SI22623A - Procedure for synthesis of quasi one-dimensional structures of dichalcogenides and transition metal oxides - Google Patents
Procedure for synthesis of quasi one-dimensional structures of dichalcogenides and transition metal oxides Download PDFInfo
- Publication number
- SI22623A SI22623A SI200700233A SI200700233A SI22623A SI 22623 A SI22623 A SI 22623A SI 200700233 A SI200700233 A SI 200700233A SI 200700233 A SI200700233 A SI 200700233A SI 22623 A SI22623 A SI 22623A
- Authority
- SI
- Slovenia
- Prior art keywords
- quasi
- transition metal
- dimensional
- metal oxides
- chalcogen
- Prior art date
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Postopek za sintezo kvazi enadimenzionalnih struktur dihalkogenidov in oksidov prehodnih kovinProcess for the synthesis of quasi-one-dimensional structures of dihalcogenides and transition metal oxides
Predmet izuma, področje tehnike, v katero spada izumSubject of the invention, the field of technology to which the invention belongs
Predmet izuma je postopek za sintezo kvazi enadimenzionalnih struktur, to je nanožic, mikrožic in trakov kovinskih oksidov prehodnih kovin in kvazi enadimenzionalnih struktur dihalkogenidov prehodnih kovin, sestavljenih iz drobnih kristalitov dihalkogenidov prehodnih kovin. Izum spada na področje anorganske kemije in kemije dihalkogenidov prehodnih kovin. Izum se nanaša na sintezo kvazi enadimenzionalnih struktur dihalkogenidov prehodnih kovin, sestavljenih iz drobnih kristalitov dihalkogenidov prehodnih kovin, z metodo pretvorbe kvazi enadimenzionalnih spojin s podmikronskim prerezom nanožic opisanih s formulo M6CyHz, 8.2<y+z<10, kjer je M prehodna kovina (Mo, W, Ta, Nb), C je halkogen (žveplo (S), selen (Se), telur (Te)); H je halogen (jod (I)) s segrevanjem v prisotnosti kisika in pretvorbi nastalih kvazi enadimenzionalnih kovinskih oksidov prehodnih kovin v prisotnosti vsaj enega reaktivnega reagenta, ki vsebuje halkogen. Ta postopek omogoča sintezo kvazi enadimenzionalnih struktur dihalkogenidov prehodnih kovin sestavljenih iz drobnih kristalitov dihalkogenidov prehodnih kovin, ter sintezo kvazi enadimenzionalnih struktur kovinskih oksidov prehodnih kovin.The subject of the invention is a process for the synthesis of quasi one-dimensional structures, that is, nanowires, microspheres and strips of transition metal metal oxides and quasi-one-dimensional structures of transition metal dichalcogenides composed of tiny crystallites of transition metal dichalcogenides. The invention relates to the field of inorganic chemistry and chemistry of transition metal dichalcogenides. The invention relates to the synthesis of quasi one-dimensional structures of transition metal dichalcogenides composed of fine crystallites of transition metal dichalcogenides by a method of converting quasi-one-dimensional compounds with a sub-micron cross section of nanowires described by the formula M6C y H z , 8.2 <y + z <10, where M <6 + y <z <10 metal (Mo, W, Ta, Nb), C is chalcogen (sulfur (S), selenium (Se), tellurium (Te)); H is halogen (iodine (I)) by heating in the presence of oxygen and converting the resulting quasi-one-dimensional transition metal metal oxides in the presence of at least one chalcogen-containing reagent. This procedure enables the synthesis of quasi-one-dimensional structures of transition metal dichalcogenides composed of tiny crystallites of transition metal dichalcogenides, and the synthesis of quasi-one-dimensional structures of transition metal metal oxides.
Stanje tehnikeThe state of the art
Veliko dihalkogenidov prehodnih kovin in oksidov prehodnih kovin ima precejšnjo tehnološko uporabo. Tako se npr. M0S2, eden izmed dihalkogenidov prehodnih kovin, uporablja v katalizi, pri razžvepljevanju nafte, poleg tega pa se uvršča v skupino trdnih lubrikantov, ki se uporabljajo v vakuumski in vesoljski tehnologiji in drugih aplikacijah, kjer je uporaba tekočin omejena. Oksidi prehodnih kovin se uporabljajo med drugim kot senzorji različnih plinov, nosilci katalizatorjev in katalizatorji ter kot katodni material pri baterijah.Many transition metal dichalcogenides and transition metal oxides have considerable technological applications. Thus, e.g. M0S2, one of the transition metal dichalcogenides, is used in catalysis, for the desulphurisation of petroleum, and is also classified as a solid lubricant for use in vacuum and space technology and other applications where fluid use is restricted. Transition metal oxides are used inter alia as sensors of various gases, catalyst carriers and catalysts, and as cathode material in batteries.
