SI22559A - Sensor, device and procedure for determination of corrosion speed of metal reinforcement in reinforced concrete structures - Google Patents

Sensor, device and procedure for determination of corrosion speed of metal reinforcement in reinforced concrete structures Download PDF

Info

Publication number
SI22559A
SI22559A SI200700157A SI200700157A SI22559A SI 22559 A SI22559 A SI 22559A SI 200700157 A SI200700157 A SI 200700157A SI 200700157 A SI200700157 A SI 200700157A SI 22559 A SI22559 A SI 22559A
Authority
SI
Slovenia
Prior art keywords
corrosion
concrete
electrically conductive
elements
sensor
Prior art date
Application number
SI200700157A
Other languages
Slovenian (sl)
Inventor
AndraĹľ LEGAT
Original Assignee
Zavod Za Gradbeniĺ Tvo Slovenije
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zavod Za Gradbeniĺ Tvo Slovenije filed Critical Zavod Za Gradbeniĺ Tvo Slovenije
Priority to SI200700157A priority Critical patent/SI22559A/en
Publication of SI22559A publication Critical patent/SI22559A/en

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Measurement of corrosion speed of steel reinforcement in concrete by means of built-in electrical resistance sensors (1) is based upon the measurement of change of electrical resistance, which is the result of reduction in conductor thickness (11', 12') of corrosion-exposed electrically conductive elements of a sensor (1), whose material has similar corrosion properties than the steel reinforcement built into concrete (9). A device according to the invention comprises sensors (1) in the Wheatstone bridge configuration, where two electrically conductive elements (11, 12) with resistance (Rx) are exposed to corrosion and the remaining two elements (13, 14) are protected against corrosion and are representing the reference resistance (R). Thanks to the sensor's (1) design, whose elements (11, 12; 13, 14) consist preferentially of thin sheet metal or a conductive layer in the form of a printed circuit board, it minimises temperature effects and enables a high resolution when measuring changes in thickness. The structure of the sensor (1) enables also a relatively easy installation into concrete (9) and this e.g. also into hardened concrete (9) of already existing reinforced concrete works, and besides, among others, also monitoring of corrosion under cathode protection conditions, where the sensors (1) may be polarised by the protection potential. The measuring device according to the invention enables a simple measurement of all required parameters, whereas the measuring procedure itself, which is preferentially executable by using a respective software, enables the calculation of changes in thickness of conductors (11', 12') of sensor's (1) elements (11, 12) and thus the determination of corrosion speed with time. Monitoring of corrosion speed with time enables, among others, also the estimation of kind of corrosion and by this monitoring both of steady corrosion and pitting corrosion. The comparison of calculated corrosion speeds of individual sensors (1) is the basis for the estimation of current endangerment of reinforced concrete works by corrosion and for the locating of critical areas. By knowing respective basic data of a structure, the measuring results from a sensor (1) network enable also the prediction of the remaining life of a construction works.

Description

Izum se na področju fizike ukvarja s preiskovanjem in analiziranjem materialov na osnovi določanja fizikalnih ali kemičnih lastnosti, še zlasti z ugotavljanjem odpornosti materiala proti vremenskim vplivom in koroziji, povsem konkretno pa z merjenjem hitrosti korozije kovinske armature v armiranobetonskih konstrukcijah.In the field of physics, the invention deals with the investigation and analysis of materials based on the determination of physical or chemical properties, in particular the determination of the resistance of the material to weathering and corrosion, and more specifically the measurement of corrosion rates of metal reinforcement in reinforced concrete structures.

Pri tem je izum osnovan na problemu, kako zasnovati senzor za ugotavljanje hitrosti korozije kovinske armature v armiranobetonskih konstrukcijah, ki bo dimenzijsko neobsežen in preprost tako za množično izdelavo kot tudi za varno in zanesljivo vgradnjo po izbiri bodisi v še nestijen beton že v fazi same izvedbe armiranobetonske konstrukcije ali v otrdeli beton vsakokrat že obstoječe armiranobetonske konstrukcije, obenem pa naj bil senzor kot tak dovolj občutljiv za izvajanje enkratnih, občasnih ali permanentnih meritev s karseda visoko natančnostjo. Sočasno je namen izuma zasnovati tudi postopek merjenja hitrosti korozije kovinske armature v novo zgrajenih ali obstoječih armiranobetonskih zgradbah, s tem v zvezi pa tudi napravo, ki bo omogočala izvajanje tovrstnega postopka in s tem merjenje hitrosti korozije na večjem številu lokacij na vsakokrat izbranem armiranobetonskem objektu, in sicer ob zagotavljanju enake temperature korozijsko izpostavljenih elementov in referenčnih elementov v betonu ter ob zmožnosti razlikovanja med konvencionalno enakomerno korozijo in jamičasto korozijo.The invention is based on the problem of how to design a sensor for determining the corrosion rate of metal reinforcement in reinforced concrete structures, which will be dimensionally large and simple for mass production as well as for safe and reliable installation of choice or in non-solid concrete already in the stage of construction reinforced concrete structures or in hardened concrete of any pre-existing reinforced concrete structure, and at the same time the sensor as such should be sensitive enough to perform single, occasional or permanent measurements with as high a precision as possible. At the same time, the object of the invention is to provide a method for measuring the corrosion rate of metal reinforcement in newly constructed or existing reinforced concrete buildings, and in this connection also a device that will allow such a process to be performed and thus to measure the corrosion rate at a large number of locations in the reinforced concrete object chosen at any one time, by providing the same temperature to the corrosion-exposed elements and reference elements in the concrete and being able to differentiate between conventional even corrosion and pit corrosion.

Z namenom spremljanja stanja kovinske armature v armiranobetonskih konstrukcijah oziroma meijenja korozijske hitrosti jeklene armature so bile razvite številne metode merjenja korozije vključno z napravami za spremljanje korozije. Najbolj uveljavljene so elektrokemijske metode kot npr. merjenje mreže potencialov, elektrokemijska linearna polarizacija, metoda galvanostatskega pulza ali merjenje galvanskega toka. Z omenjenimi metodami je možno meriti elektrokemijske parametre in oceniti trenutno korozijsko hitrost. Napake pri omenjenih meritvah so relativno velike, saj na izmerjene vrednosti vplivajo številni faktorji, med drugim npr. kvaliteta električnega kontakta, električna upornost betona, temperatura in efektivna površina aktivnega korozijskega področja. Glede na to, da se vsakokrat trenutna korozijska aktivnost jekla v odvisnosti od vsebnosti vlage in kisika v betonu spreminja relativno hitro, v splošnem lahko tudi za več velikostnih razredov, elektrokemijske metode pri oceni za daljše časovno obdobje dajo lahko zelo nenatančne rezultate.In order to monitor the condition of the metal reinforcement in reinforced concrete structures or to change the corrosion velocity of the steel reinforcement, a number of corrosion measurement methods have been developed, including corrosion monitoring devices. Electrochemical methods, such as e.g. potential network measurement, electrochemical linear polarization, galvanostatic pulse method, or galvanic current measurement. With these methods it is possible to measure the electrochemical parameters and to estimate the current corrosion rate. The errors in these measurements are relatively large, since the measured values are influenced by many factors, such as e.g. quality of electrical contact, electrical resistance of concrete, temperature and effective surface of active corrosion area. Given that the current corrosion activity of steel varies relatively rapidly depending on the moisture and oxygen content of the concrete, in general, even for several size classes, electrochemical methods can give very inaccurate results when evaluating for a longer period of time.

Tako je npr. v US 4,703,255 (Strommen) opisan senzor, ki sestoji iz dveh enakih kovinskih palic iz različnih materialov, ki se ju - med seboj razmaknjeni s pomočjo električno neprevodnih distančnikov - vgradi v beton že med samo izvedbo armiranobetonskega objekta. Material ene od palic ustreza oz. je podoben materialu armature. Na omenjeni palici sta priključena električna vodnika, ki vodita do merilnika električne napetosti, ki se nahaja izven armiranobetonske zgradbe. Ne glede na to, da je tovrstni senzor predviden za vgradnjo ob izvedbi objekta in je takorekoč neuporaben za kasnejšo vgradnjo v strjen beton oz. v že obstoječ objekt, je zahvaljujoč merjenju napetostnih potencialov na obeh palicah v betonu načeloma možno sklepati na hitrost korozije armature, pri čemer pa na samo natančnost merjenja pa vplivajo številni dejavniki. Zaradi dimenzijske obsežnosti senzorjev je v vsak objekt možno vgraditi kvečjemu manjše število senzorjev, ki zaznavajo stanje v zgolj nekaterih točkah objekta, v katerih so pogoji za nastanek oz. napredovanje korozije lahko zelo različni. Po drugi strani so možni vplivi materialov samih električnih vodnikov na stiku s palicama, vprašljiva izolativnost v vlažnem betonu vgrajenih vsaj teoretično električno neprevodnih distančnikov in podobno.Thus, e.g. U.S. Pat. No. 4,703,255 (Strommen) describes a sensor consisting of two identical metal rods of different materials, which are spaced apart from one another by means of electrically non-conductive spacers, during the construction of a reinforced concrete object. The material of one of the bars corresponds respectively. is similar to reinforcement material. Electrical conductors are connected to the rod, which lead to a voltage meter located outside the reinforced concrete building. Regardless of the fact that this kind of sensor is intended for installation at the construction of the building and is also inapplicable for later installation in solid concrete or. Due to the measurement of the stress potentials on both bars in concrete, it is in principle possible to conclude on the corrosion rate of the reinforcement, but the accuracy of the measurement itself is influenced by many factors. Due to the dimensionality of the sensors, it is possible to incorporate a maximum number of sensors into each object, which detect the condition at only some points of the object, in which the conditions for the emergence or. corrosion progression can be very different. On the other hand, the possible effects of the materials of the electrical conductors themselves on contact with the bars, the insulation in wet concrete of at least theoretically electrically non-conductive spacers and the like, are questionable.

Nadalje je v US 5,259,944 predlagana naprava, ki obsega merilnik električne napetosti, ter na površino betona, v katerem je vgrajena armatura, namestljivo zunanjo elektrodo ter osrednje razporejeno nasprotno elektrodo vključno z dvojico referenčnih tipal. Pri tem merijo polarizacijsko upornost v opazovanem območju betona, iz česar potem sklepajo na korozijo armature. Meritve so sicer možne tudi na obstoječih objektih, vendar so odvisne od številnih pogojev in zato razmeroma netočne in nezanesljive.Further, U.S. Pat. No. 5,259,944 proposes a device comprising a voltage meter and a concrete surface in which the reinforcement is mounted, an external electrode mounted, and a centrally arranged counter electrode including two reference sensors. In doing so, they measure the polarization resistance in the observed area of the concrete, from which they then conclude on the corrosion of the reinforcement. Although measurements are also possible on existing facilities, they depend on many conditions and are therefore relatively inaccurate and unreliable.

Nadalje je v EP O 364 841 (STRABAG BAU-AG) predlagana naprava, ki obsega množico na različnih globinah armiranobetonske konstrukcije vgrajenih anod iz materiala, ki ustreza materialu armature, kot tudi katodo iz korozijsko obstojnejšega materiala. Omenjene anode so povezane z izven betonske konstrukcije razpoložljivim merilnikom električnega toka. Katoda je lahko povezana s pripadajočo anodo, kije od nje ločena z električnim izolatorjem. Merilnik toka meri tok, ki je v sorazmerju s korozijo armature. Tako je možno predvsem ugotoviti, če v betonu pride do karbonatizacije ali kontaminacije s kloridi, kar še zlasti vzpodbuja napredovanje korozije. V takih primerih je možno napravo uporabiti za potrebe takoimenovane polarizacije, ko z dovajanjem ustreznega električnega naboja oz. toka v armaturo skušajo izravnati razlike v električnih potencialih in s tem zaustaviti korozijo. Tudi tovrstni senzorji so predvideni za vgradnjo v fazi izvedbe armiranobetonske konstrukcije oz. objekta. Vendar pa je pojav nastajanja karbonatizacije ali kontaminacije s kloridi lahko tudi izrazito lokalne narave, zato nikakor ni nujno, da do njega pride prav v območju, kjer so vgrajeni senzorji.Further, EP O 364 841 (STRABAG BAU-AG) proposes a device comprising a plurality at different depths of reinforced concrete construction of embedded anodes of material corresponding to the reinforcement material as well as a cathode of corrosion-resistant material. The anodes mentioned are connected to an available current meter by means of a non-concrete structure. The cathode can be connected to the associated anode, which is separated from it by an electrical insulator. The current meter measures the current in proportion to the corrosion of the reinforcement. Thus, it is possible to determine, in particular, if carbonation or contamination with chlorides occurs in the concrete, which in particular promotes the progress of corrosion. In such cases, the device can be used for the needs of the so-called polarization, when by supplying the appropriate electric charge or. currents in the armature seek to compensate for differences in electrical potentials, thereby halting corrosion. Sensors of this type are also intended for installation in the stage of construction of reinforced concrete construction or. object. However, the occurrence of carbonation or contamination with chlorides can also be extremely local in nature, so it does not have to occur in the area where the sensors are installed.

Zaradi vrste prednosti so se v industrijskih metodah in napravah za spremljanje korozije v pretežni meri uveljavili električni uporovni senzorji vključno z modificiranimi izvedbami z izboljšano temperaturno kompenzacijo in ločljivostjo.Due to a number of advantages, electrical resistive sensors, including modified versions with improved temperature compensation and resolution, have been largely implemented in industrial methods and corrosion monitoring devices.

