2x2H2O, and the calculated amount of deionized water (0.05 - 4 mol H 2 About 1 mol Zn). The mixture is sonicated for 5-60 minutes and heated for 30-90 minutes at constant temperature between 100 and 300 ° C while stirring continuously. After one hour, the ZnO suspension was poured into a beaker and allowed to settle for 24 hours. If the suspension is stable, it is centrifuged at 3000 to 12000 rpm for 1 to 24 hours. The resulting product was sonicated twice in ethanol (washing) and centrifuged at 3000 to 12000 rpm for 1 to 24 hours. The washed product is air-dried.

2) Sinteza nano ZnO z dodatkom deionizirane vode in p-TsOH2) Synthesis of nano ZnO with the addition of deionized water and p-TsOH

-8V diol (etilen glikol - EG, 1,2-propan diol - PD, 1,4-butan diol - BD, DEG ali TEG) se doda zatehtano količino (konc. = 0,005 - 5 mol/L) Zn(CH3COO)2 Χ2Η2Ο, preračunano količino deionizirane vode (0,5 do 4 mol H2O na mol Zn) in p-TsOH v koncentraciji od 0,001 do 2 mol/L. Zmes se sonicira 5-60 min in jo med stalnim mešanjem segreva 30 - 90 min pri temperaturi med 100 in 300 °C. Po eni uri se suspenzijo ZnO prelje v čašo in pusti 24 ur, da se produkt usede. Če je suspenzija stabilna, se jo centrifugira pri 3000 do 12000 obr/min 1 do 24 ur. Nastali produkt se dvakrat sonicira v etanolu (spiranje) in centrifugira pri 3000 do 12000 obr/min 1 do 24 ur. Spran produkt se posuši na zraku.-8V diol (ethylene glycol - EG, 1,2-propane diol - PD, 1,4-butane diol - BD, DEG or TEG) add the required amount (conc. = 0.005 - 5 mol / L) of Zn (CH 3 COO) 2 Χ2Η2Ο, calculated amount of deionized water (0.5 to 4 mol H2O per mol Zn) and p-TsOH at a concentration of 0.001 to 2 mol / L. The mixture is sonicated for 5-60 minutes and heated for 30-90 minutes at constant temperature between 100 and 300 ° C while stirring continuously. After one hour, the ZnO suspension was poured into a beaker and allowed to settle for 24 hours. If the suspension is stable, it is centrifuged at 3000 to 12000 rpm for 1 to 24 hours. The resulting product was sonicated twice in ethanol (washing) and centrifuged at 3000 to 12000 rpm for 1 to 24 hours. The washed product is air-dried.

3) Priprava nanokompozita metakrilnega ali akrilnega polimera in ZnO s polimerizacijo v masi med steklenima ploščama (Postopek A)3) Preparation of the nanocomposite of methacrylic or acrylic polymer and ZnO by polymerization in mass between glass panes (Procedure A)

V čaši se zmeša zatehtano MMA, iniciator (koncentracija od 0,001 do 1 %) AIBN in nano ZnO v koncentraciji od 0,0001 do 10 %. Zmes se sonicira 5-60 min in se jo nato prenese v kalup med stekleni plošči. Zmes v kalupu se ponovno sonicira 25 - 60 min in nato kalup prenese v vodno kopel, kjer se monomer polimerizira do zaključka reakcije pri temperaturi 35 - 90 °C 20 ur. Po končani polimerizaciji se kalup ohladi in loči nastali nanokompozit od kalupa.The MMA, initiator (concentration from 0.001 to 1%) of AIBN and nano ZnO at a concentration of 0.0001 to 10% are mixed in the beaker. The mixture is sonicated for 5-60 min and then transferred to a mold between the glass panes. The mixture in the mold is sonicated again for 25-60 min and then transferred to the water bath where the monomer is polymerized until the reaction is complete at 35-90 ° C for 20 hours. After polymerization is complete, the mold is cooled and the resulting nanocomposite is separated from the mold.

4) Priprava nanokompozita metakrilnega ali akrilnega polimera in ZnO s sintezo predpolimera in naknadno polimerizacijo v masi med steklenima ploščama (Postopek B)4) Preparation of nanocomposite methacrylic or acrylic polymer and ZnO with synthesis of prepolymer and subsequent polymerization in mass between glass panes (Procedure B)

V čaši se zmeša zatehtano količino MMA, iniciator (koncentracija od 0,001 do 1 %) AICN ter nano ZnO v koncentraciji od 0,0001 do 10 %. Zmes se sonicira 5-60 min in sejo nato prenese v reaktor in izvede delno polimerizacijo MMA pri temperaturi 35 - 80 °C eno do dve uri. Nato se doda še 20 % iniciatorja in zmes prenese v kalup med stekleni plošči. Zmes v kalupu se ponovno sonicira 5 60 min in nato kalup prenese v vodno kopel, kjer se monomer polimerizira do zaključka reakcije pri temperaturi 35 - 90 °C od 1 do 24 ur. Po končani polimerizaciji se kalup ohladi in loči nastali nanokompozit od kalupa.In the beaker, mix the weighed amount of MMA, the initiator (concentration from 0.001 to 1%) of AICN and the nano ZnO at a concentration of 0.0001 to 10%. The mixture was sonicated for 5-60 min and then transferred to the reactor and partial polymerization of MMA was carried out at 35-80 ° C for one to two hours. An additional 20% of the initiator is then added and the mixture is transferred into a mold between the glass panes. The mixture in the mold is sonicated again for 5 60 min and then the mold is transferred to a water bath where the monomer is polymerized to completion of the reaction at 35-90 ° C for 1 to 24 hours. After polymerization is complete, the mold is cooled and the resulting nanocomposite is separated from the mold.