-2Nanocevke, fulerenom podobne nanostrukture, nanožice, nanotrakovi in nanoskupki dihalkogenidov prehodnih kovin so zanimivi zaradi posebne kristalografske morfologije in zanimivih fizikalnih lastnosti. M0S2 nanostrukture so tako potencialno zanimive za uporabo v celi vrsti aplikacij od nanoelektronike, fotokatalize, nanotribologije, sončnih celic, v encimih in pri shranjevanju vodika. Katalitska aktivnost v hidrodesulfurizacijski katalizi (oznaka HDS), ni odvisna samo od vrste robov v nanostrukturah in pokritostjo z žveplom, temveč tudi od velikosti nanostruktur. Najboljše katalitske sposobnosti za HDS pričakujemo pri nanostrukturah s šibko interakcijo z nosilcem, t.i tip II in z velikostjo, kjer prihaja do strukturnih sprememb - opisano v Lauritsen V. J, Kibsgaard J., Helveg S., Topsoe H., Clausen S. B., Laegsgaard E., Flemming B, B., Nature Nanotechnology, 58, Vol 2, Jan 2007. Ena od precej uporabljenih metod za sintezo nanostruktur dihalkogenidov prehodnih kovin je preko prekurzorskih kovinskih oksidov prehodnih kovin. Prve anorganske nanocevke halkogenidov prehodnih kovin so bile sintetizirane z metodo sulfurizacije kovinskih oksidov - opisano v Tenne R. et al, Ameriška patentna baza, US-P6,217,843 (Appl. No 308663). Sinteze fulerenom podobnih nanostruktur MS2 (M=Mo, W) temeljijo na sulfurizaciji MO3 (M=Mo, W) v reduktivni atmosferi pri povišanih temperaturah (okoli 850 °C). Ta tehnika je opisana v naslednjih publikacijah- opisano v Tenne, R; Margulis, L.; Genut, M.; Hodes, G. Nature 1992, 360, 444, Margulis, L.; Salitra, G.; Tenne, R.; Talianker, M. Nature, 365, 113,1993; Hershfinlkel, M.; Gheber, L. A.; Volterra, V; Hutchison, J. L.; Margulis, L.; Tenne, R. J. Am. Chem. Soc., 116, 1914, 1994. Feldman, Y.; Wasserman, E.; Srolovitz, D. J.; Tenne, R. Science, 267, 222, 1995, v Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R. J Am. Chem. Soc., 118, 5362, 1996, Rothschild, A.; Frey, G. L.; Homyonfer, M.; Tenne, R.; Rappaport, M. Mat. Res. Innovat., 3, 145, 1999. Z uporabo posebne aparature pri določenih temperaturnih pogojih lahko dobimo skoraj čisto fazo fulerenom podobnih nanodelcev. - opisano v Tenne R.; (St Rehovot, IL); Feldman, Y.; (Ashdod, IL) ; Zak, A.; (Rehovot, IL); Rosentsveig, R.; (Rehovot, IL) United States Patent Application 20040018306. Za sintezo nanožic in nanotrakov dihalkogenidov prehodnih kovin preko prekurzorskih oksidov je bilo uporabljeno nekaj različnih metod. Z različnimi kislinami lahko pretvorimo prekurzorske molekule amonijevega heptamolibdata tetrahidrata pod hidrotermalnimi pogoji pri 140 C° do 200 C° v molibdenov trioksid z morfologijo nanotrakov in nanopalic. Z uporabo H2S/H2 pri 600 C° lahko pretvorimo okside v M0S2 nanopalice z ohranjeno-2 Nanotubes, fullerene-like nanostructures, nanowires, nanotubes and nanocumulons of transition metal dichalcogenides are interesting because of their special crystallographic morphology and interesting physical properties. M0S2 nanostructures are thus potentially of interest for use in a wide range of applications ranging from nanoelectronics, photocatalysis, nanotribology, solar cells, enzymes and hydrogen storage. The catalytic activity in hydrodesulfurization catalysis (HDS code) depends not only on the type of edges in the nanostructures and the coverage of sulfur, but also on the size of the nanostructures. The best catalytic capacity for HDS is expected for nanostructures with weak interaction with the carrier, type II, and with size where structural changes occur - described in Lauritsen V. J, Kibsgaard J., Helveg S., Topsoe H., Clausen SB, Laegsgaard E., Flemming B, B., Nature Nanotechnology, 58, Vol 2, Jan 2007. One of the widely used methods for the synthesis of transition metal dichalcogenide nanostructures is through precursor metal oxides of transition metals. The first inorganic transition metal chalcogenide nanotubes were synthesized using the metal oxide sulfurization method - described in Tenne R. et al, US Patent Base, US-P6,217,843 (Appl. No. 308663). The syntheses of fullerene-like MS2 nanostructures (M = Mo, W) are based on the sulfurisation of MO 3 (M = Mo, W) in a reducing atmosphere at elevated temperatures (about 850 ° C). This technique is described in the following publications- described in Tenne, R; Margulis, L.; Genut, M.; Hodes, G. Nature 1992, 360, 444, Margulis, L.; Salitra, G.; Tenne, R.; Talianker, M. Nature, 365,113,1993; Hershfinlkel, M.; Gheber, LA; Volterra, V; Hutchison, JL; Margulis, L.; Tenne, RJ Am. Chem. Soc., 116, 1914, 1994. Feldman, Y.; Wasserman, E.; Srolovitz, DJ; Tenne, R. Science, 267, 222, 1995, in Feldman, Y.; Frey, GL; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, JL; Tenne, R. J Am. Chem. Soc., 118, 5362, 1996, Rothschild, A.; Frey, GL; Homyonfer, M.; Tenne, R.; Rappaport, M. Mat. Really. Innovat., 3, 145, 1999. Using a special apparatus under certain temperature conditions, a near-pure phase of fullerene-like nanoparticles can be obtained. - described in Tenne R.; (St Rehovot, IL); Feldman, Y.; (Ashdod, IL); Zak, A.; (Rehovot, IL); Rosentsveig, R.; (Rehovot, IL) United States Patent Application 20040018306. Several different methods have been used for the synthesis of nanowires and nanotubes of transition metal dichalcogenides via precursor oxides. With different acids, precursor molecules of ammonium heptamolybdate tetrahydrate can be converted under hydrothermal conditions at 140 ° C to 200 ° C into molybdenum trioxide with the morphology of nanotubes and nanopales. Using H2S / H2 at 600 C °, the oxides can be converted to M0S2 nanoparticles with conserved