Tako je v US 4,703,253 (Strommen) predlagano, da se v beton že v fazi izvedbe objekta vgradi v zanko povezana med seboj enaka kraka iz materiala, iz kakršnega je izvedena armatura. Eden od krakov je za razliko od preostalega kraka protikorozijsko zaščiten. Ker nazadnje omenjeni krak v betonu sčasoma korodira - domnevno s približno enako hitrostjo kot sama armatura - se mu zahvaljujoč zmanjšanju preseka poveča električna upornost, ki jo je možno primerjati zahvaljujoč merjenju upornosti referenčnega, protikorozijsko zaščitenega kraka. Tudi ta senzor je dimenzijsko razmeroma obsežen, ker je prednostno izveden iz armaturnega jekla premera 6 12 mm v obliki podolgovate zanke dolžine od 90 cm do 6 m in je zato primeren kvečjemu za vgradnjo izključno v sami v fazi izvedbe armiranobetonske konstrukcije oz. objekta. Še celo v takih primerih so pri nekaterih objektih, kakršni so npr. mostovi, predori, jedrske elektrarne ali odlagališča radioaktivnih odpadkov, zaradi gostote armature, kjer raster pogosto ne presega 100 x 100 mm, možnosti vgradnje tovrstnih senzorjev zelo omejene. Temu ustrezno je treba tudi v tem primeru računati z možnostjo vgradnje zgolj razmeroma majhnega števila senzorjev v objekt, kar spet omogoča kvečjemu dokaj nenatančno spremljanje korozije preko večje površine in zgolj v nekaterih lokacijah na objektu, medtem ko se dejanske razmere in pogoji za nastanek in napredovanje korozije v različnih območjih armiranobetonske zgradbe lahko zelo razlikujejo.Thus, in U.S. Pat. No. 4,703,253 (Strommen), it is proposed that the same arms of the material from which the reinforcement is made be incorporated into the concrete already in the loop during the construction of the object. Unlike the rest of the arm, one of the arms is protected against corrosion. As the latter limb eventually corrodes over time - presumably at about the same speed as the reinforcement itself - it increases its electrical resistance by reducing the cross-section, which can be compared by measuring the resistance of the reference, anti-corrosion arm. This sensor is also relatively large in size because it is preferably made of reinforced steel 6 12 mm in diameter in the form of an elongated loop of length from 90 cm to 6 m and is therefore suitable for maximum installation solely in the stage of construction of reinforced concrete construction or. object. Even in such cases, in some buildings, such as, for example, bridges, tunnels, nuclear power plants or radioactive waste landfills, because of the density of reinforcement, where the raster often does not exceed 100 x 100 mm, the possibility of installing such sensors is very limited. In this case, too, it is necessary to consider the possibility of installing only a relatively small number of sensors in the object, which again allows rather inaccurate monitoring of corrosion over a larger surface and only in some locations on the object, while the actual conditions and conditions for the emergence and progression corrosion in different areas of reinforced concrete structures can vary greatly.

4.4.

Kot je že bilo omenjeno, je senzor te vrste glede na velikost primeren izključno za vgradnjo v beton med izvedbo novih objektov z že prej definiranim načinom za spremljanje korozije armature v betonu. Glede na dimenzije senzorja pa je med uporabo težko zagotoviti enako temperaturo korozijsko izpostavljenih elementov in referenčnih, protikorozijsko zaščitenih elementov v betonu. Upori dolgih senzorjev so v betonu lahko neenakomerno izpostavljeni koroziji, zato izmerjene vrednosti podajo zgolj grobo povprečje korozijskih aktivnosti. Zaradi relativno velikih dimenzij je tudi občutljivost teh senzorjev na izrazito lokalne oblike korozije (jamičasta korozija) dokaj omejena.As mentioned earlier, a size sensor of this type is suitable only for installation in concrete during the construction of new structures with a previously defined method for monitoring the corrosion of reinforcement in concrete. However, given the dimensions of the sensor, it is difficult to ensure the same temperature of the corrosion-exposed elements and the reference, anti-corrosion protection elements in the concrete during use. Resistors of long sensors may be unevenly exposed to corrosion in concrete, so the measured values give only a rough average of corrosion activities. Due to their relatively large dimensions, the sensitivity of these sensors to extremely local corrosion (pit corrosion) is also quite limited.

Pri zahtevnejših armiranobetonskih objektov (viadukti, mostovi, predori, nosilne konstrukcije v industriji, jedrske elektrarne, odlagališča radioaktivnih odpadkov) je raster nosilne jeklene armature relativno gost (v vsakem primeru manj kot 100 x 200 mm), premer armaturnih palic pa razmeroma velik (običajno znaša od 25 do 40 mm), zato je vgradnja večjih senzorjev praktično nemogoča. Prav tako ni možno senzorjev tako velikih dimenzij vgraditi v strjen beton starih, že obstoječih objektov.For more complex reinforced concrete structures (viaducts, bridges, tunnels, load-bearing structures in industry, nuclear power plants, radioactive waste landfills), the load-bearing steel reinforcement grid is relatively dense (in any case less than 100 x 200 mm) and the diameter of reinforcing bars is relatively large (usually ranging from 25 to 40 mm), which makes it practically impossible to install larger sensors. It is also not possible to install sensors of such large dimensions in solid concrete of old, already existing structures.

Nadalje je v US 6,282,671 predlagan senzor, ki sestoji iz votlega stebla, na katerem sta na voljo dve npr. s pomočjo navoja druga proti drugi premakljivi prirobnici, med katerima je vstavljen niz izmenično razporejenih električno prevodnih prstanov in električnih izolatorjev, pri čemer je vsak od omenjenih prstanov preko ustreznega električnega vodnika povezan z izven objekta razporejenim merilnim instrumentom. Pred vgradnjo senzorja v beton izvedejo izvrtino, v katero vstavijo steblo z omenjenimi prstani in izolatorji. Po pritezanju matice ali navojne puše se prstani razprejo in s tem dospejo v stik s steno vrtine v betonu. Senzor je brez dvoma vgradljiv tudi v strjen beton že obstoječih armiranobetonskih konstrukcij. Obenem je izjemno zapleten za izdelavo, obenem pa je uporaba povezana z razmeroma veliko verjetnostjo okvar ali drugih zapletov. Množica električnih vodnikov v notranjosti stebla je po eni strani vezana na prostorske omejitve, ki izvirajo iz premera stebla oz. premera same vrtine, po drugi strani pa je pri vsakem prstanu treba računati s parom žic. Za merjenje hitrosti korozije na večjih globinah je dolžina stebla razmeroma velika, temu ustrezno pa je potem tudi število prstanov in žic. Tveganje, da se katera od žic poškoduje že med vstavljanjem senzorja v vrtino ali kasneje v procesu merjenja nastale korozije, je torej izjemno veliko. Ena od nadaljnjih pomanjkljivosti tovrstnih senzorjev je tudi ta, da so primerni za vgradnjo v ustrezne vrtine v strjenem betonu že obstoječih objektov, ne pa tudi za vgradnjo v še nestrjen beton v fazi same izvedbe objekta.Further, US 6,282,671 proposes a sensor consisting of a hollow stem, on which two e.g. by means of a thread, against each other, a movable flange, between which is inserted a series of alternately arranged electrically conductive rings and electrical insulators, each of said rings connected via an appropriate electrical conductor to a measuring instrument arranged outside the object. Before installing the sensor in concrete, a hole is inserted into which a stem with said rings and insulators is inserted. After tightening the nut or threaded bushing, the rings open and thus contact the well wall in the concrete. The sensor is undoubtedly also embedded in solid concrete of pre-existing reinforced concrete structures. At the same time, it is extremely complex to manufacture, and at the same time, use is associated with a relatively high probability of failure or other complications. The plurality of electrical conductors inside the stem are, on the one hand, bound by the space constraints arising from the diameter of the stem or the stem. the diameter of the hole itself, but on the other hand, a pair of wires must be counted for each ring. To measure corrosion rates at greater depths, the length of the stem is relatively large, and so is the number of rings and wires. The risk of any of the wires being damaged during insertion of the sensor into the well or later in the process of measuring corrosion is therefore extremely high. One of the further disadvantages of such sensors is that they are suitable for installation in appropriate wells in hardened concrete of already existing structures, but not for installation in still uncured concrete during the construction phase of the building itself.

Za vgradnjo v sveži beton pri gostem rastru vgrajene armature morajo biti dimenzije senzorjev relativno majhne. Še bolj je to pomembno za gradnjo v otrdeli beton, saj je ustrezna geometrija nujna za dober fizični in elektrokemijski stik z otrdelim betonom. Geometrija sezorja mora omogočati tudi za vgradnjo na poljubno globino. Korozijske lastnosti materiala senzorja morajo biti identične ali vsaj zelo podobne korozijskim lastnostim armaturnega jekla, ostali vgrajeni materiali pa morajo biti obstojni v betonu. Dimenzije električnih vodnikov morajo zagotavljati ustrezno ločljivost merjenja sprememb debeline, istočasno pa tudi zadostno življensko dobo senzorja. Senzor mora biti občutljiv na lokalne oblike korozije (jamičasta korozija), sama merilna procedura pa mora omogočati ločevanje med enakomerno in jamičasto korozijo. Merilna procedura mora zagotavljati tudi ustrezni izračun spremembe debeline senzorja, korozijske hitrosti in eliminacijo temperaturnega vpliva.Sensors must be relatively small in order to be installed in fresh concrete with a dense screen of reinforcement. This is even more important for construction in hardened concrete, since proper geometry is essential for good physical and electrochemical contact with hardened concrete. The geometry of the blades must also allow for installation at any depth. The corrosion properties of the sensor material must be identical to, or at least very similar to, the corrosion properties of reinforcing steel, and the other embedded materials must be durable in concrete. The dimensions of the electrical conductors must ensure adequate resolution of the measurement of thickness changes and at the same time a sufficient lifetime of the sensor. The sensor must be sensitive to local corrosion (pit corrosion), and the measurement procedure itself must be able to distinguish between even and pit corrosion. The measurement procedure must also ensure that the change in sensor thickness, corrosion velocity and the elimination of temperature influence are adequately calculated.

Prej opisane zahteve so bile izpolnjene z novo konstrukcijo ploščatega senzorja, kjer so kovinski elementi senzorja izdelani s fotokemičnim postopkom. Glede na to, da kovinska plast ni izdelana z naparevanjem, temveč iz pločevine, je zaradi nespremenjene kristalne strukture korozijska občutljivost zelo podobna kot pri armaturi. Geometrija električnega vodnika v posameznem elementu (razmerje med širino in višino) zagotavlja ustrezen odziv na enakomerno in jamičasto korozijo. Konstrukcija senzorja omogoča zagotavljanje temperaturnega ravnotežja, oziroma kompenzacijo temperaturnih sprememb. Prav tako je minimalen vpliv parazitskih upornosti (kontakti, električni vodniki). Konstrukcija omogoča tudi enostavno vgradnjo senzorja v sveži ali otrdeli beton na izbrano lokacijo in globino. Zadostna dolžina električnega vodnika, oziroma njegova električna upornost, omogočata veliko merilno ločljivost. Pripadajoči merilni sistem (bipolarni tokovni generator) zagotavlja, da se elementi senzoija med postopkom meritve ne polarizirajo v tej meri, da bi to vplivalo na korozijski proces. Ustrezna programska oprema omogoča enostavni izračun spremembe debeline električnih vodnikov, dodatna analiza pa izračun korozijske hitrosti in oceno vrste korozije.The requirements described above have been met by a new flat sensor design where the metal elements of the sensor are fabricated by a photochemical process. Given that the metal layer is not made by evaporation but from sheet metal, the corrosion sensitivity is very similar to that of reinforcement due to the unchanged crystal structure. The geometry of the electrical conductor in each element (width to height ratio) provides an adequate response to even and pitting corrosion. The design of the sensor allows to ensure temperature balance, or to compensate for temperature changes. The parasite resistance (contacts, electrical conductors) is also minimal. The design also allows the sensor to be easily installed in fresh or hardened concrete at the selected location and depth. A sufficient length of electrical conductor, or its electrical resistance, allows for high measurement resolution. The associated measuring system (bipolar current generator) ensures that sensor elements are not polarized during the measurement process to the extent that this would affect the corrosion process. Appropriate software makes it easy to calculate the change in thickness of electrical conductors and additional analysis to calculate corrosion velocity and estimate the type of corrosion.

Ker dolgega ploščatega vodnika tehnološko ni mogoče oblikovati v ustrezno obliko na majhni površini, je možno za material vodnika izbrali ustrezno tanko pločevino, oziroma folijo (debeline od 150 do 270 pm) s podobnimi korozijskimi lastnostmi, kot jih ima material, katerega korozijsko hitrost želimo izmeriti (jeklena armatura). S kaširanjem pločevine na podlago (s steklenimi vlakni armiran epoksidni laminat) je možno izdelati togo nosilno konstrukcijo podlago bodočih vodnikov korozijsko izpostavljenih in referenčnih uporov ER senzoija. Upori ER senzoija so oblikovani tako, da jih je mogoče izdelati natančno s postopkom jedkanja, podobno kot tiskana vezja v elektroniki. Oblika vodnikov uporov prednostne izvedbe senzorja zagotavlja dovolj veliko korozijsko izpostavljeno površino, majhne zunanje izmere pa omogočajo vgradnjo ER senzoijev v izvrtino premera 75 mm v betonu starih objektov na poljubno oddaljenost od površine v prekrivni plasti betona in med jekleno armaturo. Oblika senzoija v skladu z nadaljnjo izvedbo omogoča vgradnjo med armaturo z rastrom 100 x 100 mm.Since the long flat conductor cannot technologically be shaped into a suitable shape on a small surface, it is possible to choose a suitable thin sheet or foil (150 to 270 pm thick) with similar corrosion properties to the material whose corrosion rate is to be measured (steel reinforcement). By laminating the sheet metal onto the substrate (glass fiber reinforced epoxy laminate), it is possible to construct a rigid load-bearing structure based on the future conductors of the corrosion-exposed and reference resistances of the ER sensor. ER sensor sensors are designed to be precisely machined by etching, just like printed circuits in electronics. The shape of the resistors of the preferred sensor design provides a sufficiently large corrosion-exposed surface, and the small external dimensions allow the installation of ER sensors in a 75 mm bore in concrete of old structures at any distance from the surface in the concrete overlay and between the steel reinforcement. The sensor design, in accordance with a further embodiment, permits installation during reinforcement with a 100 x 100 mm screen.

Za ugotavljanje korozijskih hitrosti jekla in detekcijo fronte karbonatizacije/prodora kloridov, senzorje vgradimo na različnih globinah (s prekrivno plastjo betona od 5 do 50 mm, oziroma do globine lege jeklene armature). Če želimo detektirati začetke kontaminacije in degradacije betona, ter s tem iniciacijo korozijskih procesov, senzorje vgradimo bližje površini.To determine the corrosion rates of steel and to detect the carbonation / penetration of chlorides, the sensors are installed at different depths (with a cover layer of concrete from 5 to 50 mm, or up to the depth of the steel reinforcement). To detect the beginnings of contamination and degradation of concrete, and thereby initiate corrosion processes, the sensors should be installed closer to the surface.

