SI22424A - Device and procedure for threedimensional measurement of body shape - Google Patents

Device and procedure for threedimensional measurement of body shape Download PDF

Info

Publication number
SI22424A
SI22424A SI200600269A SI200600269A SI22424A SI 22424 A SI22424 A SI 22424A SI 200600269 A SI200600269 A SI 200600269A SI 200600269 A SI200600269 A SI 200600269A SI 22424 A SI22424 A SI 22424A
Authority
SI
Slovenia
Prior art keywords
measuring module
measurement
body shape
foot
measuring
Prior art date
Application number
SI200600269A
Other languages
Slovenian (sl)
Inventor
EK Matija JEZERĹ
Original Assignee
ALPINA, tovarna obutve, d.d., Žiri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALPINA, tovarna obutve, d.d., Žiri filed Critical ALPINA, tovarna obutve, d.d., Žiri
Priority to SI200600269A priority Critical patent/SI22424A/en
Priority to EP07835574A priority patent/EP2088890A1/en
Priority to PCT/SI2007/000038 priority patent/WO2008057056A1/en
Publication of SI22424A publication Critical patent/SI22424A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices
    • A43D1/025Foot-measuring devices comprising optical means, e.g. mirrors, photo-electric cells, for measuring or inspecting feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1074Foot measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

The subject of invention is a device and procedure for threedimensional measurement of body shape, particularly foot shape for the purpose of producing a last and consequently a comfort boot, preferentially a ski boot, fitting as much as possible to the user's foot. The device for threedimensional measurement of body shape, particularly foot shape according to the invention, makes use of foot measurement based on circular revolution and rotation of a laser triangulation meter composed of at least one or two cameras (7, 8) and a laser line projector (9), a basic and walkable board (11) and a mechanism to assure circular motion and rotation of the measuring module.

Description

NAPRAVA IN POSTOPEK ZA TRIDIMENZIONALNO MERJENJEAPPARATUS AND PROCEDURE FOR THREE DIMENSIONAL MEASUREMENT

OBLIKE TELESABODY SHAPES

Predmet izuma je naprava in postopek za tridimenzionalno merjenje oblike telesa, predvsem oblike stopal v namen izdelave čim bolj prilegajočega se kopita in posledično udobnega čevlja, prednostno smučarskega čevlja, nogi uporabnika. Izum spada v razred G 01 B 11/24 mednarodne patentne klasifikacije.The object of the invention is a device and a method for measuring three-dimensional body shape, in particular the shape of the feet, for the purpose of making the shoe as comfortable as possible and, consequently, a comfortable shoe, preferably a ski boot, the user's feet. The invention belongs to class G 01 B 11/24 of the international patent classification.

Tehnični problem, ki ga predložen izum uspešno rešuje je io konstrukcijska rešitev takšne naprave, ki bo omogočala v prvi vrsti sočasno meritev obeh stopal v normalni in pravilni sproščeni legi, točno merjenje v predelih prstov in pete ter enostavno in poceni izvedbo.A technical problem that the present invention successfully solves is the design solution of such a device, which will primarily allow simultaneous measurement of both feet in the normal and correct relaxed position, accurate measurement in the toe and heel areas and simple and cheap implementation.

Poznanih je več vrst naprav za merjenje oblike teles z nepravilnimi oblikami. Tako je npr. iz patentnega dokumenta EP 0 422 946 poznana naprava za merjenje teles z nepravilnimi oblikami, med drugim kopita. Naprava izmeri površino kopita točko za točko tako, da kroži okrog kopita in se sočasno premika vzdolž njegove glavne osi. Merilni modul naprave je sestavljen iz dveh linijskih CCD kamer, ki sta simetrično razporejeni glede na točkovni laserski projektor. Iz dokumenta je razvidno, da je naprava zasnovana predvsem za mejenje kopit in sicer vsakega posamično. Postopek merjenja je dolgotrajen in kot tak ni primeren za merjenje živega, časovno spreminjajočega se telesa, kakršno je na primer stopalo.Several types of irregularly shaped body shape measuring devices are known. Thus, e.g. from patent document EP 0 422 946 known device for measuring bodies with irregular shapes, including hooves. The device measures the surface of the hoof point by point by circling around the hoof and moving along its principal axis at the same time. The measuring module of the device consists of two line CCD cameras that are symmetrically arranged with respect to a point laser projector. The document shows that the device is designed primarily for hoofing, individually. The measurement process is time consuming and as such is not suitable for measuring a living, time-varying body such as the foot.