-3morfologijo oksidov- opisano v Xiong Wen Lou and Hua Chun Zeng Chem. Mater., 14, 4781-4789, 2002. Z dvostopenjsko sintezo-hidrotermalno-plinsko reakcijo so uspeli pripraviti nanostruktumi material M0S2-M002, kjer so MoS2 kristalitki na površini MoO2. večinoma v obliki do 30 nm nanožic Merjenja na nanostrukturah kažejo na povečanje katalitične aktivnost in selektivnosti opisano v Camacho-Bragado GA, Elechiguerra JL, Olivas A, Fuentes S, Galvan D, Yacaman MJ Jour. Catal. 234 (1): 182-190 AUG 15 2005 . Polikristalinični MoS2 nano in mikro trakovi so bili sintentizirani z dvostopenjsko elektrokemično/kemično sintezno metodo, kjer so bile prekurzorske MoO2 najprej orientirane v električnem polju na površini pirolitskega grafita. Te nanožice so pretvorili v MoS2 z H2S pri 900 °C. Nastali trakovi so imeli dolžine do lmm in so bili sestavljeni iz vzporednih delcev MoS2 s strukturo podobno običajnemu plastnemu kristalu - opisano v Li Q, Newberg JT, Walter EC, Hemminger JC, Penner RM ΝΑΝΟ LETTERS 4 (2): 277-281 FEB 2004. Nanopalčke z premerom okoli 20 nm MoS2 nastanejo pri 24 umi hidrotermalni metodi vodne raztopine (NH4)(6)Mo7O24 4H(2)O, C2H4NS inNa2S2O4 pri 190 °C, pri čemer so nastali produkt nato segrevali še v dušiku- opisano v Ota JR, Srivastava SK JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 6 (1): 168-174 JAN 2006 .-3 oxide morphology- described in Xiong Wen Lou and Hua Chun Zeng Chem. Mater., 14, 4781-4789, 2002. With a two-step synthesis-hydrothermal-gas reaction, they were able to prepare nanostructured material M0S2-M002, where MoS 2 crystallites are on the surface of MoO 2 . mostly in the form of up to 30 nm nanowires Measurements on the nanostructures indicate the increase in catalytic activity and selectivity described in Camacho-Bragado GA, Elechiguerra JL, Olivas A, Fuentes S, Galvan D, Yacaman MJ Jour. Catal. 234 (1): 182-190 AUG 15 2005. Polycrystalline MoS2 nano and micro-strips were synthesized by a two-step electrochemical / chemical synthesis method, where the precursor of MoO 2 initially oriented in the electric field on the surface of the pyrolytic graphite. These nanowires were converted to MoS 2 with H 2 S at 900 ° C. The resulting bands had lengths up to lmm and consisted of parallel MoS 2 particles with a structure similar to a conventional layered crystal - described in Li Q, Newberg JT, Walter EC, Hemminger JC, Penner RM ΝΑΝΟ LETTERS 4 (2): 277-281 FEB 2004. Nanoparticles with a diameter of about 20 nm MoS 2 are formed at 24 μm hydrothermal method of aqueous solution (NH4) (6) Mo 7 O 2 4 4H (2) O, C 2 H 4 NS and Na 2 S 2 O4 at 190 ° C. and the resulting product was then heated in further nitrogen - as described in Ota JR, Srivastava SK JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 6 (1): 168-174 JAN 2006.
ΜοΟβ nanožice z ortorombsko strukturo in premerom okoli 10 nm so bile sintentizirane z elektronanašanjem. Te nanožice kažejo večjo občutljivost za amonijak kot običajni sol-gelski senzoiji - opisano v Gouma P (Gouma, P.), Bishop A (Bishop, A.), Yer KK (Yer, K. K.) RARE METAL MATERIALS AND ENGINEERING 35: 295-298 Suppl. 3, DEC 2006. Orientirane nanožice MOO3 z podobnimi dolžinami in premeri so bile pripravljene v dvostopenjski sintezi- s temperaturnim naparevanjem in oksidacijo- opisano v Zhou J, Deng SZ, Xu NS, Chen J, She JC APPLIED PHYSICS LETTERS 83 (13): 2653-2655 SEP 29 2003. Makroskopske količine MoO3 nanostruktur z različnimi morfologijami, kot na primer nanocvetovi, nanotrakovi in nanolisti so bili sintentizirani po kemični poti z uporabo H2O2 in molibdena. Li GC (Li, Guicun) - opisano v Jiang L (Jiang, Li), Pang SP (Pang, Shuping), Peng HR (Peng, Hongrui), Zhang ZK (Zhang, Zhikun) JOURNAL OF PHYSICAL CHEMISTRY B 110 (48): 24472-24475 DEC 7 2006. Anizotropne kristalinične nanostrukture alfa MoO3 so bile sintentizirane z dekompozicijo in kondenzacijo peroksimolibdenske kisline pod hidrotermalnimi pogoji. Nastale nanostrukture imajo širino od 200 do 300 nm, debelino od 60 do 90 nm in dolžino do 10 mikrometrov. - opisano v FangΜοΟβ nanoparticles with orthorhombic structure and about 10 nm in diameter were synthesized by electron transfer. These nanowires exhibit greater sensitivity to ammonia than conventional sol-gel sensoi - described in Gouma P (Gouma, P.), Bishop A (Bishop, A.), Yer KK (Yer, KK) RARE METAL MATERIALS AND ENGINEERING 35: 295- 298 Suppl. 3, DEC 2006. Oriented MOO3 nanowires of similar lengths and diameters were prepared in a two-step synthesis with temperature vaporization and oxidation described in Zhou J, Deng SZ, Xu NS, Chen J, She JC APPLIED PHYSICS LETTERS 83 (13): 2653-2655 SEP 29 2003. Macroscopic amounts of MoO 3 nanostructures with different morphologies, such as nanotubes, nanotubes and nanoliths, have been chemically synthesized using H 2 O 2 and molybdenum. Li GC (Li, Guicun) - Described in Jiang L (Jiang, Li), Pang SP (Pang, Shuping), Peng HR (Peng, Hongrui), Zhang ZK (Zhang, Zhikun) JOURNAL OF PHYSICAL CHEMISTRY B 110 (48) : Anisotropic crystalline alpha MoO 3 nanostructures were synthesized by decomposition and condensation of peroxymolybdic acid under hydrothermal conditions. The resulting nanostructures have a width of 200 to 300 nm, a thickness of 60 to 90 nm and a length of up to 10 micrometers. - described in Fang
-4L (Fang, Liang), Shu YY (Shu, Yuying), Wang AQ (Wang, Aiqin), Zhang T (Zhang, Tao) JOURNAL OF PHYSICAL CHEMISTRY C 111 (6): 2401-2408 FEB 15 2007. Kristali molibdenovega oksida so bili sintentizirani s kislinsko razgradnjo natrijevega molibdata pri hidrotermalnih pogojih. Pri pogojih sinteze lahko dobimo dobro orientirano fazo, sestavljeno iz orientiranih kristalitkov vzdolž smeri, dolgo tudi do nekaj centimetrov. Ta material je tudi uporaben kot izhodni material za molibdenove halkogenide. - opisano v Camacho-Bragado GA, Jose-Yacaman M APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 82 (1): 1922 JAN 2006.-4L (Fang, Liang), Shu YY (Shu, Yuying), Wang AQ (Wang, Aiqin), Zhang T (Zhang, Tao) JOURNAL OF PHYSICAL CHEMISTRY C 111 (6): 2401-2408 FEB 15, 2007 Molybdenum crystals of the oxide were synthesized by acid decomposition of sodium molybdate under hydrothermal conditions. Under synthesis conditions, a well-oriented phase consisting of oriented crystallites along the direction up to several centimeters long can be obtained. This material is also useful as a starting material for molybdenum chalcogenides. - Described in Camacho-Bragado GA, Jose-Yacaman M APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 82 (1): 1922 JAN 2006.