V okviru povedanega se izum prvenstveno nanaša na senzor za ugotavljanje hitrosti korozije kovinske armature v armiranobetonskih konstrukcijah na osnovi ugotavljanja upornosti vsaj enega v betonu vgrajenega in koroziji izpostavljenega električno prevodnega elementa glede na referenčno upornost vsaj enega prav tako v betonu vgrajenega, vendar proti koroziji zaščitenega električno prevodnega elementa.In the foregoing, the invention relates primarily to a corrosion rate sensor for metal reinforcement in reinforced concrete structures based on the determination of the resistance of at least one electrically conductive element in corrosion and the corrosion of an electrically conductive element with respect to the reference resistance of at least one electrically reinforced concrete, but corrosion protected conductive element.

Senzor po izumu obsega vsaj eno električno neprevodno nosilno ploščo, na kateri je nameščen vsaj en izrazito sploščen, koroziji izpostavljen električno prevoden element s cikcakasto po površini plošče potekajočim vodnikom izrazito majhnega prečnega prereza in glede na vsakokrat razpoložljivo površino izrazito velike dolžine temu ustrezno visoke upornosti, kot tudi vsaj en prav tako izrazito sploščen, proti koroziji zaščiten električno prevoden referenčni element s cikcakasto po površini plošče potekajočim vodnikom izrazito majhnega prečnega prereza in glede na vsakokrat razpoložljivo površino izrazito velike dolžine temu ustrezno visoke referenčne upornosti, pri čemer je material omenjenih električno prevodnih elementov identičen ali vsaj približno ustreza materialu v betonu vgrajene armature in pri čemer so vsakokrat razpoložljivi elementi povezljivi v električni tokokrog.The sensor according to the invention comprises at least one electrically non-conductive load-bearing plate on which at least one highly flattened, corrosion-exposed electrically conductive element is mounted with a zigzag conductor of extremely small cross-section and a relatively large resistance, with respect to the surface available at all times, of sufficiently high resistance. as well as at least one substantially flattened, corrosion-protected electrically conductive reference element with a zig-zag cross-section of an extremely small cross-section and, with respect to each available surface, of extremely long length corresponding to a high reference resistance, the material of said electrically conductive elements identical to, or at least approximately equivalent to, the material in the concrete of the reinforcement and, wherever available, the elements are connected to the electrical circuit.

Nosilna plošča je prednostno razmeroma toga plošča razmeroma majhnih dimenzij, ki je opremljena z odprtinami za prejem električno prevodnega lota in po potrebi vodnika priključnega kabla senzorja in smotrno lahko sestoji iz laminiranega steklo-epoksidnega gradiva. Vodnik vsakokratnega na električno neprevodni plošči nameščenega električno prevodnega elementa je prednostno, še zlasti zahvaljujoč najbolj preprostemu načinu izdelave, zasnovan s profilom oz. prečnim prerezom v obliki trapeza, ki je zožen v smeri vstran od omenjene plošče. Pri tem omenjeni vodnik vsakokratnega na električno neprevodni plošči nameščenega električno prevodnega elementa senzorja prednostno sestoji iz hladno preoblikovanega kovinskega gradiva, ki je identično ali njegova sestava vsaj približno ustreza materialu vsakokrat v betonu razpoložljive armature. Tako omenjeni vodnik vsakokratnega na električno neprevodni plošči nameščenega električno prevodnega elementa najbolj smotrno sestoji iz fotokemično obdelane kovinske pločevine ali iz drugega kovinskega gradiva, ki je galvansko, z naparevanjem ali drugače nanešeno neposredno na površino nosilne plošče in ki je identično oz. njegova sestava vsaj približno ustreza materialu vsakokrat v betonu razpoložljive armature.The carrier plate is preferably a relatively rigid plate of relatively small dimensions, which is provided with openings for receiving the electrically conductive lot and, if necessary, the conductor cable of the sensor cable and may conveniently consist of laminated glass epoxy material. The conductor of the electrically conductive element mounted on the electrically non-conductive plate is advantageous, in particular, thanks to the simplest method of construction, designed with a profile or profile. a cross-section in the form of a trapezoid that is narrowed in the direction away from said plate. Said conductor for each electrically conductive sensor board mounted on the electrically conductive element preferably consists of cold-formed metal material which is identical, or at least approximately, to the material in the concrete of the available reinforcement. Thus, said conductor of the electrically conductive element mounted on an electrically non-conductive plate most preferably consists of a photochemically treated metal sheet or other metallic material which is electroplated, vaporized or otherwise applied directly to the surface of the support plate and which is identical or. its composition at least approximately corresponds to the material in the concrete of the available reinforcement.

V skladu s prednostno izvedbo senzorja po izumu tovrsten senzor obsega dvojico proti koroziji nezaščitenih električno prevodnih elementov z v odvisnosti od korozije spremenljivo upornostjo, kot tudi z njima električno povezano dvojico protikorozijsko zaščitenih referenčnih elementov z referenčno upornostjo. Pri tem sta omenjeni dvojici drug ob drugem razporejenih in medsebojno povezanih elementov med seboj lahko električno povezani preko Wheatstonovega mostička in v takšni vezavi preko priključnih kablov priključljivi na vsakokrat razpoložljiv zunanji električni tokokrog. Pri tem je vsak od omenjenih elementov z vsakokrat pripadajočim elementom lahko električno povezan v območju z električno prevodnega lota, ki je na voljo v vsakokrat pripadajoči odprtini v električno neprevodni nosilni plošči, s čimer so dobljeni v splošnem nerazstavljivi električni stiki. Dva od omenjenih stikov elementov sta predvidena za povezavo z vodnikom električnega kabla za priključitev senzorja na vsakokrat razpoložljiv električni tokokrog, pri čemer je eden od njiju predviden v območju koroziji izpostavljenih elementov, preostali stik pa v območju proti koroziji zaščitenih elementov.According to a preferred embodiment of the sensor according to the invention, such sensor comprises a corrosion-resistant pair of non-shielded electrically conductive elements with a corrosion-dependent variable resistance, as well as an electrically coupled pair of anti-corrosion protected reference elements with a reference resistance. In this connection, the two pairs of adjacent and interconnected elements can be electrically connected via the Wheatston jumper and in such a connection can be connected to the available external electrical circuit through the connecting cables. Each of said elements can be electrically connected in each area within the area of the electrically conductive lot, which is available in the corresponding opening in the electrically non-conductive support plate, thus obtaining generally non-separable electrical contacts. Two of the element contacts mentioned are intended to be connected to the conductor of the electrical cable to connect the sensor to the available electrical circuit, one of them being provided in the corrosion zone of the exposed elements and the remaining contact in the corrosion protection zone of the protected elements.

Pri eni od možnih izvedb senzorja po izumu so vsi električno prevodni elementi razporejeni na isti strani električno neprevodne nosilne plošče. Pri nadaljnji različici senzorja po izumu je predvideno, da so vsakokrat razpoložljivi električno prevodni elementi s spremenljivo upornostjo, ki so izpostavljeni koroziji, razporejeni na eni strani električno neprevodne nosilne plošče, vsakokrat razpoložljivi električno prevodni referenčni elementi z referenčno upornostjo, ki koroziji niso izpostavljeni, pa so razporejeni na nasprotni strani taiste nosilne plošče.In one possible embodiment of the sensor according to the invention, all electrically conductive elements are arranged on the same side of the electrically non-conductive support plate. In a further embodiment of the sensor according to the invention, it is contemplated that the electrically conductive variable-resistivity elements exposed to corrosion are arranged on one side of the electrically non-conductive support plate, and the electrically conductive reference elements with the corrosion-resistant non-exposed reference element are available they are arranged on the opposite side of that tailored carrier plate.

Nadalje so pri senzorju po izumu vsakokrat razpoložljivi električno prevodni referenčni elementi in drugi električno prevodni deli vključno z v območju nosilne plošče razpoložljivimi vodniki električnih kablov, vsekakor pa z izjemo korozijsko izpostavljenih elementov z upornostjo, ki se sčasoma spreminja v odvisnosti od korozije, prevlečeni z električno neprevodno zaščitno plastjo.Furthermore, electrically conductive reference elements and other electrically conductive parts, including in the area of the support plate, are each provided with conductors of electrical cables, but in any case, with the exception of corrosion-exposed elements with resistance varying over time depending on corrosion, are electrically conductive coated. protective layer.

Vsakokrat razpoložljiva izolacijska zaščitna plast je na voljo kot trdna ali plastična plast iz električno neprevodnega ali slabo prevodnega gradiva. Nadalje so pri senzorju po izumu vsakokrat razpoložljivi koroziji izpostavljeni elementi v položaju vgradnje v beton obrnjeni proti zunanji površini armiranobetonskega elementa. Pri nadaljnji različici senzorja po izumu so vsakokrat razpoložljivi koroziji izpostavljeni elementi s spremenljivo upornostjo katodno zaščiteni, pri čemer je na vsakokrat razpoložljive priključne konektorje senzorjev, preko katerih se v želj enih časovnih intervalih izvajajo meritve korozijske hitrosti, priključen konektor, s pomočjo katerega so kontakti elementov spremenljive in referenčne upornosti na senzorjih kratkostično sklenjeni, električni kontakti tega konektorja pa povezani z vsakokrat razpoložljivim vodnikom, ki je v električnem kontaktu z jekleno armaturo t.j. katodo, ki je vgrajena v betonu, pri čemer je med merjenjem korozijskih hitrosti omenjeni konektor odklopljen, sicer pa vklopljen.The insulating protective layer available at all times is available as a solid or plastic layer of electrically conductive or poorly conductive material. Furthermore, in the case of the sensor according to the invention, the corrosion-exposed elements in the position of installation in the concrete are always facing the outer surface of the reinforced concrete element. In a further version of the sensor according to the invention, the exposed corrosion-exposed elements are cathodically shielded at each time, with sensors connecting terminals available at each time interval, at which corrosion velocity measurements are carried out at desired intervals, using a connector to contact the elements. variable and reference resistances on the sensors are short-circuited, and the electrical contacts of this connector are connected to the available conductor, which is in electrical contact with the steel armature ie a cathode embedded in concrete, the aforementioned connector being disconnected or otherwise engaged during the measurement of corrosion rates.

Po izumu je predvidena tudi naprava za ugotavljanje hitrosti korozije kovinske armature v armiranobetonskih konstrukcijah na osnovi ugotavljanja upornosti vsaj enega v betonu vgrajenega in koroziji izpostavljenega električno prevodnega elementa glede na referenčno upornost vsaj enega prav tako v betonu vgrajenega, vendar proti koroziji zaščitenega električno prevodnega elementa. Tovrstna naprava po izumu obsega vsaj merilnik električne upornosti, ki je preko električnih kablov električno povezljiv z vsakokrat izbranim številom senzorjev v skladu s predhodno opisanimi značilnostmi. Naprava obsega končno in vnaprej določeno število senzorjev, ki so vgrajeni na različnih lokacijah in različnih globinah bodisi v ustreznih vrtinah v strjenem betonu vsakokrat razpoložljivega že obstoječega armiranobetonskega objekta ali v še nestrjenem betonu tačas izdelovanega armiranobetonskega objekta, pri čemer so vsakokrat koroziji izpostavljeni električno prevodni elementi z upornostjo razporejeni na tisti strani nosilne plošče senzorja, ki je obrnjena proti zunanji površini armiranobetonskega objekta. Omenjeni senzorji naprave po izumu so v betonu tako razporejeni, da potekajo vsaj v bistvu vzporedno z armaturo, vgrajeno v betonu.The invention also provides a device for determining the corrosion rate of metal reinforcement in reinforced concrete structures based on the determination of the resistance of at least one electrically conductive element in corrosion and the corrosion of the electrically conductive element, with respect to the reference resistance of at least one electrically conductive but also corrosion protected electrically conductive element. Such an apparatus according to the invention comprises at least an electrical resistance meter which is electrically connectable to the number of sensors selected by the electrical cables according to the previously described characteristics. The device comprises a finite and predetermined number of sensors installed at different locations and at different depths, or in corresponding wells in the hardened concrete of an existing pre-existing reinforced concrete structure or in non-hardened concrete of a pre-fabricated reinforced concrete object, with electrically conductive elements exposed to corrosion. with resistance arranged on the side of the sensor support plate facing the outer surface of the reinforced concrete object. The sensors of the device according to the invention are arranged in the concrete so that they run at least substantially parallel to the reinforcement embedded in the concrete.

Naprava v skladu s prednostno izvedbo izuma je baterijsko napajana in vsebuje tokovni generator ter ustrezno kombinacijo napetostnih predojačevalnikov, pri čemer je tokovni generator prirejen za zagotavljanje konstantnega vira vsakokrat izbranega bipolarnega električnega toka v dveh smereh, medtem ko so napetostni predojačevalci predvideni za ojačitev padca napetosti na senzorju in razlike napetosti na nivo, ki ga je možno odčitati z ročnim voltmetrom.The device according to a preferred embodiment of the invention is battery-powered and contains a current generator and a suitable combination of voltage preamps, the current generator being adapted to provide a constant source of the bipolar electric current selected in two directions, while the voltage preamps are provided to amplify the voltage drop at sensor and voltage differences to a readable level with a hand-held voltmeter.

Nadalje je predvidena tudi različica naprave, ki je priključljiva na električni tokokrog že obstoječe katodne zaščite armature v betonu že obstoječega armiranobetonskega objekta in prirejena za merjenje spremembe upornosti koroziji izpostavljenih elementov po predhodni izključitvi za katodno zaščito predvidenega električnega tokokroga.Furthermore, a variant of the device which is connected to the electrical circuit of the already existing cathodic protection of the reinforcement in the concrete of the existing reinforced concrete object and adapted to measure the change in corrosion resistance of the exposed elements after preliminary shutdown for cathodic protection of the intended electrical circuit is also provided.