5) Priprava nanokompozita metakrilnega ali akrilnega polimera in ZnO s sintezo predpolimera spremljano s sonikacijo skozi celoten postopek sinteze predpolimera in naknadno polimerizacijo v masi med steklenima ploščama (Postopek C)5) Preparation of the nanocomposite of methacrylic or acrylic polymer and ZnO with prepolymer synthesis accompanied by sonication throughout the prepolymer synthesis process and subsequent polymerization in mass between the glass panes (Procedure C)

-9V čaši se zmeša zatehtano količino MMA, iniciator (koncentracija od 0,01 do 1 %) AIBN ter nano ZnO v koncentraciji od 0,0001 do 10 %. Zmes se sonicira 5 - 60 mi in jo nato prenese v reaktor in izvede delno polimerizacijo MMA pri temperaturi 35 - 80 °C eno do dve uri ob neprekinjeni sonikaciji tako, da se reaktor segreva v ultrazvočni kopeli. Nato se doda še 20 % iniciatorja in zmes prenese v kalup med stekleni plošči. Zmes v kalupu se ponovno sonicira 5-60 min in nato kalup prenese v vodno kopel, kjer se monomer polimerizira do zaključka reakcije pri temperaturi 35 - 90 °C od 1 do 24 ur. Po končani polimerizaciji se kalup ohladi in loči nastali nanokompozit od kalupa.-9 In the beaker, mix the weighed amount of MMA, the initiator (concentration from 0.01 to 1%) of AIBN and the nano ZnO at a concentration of 0.0001 to 10%. The mixture is sonicated for 5 - 60 mi and then transferred to the reactor and partial polymerization of MMA is carried out at 35-80 ° C for one to two hours with continuous sonication so that the reactor is heated in an ultrasonic bath. An additional 20% of the initiator is then added and the mixture is transferred into a mold between the glass panes. The mixture in the mold is sonicated again for 5-60 minutes and then transferred to the water bath where the monomer is polymerized to completion of the reaction at 35-90 ° C for 1 to 24 hours. After polymerization is complete, the mold is cooled and the resulting nanocomposite is separated from the mold.

6) Priprava nanokompozita metakrilnega ali akrilnega polimera ZnO z ulivasnjem iz ratopine (Postopek D)6) Preparation of the nanocomposite of methacrylic or acrylic ZnO polymer with rhodopine casting (Procedure D)

V čaši se zmeša raztopino PMMA v organskem topilu in nano ZnO po zahtevku 2 v koncentraciji od 0,0001 do 10 %, nakar se zmes dispergira z dispergimim mešalom pri 200 do 20000 obr/min 20 - 360 sek in nato se zmes sonicira 5-60 min in jo zatem ulije v petrijevko ali nabrizga na primemo podlago in posuši.In the beaker, the PMMA solution in the organic solvent and nano ZnO according to claim 2 is mixed at a concentration of 0.0001 to 10%, after which the mixture is dispersed with a dispersive agitator at 200 to 20000 rpm for 20 - 360 sec and then the mixture is sonicated for 5- After 60 minutes, it is then poured into a petri dish or sprayed onto a suitable base and dried.

Rezultati testiranjTest results

Sinteza nano ZnOSynthesis of nano ZnO

SEM mikrografija (Slika 1) prikazuje nanodelce ZnO velikosti 100 nm, sintetizirane po poliolnem postopku v DEG z dodatkom od 0,05 do 4 mol deionizirane vode / 1 mol Zn. Delci imajo nepravilno sferično obliko, ozko porazdelitev velikosti in so delno aglomerirani. SEM mikrografija (Slika 2) prikazuje nanodelce ZnO velikosti 300 - 400 nm, sintetizirane v TEG. XRD diffaktogram delcev kaže tipčne uklonske maksimume za ZnO pri kotih 31,8; 34.5; 36,2; 47,6; 56.6; 62,9; 66,4; 67,9; 69,1; 72,6; 76,9. Relativno široki signali kažejo, daje velikost kristalitov zelo majhna. IR spekter obeh vzorcev kaže izrazit absorbcijski trak ZnO v območju od 420 do 480 cm'1 (Slika 3). Dokaj močni absorbcijski trakovi okoli 1000 cm'1 in v območju 1300 - 1650 cm'1 kažejo, da vsebuje vzorec tudi sorazmerno velik delež organske komponente - ostankov topila in/ali njihovih razkrojnih produktov.SEM micrographs (Figure 1) show 100 nm ZnO nanoparticles synthesized by polyol procedure in DEG with the addition of 0.05 to 4 mol of deionized water / 1 mol of Zn. The particles have an irregular spherical shape, a narrow size distribution and are partially agglomerated. SEM micrographs (Figure 2) show 300 - 400 nm ZnO nanoparticles synthesized in TEG. The XRD diffraction pattern of the particles shows typical ZnO peak maxima at angles of 31.8; 34.5; 36.2; 47.6; 56.6; 62.9; 66.4; 67.9; 69.1; 72.6; 76,9. The relatively wide signals indicate that the crystallite size is very small. The IR spectrum of both samples shows a pronounced ZnO absorption band in the range of 420 to 480 cm -1 (Figure 3). The fairly strong absorption bands around 1000 cm -1 and in the range 1300 - 1650 cm 1 show that the sample also contains a relatively large proportion of the organic component - solvent residues and / or their degradation products.