Za uporabo v katalizi, senzoriki plinov in drugod, kjer je majhnost delcev in velika aktivna površina pomembna, bi bila oblika dihalkogenidov prehodnih kovin, kjer bi bili npr. delci M0S2 z veliko aktivno površino hkrati povezani med seboj v strukture, ki bi hkrati omogačale njihovo enostavno odstranjevanje iz tekočine, zaželjena. Prav tako bi bila uporabna oblika oksidov prehodnih kovin z dolžinami nekaj milimetrov, ki jih je z dosedanjimi tehnikami sinteze zelo težko sintetizirati.For use in catalysis, gas sensors, and elsewhere, where particle size and large active surface area are important, the form of transition metal dichalcogenides, e.g. M0S2 particles with a large active surface are simultaneously connected to one another in structures which would at the same time allow their easy removal from the liquid, desirable. It would also be a useful form of transition metal oxides of several millimeters in length, which are very difficult to synthesize with current synthesis techniques.
Poznanih je več različnih tehnik in poti za sintezo kvazi enadimenzionalnih struktur (nanožic, mikrožic in trakov) dihalkogenidov prehodnih kovin, sestavljenih iz kristalitov dihalkogenidov prehodnih kovin in kvazi enadimenzionalnih struktur kovinskih oksidov prehodnih kovin, vendar do sedaj še ni bil opisan postopek za sintezo makroskopskih količin kvazi enadimenzionalnih struktur dihalkogenidov prehodnih kovin in kovinskih oksidov prehodnih kovin s kemijsko reakcijo kvazi enadimenzionalnih materialov sestavljenih iz nanožic s premerom pod enim mikrometrom, opisanih s formulo M6CyHz, 8.2<y+z< 10, kjer je M prehodna kovina (Mo, W, Ta, Nb), C je halkogen (S, Se, Te); H je halogen (I).Several different techniques and pathways are known for the synthesis of quasi-one-dimensional structures (nanowires, microbes, and bands) of transition metal dichalcogenides composed of transition metal dichalcogenide crystallites and quasi-one-dimensional metal oxide structures of transition metals, but so far no method has been described for the synthesis of macroscopic amounts quasi-one-dimensional structures of transition metal dichalcogenides and transition metal oxides by chemical reaction of quasi-one-dimensional materials composed of nanowires with a diameter below one micrometer described by the formula M 6 C y H z , 8.2 <y + z <10, where M is a transition metal ( Mo, W, Ta, Nb), C is chalcogen (S, Se, Te); H is halogen (I).
Naloga in cilj izumaThe object and object of the invention
Naloga in cilj izuma je sinteza kvazi enadimenzionalnih struktur dihalkogenidov prehodnih kovin sestavljenih iz med seboj povezanih drobnih kristalitov dihalkogenidov prehodnih kovin in sinteza kvazi enadimenzionalnih struktur kovinskih oksidov prehodnih kovin.The object and object of the invention is to synthesize quasi one-dimensional structures of transition metal dichalcogenides composed of interconnected fine crystallites of transition metal dichalcogenides and to synthesize quasi-one-dimensional structures of transition metal oxides.
-5Rešitev problema-5Troubleshooting
Po izumu je naloga rešena s postopkom sinteze makroskopskih količin kvazi enadimenzionalnih struktur dihalkogenidov prehodnih kovin sestavljenih iz drobnih kristalitov dihalkogenidov prehodnih kovin in s sintezo kvazi enadimenzionalnih struktur oksidov prehodnih kovin po neodvisnih patentnih zahtevkih.According to the invention, the problem is solved by the method of synthesis of macroscopic quantities of quasi one-dimensional structures of transition metal dichalcogenides composed of small crystallites of transition metal dichalcogenides and synthesis of quasi-one-dimensional structures of transition metal oxides according to independent claims.
Opis izumaDescription of the invention
Izum bo opisan z izvedbenim primerom in slikami. Slike prikazujejo:The invention will be described by way of example and drawings. Pictures show:
Sl. 1: Shematski prikaz izvedbenega primera pretvorbe kvazi enadimenzionalnih materialov sestavljenih iz nanožic s premerom pod enim mikrometrom, opisanih s formulo M^SiL v kvazi enadimenzionalne molibdenove okside s segrevanjem na zraku v conski peči.FIG. 1: Schematic illustration of an embodiment of the conversion of quasi-one-dimensional materials composed of nanowires with a diameter below one micrometer described by the formula M ^ SiL to quasi-one-dimensional molybdenum oxides by heating in air in a zone furnace.
Sl. 2: Shematski prikaz izvedbenega primera sulfurizacije kvazi enadimenzionalnih struktur molibdenovih oksidov v conski peči s plinom 1 sestavljenim iz argona, H2S in H2.FIG. 2: Schematic illustration of an embodiment of sulfurization of quasi one-dimensional structures of molybdenum oxides in a zone gas furnace 1 consisting of argon, H 2 S and H 2 .
Sl. 3 Slika nastalih kvazi enadimenzionalnih struktur oksidov prehodnih kovin posneta s presevnim elektronskim mikroskopom na poljsko emisijo.FIG. 3 Image of the resulting quasi-one-dimensional structures of transition metal oxides taken with a field emission microscope at field emission.
Sl. 4: Slika nastalih kvazi enadimenzionalnih struktur oksidov prehodnih kovin posneta z vrstičnim elektronskim mikroskopom na poljsko emisijo.FIG. 4: Image of the resulting quasi-one-dimensional structures of transition metal oxides, taken with a field electron microscope on field emission.
Sl. 5: Elektronsko mikroskopska slika ene nanožice posneta s presevnim elektronskim mikroskopom na poljsko emisijo.FIG. 5: Electron microscopic image of a single nanowire taken with a field emission electron microscope.