Predmet izuma je tudi ostopek ugotavljanja hitrosti korozije kovinske armature v armiranobetonskih konstrukcijah na osnovi ugotavljanja upornosti vsaj enega v betonu vgrajenega in koroziji izpostavljenega električno prevodnega elementa glede na referenčno upornost vsaj enega prav tako v betonu vgrajenega, vendar proti koroziji zaščitenega električno prevodnega elementa. Pri tem se v merilno napravo v skladu s prej opisanimi značilnostmi povezane senzorje prav tako v skladu s prej opisanimi značilnostmi vgradi bodisi v nestrjen beton ali v ustrezne vrtine v otrdeli beton že obstoječega armiranobetonskega objekta, tako da so koroziji izpostavljeni električno prevodni elementi obrnjeni proti zunanji površini betona in potekajo vsaj približno vzporedno z armaturo. Zatem se v primeru vgradnje v otrdeli beton omenjene vrtine zapolni z betonom, katerega struktura ustreza na istem mestu pred izvedbo vrtin razpoložljivemu betonu, izven betona razpoložljive priključne kable pa se električno poveže v okviru omenjene merilne naprave. Postopek po izumu obsega korakeThe subject of the invention is also a method of determining the corrosion rate of a metal reinforcement in reinforced concrete structures on the basis of determining the resistance of at least one electrically conductive element in the concrete and the corrosion of the reference resistance of at least one also of the electrically conductive shielded concrete in the concrete. In this connection, sensors connected to the measuring device in accordance with the above described characteristics shall also be installed either in uncured concrete or in the corresponding holes in the hardened concrete of the already existing reinforced concrete object in accordance with the above described characteristics, so that the exposed electrically conductive elements are exposed to the corrosion. surface of the concrete and run at least approximately parallel to the reinforcement. Thereafter, in the case of installation in the hardened concrete of said borehole, it is filled with concrete, the structure of which corresponds to the same place before the borehole is made available to the concrete, and electrically connected outside the concrete to the connecting cable within the said measuring device. The process of the invention comprises steps

i) ugotavljanja napetostne razlike med posameznima vejama, namreč prvo vejo, kjer se meri padec po obeh vejah, in drugo, kjer se meri razliko padca med korozijsko spremenljivim uporom in referenčnim uporom, pri čemer se skozi vezje pošlje konstanten tok določene vrednosti, kije skozi obe veji enak, kar se vrši po formulah u = («,+*) ji) determining the voltage difference between the two branches, namely, the first branch where the drop across the two branches is measured, and the second, where the difference of the drop between the corrosion variable resistance and the reference resistance is measured, sending a constant current of a certain value passing through the circuit the two branches are identical, which is done by the formulas u = («, + *) j

Δ1/ = (ί,-/ί)ίΔ1 / = (ί, - / ί) ί

Δί/ _ AT?Δί / _ AT?

U ~ 2R + LR tsRIn ~ 2R + LR tsR

2u2u

-m-m

AUAU

U R^^R In R ^^ R

S-AS l-uS-AS l-u

S ii) ugotavljanja spremembe površine prereza vodnika upora po formulahS ii) detecting the change in the cross-sectional area of the resistor by the formulas

c c Λ Λ ( ( ( R Ί (R Ί 1 1 R R , R , R Δ5 - S 1 Δ5 - S 1 = S = S = S = S i--=— i - = - t R + &R) t R + & R) R+ 2 R R + 2 R k k l-u J l-u J < 1-M 7 <1-M 7

iii) določitve faktorja zmanjšanja debeline vodnika koroziji izpostavljenih električno prevodnih elementov po formuliiii) determining the conductor thickness reduction factor for the corrosion of electrically conductive elements exposed by the formula

Akj er pomeni d, - razlika v višini - debelini (d, = cnekor - ) d2 - razlika v širini d>AKJ er means d, - the difference in the amount of - the thickness (d = c Nekor -) d 2 - the difference in the width of d>

d' z merjenjem geometrije korodiranih in nekorodiranih vzorcev senzorjev za vsako serijo senzorjev posebej s pomočjo pregleda prečnega prereza vodnikov koroziji izpostavljenih elementov na metalografskem mikroskopu in pregleda površine na vrstičnem elektronskem mikroskopu, s čimer se upošteva način izdelave pločevine zlasti npr. v primeru hladnega valjanja in temu ustrezne hladno deformirane mikrostrukture, kije podobna tisti pri armaturnem jeklu, pri čemer so kristalna zrn sploščena in zato koroziji izpostavljeni vodniki senzorja korodirajo hitreje po širini kot po višini oz. debelini;d 'by measuring the geometry of the corroded and non-corroded sensor specimens for each series of sensors, by examining the cross-section of the conductors of corrosion-exposed elements on a metallographic microscope and by examining the surface on a line electron microscope, taking into account the method of fabrication of the sheet, in particular e.g. in the case of cold rolling and the corresponding cold-deformed microstructure similar to that of reinforcing steel, whereby crystalline grains are flattened and therefore exposed to corrosion by the sensor conductors corrode more rapidly in width than in height or. thickness;

iv) določitve površine trapeznega profila vodnikov koroziji izpostavljenih električno prevodnih elementov senzorjev po formulah e (a + b\ S°~T~ sin/? = — x sin βiv) determination of the surface of the trapezoidal profile of conductors of corrosion-exposed electrically conductive sensor elements by the formulas e (a + b \ S ° ~ T ~ sin /? = - x sin β

AS = So - S,AS = S o - S,

C sin β - — dC sin β - - d

AS = (a + b)c |(α+ά-4χ) _d _(a + b)c l sin/? JAS = (a + b) c | (α + ά-4χ) _ d _ (a + b) cl sin /? J

2 k x · Δ5 = (a + b~)c -(a + b- 4x)(c - J,) =4^(c-d,)+<i,(e+i.) sin p2 kx · Δ5 = (a + b ~) c - (a + b- 4x) (c - J,) = 4 ^ (cd,) + <i, (e + i.) Sin p

4d4d

2·Δ5 = J,(a + b) +--(c-d^ sin/?2 · Δ5 = J, (a + b) + - (c-d ^ sin /?

kjer ob upoštevanju faktoija zmanjšanja debeline velja:where, taking into account the thickness reduction factor:

d2 =A-dj 4dd 2 = A-dj 4d

2-AS =--(c-dj) + dda + b) sin p = )!</,(a+b) sin p sin/? < sin/?2-AS = - (c-dj) + dda + b) sin p = )! </, (A + b) sin p sin /? <son /?

in kjer pomeni a krajša stranica trapeznega profila vodnikov elementov na korozijsko izpostavljeni strani, b daljša stranica trapeznega profila vodnikov elementov na korozijsko neizpostavljeni strani, c višina trapeznega profila d poševna stranica trapeznega profila di razlika v višini - debelini d2 razlika v širini β kot med stranicama d in b, obenem paand where a is the shorter side of the trapezoidal profile of the conductors of the elements on the corrosion exposed side, b the longer side of the trapezoidal profile of the conductors of the elements on the corrosion exposed side, c the height of the trapezoidal profile d the oblique side of the trapezoidal profile di the difference in height d 2 the difference in width β as between pages d and b and at the same time

% predstavlja razmerje d2 x = sin β% represents the ratio d 2 x = sin β

v) ugotavljanja razlike v višini oz. debelini vodnikov koroziji izpostavljenih električno prevodnih elementov senzoija po formulah d, =v) determining the difference in height or the thickness of the corrosion conductors of the electrically conductive sensing elements of the formulas d, =

sin/?sin /?

32-Δ5-Λ sin/?32-Δ5-Λ sin /?

kjer ob upoštevanju, daje velja:where, given that:

Δ5 = 5Δ5 = 5

2u i?«2u i? «

4Ac sin/?4Ac son /?

+ a + b±'+ a + b ± '

4Ac sin/?4Ac son /?

x2 32-Sx2 32-S

2u sin/?2u son /?

8A sin/?8A son /?

na osnovi ugotovljene napetostne razlike, kije podana s formulobased on the observed voltage difference given by the formula

AU in vi) izhajajoč iz spremembe debeline posameznih senzoijev (1) v okviru omenjene naprave tudi korak ugotavljanja vrste korozije.AU and vi) based on the change in thickness of the individual sensor (1) within the said device also a step of determining the type of corrosion.

Izum bo v nadaljevanju podrobneje obrazložen na osnovi primerov izvedbe in v povezavi s priloženo skico, kjer kažeThe invention will now be explained in further detail by way of example examples and in connection with the accompanying drawing showing

Sl. 1 primer izvedbe v perspektivi ponazorjenega senzoija po izumu,FIG. 1 is an example embodiment in perspective of an illustrated sensorium according to the invention,

Sl. 2 električno prevodna dela, ki pripadata spodnji površini senzoija po sl. 1;FIG. 2 shows electrically conductive parts belonging to the lower surface of the sensor according to FIG. 1;

Sl. 3 senzor po sl. 1 v vgrajenem stanju in v vzdolžnem prerezu v ravnini III - III po Sl. 1;FIG. 3 is a sensor according to FIG. 1 in the installed state and in the longitudinal section in the plane III - III according to FIG. 1;

Sl. 4 shematično ponazorjeno zasnovo senzoija kot dela naprave po izumu;FIG. 4 is a schematic illustration of a design of a sensorium as part of a device according to the invention;

Sl. 5 nadaljnjo različivo senzoija po sl. 4, kakršen pripada napravi po izumu;FIG. 5 is a further variant of the sensorium of FIG. 4 as belonging to the device according to the invention;

Sl. 6 shematični prikaz geometrijskih izhodišč za določanje hitrosti korozije; in Sl. 7 grafično ponazoritev zmanjšanja debeline električno prevodnega dela senzorja.FIG. 6 is a schematic view of geometric starting points for determining the corrosion rate; and FIG. 7 is a graphical representation of the thickness reduction of the electrically conductive portion of the sensor.

Na sl. 1 je ponazoijen senzor 1 po izumu, ki v osnovi sestoji iz električno neprevodne nosilne plošče 90 ter iz štirih električno prevodnih elementov 11, 12, 13, 14, ki so med seboj električno povezani na način, ki bo podrobneje obrazložen v nadaljevanju.In FIG. 1 is an exemplary sensor 1 according to the invention, which basically consists of an electrically non-conductive support plate 90 and four electrically conductive elements 11, 12, 13, 14, which are electrically connected in a manner which will be explained in more detail below.

Nosilna plošča 10 je prednostno izvedena iz električno izolativnega epoksidnega laminata. Vsak od omenjenih električno prevodnih elementov 11, 12, 13, 14 prednostno sestoji iz gradiva, ki ustreza gradivu, iz katerega je izvedena armatura armiranobetonske zgradbe, kije predvidena za merjenje hitrosti korozije. Vsak od omenjenih elementov 11, 12, 13, 14 izkazuje določeno električno upornost, pri čemer sta dva elementa 11, 12 z upornostjo Rx izpostavljena koroziji, preostala dva elementa 13, 14 z upornostjo R pa sta proti koroziji zaščitena. Za senzor po izumu je značilno, daje vsak od omenjenih električno prevodnih elementov 11, 12, 13, 14 zasnovan kot ploščat element glede na širino izrazito majhne debeline in obenem upoštevajoč vsakokrat dane možnosti karseda velike dolžine. Zahvaljujoč tovrstni zasnovi elementov 11, 12, 13, 14 je električna upornost R oz. Rx lahko razmeroma visoka, obenem pa zmanjšanje debeline kot posledica korozije v znatni meri vpliva na spremembo upornosti, ki je na taki osnovi potem vsekakor lažje merljiva z visoko natančnostjo.The carrier plate 10 is preferably made of an electrically insulating epoxy laminate. Each of the aforementioned electrically conductive elements 11, 12, 13, 14 preferably consists of a material corresponding to the material from which the reinforcement of the reinforced concrete structure is derived, which is intended to measure the corrosion rate. Each of said elements 11, 12, 13, 14 exhibits a certain electrical resistance, with two elements 11, 12 having corrosion resistance R x and the remaining two elements 13, 14 with R resistance being protected against corrosion. Typically, the sensor according to the invention is that each of said electrically conductive elements 11, 12, 13, 14 is designed as a flat element with respect to the width of the extremely small thickness, whilst taking into account the long-range possibilities given each time. Thanks to this design of the elements 11, 12, 13, 14, the electrical resistance R or. R x can be relatively high, but at the same time the reduction in thickness as a result of corrosion has a considerable effect on the change in resistance, which on such a basis is then certainly easier to measure with high accuracy.

Naprava za merjenje hitrosti korozije po izumu sestoji iz vsakokrat ustreznega števila osnovnih merilnih senzorjev 1, pri čemer vsakokratni senzor 1 sestoji iz štirih izrazito tenkih in ploščatih električno prevodnih elementov 11, 12, 13, 14, ki so električno povezani v Wheatstonov mostiček in katerih sta dva električno prevodna elementa 11, 12 izpostavljena koroziji in predstavljata spremenljivo upornost R, preostala dva elementa 13, 14, ki predstavljata referenčno upornost R, pa sta proti koroziji zaščitena.The corrosion rate measuring device according to the invention consists of a corresponding number of basic measuring sensors 1, each sensor 1 consisting of four extremely thin and flat electrically conductive elements 11, 12, 13, 14, which are electrically connected to the Wheatston bridge and are two electrically conductive elements 11, 12 are exposed to corrosion and represent variable resistance R, while the remaining two elements 13, 14 which represent reference resistance R are protected against corrosion.

Senzor 1 s tako zasnovanimi prevodnimi elementi 11, 12, 13, 14, ki tvorijo električne upore R, Rx, je načeloma izvedljiv na vsaj dva načina, in sicer bodisi s pomočjo zgolj ene električno neprevodne plošče 10 (Sl. 1), na kateri so deli 11, 12, 13, 14 nameščeni dvostransko, ali s pomočjo omenjene neprevodne plošče 10 in še ene dodatne električno neprevodne plošče 10' (Sl. 5), tako da sta proti koroziji izolirana dela 13,14 vstavljena med omenjenima ploščama 10,10’.Sensor 1 with such conductive elements 11, 12, 13, 14 forming electrical resistors R, R x is , in principle, practicable in at least two ways, either by means of only one electrically conductive panel 10 (Fig. 1), which parts 11, 12, 13, 14 are mounted bilaterally, or by means of said non-conductive plate 10 and another additional electrically non-conductive plate 10 '(Fig. 5) such that the insulated parts 13,14 are inserted between said plates 10 , 10 '.