-10Nanodelci ZnO, sintetizirani v BD, TEG, DEG, EG in PD z dodatkom deionizirane vode in pTsOH, ki deluje kot katalizator, so na sliki 4. Delci so večinoma kristaliti velikosti 20 - 60 nm in so bolj aglomerirani kot tisti, sintetizirani brez p-TsOH (Slika 1). Na TEM mikrografiji na sliki 4c so nanožičke ZnO dolžine 40 - 150 nm in širine 10-30 nm, sintetizirane v DEG. Stopnja aglomeracije je pri nanožičkah še bolj izražena kot pri ostalih vzorcih, najverjetneje zaradi večje stične površine med delci. V XRD difraktogramu delcev sitetiziranih v prisotnosti p-TsOH so zelo ozki difrakcijski trakovi (Slika 5), kar pomeni, da so sintetizirani vzorci visoko kristalinični ZnO. IR spekter teh delcev kaže izrazit trak ZnO v območju od 420 do 480 cm'1, medtem ko so absorbcijski trakovi adsorbiranih organskih spojin precej manj intenzivni kot pri vzorcih, sintetiziranih brez p-TsOH.-10 ZnO nanoparticles synthesized in BD, TEG, DEG, EG and PD with the addition of deionized water and pTsOH acting as a catalyst are in Figure 4. The particles are mostly crystallites of size 20-60 nm and are more agglomerated than those synthesized without p-TsOH (Figure 1). On TEM micrographs in Figure 4c, ZnO nanowires of 40 - 150 nm in length and 10-30 nm in width were synthesized in DEG. The degree of agglomeration is even more pronounced in the nanowires than in the other samples, most likely due to the greater contact surface between the particles. In the XRD diffraction pattern of particles sitetyzed in the presence of p-TsOH, very narrow diffraction bands are present (Fig. 5), which means that the synthesized samples are highly crystalline ZnO. The IR spectrum of these particles shows a pronounced ZnO band in the range of 420 to 480 cm -1 , while the absorption bands of the adsorbed organic compounds are much less intense than in samples synthesized without p-TsOH.

Priprava nanokompozitov s polimerizacijo v masi (Postopek A)Preparation of nanocomposites by mass polymerization (Procedure A)

Na TEM mikrografijah na sliki 7 vidimo porazdelitev delcev ZnO, sintetiziranega v DEG brez prisotnosti p-TsOH, v PMMA matrici nanokompozita PMMA/ZnO. Slika 7a kaže, da je ZnO homogeno porazdeljen po polimerni matrici, je pa delno aglomeriran (Slika 7b). Slika 8 prikazuje UV-VIS spektre PMMA/ZnO nanokompozitov z različnimi koncentracijami nano ZnO. Dodatek 0.1 in 1 % nano ZnO v PMMA absorbira več kot 98 % vpadne UV svetlobe, medtem ko je pri koncentracijah 0,01 in 0,001 % nano ZnO absorbcija še vedno večja od 80 % vpadne UV svetlobe. Absorbcija v vidnem območju je tudi visoka, zato so vzorci le delno transparentni - prosojni. DTG krivulje nanokompozitov PMMA/ZnO z različnimi koncentracijami nano ZnO kažejo da 0,1 % nano ZnO zviša začetno temperaturo razpada za 20 °C, medtem ko jo 1 % ZnO zviša za 35 °C (Slika 9). Takšni materiali so potencialno uprabni kot UV stabilizirani pleksi steklo z izboljšano obstojnostjo.The TEM micrographs in Figure 7 show the distribution of ZnO particles synthesized in DEG without the presence of p-TsOH in the PMMA matrix of the PMMA / ZnO nanocomposite. Figure 7a shows that ZnO is homogeneously distributed over the polymer matrix but partially agglomerated (Figure 7b). Figure 8 shows the UV-VIS spectra of PMMA / ZnO nanocomposites with different concentrations of nano ZnO. The addition of 0.1 and 1% nano ZnO in PMMA absorbs more than 98% of the incident UV light, while at concentrations of 0.01 and 0.001% nano ZnO the absorption is still greater than 80% of the incident UV light. The absorption in the visible region is also high, so the samples are only partially transparent - translucent. The DTG curves of PMMA / ZnO nanocomposites with different concentrations of nano ZnO indicate that 0.1% nano ZnO raises the initial decay temperature by 20 ° C, while 1% ZnO raises it by 35 ° C (Figure 9). Such materials are potentially wearable as UV stabilized plexiglass with improved durability.

TEM mikrografiji na slikah 10 a in b kažeta porazdelitev ZnO nanodelcev, sintetiziranih v TEG, v matrici nanokompozita PMMA/ZnO. Delci nano ZnO so homogeno porazdeljeni v PMMA matrici in tudi aglomeracija je minimalna (Slika 10 b). Očitno adsorbirane molekule TEG na površini ZnOTEM micrographs in Figures 10 a and b show the distribution of ZnO nanoparticles synthesized in TEG in the PMMA / ZnO nanocomposite matrix. The nano ZnO particles are homogeneously distributed in the PMMA matrix and also the agglomeration is minimal (Figure 10 b). Obviously adsorbed TEG molecules on the ZnO surface

-11delcev omogočajo njihovo homogeno dispergiranje v PMMA in to kljub sorazmerno velikim dimenzijam delcev (300 nm).The -11 particles allow them to be homogeneously dispersed in PMMA despite relatively large particle sizes (300 nm).