Sl. 6: K sliki 4 pripadajoč elektronski uklon, ki dokazuje, daje nastala oksidna faza MO5O14.FIG. 6: The electron deflection associated with Figure 4 demonstrating that the oxide phase MO5O14 is formed.
Sl. 7: Elektronsko mikroskopska slika posneta s presevnim elektronskim mikroskopom na poljsko emisijo prikazuje eno nanožico po sulfurizaciji.FIG. 7: Electron microscopic image taken with a field emission microscope on a field emission shows one nanowire after sulfurization.
Sl. 8: K sliki 5 pripadajoč elektronski uklon, ki dokazuje, daje material v celoti pretvorjen v MoS?.FIG. Fig. 8: The electronic deflection of Figure 5, which proves that the material is completely converted to MoS ?.
-6Kemijska pretvorba opisana v izvedbenem primeru je dvostopenjska - najprej pride pri segrevanju nanožic na zraku do njihove pretvorbe v kovinske okside, v drugi stopnji pa do pretvorbe teh kovinskih oksidov nastalih iz nanožic, v dihalkogenide prehodnih kovin.-6Chemical conversion described in the embodiment is two-stage - first, the heating of the nanowires in air results in their conversion to metal oxides, and in the second stage, the conversion of these metal oxides formed from nanowires to the transition metal dichalcogenides.
Opisani tehnični problem je po izumu rešen s kemijsko pretvorbo kvazi enadimenzionalnih materialov sestavljenih iz nanožic s premerom pod enim mikrometrom, opisanih s formulo M6CyHz, 8.2<y+z< 10,.kjer je M prehodna kovina (Mo, W, Ta, Nb), C je halkogen (S, Se, Te); H je halogen (I). Kemijska pretvorba kvazi enadimenzionalnih materialov sestavljenih iz nanožic s premerom pod enim mikrometrom, opisanih s formulo M6CyHz, 8.2<y+z< 10, kjer je M prehodna kovina (Mo, W, Ta, Nb), C je halkogen (S, Se, Te); H je halogen (I), je narejena v dveh stopnjah in sicer najprej v stopnji segrevanja v prisotnosti kisika, pri čemer pride do pretvorbe nanožic v kvazi enadimenzionalnih kovinske okside prehodnih kovin, čemur sledi proces pretvorbe nastalih oksidov v dihalkogenide prehodnih kovin. Izhodiščni material v obliki kvazi enadimenzionalnih materialov sestavljenih iz nanožic s premerom pod enim mikrometrom, opisanih s formulo M6CyHz, 8.2<y+z< 10 se najprej segreva na zraku, oziroma v prisotnosti kisika, pri temperaturah nad 200° C in pod 1800 °C, prednostno nad 300°C in pod 1800 °C, kot je to prikazano na sliki 1. Pri tem se tvorijo kvazi enadimenzionalnih strukture kovinskih oksidov prehodnih kovin opisane s formulo MOX , 0.3<x<3 kjer je M prehodna kovina (Mo, W, Ta, Nb).The technical problem according to the invention is solved by chemical conversion of quasi-one-dimensional materials composed of nanowires with a diameter below one micrometer described by the formula M 6 C y H z , 8.2 <y + z <10, where M is a transition metal (Mo, W , Ta, Nb), C is chalcogen (S, Se, Te); H is halogen (I). Chemical conversion of quasi-one-dimensional materials composed of nanowires with a diameter below one micrometer described by the formula M 6 C y H z , 8.2 <y + z <10, where M is a transition metal (Mo, W, Ta, Nb), C is chalcogen (S, Se, Te); H is halogen (I), made in two stages, first in the stage of heating in the presence of oxygen, resulting in the transformation of nanowires into quasi-one-dimensional transition metal oxides, followed by the process of converting the formed oxides into transition metal dichalcogenides. The starting material in the form of quasi-one-dimensional materials composed of nanowires with a diameter below one micrometer described by the formula M6C y H z , 8.2 <y + z <10 is first heated in air, or in the presence of oxygen, at temperatures above 200 ° C and below 1800 ° C, preferably above 300 ° C and below 1800 ° C, as shown in Fig. 1. In this way, the quasi-one-dimensional structures of the transition metal oxides described by the formula MO X are formed, 0.3 <x <3 where M is a transition metal (Mo, W, Ta, Nb).
Kemijska pretvorba kvazi enadimenzionalnih oksidov v dihalkogenide prehodnih kovin poteka s pomočjo aktivnega reagenta, ki vsebuje halkogen, in je prednostno H2S. Pri kemijski reakciji z aktivnim reagentom, ki vsebuje halkogen, pride do zamenjave kisika vezanega na prehodno kovino z halkogenom. Kemijska pretvorba oksidov prehodnih kovin poteka v izvedbenem primeru v kvarčni cevi s plinom, ki vsebuje 98 volumskih odstotkov argona kot nosilnega plina, en volumski odstotek H2 in en volumski odstotek H2S kot aktivnega reagenta, ki vsebuje halkogen. Reakcija poteka v peči pri pogojih, pri katerih je aktivni reagent, ki vsebuje halkogen v parni fazi, prednostno pri temperaturah nad 300 °C, kot je to shematsko prikazano na sliki 2.The chemical conversion of quasi-one-dimensional oxides to the transition metal dichalcogenides takes place with the help of a chalcogen-containing active reagent, preferably H2S. A chemical reaction with an active reagent containing chalcogen results in the replacement of oxygen bound to the transition metal with chalcogen. The chemical conversion of the transition metal oxides is, in an embodiment, in a quartz tube with gas containing 98% by volume of argon as carrier gas, one volume percentage of H2 and one volume percentage of H2S as active reagent containing chalcogen. The reaction is carried out in an oven under conditions in which the active reagent containing the chalcogen is in the vapor phase, preferably at temperatures above 300 ° C, as shown schematically in Figure 2.
Pri pretvorbi kvazi enadimenzionalnih temamih materialov sestavljenih iz nanožic s premerom pod enim mikrometrom po opisanem dvostopenjskem postopku, pride do zamenjave halogena, npr.When converting quasi-one-dimensional materials made up of nanowires with a diameter of less than one micrometer according to the two-step process described, halogen replacement occurs, e.g.