Tako sta npr. pri senzorju 1 po Sl. 1 koroziji izpostavljena dela 11, 12, ki predstavljata upora Rx, razporejena na zgornji strani električno neprevodne, zlasti laminatne nosilne plošče 10, medtem ko se preostala prevodna dela 13,14, ki predstavljata referenčna upora R in sta posebej prikazana na Sl. 2, nahajata na spodnji strani nosilne plošče 10. Omenjeni deli 11, 12, 13, 14, ki tvorijo električna upora R in Rx, so povezani v Wheatstonov mostiček z ustreznimi loti 3 skozi pripadajoče izvrtine 2 tako, da so na Sl. 1 z označbami A, B, C, D, E in F označeni kontakti na uporih Rx povezani s kontakti, ki so na Sl. 2 označeni z A', B', C', D', E' in F' ter pripadajo uporom R.Thus, for example, at sensor 1 of FIG. 1 shows corrosion-exposed parts 11, 12 representing resistors R x arranged on the upper side of electrically non-conductive, in particular laminate support plates 10, while the remaining conductive parts 13,14 representing reference resistors R and shown separately in FIG. 2, are located on the underside of the carrier plate 10. The parts 11, 12, 13, 14 forming the electrical resistors R and R x are connected to the Wheatston bridge with corresponding lots 3 through the corresponding holes 2 such that in FIG. 1 shows the contacts A, B, C, D, E and F in the resistors R x associated with the contacts in FIG. 2 denoted by A ', B', C ', D', E 'and F' and belong to resistors R.

Senzor 1 je v vgrajem stanju, namreč bodisi v že fazi izvedbe objekta ali naknadno vgrajen v beton 9, prikazan na Sl. 3. Na zgornji strani v danem primeru dvoslojne izolativne plošče 10 sta v na voljo iz prevodnih elementov 11,12 formirana upora Rx. V plošči 10 so predvidene odprtine 2 za lotanje, ki so med sestavljanjem senzorja 1 zapolnjene z električno prevodnim lotom 3. Na spodnji strani električno neprevodne plošče 10 se nahajata električno prevodna elementa 13, 14, ki tvorita referenčna upora R. V odprtini 2 se kot rečeno nahaja lot 3, v katerem je vgrajen tudi vodnik 4 priključnega kabla 5. Na zgornji strani plošče 10 so vse za lotanje predvidene površine vključno z loti 3 prevlečene s protikorozijsko zaščitno plastjo 6 iz epoksidne smole. Prav tako je na spodnji strani plošče 10 celotna površina elementov 13,14 in s tem uporov R vključno z loti 3 in neizoliranimi deli vodnikov 4 zaščitena z ustrezno debelo zaščitno plastjo 6 iz epoksidne smole.Sensor 1 is in the built-in state, namely either already in the construction phase of the building or afterwards incorporated in concrete 9, shown in FIG. 3. On the upper side, in the present case, of the two-layer insulating panel 10, resistors R x are formed from the conductive elements 11,12. Plate 10 provides openings 2 for soldering, which are filled with electrically conductive lot 3 during assembly of sensor 1. On the underside of electrically non-conductive plate 10 there are electrically conductive elements 13, 14 forming the reference resistors R. In other words, there is a lot 3, which also contains a conductor 4 of the connecting cable 5. On the upper side of the panel 10, all the surfaces intended for soldering, including the lots 3, are coated with an anti-corrosion protective layer 6 of epoxy resin. Also, on the underside of panel 10, the entire surface of the elements 13,14, and thus the resistors R, including lots 3 and non-insulated portions of the conductors 4, is protected by a suitably thick epoxy resin layer 6.

Pri tako izvedenem senzorju 1 je možno računati z zunanjimi dimenzijami, ki ne upoštevaje priključni kabel 5 znašajo približno 50 x 30 x 3 mm, pri čemer skupna koroziji izpostavljena površina obeh uporov Rx meri približno 7,5 cm2.With sensor 1 constructed in this way, it is possible to calculate with external dimensions, not including the connecting cable 5, approximately 50 x 30 x 3 mm, with the total corrosion exposed surface of the two resistors R x measuring approximately 7.5 cm 2 .

Nadaljnja različica senzorja je prikazana na Sl. 5. Ploščati električno prevodni elementi 11, 12, 13, 14, ki tvorijo upora Rx in R senzorja 1, so izdelani na izolativni plošči 10 iz steklenoepoksidnega laminata enostransko. Zgolj dela 13, 14, ki predstavljata referenčna upora R, sta tudi na zgornji strani strani protikorozijsko zaščitena z dodatno plastjo 7, ki v tem primeru sestoji iz stekleno epoksidnega laminata. Kontakti A, B, C, D, E in F za lotanje priključnega kabla 5 in pripadajoč del priključnega kabla 5 so prevlečeni zaščitno plastjo 6, ki v tem primeru sestoji iz trajno elastične tesnilne mase. Zunanje dimenzije senzorja 1 brez priključnega kabla 5 v tem primeru znašajo npr. 87 x 53 x 3,5 mm. Ta različica senzorja 1 v primerjavi s predhodno predstavlja poenostavitev predvsem v pogledu še preprostejše izdelave ob malenkostnem povečanju zunanjih dimenzij pri enakih uporih Rx in R.A further version of the sensor is shown in FIG. 5. The flat electrically conductive elements 11, 12, 13, 14 forming the resistors R x and R of sensor 1 are fabricated on the insulating panel 10 of glass-epoxy laminate one-sided. Only the parts 13, 14, which represent the reference resistors R, are also corrosion-protected on the upper side of the side with an additional layer 7, which in this case consists of a glass epoxy laminate. Contacts A, B, C, D, E and F for soldering the connecting cable 5 and the associated part of the connecting cable 5 are coated with a protective layer 6, which in this case consists of a permanently elastic sealant. In this case, the external dimensions of sensor 1 without the connection cable 5 are, for example, 87 x 53 x 3.5 mm. This version of the sensor 1, compared to the previous one, is a simplification, especially in the view of even simpler construction, with a slight increase in the external dimensions at the same resistances R x and R.

V nadaljevanju bo podrobneje opisana sama uporaba oz. vgradnja senzorjev 1.The following will describe in more detail the use or usage. installation of sensors 1.

Pri vgradnji senzorjev 1 v svež beton med izvedbo vsakokratne armiranobetonske konstrukcije oz. gradnjo novega objekta senzorje še pred betoniranjem pritrdimo na željeno mesto. Za potrebe ugotavljanja korozijskih hitrosti jekla in detekcijo fronte karbonatizacije/prodora kloridov, senzorje vgradimo na različnih globinah (s prekrivno plastjo betona od 5 do 50 mm, oziroma do globine lege jeklene armature). Pritrdimo (prilepimo) jih lahko na površino armaturnih palic ali na posebne nosilce, ki zagotavljajo primemo oddaljenost od zunanje površine betona. Pri tem morata biti vsakokrat aktivna upora Rx obrnjena proti zunanji površini betona 9. Kable 5 senzorjev 1 s pomočjo ustreznih konektorjev speljemo v kovinsko hermetično škatlo na mestu, kjer bomo kasneje imeli dostop do konektoija za meritve, nakar izvedemo betoniranje.When installing sensors 1 in fresh concrete during the construction of the respective reinforced concrete structure or. the construction of the new facility, the sensors are fixed to the desired location before concreting. For the purpose of determining the corrosion rates of steel and detecting the carbonation / penetration of chlorides, the sensors are installed at different depths (with a cover layer of concrete from 5 to 50 mm, or up to the depth of the steel reinforcement position). They can be fastened to the surface of reinforcement bars or to special supports, which provide a reasonable distance from the outer surface of the concrete. In this case, the active resistors R x must always be facing the outer surface of the concrete 9. The cables of the 5 sensors 1 must be routed through the appropriate connectors into a metal hermetic box at the point where we will later have access to the measuring connection and then concreting.

Pri vgradnji senzorjev 1 v otrdeli beton obstoječe armiranobetonske konstrukcije že zgrajenega objekta se uvodoma izvrši nedestruktivno detekcijo lege in globine jeklene armature (npr. po metodi z vrtinčastimi tokovi), nakar na izbranih mestih izvrtamo vrtine z diamantno krono premera 75 mm do želj ene globine. Pri tem lahko izvrtane valje betona pregledamo in analiziramo vsebnost korozivnih ionov (kloridov, sulfatov) po globini ter izmerimo pH betona v globini, kjer želimo namestiti senzorje 1. Nov prekrivni beton prednostno izdelamo z enakimi vsebnostmi korozivnih dodatkov, kot smo jih na izvrtanih valjih analizirali na globini, kjer bodo senzorji postavljeni. Dno vrtin poravnamo, senzorje 1 pa s hrbtno stranjo nalepimo na dno vsakokrat razpoložljive vrtine. Priključne kable 5 senzorjev 1 s primernimi konektorji speljemo v kovinsko hermetično škatlo na dostopnem mestu. Vsakokratno vrtino nad senzorji 1 zapolnimo z novim betonom, katerega struktura in lastnosti naj bi bile čim bolj podobne staremu betonu.Non-destructive detection of the position and depth of the steel reinforcement (eg by the swirling method) is initially performed when the sensors 1 are installed in the hardened concrete of the existing reinforced concrete structure of the already constructed object, and then holes are drilled at selected locations with a 75 mm diameter crown to the desired depth. The drilled cylinders of concrete can be inspected and analyzed for the content of corrosive ions (chlorides, sulphates) by depth and the pH of the concrete in the depth where the sensors are to be installed. The new covering concrete is preferably made with the same content of corrosive additives as those analyzed on the drilled cylinders. at the depth where the sensors will be placed. Align the bottom of the wells and glue the sensors 1 to the bottom of the wells available at the back. The connection cables of the 5 sensors 1 with suitable connectors are routed in an airtight metal box at an accessible location. Each hole above the sensors 1 is filled with new concrete, whose structure and properties should be as close as possible to the old concrete.

Kadar je jeklenobetonski objekt katodno ščiten, je potrebno upore R, Rx senzorjev 1 električno povezati s katodno zaščiteno jekleno armaturo. V tem primeru so aktivni upori Rx senzorjev 1 tudi katodno zaščiteni. Na priključne konektoije senzorjev 1, na katerih v želj enih časovnih intervalih izvajamo meritve korozijske hitrosti, priključimo konektor, s katerim priključke (na Sl. 1 označene z A, B, C, D, E, F), ki povezujejo upore Rx in R na senzorjih 1 kratkostično sklene, električne kontakte tega konektorja pa povežemo z vsakokrat razpoložljivim vodnikom, ki je v električnem kontaktu z jekleno armaturo (katodo). V času izvedbe meritev korozijskih hitrosti na senzorjih 1 omenjeni konektor odklopimo, po meritvah pa ga ponovno vklopimo.When the steel-concrete object is cathodically shielded, resistors R, R x of sensors 1 must be electrically connected to the cathodically shielded steel armature. In this case, the active resistors R x of sensor 1 are also cathodically protected. To the connection connectors of sensors 1, at which corrosion velocity measurements are performed at desired intervals, a connector is used to connect the terminals (in Fig. 1 marked A, B, C, D, E, F) connecting the resistors R x and The R on sensors 1 is short-circuited, and the electrical contacts of this connector are connected to the available conductor, which is in electrical contact with the steel armature (cathode). At the time of corrosion velocity measurements on sensors 1, the aforementioned connector is disconnected, and after measurements, it is switched on again.

Električno prevodni elementi 11, 12, 13, 14 in s tem upori R, Rx senzorja 1 prednostno sestojijo iz pločevine, katere sestava je identična ali vsaj približno ustreza sestavi armature, in so nadalje prednostno izdelani s fotokemičnim postopkom, zato preseki vodnikov elementov 11, 12, 13, 14 niso pravokotne, marveč so trapezne oblike. Glede na izbrano debelino pločevine (od 150 do 270 μπι) in obliko prereza vodnika uporov R, Rx moramo upoštevati tudi faktor zmanjšanja debeline, kije odvisen od stopnje deformacije kristalnih zrn materiala uporov. Ker imajo senzoiji 1 zaradi svoje oblike specifične korozijske lastnosti, je bil po izumu zasnovan tudi postopek ugotavljanja oz. določanja korozijske hitrosti, ki temelji na zasnovi prej opisanih senzorjev 1 in tudi adekvatne naprave, pri kateri so ti senzorji 1 uporabljeni.Electrically conductive elements 11, 12, 13, 14 and thus resistors R, R x of sensor 1 preferably consist of a sheet whose composition is identical or at least approximately equivalent to that of the reinforcement, and are further preferably made by a photochemical process, therefore, the cross sections of the conductors of the elements 11 , 12, 13, 14 are not rectangular but trapezoidal in shape. Given the selected thickness of the sheet (150 to 270 μπι) and the cross-sectional shape of the resistor conductor R, R x, we must also take into account the thickness reduction factor, which depends on the degree of deformation of the crystalline grains of the resist material. Because the sensors 1 have specific corrosion properties due to their shape, a method of determining or detecting the corrosion is also designed according to the invention. for determining the corrosion rate based on the design of the sensors 1 described above and also the adequate device at which these sensors 1 are used.

Naprava po izumu sestoji iz množice senzorjev 1, ki so preko priključnih kablov 5 s pripadajočimi konektorji električno povezani z ustreznim instrumentom za merjenje spremembe električne upornosti. Naprava je npr. baterijsko napajana, vsebuje tokovni generator in kombinacijo napetostnih predojačevalcev. Tokovni generator zagotavlja konstanten vir toka, ki ga izberemo (100 μΑ ali 50 mA) in vključimo, v dveh smereh (bipolarno). Napetostni predojačevalci ojačijo padec napetosti na senzorju in razliko napetosti na nivo, ki ga je možno odčitati z ročnim voltmetrom.The device according to the invention consists of a plurality of sensors 1 which are electrically connected via a connecting cable 5 with associated connectors to a suitable instrument for measuring the change in electrical resistance. The device is e.g. battery-powered, contains a current generator and a combination of voltage preamps. The current generator provides a constant current source that is selected (100 μΑ or 50 mA) and switched on in two directions (bipolar). Voltage preamplifiers amplify the voltage drop across the sensor and the voltage difference to a readable level by a hand-held voltmeter.

Pri alternativni izvedbi naprave, ki omogoča merjenje hitrosti korozije pri katodno ščitenih objektih, so aktivni upori Rx senzorjev 1 tudi katodno zaščiteni. Na priključne konektorje senzorjev 1, na katerih v željenih časovnih intervalih izvajamo meritve korozijske hitrosti, je priključen konektor, s pomočjo katerega so priključki A, B, C, D, E, F, ki povezujejo upore Rx in R na senzorjih 1, kratkostično sklenjeni, električni kontakti tega konektorja pa povezani z vsakokrat razpoložljivim vodnikom, ki je v električnem kontaktu z jekleno armaturo t.j. katodo.In an alternative embodiment of a device that allows the corrosion rate to be measured in cathodically shielded objects, the active resistors R x of sensors 1 are also cathodically protected. Sensor 1 connector terminals, at which corrosion velocity measurements are performed at desired intervals, are connected to a connector, by means of which terminals A, B, C, D, E, F connect the resistors R x and R on sensors 1 to be short-circuited. and the electrical contacts of this connector are connected to the available conductor, which is in electrical contact with the steel armature, ie the cathode.