Nanokompoziti PMMA/ZnO - ZnO sintetiziran s p-TsOH (Postopek A)PMMA / ZnO nanocomposites - ZnO synthesized with p-TsOH (Procedure A)

TEM mikrografije na sliki 11 prikazujejo porazdelitev nanodelcev ZnO, sintetiziranega v različnih diolih v prisotnosti p-TsOH. Delci ZnO, sintetizirani v prisotnosti p-TsOH (Slika 11 a), so nekoliko bolj aglomerirani kot tisti brez nje (Slika 7 in 10) vendar so še vedno homogeno porazdeljeni po PMMA matrici.TEM micrographs in Figure 11 show the distribution of ZnO nanoparticles synthesized in different diols in the presence of p-TsOH. ZnO particles synthesized in the presence of p-TsOH (Figure 11 a) are slightly more agglomerated than those without it (Figure 7 and 10) but still homogeneously distributed over the PMMA matrix.

UV absorbcija je zelo visoka v UV območju od 280 do 380 nm, saj 0,1 in 1 % ZnO absorbira več kot 98 % vpadne UV svetlobe in tudi pri koncentraciji 0,01 % je absorbcija še vedno od 70 do 90 % vpadne UV svetlobe (Slika 12). S ZnO, sintetiziranim v EG, lahko pripravimo tudi nanokompozit, ki absorbira blizu 90% UV svetlobe v območju 280 - 360 nm, v vidnem območju (400 — 700 nm) pa je prepustnost za vidno svetlobo praktično 100% (Slika 12). Tak nanokompozit ima potencialno uporabo kot UV stabiliziran pleksi steklo z izboljšano temperaturno obstojnostjo.UV absorption is very high in the UV range from 280 to 380 nm, since 0.1 and 1% ZnO absorb more than 98% of the incident UV light, and even at a concentration of 0.01%, the absorption is still 70 to 90% of the incident UV light (Figure 12). With ZnO synthesized in EG, we can also prepare a nanocomposite that absorbs close to 90% of UV light in the 280 - 360 nm range, and in the visible range (400 - 700 nm) the transmittance for visible light is practically 100% (Figure 12). Such a nanocomposite has potential use as a UV stabilized plexiglass with improved temperature resistance.

Nano ZnO, sintetiziran v prisotnosti p-TsOH, temperaturno stabilizira PMMA matrico. Stabilizacijski učinek je najbolj izrazit pri koncentraciji 0,1 in 1 %, saj se razpad PMMA premakne za nekaj deset stopinj celzija proti višjim temperaturam (Slika 13). PMMA z dodatkom 0,1 % ZnO ali več ima potencialno uporabo kot PMMA material z izboljšano temperaturno obstojnostjo.Nano ZnO synthesized in the presence of p-TsOH stabilizes the PMMA matrix in temperature. The stabilizing effect is most pronounced at concentrations of 0.1 and 1% as the PMMA decay shifts by a few tens of degrees Fahrenheit toward higher temperatures (Figure 13). PMMA with the addition of 0.1% ZnO or more has potential use as a PMMA material with improved thermal stability.

Priprava nanokompozitov PMMA/ZnO s sintezo preko predpolimera (Postopek B)Preparation of PMMA / ZnO Nanocomposites with Pre-Polymer Synthesis (Procedure B)

Priprava nanokompozitov PMMA/ZnO tako, da najprej delno polimeriziramo MMA, oziroma pripravimo predpolimer, omogoča pripravo nanokompozitov PMMA/ZnO, ki so optično bolj čisti oziroma prepustni za vidno svetlobo (Slika 14). Slika 15 prikazuje UV - vidni spekter PMMA/ZnO nanokompozita, pripravljenega z neposredno polimerizacijo MMA (A) in s polimerizacijo preko predpolimera po postopku A (B). Vidimo lahko, da je nanokompozit, pripravljen preko predpolimera (B), precej bolj prepusten za vidno svetlobo, medtem ko je absorbcija v UV (območjePreparation of PMMA / ZnO nanocomposites by first partially polymerizing MMA, or by preparing a prepolymer, enables the preparation of PMMA / ZnO nanocomposites, which are optically clearer or more transparent to visible light (Figure 14). Figure 15 shows the UV - visible spectrum of the PMMA / ZnO nanocomposite prepared by direct polymerization of MMA (A) and by polymerization via prepolymer according to method A (B). It can be seen that the nanocomposite prepared via prepolymer (B) is much more permeable to visible light, whereas the absorption into UV (range

-12od 280 do 360 nm) v obeh primerih več kot 98 % vpadne UV svetlobe (Slika 15). Dodatek nano ZnO izboljša tudi udarno žilavost teh materialov za 3 - 5 % pri dodatku 0 ,05 % ZnO in 8 - 10 % pri dodatku 0,1 % nanoZnO.-12from 280 to 360 nm) in both cases more than 98% of the incident UV light (Figure 15). The addition of nano ZnO also improves the impact toughness of these materials by 3 - 5% with the addition of 0, 05% ZnO and 8 - 10% with the addition of 0.1% nanoZnO.

Vzorcem nanokompozitov, pripravljenih po postopku B s ZnO nano polnili, sintetiziranimi v PD, EG in DEG, smo določili obstojnost na sočno svetlobo (Sun test). Rezultati so zbrani v tabeli 1 in kažejo močno izboljšanje obstojnosti na sončno svetlobo ne glede na vzorec ZnO in koncentracijo. To kaže na veliko potencialno uporabo kompozitov PMMA/nanoZnO na področjih z veliko svetlobno obremenitvijo kot so npr. fasadne plošče ali obloge, protihrupne ograje ob avtocestah, termične solarne sisteme in akrilne premaze za kovine in les itd.Samples of nanocomposites prepared by Process B with ZnO nanofillers synthesized in PD, EG, and DEG were determined to be resistant to succulent light (Sun test). The results are summarized in Table 1 and show a strong improvement in the resistance to sunlight irrespective of the ZnO pattern and concentration. This indicates the high potential use of PMMA / nanoZnO composites in areas with high light load such as e.g. facade panels or cladding, highway noise barriers, thermal solar systems and acrylic coatings for metals and wood, etc.