-7joda z halkogenom, npr. žveplom, in transformacije v kvazi enadimenzionalnih strukture dihalkogenidov prehodnih kovin sestavljene iz drobnih kristalitov dihalkogenidov prehodnih kovin.-7 iodine with chalcogen, e.g. sulfur, and transformations in quasi one-dimensional structures of transition metal dichalcogenides composed of tiny crystallites of transition metal dichalcogenides.
Postopek za sintezo kvazi enadimenzionalnih struktur kovinskih oksidov prehodnih kovin in kvazi enadimenzionalnih struktur dihalkogenidov prehodnih kovin, sestavljenih iz drobnih kristalitov dihalkogenidov prehodnih kovin je torej značilen po tem, da sinteza poteka s kemijsko reakcijo kvazi enadimenzionalnih materialov sestavljenih iz nanožic s premerom pod enim mikrometrom, opisanih s formulo M6CyHz, 8.2<y+z< 10, kjer je M prehodna kovina (Mo, W, Ta, Nb), C je halkogen (S, Se, Te); H je halogen (I), pri čemer se navedeni kvazi enadimenzionalnih material najprej segreva na zraku ali v prisotnosti kisika pri povišani temperaturi in se pretvori v kvazi enadimenzionalnih kovinske okside prehodnih kovin opisane s formulo MOX , 0.3<x<3, kjer je M prehodna kovina (Mo, W, Ta, Nb), O je kisik. Navedeni kvazi enadimenzionalnih material se segreva v prisotnosti kisika pri temperaturah nad 200 °C in pod 1800 °C, prednostno pri temperaturah nad 300 °C in pod 1800 °C. Temu sledi kemijska pretvorba navedenih kvazi enadimenzionalnih kovinskih oksidov v kvarčni cevi s plinom, ki vsebuje aktivni reagent, ki vsebuje halkogen. Kemijska pretvorba kvazi enadimenzionalnih kovinskih oksidov v kvazi enadimenzionalnih dihalkogenide prehodnih kovin poteka s plinom, ki vsebuje aktivni reagent, ki vsebuje halkogen, pri čemer plin prednostno vsebuje 98 volumskih odstotkov nosilnega plina, prednostno argona, prednostno en volumski odstotek H2 in prednostno en volumski odstotek H2S. Navedena kemijska pretvorba poteka pri pogojih, pri katerih je aktivni reagent, ki vsebuje halkogen v parni fazi, prednostno pri temperaturah nad 300 °C.The process for the synthesis of quasi-one-dimensional structures of transition metal metal oxides and quasi-one-dimensional structures of transition metal dichalcogenides composed of tiny crystallites of transition metal dichalcogenides is characterized in that the synthesis is carried out by chemical reaction of quasi-one-dimensional materials composed of sub-nanometers with nanometers with the formula M6C y H z , 8.2 <y + z <10, where M is a transition metal (Mo, W, Ta, Nb), C is chalcogen (S, Se, Te); H is halogen (I), wherein said quasi-one-dimensional materials are first heated in air or in the presence of oxygen at elevated temperature and converted into quasi-one-dimensional transition metal oxides described by the formula MO X , 0.3 <x <3, where M transition metal (Mo, W, Ta, Nb), O is oxygen. Said quasi-one-dimensional materials are heated in the presence of oxygen at temperatures above 200 ° C and below 1800 ° C, preferably at temperatures above 300 ° C and below 1800 ° C. This is followed by the chemical conversion of the said quasi-one-dimensional metal oxides into a quartz tube with a gas containing an active reagent containing chalcogen. The chemical conversion of quasi-one-dimensional metal oxides into quasi-one-dimensional dihalcogenides of transition metals is carried out with a gas containing an active reagent containing chalcogen, the gas preferably containing 98% by volume of carrier gas, preferably argon, preferably one volume percent H 2 and preferably one volume percent H 2 S. The said chemical conversion takes place under conditions in which the active reagent containing the chalcogen in the vapor phase is preferably at temperatures above 300 ° C.
Gre torej za sintetski postopek priprave oksidov iz osnovnih nanožic in sintetski postopek nanožic dihalkogenidov prehodnih kovin sestavljenih iz kristalitkov prehodnih kovin iz osnovnih nanožic preko oksidov. Oblika materiala dihalkogenidov prehodnih kovin pridobljenih po postopku po izumu je značilna po tem, da so v obliki kvazi enadimenzionalnih dihalkogenidov prehodnih kovin, to je nano, mikro žic in trakov dihalkogenidov prehodnih kovin, sestavljenih iz drobnih kristalitov dihalkogenidov prehodnih kovin.It is therefore a synthetic process for preparing oxides from basic nanowires and a synthetic procedure for nanowires of transition metal dichalcogenides composed of crystallites of transition metals from basic nanowires via oxides. The material of the transition metal dichalcogenides obtained by the process according to the invention is characterized in that they are in the form of quasi-one-dimensional transition metal dichalcogenides, i.e. nano, micro-wires and strips of transition metal dichalcogenides composed of tiny crystallites of transition metal dichalcogenides.
-8Izvedbeni primer-8Example case
Izvedbeni primer opisuje sintezo kvazi enadimenzionalne strukture dihalkogenidov prehodnih kovin s kemijsko pretvorbo kvazi enadimenzionalnih materialov sestavljenih iz nanožic s premerom pod enim mikrometrom, opisanih s formulo M6CyHz, 8.2<y+z< 10, kjer je M prehodna kovina (Mo, W, Ta, Nb), C je halkogen (S, Se, Te); H je halogen (I).An exemplary example describes the synthesis of a quasi-one-dimensional structure of transition metal dichalcogenides by chemical conversion of quasi-one-dimensional materials composed of nanowires with a diameter below one micrometer described by the formula M 6 C y H z , 8.2 <y + z <10, where M is a transition metal (Mo , W, Ta, Nb), C is chalcogen (S, Se, Te); H is halogen (I).