V času izvedbe meritev korozijskih hitrosti na senzorjih 1 omenjeni konektor odklopimo, po meritvah pa ga ponovno vklopimo.At the time of corrosion velocity measurements on sensors 1, the aforementioned connector is disconnected, and after measurements, it is switched on again.

V sistemu merimo napetostno razliko med posameznima vejama, prvo (ki meri padec po obeh vejah) označimo z U, drugo (ki meri razliko padca med Rx in R) pa z AU. Skozi vezje pošljemo konstanten tok vrednosti od 10 do 50 mA (Sl. 4). Upoštevamo, daje tok skozi obe veji enak, zato velja naslednje:In the system, the voltage difference between the two branches is measured, the first (which measures the fall across the two branches) is denoted by U, and the second (which measures the difference of the fall between R x and R) by AU. We send a constant current of values from 10 to 50 mA through the circuit (Fig. 4). Keep in mind that the flow through the two branches is the same, so the following applies:

l/=(*,+*)£ (1) fu = (rx-r)-.l / = (*, + *) £ (1) fu = (r x -r) -.

(2)(2)

Upor Rx predstavlja vsoto prvotnega upora in spremembe FR, torej Rx = R + FR, in delimo obe enačbi med seboj:The resistance R x represents the sum of the original resistance and the change in FR, that is, R x = R + FR, and we divide the two equations into each other:

Sprememba upornosti ustreza pri čemer jeThe change in resistance corresponds to

Sledi:Followed by:

kjer jewhere it is

FU _ FR U ~2R + FRFU _ FR U ~ 2R + FR

FRFR

2u2u

-m-m

AUAU

UU

FSFS

S-FSS-FS

2u l-u _ξ*12u l-u _ξ * 1

S (3) (4) (5) (6) (7)S (3) (4) (5) (6) (7)

Spremembo površine prereza vodnika upora lahko zapišemo kot:The change in the cross-sectional area of the resistor conductor can be written as:

z z Z λ With λ f R Ί f R Ί R R < R <R FS - S 1 FS - S 1 = S = S 1 1 =s = s 1--~— 1 - ~ - R + FR) R + FR) R+ 2“ RR + 2 “R i(i + .2“)and (i +. 2 “) k k l-u ) l-u) < l-u 7 7

(8)(8)

FS = S\ ter dobimoFS = S \ and we get

2u ' + u j (9).2u '+ u j (9).

Pločevina ima zaradi načina izdelave, zlasti npr. hladnega valjanja, hladno deformirano mikrostrukturo, podobno kot armaturno jeklo. Kristalna zrna so sploščena, kar je razlog, da vodniki 1Γ, 12' upora Rx uporovnega senzoija 1 korodirajo hitreje po širini (d2) kot po višini debelini (dQ vodnika upora Rx senzoija 1. Da bi lahko čim natančneje ocenili dejansko spremembo debeline (di) je možno vpeljati faktor zmanjšanja debeline A. Faktor zmanjšanja debeline vodnika 1Γ, 12' upora se določi kotDue to the method of manufacture, e.g. cold rolling, cold deformed microstructure, similar to reinforcing steel. The crystal grains are flattened, which is why the conductors 1Γ, 12 'of the resistor R x of the resistive sensorium 1 corrode faster in width (d 2 ) than in height (dQ of the resistor conductor R x of the sensorium 1. In order to be able to estimate the actual change as accurately as possible of thickness (di) it is possible to introduce a factor of reduction of thickness A. The factor of reduction of thickness of conductor 1Γ, 12 'of resistance is determined as

(10) d, - razlika v višini - debelini (c?, = cnefa)r - ckor) d 2 - razlika v širini(10) d, - height difference - thickness (c ?, = c nave) r - c cor ) d 2 - width difference

Faktor A zmanjšanja debeline se določi z medenjem geometrije korodiranih in nekorodiranih vzorcev senzoijev 1 in ga je potrebno določiti za vsako serijo senzorjev 1 posebej s pomočjo pregleda prečnega prereza vodnikov 1Γ, 12' koroziji izpostavljenih elementov 11, 12 upornosti Rx na metalografskem mikroskopu in pregleda površine na vrstičnem elektronskem mikroskopu.The thickness reduction factor A is determined by measuring the geometry of the corroded and non-corroded samples of the sensorium 1 and must be determined for each series of sensors 1 by inspection of the cross-section of conductors 1Γ, 12 'corrosion of exposed elements 11, 12 of resistance R x on a metallographic microscope and examination surfaces on a line electron microscope.

Prečni prerez vodnika 11' enega od koroziji izpostavljenih elementov 11, 12 senzoija 1 z upornostjo Rx, ki je zasnovan v obliki trapeza, je prikazan na Sl. 6. V nadaljevanju je podan o zaporedje določanja hitrosti korozije, ki se prednostno vrši s pomočjo ustrezne programske opreme. Pri tem so uporabljene označbe, ki pomenijo sledeče:The cross-section of conductor 11 'of one of the corrosion-exposed elements 11, 12 of sensor 1 with resistor R x , which is designed in the form of a trapezoid, is shown in FIG. 6. The following is a sequence of determining the corrosion rate, which is preferably carried out using appropriate software. The terms used are as follows:

a - krajša stranica trapeza na korozijsko izpostavljeni strani b - daljša stranica trapeza na korozijsko neizpostavljeni strani c - višina trapeza d - poševna stranica trapezaa - shorter side of the trapezoid on the corrosion exposed side b - longer side of the trapezoid on the corrosion exposed side c - height of the trapezoid d - oblique side of the trapezoid

6?i - razlika v višini - debelini d2 - razlika v širini β - kot med stranicama d in b x - razmeije sin Z?6? I - difference in height - thickness d2 - difference in width β - angle between sides d and b x - delineate sin Z?

ODOD

Površina trapeza se izračuna kot sledi:The trapezoidal surface is calculated as follows:

s ^ (a + b]c s ^ (a + b] c

Sprememba površine:Surface change:

sin β = — x sin β a + b-4x 2 (c-d,) (12) (13)sin β = - x sin β a + b - 4x 2 (c - d,) (12) (13)

Δ5 = So - S, sin Z? = — d (14) (15) >x =Δ5 = S o - S, son of Z? = - d (14) (15)> x =

Δ5 = · (a + b)c i(a + b — 4x) (a + b)c |O + 6-4rf· sin/?Δ5 = · (a + b) ci (a + b - 4x) (a + b) c | O + 6- 4rf · sin /?

· AS = (a + b)c -(a + b- 4x)(c - dl) 4d = —^(c-d>) + d,(a + b) sin/?· AS = (a + b) c - (a + b- 4x) (c - d l ) 4d = - ^ (cd>) + d, (a + b) sin /?

Rešujemo enačbo:We solve the equation:

4d4d

2- LS = d^a + b) +-— (c -dt) sin β (16) (Π)2- LS = d ^ a + b) + -— (c -d t ) sin β (16) (Π)

Z upoštevanjem faktorja zmanjšanja debeline lahko zapišemo d2 = A · d, (18)Considering the thickness reduction factor, we can write d 2 = A · d, (18)

4d4d

2LS = -^-(c-dx) + dx(a + b) sin/?2LS = - ^ - (cd x ) + d x (a + b) sin /?

4JJ, sin/?4JJ, son /?

(19) (c - J,) + J, (a + b)(19) (c - J,) + J, (a + b)

4A ,2 (4Ac4A, 2 (4Ac

-d* - -+ a + b sin >3 ^sin/?-d * - - + a + b sin> 3 ^ sin /?

II

4Ac </,+2-AS = 0 (20) d, = sin/?4Ac </, + 2-AS = 0 (20) d, = sin /?

+ a + b±JI +a + b+ a + b ± JI + a + b

32-Δ5-Λ sin/? J sin/?32-Δ5-Λ sin /? J son /?

8J sin/?8J son /?

(21)(21)

Ob upoštevanju, daje:Noting that:

AS = SAS = S

2u ϊ+ΰ dobimo:2u ϊ + ΰ we get:

(22) d,=(22) d, =

4Ac sin β + a + b±'4Ac sin β + a + b ± '

4Ac4Ac

--Ha + b sinfi j--Ha + b sinfi j

32-S32-S

2« ,ΐ+κ sin/?2 «, ΐ + κ sin /?

pri čemer jewhereby

8A sin/?8A son /?

(23)(23)

AUAU

U (24).In (24).

Primer 1 (preizkus delovanja senzorjev, analiza rezultatov)Example 1 (sensor test, result analysis)

Senzorje 1 in jekleno armaturo smo vgradili v betonske vzorce 9. Betonske vzorce 9 smo izpostavili karbonatizaciji in ciklični korozijski izpostavi (močenje s prisotnostjo kloridov/sušenje). Graf zmanjšanja debeline elementov 11, 12 senzorjev 1 je prikazan v diagramu na Sl. 7, ki očitno potrjuje veliko merilno ločljivost senzorjev 1 po izumu. Rezultate smo primerjali tudi z rezultati izračuna korozijske hitrosti jeklene armature po gravimetrični metodi.Sensors 1 and steel reinforcement were embedded in concrete specimens 9. Concrete specimens 9 were exposed to carbonation and cyclic corrosion exposures (wetting with the presence of chlorides / drying). The thickness reduction graph of elements 11, 12 of sensor 1 is shown in the diagram in FIG. 7, which clearly confirms the high measuring resolution of the sensors 1 according to the invention. The results were also compared with the results of the corrosion rate calculation of the steel reinforcement by the gravimetric method.

Po prekorodiranju vodnika enega upora Rx nadaljnje merjenje korozijske hitrosti ni več možno, nenadno občutno zmanjšanje debeline senzorja 1 pa pomeni detekcijo jamičaste korozije.After corrosion of the conductor of one resistor R x, further measurement of corrosion velocity is no longer possible, and a sudden significant decrease in the thickness of sensor 1 implies the detection of pit corrosion.

Z obliko ploščatih električno prevodnih elementov 11, 12, 13, 14za formiranje vodnikov uporov Rx, R je dosežena večja električna upornost, zahvaljujoč sami razporeditvi korozijsko izpostavljenih in referenčnih uporov Rx, R v neposredni bližini drug drugega pa je dosežena temperaturna kompenzacija Wheatstonovega mostička. Posledica teh ukrepov je velika merilna ločljivost v primerjavi z dosedaj znanimi senzorji in dobra primerjava izmerjenih korozijskih hitrosti s korozijskimi hitrostmi jeklene armature v betonu.With the form of flat electrically conductive elements 11, 12, 13, 14 for the formation of resistors R x , R, greater electrical resistance is achieved, thanks to the arrangement of the corrosion-exposed and reference resistors R x , R in the immediate vicinity of each other, the temperature compensation of the Wheatston bridge is achieved . These measures result in high measurement resolution compared to the sensors known so far and a good comparison of the measured corrosion velocities with the corrosion velocities of the steel reinforcement in concrete.

Zaradi oblike in konstrukcije so zunanje dimenzije senzorjev 1 po izumu razmeroma zelo majhe, po drugi strani pa je sočasno dobljena korozijsko izpostavljena površina razmeroma velika.Due to the shape and construction, the outer dimensions of the sensors 1 according to the invention are relatively small, but on the other hand the corrosion-exposed surface is relatively large.

Zahvaljujoč majhnim dimenzijam je mogoče senzorje 1 po izumu vgraditi v beton novih in starih objektov tudi med armaturo z razmeroma majhnim dimenzijskim rastrom ali tudi npr. v majhne laboratorijske vzorce. Majhne dimenzije posameznega senzorja 1 omogočajo vgradnjo več senzorjev 1 na manjših površinah, s tem pa tudi učinkovitejšo detekcijo lokacij korozijskih žarišč, oziroma mest, kjer so korozijske hitrosti velike. Ob nenadnem prekorodiranju posameznega korozijsko izpostavljenega upora posameznega senzorja detektiramo tudi jamičasto korozijo.Due to the small dimensions, the sensors 1 according to the invention can be installed in concrete of new and old structures even during reinforcement with a relatively small dimension grid or also e.g. into small laboratory samples. The small dimensions of each sensor 1 allow the installation of more sensors 1 on smaller surfaces, and thus more efficient detection of locations of corrosion foci, or places where corrosion velocities are high. Sudden corrosion of a single corrosion-exposed resistor of a single sensor also detects pit corrosion.

Meritve je možno izvajati zvezno ali v časovnih intervalih. Na natančnost meritev majhne trenutne intenzivnosti elektrokemijskih procesov nimajo neposrednega vpliva, kar se npr. dogaja pri elektrokemijskih metodah meritev korozijskih hitrosti.Measurements can be taken continuously or at intervals. The accuracy of the measurements of the small current intensities of the electrochemical processes are not directly affected, e.g. occurs in electrochemical methods of measuring corrosion velocities.

Senzorje 1 po izumu je možno vgraditi tudi v objekte, ki so katodno ščiteni z aktivno katodno zaščito z električnim tokom in v časovnih intervalih izvajamo meritve korozijskih hitrosti.The sensors 1 according to the invention can also be installed in objects that are cathodically shielded with active cathodic protection by electric current and corrosion velocity measurements are performed at intervals.