Tabela 1: Rezultati določanja obstojnosti na sončno svetlobo (Sun test) nanokompozitov PMMA/ZnO - ZnO sintetiziran v različnih diolih in različna koncenttracija nano ZnOTable 1: Results of the determination of the resistance to sunlight (Sun test) of PMMA / ZnO - ZnO nanocomposites synthesized in different diols and different concentrations of nano ZnO

Diol Diol Koncentracija ZnO (%) ZnO concentration (%) AEa AE a Slepa proba Blind rehearsal 0 0 10,6-10,8 10,6-10,8 PD PD 0,05 0.05 1,0 - 1,3 1.0 - 1.3 PD PD 0,1 0.1 3,1-4,6 3,1-4,6 EG EG 0,05 0.05 4,1 - 4,3 4.1 - 4.3 EG EG 0,1 0.1 1,7-2,1 1,7-2,1 DEG DEG 0,05 0.05 1,8-2,4 1,8-2,4 DEG DEG 0,1 0.1 4,6-6,1 4,6-6,1

a ΔΕ je sprememba vrednosti barve izmerjena s kolorimetrom glede na neizpostavljen vzorec a ΔΕ is the change in color value measured by the colorimeter with respect to the non-exposed sample

Priprava nanokompozitov PMMA/ZnO s sintezo preko predpolimera (Postopek C)Preparation of PMMA / ZnO Nanocomposites with Pre-Polymer Synthesis (Procedure C)

Z uvedbo sonikacije med celotno sintezo predpolimera (postopek C) se optične lastnosti nanokompozita v vidnem delu spektra približajo optičnim lastnostim komercialnega UV stabiliziranega pleksi stekla (Slika 16).By introducing sonication during the entire synthesis of the prepolymer (process C), the optical properties of the nanocomposite in the visible part of the spectrum approximate the optical properties of commercial UV stabilized plexiglass (Figure 16).

-13Priprava nanokompozitov PMMA/ZnO z ulivanjem iz raztopine (Postopek D)-13Preparation of PMMA / ZnO nanocomposites with solution casting (Procedure D)

Homogene nanokompozite lahko pripravimo tudi iz raztopine PMMA v etil metil ketonu (Slika 17). Tako pripravljeni nanokompoziti imajo UV absorbcijo od 50 do 80 % v UV območju od 290 do 360 nm (Slika 18). Zaradi tego so potencialno uporabni za premaze na področjih z visoko UV in svetlobno obremenitvijo.Homogeneous nanocomposites can also be prepared from PMMA solution in ethyl methyl ketone (Figure 17). The nanocomposites thus prepared have a UV absorption of 50 to 80% in the UV range of 290 to 360 nm (Figure 18). Due to the weight, they are potentially useful for coatings in areas with high UV and light load.