V kvarčno ladjico 1 je bilo zatehtano 50 mg Mo6S2l8 nanožic, ki so bile sintentizirane neposredno iz elementov, kot je to opisano v patentu EP 1 541 528. Ladjica 1 z materialom 2 sestavljenim iz svežnjev MogS2l8 nanožic, je bila postavljena v kvarčno cev 3 dolžine 1000 mm in premera 32 mm v enoconsko peč 4, segreto na 380° C. Material je bil segrevan pri tej temperaturi na zraku dve uri. Kvarčna cev 3 je imela na eni strani nameščeno past 5 hlajeno z vodo 6. Past 5 je služila za zbiranje sproščenega joda 7, istočasno pa omogočala dostop zraka do materiala 2 v ladjici 1. Shematski potek segrevanja je prikazan na sliki 1. Masa nastalega materiala 8 sestavljenega iz kvazi enadimenzionalnih struktur kovinskih oksidov prehodnih kovin, to je nanožic, mikrožic in trakov, je znašala 27 mg.Quartz boat 1 weighed 50 mg of Mo6S 2 l8 nanowires, which were synthesized directly from the elements as described in EP 1 541 528. Boat 1 with material 2 consisting of bundles of MogS 2 l8 nanowires was placed in quartz tube 3 1000 mm long and 32 mm in diameter in a one-furnace 4 heated to 380 ° C. The material was heated at this temperature in air for two hours. Quartz tube 3 had a water-cooled trap 5 installed on one side. Trap 5 was used to collect the released iodine 7, while allowing air to access material 2 in boat 1. The schematic of the heating flow is shown in Figure 1. The mass of material generated. 8, consisting of quasi-one-dimensional structures of transition metal metal oxides, that is, nanowires, microspheres, and bands, was 27 mg.
Ladjica 1 z materialom 8, to je z nastalimi kvazi enadimenzionalnimi oksidi prehodnih kovin, je bila postavljena v kvarčno cev 9 premera 34 mm, debelino stene 2 mm in dolžine 1000 mm, na enem koncu zaprta, na drugem pa opremljena z obrusom, ki je omogočal zaprtje cevi 9 po vložitvi ladjice 1 z materialom 8 in hkratni dovod 10 plina ali argona v kvarčno cev 9. Kvarčna cev 9 je imela tudi kvarčni odvod 11 za odvod plinov kot kaže slika 2.Boat 1 with material 8, that is, with the resulting quasi-one-dimensional oxides of transition metals, was placed in a quartz tube 9 with a diameter of 34 mm, a wall thickness of 2 mm and a length of 1000 mm, closed at one end and equipped with a sash, which allowed the closure of tube 9 after the filing of boat 1 with material 8 and the simultaneous inlet 10 of gas or argon into the quartz tube 9. The quartz tube 9 also had a quartz outlet 11 for the gas outlet as shown in Figure 2.
Plin je bil sestavljen iz 98 volumskih odstotkov argona, enega volumskega odstotka H2S in enega volumskega odstotka H2. Najprej je bila zaprta kvarčna cev 9 skozi dovod 10 prepihovana s plinom argonom 20 minut in nato 15 minut s plinom. Pretok plina in argona je znašal 40 cm3 na minuto. Kvarčna cev 9 je bila previdno vstavljena v segreto enoconsko peč 12, ob stalnem prepihovanju s plinom, ki je pritekal skozi dovod 10. Temperatura peči, kjer se je nahajala ladjica 1 z materialom 8, je znašala 860 °C, kar je bilo izmerjeno s termočlenom. Po dveh urah prepihovanja s plinom pri temperaturi peči 860 °C, je bila kvarčna cev 9 vzeta iz conske peči 12.The gas consisted of 98 volume percent argon, one volume percent H 2 S and one volume percent H 2 . First, the closed quartz tube 9 was blown through argon gas for 20 minutes and then for 15 minutes with gas. The flow of gas and argon was 40 cm 3 per minute. Quartz tube 9 was carefully inserted into a heated one-zone furnace 12, with constant blowing through gas flowing through inlet 10. The furnace temperature of boat 1 with material 8 was 860 ° C, as measured by thermocouple. After two hours of gas purging at an oven temperature of 860 ° C, quartz tube 9 was removed from the zone furnace 12.
-9Kvarčna cev 9 je bila nato pol ure na sobni temperaturi, da se je ohladila. Tekom celotnega postopka je bilo nadaljevano prepihovanje s plinom skozi dovod 10. Po pol ure, ko seje kvarčna cev 9 ohladila na temperaturo pod 50 °C, je bil dotok plina zaprt, ladjica 1 z nastalim kvazi enadimenzionalnim MoS2 materialom, pa vzeta iz kvarčne cevi 9. Masa kvazi enadimenzionalnega MoS2 materiala je znašala 30 mg. Faze nastale z oksidacijo in sulfarizacijo so bile pregledane na več načinov, kot kažejo slike od 3 do 8.-9 Quartz tube 9 was then left at room temperature for half an hour to cool. Throughout the whole process gas was purged through inlet 10. After half an hour, when the quartz tube 9 had cooled to a temperature below 50 ° C, the gas flow was closed and the boat 1 with the quasi-one-dimensional MoS 2 material formed was taken from the quartz tubes 9. The weight of the quasi-one-dimensional MoS 2 material was 30 mg. The oxidation and sulfarization phases were examined in several ways, as shown in Figures 3 to 8.
Kot kaže slika 3 z vrstično elektronsko mikroskopijo (SEM). Vidne so nastale kvazi enadimenzionalne strukture oksidov prehodnih kovin posnete s presevnim elektronskim mikroskopom na poljsko emisijo Jeol 2010 F.As Figure 3 shows by scanning electron microscopy (SEM). The resulting quasi-one-dimensional structures of transition metal oxides imaged by a transmission electron microscope on a field emission of Jeol 2010 F. are visible.
Slike 4, 5 in 6 so posnete s presevno elektronsko mikroskopijo (TEM).Figures 4, 5 and 6 are taken by TEM.
Slika 4 je prikaz nastalih kvazi enadimenzionalnih struktur oksidov prehodnih kovin in je posneta z vrstičnim elektronskim mikroskopom na poljsko emisijo FE-SEM, Supra 35 VP, Carl Zeiss.Figure 4 is a representation of the resulting quasi-one-dimensional structures of transition metal oxides and is taken with a field electron microscope on a field emission FE-SEM, Supra 35 VP, Carl Zeiss.