Claims (23)

1-M (8) (9)· iii) določitve faktorja (A) zmanjšanja debeline vodnika (1Γ, 12') elementov (11, 12) upora (Rx) po formuli1-M (8) (9) · iii) determining the factor (A) of reducing the conductor thickness (1Γ, 12 ') of the resistor elements (11, 12) (R x ) by the formula 1-M (6)1-M (5) R = (Ό ii) ugotavljanja spremembe površine prereza vodnika upora po formulahR = (Ό ii) to determine the change in the cross-sectional area of the resistor by the formulas AS = S 1-R + ARAS = S 1-R + AR R + ^-RR + ^ -R 1-M (4)1-M (3) AUAU U (5)U (5) ASAS S-ASS-AS 2m2m 1. Senzor za ugotavljanje hitrosti korozije kovinske armature v armiranobetonskih konstrukcijah na osnovi ugotavljanja upornosti (Rx) vsaj enega v betonu (9) vgrajenega in koroziji izpostavljenega električno prevodnega elementa (11, 12) glede na referenčno upornost (R) vsaj enega prav tako v betonu (9) vgrajenega, vendar proti koroziji zaščitenega električno prevodnega elementa (13,14), označen s tem, da obsega vsaj eno električno neprevodno nosilno ploščo (10), na kateri je nameščen vsaj en izrazito sploščen, koroziji izpostavljen električno prevoden element (11, 12) s cikcakasto po površini plošče (10) potekajočim vodnikom (IT, 12') izrazito majhnega prečnega prereza in glede na vsakokrat razpoložljivo površino izrazito velike dolžine temu ustrezno visoke upornosti (Rx), kot tudi vsaj en prav tako izrazito sploščen, proti koroziji zaščiten električno prevoden referenčni element (13, 14) s cikcakasto po površini plošče (10) potekajočim vodnikom (13', 14') izrazito majhnega prečnega prereza in glede na vsakokrat razpoložljivo površino izrazito velike dolžine temu ustrezno visoke referenčne upornosti (R), pri čemer je material omenjenih električno prevodnih elementov (11, 12, 13, 14) identičen ali vsaj približno ustreza materialu v betonu vgrajene armature in pri čemer so vsakokrat razpoložljivi elementi (11, 12, 13,14) povezljivi v električni tokokrog.1. Sensor for determining the corrosion rate of metal reinforcement in reinforced concrete structures based on the determination of resistance (R x ) of at least one in concrete (9) embedded and corrosion exposed electrically conductive element (11, 12) with respect to the reference resistance (R) of at least one in the concrete (9) of an electrically conductive shielded element (13,14) incorporated but corroded, characterized in that it comprises at least one electrically non-conductive support plate (10) on which at least one highly flattened, corrosion-exposed electrically conductive element is mounted (11, 12) with a zigzag-shaped conductor (IT, 12 ') zigzag along the surface of the plate (10) with a distinctly small cross-section and with respect to the surface available at each time of extremely large length of correspondingly high resistance (R x ), as well as at least one equally pronounced a flattened, corrosion-protected electrically conductive reference element (13, 14) with a zigzag guide (13 ') circled over the surface of the plate (10) , 14 ') of extremely small cross-section and with respect to the surface available at each time of extremely large length, correspondingly high reference resistance (R), the material of said electrically conductive elements (11, 12, 13, 14) being identical or at least approximately corresponding to the material in reinforced concrete reinforcement and the elements (11, 12, 13,14) available at each time are connected to the electrical circuit. 2 · AS = , 2 (c - e/,) + J, (a + b) (19) sin β2 · AS =, 2 (c - e /,) + J, (a + b) (19) sin β Δ.ΛΗ (20) in kjer pomeni a krajša stranica trapeznega profila vodnikov (1Γ, 12') elementov (11, 12) na korozijsko izpostavljeni strani, b daljša stranica trapeznega profila vodnikov (13', 14') elementov (13, 14) na korozijsko neizpostavljeni strani, c višina trapeznega profila d poševna stranica trapeznega profila d\ razlika v višini - debelini di razlika v širini β kot med stranicama d in b, obenem pa x predstavlja razmerjeΔ.ΛΗ (20) and where a is the shorter side of the trapezoidal profile of the conductors (1Γ, 12 ') of the elements (11, 12) on the corrosion-exposed side, b the longer side of the trapezoidal profile of the conductors (13', 14 ') of the elements (13, 14) ) on the corrosion-exposed side, c height of trapezoidal profile d oblique side of trapezoidal profile d \ height difference - thickness di difference in width β as between sides d and b, while x represents the ratio v) ugotavljanja razlike v višini oz. debelini vodnikov (1Γ, 12') električno prevodnih elementov (11,12) senzorja (1) po formulah (21) sin βv) determining the difference in height or thicknesses of conductors (1Γ, 12 ') of electrically conductive elements (11,12) of sensor (1) according to formulas (21) sin β 32-AS-A sin β kjer ob upoštevanju, daje32-AS-A sin β where, given that A5 = SA5 = S 2m2m Ϊ7μ (22) velja:Ϊ7μ (22) is valid: d, =d, = 4Ac sin/?4Ac son /? + a + b±'+ a + b ± ' 4Ac sin/?4Ac son /? 8Λ sin/?8Λ son /? sin/?sin /? </2 = A · d, (18)</ 2 = A · d, (18) 4J4J 2 · AS = J, (a + b} + (17) kjer ob upoštevanju faktorja zmanjšanja debeline velja:2 · AS = J, (a + b} + (17) where, taking into account the thickness reduction factor, 2 · AS = (a + b)c -(a + b- 4x)(c - dx) 4J = -τ^^-άλ) + άλ{α + υ} srn/>2 · AS = (a + b) c - (a + b- 4x) (c - d x ) 4J = -τ ^^ - ά λ ) + ά λ {α + υ} srn /> 2. Senzor po zahtevku 1, označen s tem, daje nosilna plošča (10) razmeroma toga plošča razmeroma majhnih dimenzij, kije opremljena z odprtinami (2) za prejem električno prevodnega lota (3) in po potrebi vodnika (4) priključnega kabla (5) senzoija (1).Sensor according to claim 1, characterized in that the support plate (10) is a relatively rigid plate of relatively small dimensions, which is provided with openings (2) for receiving the electrically conductive lot (3) and, if necessary, the conductor (4) of the connecting cable (5) ) sensoia (1). 3. Senzor po zahtevku 2, označen s tem, da nosilna plošča (10) sestoji iz laminiranega steklo-epoksidnega gradiva.A sensor according to claim 2, characterized in that the support plate (10) consists of laminated glass epoxy material. 4 = ^· (10) «1 kjer pomeni4 = ^ · (10) «1 where means J, - razlika v višini - debelini ( dx = cnekor - ckor) d2 - razlika v širini z merjenjem geometrije korodiranih in nekorodiranih vzorcev senzorjev (1) za vsako serijo senzorjev (1) posebej s pomočjo pregleda prečnega prereza vodnikov (11', 12') koroziji izpostavljenih elementov (11, 12) upornosti Rx na metalografskem mikroskopu in pregleda površine na vrstičnem elektronskem mikroskopu, s čimer se upošteva način izdelave pločevine zlasti npr. v primeru hladnega valjanja in temu ustrezne hladno deformirane mikrostrukture, ki je podobna tisti pri armaturnem jeklu, pri čemer so kristalna zrn sploščena in zato vodniki (1Γ, 12') upora (Rx) senzoija (1) korodirajo hitreje po širini (d2) kot po višini oz. debelini (di) upora (Rx) senzoija (1);J, - the difference in the amount of - the thickness (d x = c Nekor - c kor) d 2 - the difference in the width of the measuring geometry of corroded and nekorodiranih samples of sensors (1) for each of a series of sensors (1), in particular by examining the cross-section of conductors ( 11 ', 12') corrosion of exposed elements (11, 12) of resistance R x on a metallographic microscope and examination of the surface on a line electron microscope, taking into account the method of fabrication of the sheet, in particular e.g. in the case of cold rolling and the corresponding cold-deformed microstructure similar to that of reinforcing steel, whereby the crystalline grains are flattened and therefore the conductors (1Γ, 12 ') of the resistor (R x ) of the sensor (1) corrode faster in width (d 2 ) as height or height. thickness (di) of resistor (R x ) sensor (1); iv) določitve površine trapeznega profila vodnikov (11', 12') električno prevodnih elementov (11, 12) senzorjev (1) po formulah sin β = — x * x = sin β iv) determining the surface of the trapezoidal profile of conductors (11 ', 12') of electrically conductive elements (11, 12) of sensors (1) by the formulas sin β = - x * x = sin β {a + b)c , 4d2 a+ b--sin/J{a + b) c, 4d 2 a + b - sin / J S°- 2 S ° - 2 (12) (12) a + b — 4x , a + b - 4x, ----(e-d,) ---- (e-d,) (13) (13) AS = S0-S,AS = S 0 -S, (14) (14) sin β = — sin β = - (15) (15)
(c-dx)(cd x ) 4. Senzor po enem od predhodnih zahtevkov, označen s tem, daje vodnik (IT, 12', 13', 14') vsakokratnega na električno neprevodni plošči (10) nameščenega električno prevodnega elementa (11,12,13,14) zasnovan s profilom oz. prečnim prerezom v obliki trapeza, kije zožen v smeri vstran od omenjene plošče (10).Sensor according to any one of the preceding claims, characterized in that the conductor (IT, 12 ', 13', 14 ') of the electrically conductive element (11) of the electrically conductive element (11, 12, 13, 14) in each case is designed with profile or. a cross-section in the form of a trapezoid, which is narrowed in the direction away from said plate (10).
5. Senzor po zahtevku 4, označen s tem, da vodnik (IT, 12', 13', 14') vsakokratnega na električno neprevodni plošči (10) nameščenega električno prevodnega elementa (11, 12, 13, 14) sestoji iz hladno preoblikovanega kovinskega gradiva, ki je identično ali njegova sestava vsaj približno ustreza materialu vsakokrat v betonu (9) razpoložljive armature.Sensor according to claim 4, characterized in that the conductor (IT, 12 ', 13', 14 ') of the electrically conductive element (11) of the electrically conductive element (11, 12, 13, 14) in each case consists of a cold-formed metallic material identical in composition or composition to at least approximately the material in each case in the concrete (9) of the available reinforcement. 6. Senzor po zahtevku 4, označen s tem, da vodnik (1Γ, 12', 13', 14') vsakokratnega na električno neprevodni plošči (10) nameščenega električno prevodnega elementa (11, 12, 13, 14) sestoji iz fotokemično obdelane kovinske pločevine ali iz drugega kovinskega gradiva, ki je galvansko, z naparevanjem ali drugače nanešeno neposredno na površino nosilne plošče (10) in ki je identično oz. njegova sestava vsaj približno ustreza materialu vsakokrat v betonu (9) razpoložljive armature.Sensor according to claim 4, characterized in that the conductor (1Γ, 12 ', 13', 14 ') of the electrically conductive element (11) of the electrically conductive element (11, 12, 13, 14) in each case consists of photochemically treated sheet metal or other metal material, whether or not electroplated, by evaporation or otherwise, applied directly to the surface of the support plate (10) and which is identical or. its composition corresponds at least approximately to the material in each case in the concrete (9) of the available reinforcement. 7. Senzor po enem od predhodnih zahtevkov, označen s tem, da obsega dvojico proti koroziji nezaščitenih električno prevodnih elementov (11, 12) z upornostjo (Rx) in z njima električno povezano dvojico protikorozijsko zaščitenih referenčnih elementov (13, 14) z referenčno upornostjo (R).Sensor according to one of the preceding claims, characterized in that it comprises a corrosion-resistant pair of non-shielded electrically conductive elements (11, 12) with resistance (R x ) and an electrically coupled pair of anti-corrosion protected reference elements (13, 14) with a reference resistance (R). 8. Senzor po zahtevku 7, označen s tem, da sta dvojici drug ob drugem razporejenih in medsebojno povezanih elementov (11, 12) in (13, 14) med seboj električno povezani preko Wheatstonovega mostička in v takšni vezavi preko priključnih kablov (5) priključljivi na vsakokrat razpoložljiv zunanji električni tokokrog.Sensor according to claim 7, characterized in that the two adjacent and interconnected elements (11, 12) and (13, 14) are electrically connected to each other via the Wheatston bridge and in such a connection via connecting cables (5) plugged in to any available external electrical circuit. 9. Senzor po zahtevku 7 ali 8, označen s tem, daje vsak od elementov (11, 12; 13, 14) z vsakokrat pripadajočim elementom (11, 12; 13, 14) električno povezan v območju z električno prevodnega lota (3), ki je na voljo v vsakokrat pripadajoči odprtini (2) v električno neprevodni nosilni plošči (10), s čimer so dobljeni v splošnem nerazstavljivi električni kontakti (A, B, C, D, E, F).A sensor according to claim 7 or 8, characterized in that each of the elements (11, 12; 13, 14) is electrically connected to the respective element (11, 12; 13, 14) in the region of the electrically conductive lot (3) , which is available in the corresponding opening (2) in the electrically non-conductive load-bearing plate (10), thereby making generally non-dismantling electrical contacts (A, B, C, D, E, F). 10. Senzor po zahtevku 7 ali 8, označen s tem, da sta dva kontakta (C, F) elementov (11, 12; 13; 14) predvidena za povezavo z vodnikom (4) električnega kabla (5) za priključitev senzorja (1) na vsakokrat razpoložljiv električni tokokrog, pri čemer je en kontakt (C) predviden v območju koroziji izpostavljenih elementov (11, 12), preostali kontakt (F) pa v območju proti koroziji zaščitenih elementov (13, 14).A sensor according to claim 7 or 8, characterized in that two contacts (C, F) of the elements (11, 12; 13; 14) are provided for connection to the conductor (4) of the electrical cable (5) for connecting the sensor (1 ) at each available electrical circuit, one contact (C) being provided in the corrosion zone of the exposed elements (11, 12) and the remaining contact (F) in the corrosion protection zone of the protected elements (13, 14). 11-M J11-M J A5 = SlA5 = FIG 2m2m Ϊ+Μ ί(ΐ+Λ)Ϊ + Μ ί (ΐ + Λ) 11. Senzor po kateremkoli od zahtevkov 1 do 10, označen s tem, da so vsi električno prevodni elementi (11, 12; 13; 14) razporejeni na isti strani nosilne plošče (10).A sensor according to any one of claims 1 to 10, characterized in that all electrically conductive elements (11, 12; 13; 14) are arranged on the same side of the carrier plate (10). 12. Senzor po kateremkoli od zahtevkov 1 do 10, označen s tem, da so vsakokrat razpoložljivi električno prevodni elementi (11, 12) z upornostjo (Rx), ki so izpostavljeni koroziji, razporejeni na eni strani električno neprevodne nosilne plošče (10), vsakokrat razpoložljivi električno prevodni referenčni elementi (13, 14) z upornostjo (R), ki koroziji niso izpostavljeni, pa so razporejeni na nasprotni strani taiste nosilne plošče (10).Sensor according to any one of claims 1 to 10, characterized in that the electrically conductive elements (11, 12) with resistance (R x ) exposed to corrosion are arranged on one side of the electrically non-conductive support plate (10). , the electrically conductive reference elements (13, 14) with resistance (R), which are not exposed to corrosion, are located on the opposite side of the bearing plate (10). 13. Senzor po enem od zahtevkov 1 do 12, označen s tem, da so vsakokrat razpoložljivi električno prevodni referenčni elementi (13, 14) z upornostjo (R), ki so izpostavljeni koroziji, in drugi električno prevodni deli vključno z v območju nosilne plošče (10) razpoložljivimi vodniki (4) električnih kablov (5) z izjemo korozijsko izpostavljenih elementov (11, 12) z upornostjo (Rx) prevlečeni z električno neprevodno zaščitno plastjo (6, 7).Sensor according to one of Claims 1 to 12, characterized in that electrically conductive reference elements (13, 14) with corrosion resistance (R) and other electrically conductive parts including in the area of the support plate ( 10) available conductors (4) of electrical cables (5), with the exception of corrosion-exposed elements (11, 12) with resistance (R x ) coated with an electrically non-conductive protective layer (6, 7). 14. Senzor po enem od zahtevkov 1 do 13, označen s tem, da je vsakokrat razpoložljiva izolacijska zaščitna plast (6, 7) na voljo kot trdna ali plastična plast iz električno neprevodnega ali slabo prevodnega gradiva.A sensor according to any one of claims 1 to 13, characterized in that the insulating protective layer (6, 7) available at each time is available as a solid or plastic layer of electrically conductive or poorly conductive material. 15. Senzor po enem od zahtevkov 1 do 14, označen s tem, da so vsakokrat razpoložljivi koroziji izpostavljeni elementi (11, 12) v položaju vgradnje v beton (9) obrnjeni proti zunanji površini armiranobetonskega elementa.Sensor according to one of Claims 1 to 14, characterized in that the corrosion-exposed elements (11, 12) in the position of incorporation into the concrete (9) are facing the outer surface of the reinforced concrete element. (16)(16) 16. Senzor po enem od zahtevkov 1 do 14, označen s tem, da so vsakokrat razpoložljivi koroziji izpostavljeni elementi (11, 12) z upornostjo (Rx) senzoijev (1) katodno zaščiteni, pri čemer je na vsakokrat razpoložljive priključne konektorje senzorjev (1), preko katerih se v željenih časovnih intervalih izvajajo meritve korozijske hitrosti, priključen konektor, s pomočjo katerega so priključki (A, B, C, D, E, F) elementov (11, 12; 13, 14) upornosti (Rx) in (R) na senzorjih (1) kratkostično sklenjeni, električni kontakti tega konektoija pa povezani z vsakokrat razpoložljivim vodnikom, ki je v električnem kontaktu z jekleno armaturo t.j. katodo, ki je vgrajena v betonu (9), pri čemer je med merjenjem korozijskih hitrosti omenjeni konektor odklopljen, sicer pa vklopljen.Sensor according to one of Claims 1 to 14, characterized in that the corrosion-exposed elements (11, 12) with the resistance (R x ) of the sensor (1) are cathodically protected, with sensory connectors ( 1), through which corrosion velocity measurements are performed at desired intervals, a connector connected by means of which the connections (A, B, C, D, E, F) of the resistance elements (11, 12; 13, 14) (R x ) and (R) on the sensors (1) are short-circuited, and the electrical contacts of this connector are connected to the available conductor, which is in electrical contact with the steel reinforcement, ie the cathode embedded in the concrete (9), while during the corrosion measurement speed the aforementioned connector is disconnected but otherwise on. 17. Naprava za ugotavljanje hitrosti korozije kovinske armature v armiranobetonskih konstrukcijah na osnovi ugotavljanja upornosti (Rx) vsaj enega v betonu (9) vgrajenega in koroziji izpostavljenega električno prevodnega elementa (11, 12) glede na referenčno upornost (R) vsaj enega prav tako v betonu (9) vgrajenega, vendar proti koroziji zaščitenega električno prevodnega elementa (13, 14), označena s tem, da obsega vsaj merilnik električne upornosti, ki je preko električnih kablov (5) električno povezljiv z vsakokrat izbranim številom senzorjev (1) po zahtevkih 1 do 16.17. Device for determining the corrosion rate of metal reinforcement in reinforced concrete structures based on the determination of resistance (R x ) of at least one in the concrete (9) of the electrically conductive element (11, 12) installed and corroded with respect to the reference resistance (R) of at least one in the concrete (9) of the electrically conductive shielded element (13, 14) incorporated but corrosion-protected, characterized in that it comprises at least an electrical resistance meter which is electrically connected to the number of sensors (1) by electrically cables (5) claims 1 to 16. 18. Naprava po zahtevku 17, označena s tem, da obsega končno in vnaprej določeno število senzorjev (1), ki so vgrajeni na različnih lokacijah in različnih globinah bodisi v ustreznih vrtinah v strjenem betonu (9) vsakokrat razpoložljivega že obstoječega armiranobetonskega objekta ali v še nestrjenem betonu (9) tačas izdelovanega armiranobetonskega objekta, pri čemer so vsakokrat koroziji izpostavljeni električno prevodni elementi (11, 12) z upornostjo (Rx) razporejeni na tisti strani nosilne plošče (10) senzorja (1), ki je obrnjena proti zunanji površini armiranobetonskega objekta.Apparatus according to claim 17, characterized in that it comprises a finite and predetermined number of sensors (1) which are installed at different locations and at different depths or in corresponding holes in the hardened concrete (9) of a pre-existing reinforced concrete object or in non-hardened concrete (9) of the fabricated reinforced concrete structure, with electrically conductive elements (11, 12) exposed to corrosion (R x ) on each side of the support plate (10) of the sensor (1) facing the outside surface of reinforced concrete building. 19. Naprava po zahtevku 16 ali 17, označena s tem, da so senzorji (1) v betonu (9) tako razporejeni, da potekajo vsaj v bistvu vzporedno z armaturo, vgrajeno v betonu (9).Apparatus according to claim 16 or 17, characterized in that the sensors (1) in the concrete (9) are so arranged that they run at least substantially parallel to the reinforcement embedded in the concrete (9). 20. Naprava po enem od zahtevkov 16 do 19, označena s tem, daje baterijsko napajana in vsebuje tokovni generator ter ustrezno kombinacijo napetostnih predojačevalnikov, pri čemer je tokovni generator prirejen za zagotavljanje konstantnega vira vsakokrat izbranega bipolarnega električnega toka v dveh smereh, medtem ko so napetostni predojačevalci predvideni za ojačitev padca napetosti na senzorju (1) in razlike napetosti na nivo, ki ga je možno odčitati z ročnim voltmetrom.Apparatus according to one of Claims 16 to 19, characterized in that it is battery-powered and contains a current generator and a suitable combination of voltage preamps, the current generator being adapted to provide a constant source of the bipolar electric current selected in two directions, while Voltage preamplifiers designed to amplify the voltage drop across the sensor (1) and the voltage difference to a readable level by a hand-held voltmeter. 21. Naprava po enem od zahtevkov 16 do 20, označena s tem, da je priključljiva na električni tokokrog že obstoječe katodne zaščite armature v betonu (9) že obstoječega armiranobetonskega objekta in prirejena za merjenje spremembe upornosti (Rx) koroziji izpostavljenih elementov (11, 12) po predhodni izključitvi za katodno zaščito predvidenega električnega tokokroga.Apparatus according to one of Claims 16 to 20, characterized in that it is connected to the electrical circuit of the pre-existing cathodic protection of reinforcement in concrete (9) of the existing reinforced concrete object and adapted for measuring the change in resistance (R x ) of corrosion of exposed elements (11 , 12) after prior exclusion for cathodic protection of the intended electrical circuit. 22. Postopek ugotavljanja hitrosti korozije kovinske armature v armiranobetonskih konstrukcijah na osnovi ugotavljanja upornosti (Rx) vsaj enega v betonu (9) vgrajenega in koroziji izpostavljenega električno prevodnega elementa (11, 12) glede na referenčno upornost (R) vsaj enega prav tako v betonu (9) vgrajenega, vendar proti koroziji zaščitenega električno prevodnega elementa (13, 14), pri čemer se v merilno napravo po enem od zahtevkov 17 do 21 povezane senzorje (1) po enem od zahtevkov 1 do 16 vgradi bodisi v nestrjen beton ali v ustrezne vrtine v otrdeli beton že obstoječega armiranobetonskega objekta, tako da so koroziji izpostavljeni električno prevodni elementi (11, 12) z upornostjo (Rx) obrnjeni proti zunanji površini betona (9) in potekajo vsaj približno vzporedno z armaturo, nakar se v primeru vgradnje v otrdeli beton (9) vrtine zapolni z betonom, katerega struktura ustreza na istem mestu pred izvedbo vrtin razpoložljivemu betonu (9), izven betona (9) razpoložljive priključne kable (5) pa se električno poveže v okviru omenjene merilne naprave, označen s tem, da obsega korake22. A process for determining the corrosion rate of a metal reinforcement in reinforced concrete structures based on the determination of the resistance (R x ) of at least one in the concrete (9) of the electrically conductive element (11, 12) installed and corroded with respect to the reference resistance (R) of at least one in the concrete (9) of an electrically conductive shielded element (13, 14) incorporated but corroded by incorporating sensors (1) into the measuring device according to any one of claims 17 to 21, either in uncured concrete or into the corresponding holes in the hardened concrete of the pre-existing reinforced concrete structure, so that the corrosion-exposed electrically conductive elements (11, 12) with resistance (R x ) face the outer surface of the concrete (9) and run at least approximately parallel to the reinforcement, and then in the case Fill the holes in the hardened concrete (9) with wells, the structure of which corresponds in the same place before the wells are available to the concrete (9), outside the concrete (9). however, the live connecting cables (5) are electrically connected within the said measuring device, characterized in that it comprises the steps i) ugotavljanja napetostne razlike med posameznima vejama, namreč prvo vejo (U), kjer se meri padec po obeh vejah, in drugo (z AU), kjer se meri razliko padca med uporoma (Rx) in (R), pri čemer se skozi vezje pošlje konstanten tok določene vrednosti, ki je skozi obe veji enak, kar se vrši po formulah (7 = (ΛΛ+ί)ί (1)i) determining the voltage difference between the two branches, namely, the first branch (U), where the fall is measured on both branches, and the second (with AU), where the difference of the fall between resistances (R x ) and (R) is measured, sends a constant current of a certain value through the circuit, which is the same through both branches, which is done by the formulas (7 = (Λ Λ + ί) ί (1) Δ1/ = (Λ,-Λ)7 (2)Δ1 / = (Λ, −Λ) 7 (2) At/ AR U ~2R + AR (3)At / AR U ~ 2R + AR (3) ARAR 2u2u (23) na osnovi ugotovljene napetostne razlike, kije podana s formulo(23) based on the observed voltage difference given by the formula AU (24) in vi) izhajajoč iz spremembe debeline posameznih senzorjev (1) v okviru omenjene naprave tudi korak ugotavljanja vrste korozije.AU (24) and vi), also based on the change in thickness of the individual sensors (1) within the said device, is also a step of determining the type of corrosion.
SI200700157A 2007-06-29 2007-06-29 Sensor, device and procedure for determination of corrosion speed of metal reinforcement in reinforced concrete structures SI22559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200700157A SI22559A (en) 2007-06-29 2007-06-29 Sensor, device and procedure for determination of corrosion speed of metal reinforcement in reinforced concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200700157A SI22559A (en) 2007-06-29 2007-06-29 Sensor, device and procedure for determination of corrosion speed of metal reinforcement in reinforced concrete structures