Claims (17)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Postopek priprave nanodelcev in nanožičk cinkovega (II) oksida - nano ZnO - z organofilno površino s hidrolizo cinkove spojine ob prisotnosti katalizatorja, para toluen sulfonske kisline, v različnih diolih in pripravljni nano ZnO se v nadaljevanju uporablja nemodificiran.1. The process for the preparation of zinc (II) oxide nanoparticles and nanoparticles - ZnO nano - with an organophilic surface by hydrolysis of the zinc compound in the presence of a catalyst, toluene sulfonic acid vapor, in different diols and preparative nano ZnO is hereinafter used unmodified. 2. Postopek po zahtevku 1, označen s tem, da vsebuje sledeče korake: mešanje in soniciranje raztopine od 5 do 60 min. segrevanje raztopine od 30 do 90 minut pri temperaturah od 100 do 300 °C; usedanje spojine cinkovega oksida do 24 h; ločevanje suspenzije od oborine; spiranje suspenzije; sušenje spojine.The method according to claim 1, characterized in that it comprises the following steps: mixing and sonicating the solution for 5 to 60 minutes. heating the solution for 30 to 90 minutes at temperatures of 100 to 300 ° C; deposition of zinc oxide compound up to 24 h; separating the suspension from the precipitate; washing the suspension; drying the compound. 3. Postopek po zahtevku 1 ali 2. označen s tem, da so cinkove spojine izbrane med Zn(CH3COO)2x2H2O, Zn(C5H7O2)xH2O, ZnC2O4xH2O, ZnSO4x7H2O, Zn(NO3)2x6H2O, Zn(PO4)2, ZnCl2, ZnBr2 in dioli izbrani med etilen glikol - EG, 1,2-propan diol - PD, 1,4-butan diol - BD, di(etilen glikol) - DEG ali tetra(etilen glikol) - TEG.A process according to claim 1 or 2, characterized in that the zinc compounds are selected from Zn (CH 3 COO) 2x2H2O, Zn (C 5 H 7 O 2 ) xH2O, ZnC 2 O 4 xH2O, ZnSO 4 x7H 2 O, Zn (NO 3 ) 2x6H 2 O, Zn (PO 4 ) 2 , ZnCl 2 , ZnBr 2 and diols selected from ethylene glycol - EG, 1,2-propane diol - PD, 1,4-butane diol - BD, di ( ethylene glycol) - DEG or tetra (ethylene glycol) - TEG. 4. Postopek po kateremkoli zahtevku od 1 do 3 označen s tem, da se v diol doda cinkova spojina v koncentraciji od 0,005 - 5 mol/L, prednostno od 0,1 do 1 mol/L, in je preračunana količina vode od 0,5 do 4 mol H2O na mol Zn.A process according to any one of claims 1 to 3, characterized in that a zinc compound is added to the diol at a concentration of 0.005-5 mol / L, preferably 0.1 to 1 mol / L, and the calculated amount of water is 0, 5 to 4 mol H 2 O per mol Zn. 5. Postopek po kateremkoli zahtevku od 1 do 4 označen s tem, daje katalizatorja, para toluen sulfonske kisline, v koncentraciji od 0,001 do 2 mol/L prednostno od 0,01 do 0,5 mol/L.5. A process according to any one of claims 1 to 4, characterized in that the catalyst, steam of toluene sulfonic acid, is in a concentration of from 0.001 to 2 mol / L, preferably from 0.01 to 0.5 mol / L. 6. Nanodelci in nanožičke cinkovega (II) oksida - nano ZnO - z organofilno površino pripravljeni s postopkom hidrolize cinkove spojine v prisotnosti katalizatorja, para toluen sulfonske kisline, v diolih, pripravljen po katerem koli zahtevku od 1 do 5, ki se v nadaljevanju uporabljajo nemodificirani.6. Zinc (II) oxide nanoparticles and ZnO nanosheets - with an organophilic surface prepared by the hydrolysis process of a zinc compound in the presence of a catalyst, toluene sulfonic acid vapor, in diols prepared according to any one of claims 1 to 5, which are hereinafter used unmodified. 7. Postopek priprave nanokompozitov sestavljenih iz metakrilnega ali akrilnega polimera in nemodificiranega nano ZnO pripravljenega po katerem koli zahtevku od Ido 6.A process for the preparation of nanocomposites composed of methacrylic or acrylic polymer and unmodified nano ZnO prepared according to any one of claims I to 6. 8. Postopek po zahtevku 7, označen s tem, da ga sestavljajo sledeči koraki: priprava mešanice metakrilnega ali akrilnega monomera, iniciatorja in cinkovega (II) oksida po katerem koli zahtevku od 1 do 6; mešanje in soniciranje od 5 do 60 min; opcijsko delna polimerizacija MMA; opcijsko ponovni dodatek iniciatorja od 0,1 do 40%; prenos v kalup polimerizacija na temperaturi od 35 do 80 °C; ohlajevanja polimera in ločevenje od kalupa.A process according to claim 7, characterized in that it comprises the following steps: preparation of a mixture of methacrylic or acrylic monomer, initiator and zinc (II) oxide according to any one of claims 1 to 6; mixing and sonication for 5 to 60 min; optional partial polymerization of MMA; optional initiator re-addition of 0.1 to 40%; molding polymerization at 35 to 80 ° C; polymer cooling and mold separation. -159. Postopek v zahtevku 7 ali 8 označen s tem,da se izvede mešanje nano ZnO, pripravljenega po zahtekih od 1 do 6, v MMA ali v metakrilnem in akrilnem monomeru iz skupine: metil, etil, izopropil, n-propil, n-butil, t-butil, n-pentil, n-heksil, fenil, naftil, etilheksil, oleil, palmitil in stearil metakrilat ali akrilat; pri koncentracijah od 0,0001 do 10 %, prednostno od 0,01 do 1%.-159. The process of claim 7 or 8, characterized in that the mixing of nano ZnO prepared according to claims 1 to 6 is carried out in MMA or in the methacrylic and acrylic monomer of the group methyl, ethyl, isopropyl, n-propyl, n-butyl, t-butyl, n-pentyl, n-hexyl, phenyl, naphthyl, ethylhexyl, oleyl, palmityl and stearyl methacrylate or acrylate; at concentrations of 0.0001 to 10%, preferably 0.01 to 1%. 10. Postopek po kateremkoli zahtevku od 7 do 9 označen s tem, da se doda iniciator v koncentraciji 0,0001 do 1%, prednostno 0,002 do 0,01%.A process according to any one of claims 7 to 9, characterized in that the initiator is added at a concentration of 0.0001 to 1%, preferably 0.002 to 0.01%. 