Slika 5 je elektronsko mikroskopska slika ene nanožice posneta s presevnim elektronskim mikroskopom na poljsko emisijo Jeol 2010 F in prikazuje polikristalinično strukturo in drobne kristalite, ki rastejo pravokotno na smer vlakna.Figure 5 is an electron microscopic image of a single nanowire taken with a transmission electron microscope on a field emission of Jeol 2010 F and shows the polycrystalline structure and tiny crystallites growing perpendicular to the fiber direction.
Slika 6 prikazuje k sliki 4 pripadajoč elektronski uklon, ki dokazuje, daje nastala oksidna faza MO5O14. Slika 6 je posneta tako, daje os v kristalu vzporedna z elektronskim žarkom.Figure 6 shows the associated electronic deflection to Figure 4, proving that the oxide phase of MO5O14 is formed. Figure 6 is taken in such a way that the axis in the crystal is parallel to the electron beam.
Slika 7 je elektronsko mikroskopska slika posneta s presevnim elektronskim mikroskopom na poljsko emisijo Jeol 2010 F in prikazuje eno nanožico po sulfurizaciji. Vidna je polikristalinična struktura.Figure 7 is an electron microscopic image taken with a transmission electron microscope on a field emission of Jeol 2010 F and shows one nanowire after sulfurization. A polycrystalline structure is visible.
Slika 8 prikazuje k sliki 5 pripadajoč elektronski uklon, ki dokazuje, da je material v celoti pretvorjen v MoS2. Iz spremenljive intenzitete posameznih obročev je razvidno, da kristaliti niso povsem naključno orientirani, ampak je med njimi delno prisoten orientacijski red.Figure 8 shows an electronic deflection of Figure 5, which proves that the material has been completely converted to MoS 2 . It is evident from the variable intensity of the individual rings that the crystallites are not completely randomly oriented, but an orientation order is partially present between them.
Claims (4)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200700233A SI22623A (en) | 2007-09-25 | 2007-09-25 | Procedure for synthesis of quasi one-dimensional structures of dichalcogenides and transition metal oxides |
US12/593,522 US8007756B2 (en) | 2007-03-30 | 2008-03-28 | Process for the synthesis of nanotubes and fullerene-like nanostructures of transition metal dichalcogenides, quasi one-dimensional structures of transition metals and oxides of transition metals |
SI200831520T SI2132142T1 (en) | 2007-03-30 | 2008-03-28 | A process for the synthesis of nanotubes and fullerene-like nanostructures of transition metals dichalcogenides, quasi one-dimensional structures of transition metals and oxides of transition metals |
EP08724390.3A EP2132142B1 (en) | 2007-03-30 | 2008-03-28 | A process for the synthesis of nanotubes and fullerene-like nanostructures of transition metals dichalcogenides, quasi one-dimensional structures of transition metals and oxides of transition metals |
PCT/SI2008/000023 WO2008121081A2 (en) | 2007-03-30 | 2008-03-28 | A process for the synthesis of nanotubes and fullerene-like nanostructures of transition metals dichalcogenides, quasi one-dimensional structures of transition metals and oxides of transition metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200700233A SI22623A (en) | 2007-09-25 | 2007-09-25 | Procedure for synthesis of quasi one-dimensional structures of dichalcogenides and transition metal oxides |
Publications (1)
Publication Number | Publication Date |
---|---|
SI22623A true SI22623A (en) | 2009-04-30 |
Family
ID=40586547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200700233A SI22623A (en) | 2007-03-30 | 2007-09-25 | Procedure for synthesis of quasi one-dimensional structures of dichalcogenides and transition metal oxides |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI22623A (en) |
-
2007
- 2007-09-25 SI SI200700233A patent/SI22623A/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Balayeva et al. | β-NiS and Ni3S4 nanostructures: fabrication and characterization | |
Lou et al. | Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate | |
Gautam et al. | Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process | |
Jin et al. | Simple approaches to quality large-scale tungsten oxide nanoneedles | |
Yang et al. | Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance | |
Yella et al. | Bismuth‐Catalyzed Growth of SnS2 Nanotubes and Their Stability | |
Chen et al. | Hydrothermal fabrication and characterization of polycrystalline linneite (Co3S4) nanotubes based on the Kirkendall effect | |
US8007756B2 (en) | Process for the synthesis of nanotubes and fullerene-like nanostructures of transition metal dichalcogenides, quasi one-dimensional structures of transition metals and oxides of transition metals | |
Chen et al. | Synthesis, characterization, and hydrophobic properties of Bi2S3 hierarchical nanostructures | |
Pol et al. | Micro to nano conversion: a one-step, environmentally friendly, solid state, bulk fabrication of WS2 and MoS2 nanoplates | |
Michailovski et al. | Hierarchical growth of mixed ammonium molybdenum/tungsten bronze nanorods | |
Deepak et al. | Faceted MoS2 nanotubes and nanoflowers | |
Cheng et al. | The structure and growth mechanism of VO2 nanowires | |
Lavayen et al. | The formation of nanotubes and nanocoils of molybdenum disulphide | |
Hoshyargar et al. | Diffusion-driven formation of MoS2 nanotube bundles containing MoS2 nanopods | |
SI20688A (en) | Process of synthesis of nanotubes of transition metals dichalcogenides | |
Pol et al. | Combining MoS 2 or MoSe 2 nanoflakes with carbon by reacting Mo (CO) 6 with S or Se under their autogenic pressure at elevated temperature | |
SI22623A (en) | Procedure for synthesis of quasi one-dimensional structures of dichalcogenides and transition metal oxides | |
Pol et al. | WS2 breeds with carbon to create a wormlike nanostructure and assembly: reaction of W (CO) 6 with S under autogenic pressure at elevated temperature under inert atmosphere | |
Liu et al. | Structure and field-emission properties of W/WO2. 72 heterostructures fabricated by vapor deposition | |
US9527735B2 (en) | Catalytic processes for obtaining inorganic nanostructures by using soft metals | |
Oku | Synthesis, atomic structures and properties of boron nitride nanotubes | |
Olivas et al. | Nickel–tungsten bimetallic sulfide nanostructures of fullerene type | |
EP2001803B1 (en) | Process for preparing inorganic fullerene-like nanostructures, nanostructures prepared in this way and their use | |
Feldman et al. | Preparation of nested fullerenes and nanotubes of MoS2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20071212 |
|
KO00 | Lapse of patent |
Effective date: 20170609 |