Publications (1)

Publication Number Publication Date
SI22559A true SI22559A (en) 2008-12-31

Family

ID=40184819

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200700157A SI22559A (en) 2007-06-29 2007-06-29 Sensor, device and procedure for determination of corrosion speed of metal reinforcement in reinforced concrete structures

Country Status (1)

Country Link
SI (1) SI22559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763615A (en) * 2019-09-16 2020-02-07 中国长江电力股份有限公司 Method for predicting reliability of pure silver contact material in micro-corrosion service environment
CN115128128A (en) * 2022-03-31 2022-09-30 广东建科创新技术研究院有限公司 Embedded concrete reinforcement corrosion monitoring sensor, monitoring system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763615A (en) * 2019-09-16 2020-02-07 中国长江电力股份有限公司 Method for predicting reliability of pure silver contact material in micro-corrosion service environment
CN115128128A (en) * 2022-03-31 2022-09-30 广东建科创新技术研究院有限公司 Embedded concrete reinforcement corrosion monitoring sensor, monitoring system and method

Similar Documents

Publication Publication Date Title
JP6770046B2 (en) Cathode anticorrosion monitoring probe
US7388386B2 (en) Method and apparatus for corrosion detection
JP7476270B2 (en) Offshore Wind Turbine Monitoring
JPH0743336B2 (en) Positioning method of repair area of reinforced concrete structure
Yang Multielectrode systems
Raupach et al. Condition survey with embedded sensors regarding reinforcement corrosion
Hren et al. Characterization of stainless steel corrosion processes in mortar using various monitoring techniques
JP7128566B2 (en) Corrosion sensor and corrosion detection method
SI22559A (en) Sensor, device and procedure for determination of corrosion speed of metal reinforcement in reinforced concrete structures
JP6691384B2 (en) Corrosion sensor and corrosion detection method
Andrade et al. Techniques for measuring the corrosion rate (polarization resistance) and the corrosion potential of reinforced concrete structures
Cella et al. Electrical resistance changes as an alternate method for monitoring the corrosion of steel in concrete and mortar
JP2017032515A5 (en)
JP2017032515A (en) Corrosion sensor and corrosion detection method
EP3862465A1 (en) Copper/copper sulphate gel permanent reference electrode for the measurement of the true potential and current density of buried metal structures
Sing et al. Developments in corrosion detection techniques for reinforced concrete structures
Schiegg et al. On-line monitoring of corrosion in reinforced concrete structures
JP2017179467A (en) Electrical protection structure for reinforced concrete structure and method for measuring effect of the same
Bell et al. Development and application of ductile iron pipe electrical resistance probes for monitoring underground external pipeline corrosion
Liu et al. Analysis of long-term durability monitoring data of high-piled wharf with anode-ladder sensors embedded in concrete
JP2005055331A (en) Monitoring method of deterioration caused by acid of concrete structure
Taveira et al. Detection of corrosion of post-tensioned strands in grouted assemblies
Jeong et al. The corrosion measurement of reinforced concrete specimens using Pt/Ti electrode
CN115265354A (en) Reinforced concrete structure corrosion depth monitoring device and using method thereof
CA2222970A1 (en) Corrosion monitoring probe for reinforced concrete structures

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20071227

KO00 Lapse of patent

Effective date: 20170705