11. Postopek po kateremkoli zahtevku od 7 do 10, označen s tem, da se zmeša zatehtano količino MMA in/ali drugega metakrilnega ali akrilnega monomera, iniciator v koncentraciji od 0,01 do 1 in nano ZnO po zahtevku 6, pripravljen po katerem koli zahtevku od 1 do 5 v koncentraciji od 0,0001 do 10 %, nakar se zmes sonicira 5-60 min. in jo nato prenese v kalup ali opcijsko prenese v reaktor in izvede delno polimerizacijo MMA ali drugega monomera pri temperaturi 35 - 80 °C eno do dve uri; po tem se doda še od 1 do 40 % iniciatorja in zmes prenese v kalup med stekleni plošči in ponovno sonicira 5-60 min; nato se kalup segreva pri temperaturi 35 - 90 °C od 1 do 24 ur, da monomer polimerizira do zaključka reakcije; po končani polimerizaciji se kalup ohladi in loči nastali nanokompozit od kalupa.Process according to any one of claims 7 to 10, characterized in that the weighed amount of MMA and / or other methacrylic or acrylic monomer is mixed, the initiator at a concentration of 0.01 to 1 and the nano ZnO according to claim 6, prepared according to any one of of claims 1 to 5 at a concentration of 0.0001 to 10%, after which the mixture is sonicated for 5-60 min. and then transferring it to the mold or optionally transferring it to the reactor and partially polymerizing the MMA or other monomer at 35-80 ° C for one to two hours; thereafter, from 1 to 40% of the initiator is added and the mixture is transferred into a mold between the glass panes and sonicated again for 5-60 min; the mold is then heated at 35-90 ° C for 1 to 24 hours to polymerize the monomer until the reaction is complete; after polymerization is complete, the mold is cooled and the resulting nanocomposite is separated from the mold. 12. Nanokompozitni materiali z izboljšano UV, svetlobno, temperaturno obstojnostjo in mehanskimi lastnostmi pripravljeni po postopku v zahtevkih od 7 do 11.12. Nanocomposite materials with improved UV, light, temperature and mechanical properties prepared according to the method of claims 7 to 11. 13. Nanokompozitni materiali pripravljeni po zahtevkih od 7 do 11, označeni s tem, da se uporabljajo kot UV in svetlobno stabilizirani neprozorni ali prozorni materiali, vključno pleksi steklo v solarni tehniki, za zasteklitev, za fasadne obloge, za zaščitne ograje ob avtocestah in na področjih kjer prihaja do velike UV in svetlobne ter toplotne obremenitve.Nanocomposite materials prepared according to claims 7 to 11, characterized in that they are used as UV and light-stabilized opaque or transparent materials, including plexiglass in solar technology, for glazing, for facade cladding, for highway and rail fences areas where high UV and light and heat loads occur. 14. Postopek priprave nanokompozitov iz raztopine, sestavljenih iz metakrilnega ali akrilnega polimera iz skupine: poli (metil, etil, izopropil, n-propil, n-butil, t-butil, n-pentil, n-heksil, fenil, naftil, etilheksil, oleil, palmitil in stearil metakrilat ali akrilat) in nano ZnO, pripravljenega po katerem koli zahtevku od Ido 6.14. Process for the preparation of nanocomposites from a solution composed of a methacrylic or acrylic polymer of the group: poly (methyl, ethyl, isopropyl, n-propyl, n-butyl, t-butyl, n-pentyl, n-hexyl, phenyl, naphthyl, ethylhexyl , oleyl, palmityl and stearyl methacrylate or acrylate) and nano ZnO prepared according to any one of claims I to 6. 15. Postopek po zahtevku 14, označen s tem, da ga sestavljajo sledeči koraki: priprava mešanice metakrilnega ali akrilnega polimera in cinkovega (II) oksida po katerem koli zahtevku od 1 do 6 v organskem topilu; dispergiranje z dispergimim mešalom; mešanje in soniciranje od 5 do 120 min; ulivanje v kalup ali brizganje na katerikoli substrat; sušenje filma.A process according to claim 14, characterized in that it comprises the following steps: preparation of a mixture of methacrylic or acrylic polymer and zinc (II) oxide according to any one of claims 1 to 6 in an organic solvent; dispersing with a dispersing agitator; mixing and sonication for 5 to 120 min; molding or injection molding on any substrate; drying the film. -1616. Postopek po kateremkoli zahtevku od 14 do 15 označen s tem se izvede mešanje nano ZnO pripravljenega po zahtekih od 1 do 6 v raztopini PMMA ali drugega ustreznega metakrilnega ali akrilnega polimeru pri koncentracijah od 0,0001 do 1 %, prednostno od 0,01 do 0,1%.-1616. The process according to any of claims 14 to 15, characterized in that the mixing of nano ZnO prepared according to claims 1 to 6 in PMMA solution or other suitable methacrylic or acrylic polymer is carried out at concentrations of 0.0001 to 1%, preferably from 0.01 to 0 , 1%. 17. Postopek priprave nanokompozitov, ki jih sestavljata metakrilni ali akrilni polimer in nano ZnO, označen s tem, da se v čaši zmeša raztopino PMMA in/ali kakega drugega metakrilnega ali akrilnega polimera v organskem topilu in nano ZnO po zahtevku 2 v koncentraciji od 0,0001 do 10 %, nakar se zmes dispergira z dispergimim mešalom od 200 do 20000 obr/min v času od 20 do 360 sek in nato se zmes sonicira v času od 5 do 60 min. in se jo zatem ulije v kalup ali nabrizga na primemo podlago in posuši.17. A process for preparing nanocomposites consisting of methacrylic or acrylic polymer and nano ZnO, characterized in that a solution of PMMA and / or any other methacrylic or acrylic polymer in an organic solvent and nano ZnO according to claim 2 is mixed in a beaker at a concentration of 0 , 0001 to 10%, after which the mixture is dispersed with a dispersive agitator from 200 to 20000 rpm for 20 to 360 seconds and then the mixture is sonicated for 5 to 60 min. and then poured into a mold or sprayed onto a suitable base and dried. 18. Nanokompozitni materiali v obliki tankih filmov z izboljšano UV, svetlobno, temperaturno obstojnostjo in mehanskimi lastnostmi, označeni s tem, da so pripravljeni po postopku v zahtevkih od 14 do 17.18. Nanocomposite materials in the form of thin films with improved UV, light, temperature and mechanical properties, characterized in that they are prepared by the process of claims 14 to 17. 19. Nanokompozitni materiali pripravljeni po zahtevkih od 14 do 17, označeni s tem, da se uporabljajo kot UV in svetlobno stabilizirani neprozorni ali prozorni premazi na področjih kjer prihaja do velike UV in svetlobne ter toplotne obremenitve.19. Nanocomposite materials prepared according to claims 14 to 17, characterized in that they are used as UV and light-stabilized opaque or transparent coatings in areas where high UV and light and heat loads occur.
SI200700294A 2007-11-14 2007-11-14 ZnO NANOPARTICLES AND NANOWIRES WITH ORGANOPHILIC SURFACE AND THEIR NANOCOMPOSITES WITH POLYMETHYL METACRYLATE SI22669A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200700294A SI22669A (en) 2007-11-14 2007-11-14 ZnO NANOPARTICLES AND NANOWIRES WITH ORGANOPHILIC SURFACE AND THEIR NANOCOMPOSITES WITH POLYMETHYL METACRYLATE
PCT/SI2008/000055 WO2009064260A2 (en) 2007-11-14 2008-10-24 Nanoparticles and nanowires of zno with organophilic surfaces and their nanocomposites with poly(methyl methacrylate)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200700294A SI22669A (en) 2007-11-14 2007-11-14 ZnO NANOPARTICLES AND NANOWIRES WITH ORGANOPHILIC SURFACE AND THEIR NANOCOMPOSITES WITH POLYMETHYL METACRYLATE

Publications (1)

Publication Number Publication Date
SI22669A true SI22669A (en) 2009-06-30

Family

ID=40469912

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200700294A SI22669A (en) 2007-11-14 2007-11-14 ZnO NANOPARTICLES AND NANOWIRES WITH ORGANOPHILIC SURFACE AND THEIR NANOCOMPOSITES WITH POLYMETHYL METACRYLATE

Country Status (2)

Country Link
SI (1) SI22669A (en)
WO (1) WO2009064260A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105687B (en) * 2018-05-14 2022-07-15 3M创新有限公司 Controlled curing thermally conductive gap filling material
CN109301073B (en) * 2018-10-23 2022-02-01 中国科学院重庆绿色智能技术研究院 Zinc oxide nanowire/ferrocenyl polythiophene composite material, gold electrode and preparation method thereof
CN111841649B (en) * 2020-07-28 2023-01-17 常州大学 Preparation method of zinc oxide and silver oxide hybrid on surface of nanosphere
CN112980125A (en) * 2021-02-22 2021-06-18 安徽新涛光电科技有限公司 Rayleigh scattering PMMA plate and preparation method thereof
CN114479331A (en) * 2022-03-01 2022-05-13 深圳市新涛控股有限公司 Preparation method of antibacterial flame-retardant acrylic bathroom panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550355B1 (en) * 2003-11-06 2006-02-08 (주)디오 Method for preparing ZnO powder and sol by glycol process
US7455886B2 (en) * 2005-08-22 2008-11-25 Eastman Kodak Company Nanocomposite materials and an in-situ method of making such materials

Also Published As

Publication number Publication date
WO2009064260A2 (en) 2009-05-22
WO2009064260A3 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5398134B2 (en) Method for producing surface-treated zinc oxide fine particles, surface-treated zinc oxide fine particles, dispersion liquid and dispersion solid thereof, and zinc oxide fine particle-coated substrate
Xu et al. From hybrid microgels to photonic crystals
Xiong et al. Polymerization initiated by inherent free radicals on nanoparticle surfaces: a simple method of obtaining ultrastable (ZnO) polymer core–shell nanoparticles with strong blue fluorescence
Chen et al. Self‐assembly in a polystyrene/montmorillonite nanocomposite
Wang et al. A facile approach to synthesize microencapsulated phase change materials embedded with silver nanoparicle for both thermal energy storage and antimicrobial purpose
Cui et al. CdS‐Nanoparticle/Polymer Composite Shells Grown on Silica Nanospheres by Atom‐Transfer Radical Polymerization
SI22669A (en) ZnO NANOPARTICLES AND NANOWIRES WITH ORGANOPHILIC SURFACE AND THEIR NANOCOMPOSITES WITH POLYMETHYL METACRYLATE
CA2554331A1 (en) Nanoparticles
Ajibade et al. Synthesis and characterization of metal sulfides nanoparticles/poly (methyl methacrylate) nanocomposites
Huang et al. Synthesis of the CdS nanoparticles in polymer networks
Singh et al. Impact of vanadium‐, sulfur‐, and dysprosium‐doped zinc oxide nanoparticles on various properties of PVDF/functionalized‐PMMA blend nanocomposites: structural, optical, and morphological studies
Park et al. Preparation of silver/poly (methyl methacrylate) nanocomposites by in-situ radical polymerization using silver carbamate complex
CN116239737A (en) Imine bond nanoscale covalent organic framework and preparation method thereof
Kim et al. Monodisperse hollow titania nanospheres prepared using a cationic colloidal template
Yu et al. Preparation of titanium dioxide/poly (methyl methacrylate‐co‐n‐butyl acrylate‐co‐methacrylic acid) hybrid composite particles via emulsion polymerization
Zhang et al. In situ formation of TiO2 in electrospun poly (methyl methacrylate) nanohybrids
WO2003000808A1 (en) Method for producing moulded bodies comprising an electroconductive coating and moulded bodies having one such coating
Guan et al. A facile one-pot route to transparent polymer nanocomposites with high ZnS nanophase contents via in situ bulk polymerization
KR101736623B1 (en) Hollow structured photo-catalytic particles, method for preparing the particles, resin composition comprising the particles, steel sheet having coating layer formed by the resin composition and method for coating by using the resin composition
CN100402583C (en) Method for synthesizing polyaniline nano particles
Yang et al. CuS-poly (N-isopropylacrylamide-co-acrylic acid) composite microspheres with patterned surface structures: Preparation and characterization
Zhao et al. Combining reversible addition-fragmentation chain transfer polymerization and thiol-ene click reaction for application of core-shell structured VO2@ polymer nanoparticles to smart window
Srikanth et al. The effect of CdO–ZnO nanoparticles addition on structural, electrical and mechanical properties of PVA films
Huang et al. Preparation and characterization of conductive polyaniline/zirconia nanoparticles composites
Vural et al. Synthesis, characterization, UV and dielectric properties of hexagonal disklike ZnO particles embedded in polyimides

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20080320

SP73 Change of data on owner

Owner name: ANZLOVAR ALOJZ; SI

Effective date: 20121119

KO00 Lapse of patent

Effective date: 20171123