Rešitev, ki jo opisuje patentni dokument EP 0 671 679 je v principu delovanja in namenu opisane naprave zelo podobna predhodno opisani, s to razliko, da je možno poleg rotacije in translatornega gibanja vzdolž merjenca rotirati tudi merilni modul okrog dveh medsebojno pravokotnih si oseh.The solution described in EP 0 671 679 patent is very similar in principle to the operation and purpose of the device described above, except that in addition to rotation and translational motion, the measuring module can be rotated along two measuring axes.

Patentni dokument PCT/US97/00985 (WO97/27451) opisuje napravo, ki je v svojem bistvu enaka prvo omenjeni, s to razliko, da je z njo možno meriti obliko stopala. Os krožnice merilnega modula mora približno sovpadati z vzdolžno osjo stopala (peta-sredinec). Površino vsakega io stopala posebej meri točko za točko.Patent Document PCT / US97 / 00985 (WO97 / 27451) describes an apparatus substantially identical to the former, except that it can be used to measure the shape of the foot. The axis of the circle of the measuring module should approximately coincide with the longitudinal axis of the foot (heel center). The surface of each io foot individually measures point by point.

Naprava po patentnem dokumentu PCT/EP97/05850 (WO98/18386) se uporablja za merjenje oblike stopal. Naenkrat naprava meri le eno stopalo, ki ga je potrebno vstaviti v luknjo pohodnega podesta. Merilni modul, ki je nameščen pod pohodnim podestom, izmeri stopalo tako, da is opravi 360° krožni hod. Merilni modul deluje na osnovi laserske triangulacije z linijsko osvetlitvijo površine stopala. Sestoji iz video kamere ter laserskega projektorja svetlobne ravnine. Tako je v trenutku izmerjen določen prerez stopala. Celotna površina stopala se rekonstruira na osnovi serije izmerjenih profilov. Naprava je nepraktična predvsem z vidika potrebe po vstavljanju noge v luknjo podesta, nadalje zaradi potrebnega prestopanja. Slabost je tudi nenaravna drža stopala med meritvijo, saj je drugo stopalo bistveno višje.The device according to patent document PCT / EP97 / 05850 (WO98 / 18386) is used to measure the shape of the feet. The device measures only one foot at a time, which needs to be inserted into the hole of the walkway. The measuring module, which is located under the hiking platform, measures the foot in a 360 ° circular motion. The measuring module operates on the basis of laser triangulation with linear illumination of the foot surface. It consists of a video camera and a laser plane light projector. Thus, a certain cross-section of the foot is measured in an instant. The entire surface of the foot is reconstructed based on a series of measured profiles. The device is impractical, especially in view of the need to insert the foot into the hole of the platform, further because of the necessary crossing. Another disadvantage is the unnatural posture of the foot during the measurement, since the second foot is significantly higher.

Naprava po patentnem dokumentu US 2004/0184040 deluje po fotogrametričnem principu. Merjena oseba stopi na pohodno ploščo, na kateri so narisane fotogrametrično razpoznavne oznake, s pomočjo katerih se merilni modul, ki sestoji iz kamere in osvetlitvenih luči, orientira v prostoru tako, da kamera posname poleg slike noge tudi omenjene oznake. Noga, oziroma katerokoli merjeno telo, mora biti med meritvijo prekrito s posebno elastično prevleko, na kateri so tudi narisane fotogrametrično razpoznavne oznake. Meritev poteka tako, da merilni modul opravi 360° krožni hod okrog noge. Slabost te inovacije se kaže io predvsem v tem, da je pred meritvijo potrebno obuti posebne nogavice, kar je zamudno, neekonomično, nenatančno (zaradi povečane velikosti) in nehigienično. Druga slabost pa izhaja iz samega merilnega principa in s tem povezane razpoznave fotogrametričnih vzorcev. Znano je, da je ta tehnika procesorsko zahtevna in občutljiva na morebitne motnje, kakršne is so na primer premik noge ali neustrezna osvetlitev prostorov v katerih poteka merjenje.The device according to the patent document US 2004/0184040 operates according to the photogrammetric principle. The measured person steps on a hiking board with photogrammetric identification markings to help orient the measuring module, consisting of the camera and the illumination lights, in the space so that the camera captures the said markings in addition to the leg image. During the measurement, the leg, or any measured body, must be covered with a special elastic coating, on which photogrammetric identification marks are also drawn. The measurement is carried out in such a way that the measuring module performs a 360 ° circular motion around the leg. The disadvantage of this innovation is also evident in the fact that special socks need to be worn before measurement, which is time consuming, uneconomical, inaccurate (due to the increased size) and unhygienic. Another disadvantage arises from the measurement principle itself and the associated recognition of photogrammetric patterns. This technique is known to be processor-intensive and sensitive to potential interference, such as leg movement or inadequate illumination of measuring rooms.

Glede na opisane izvedbe, nobena od njih ne rešuje zadovoljivo zastavljenega tehničnega problema.According to the embodiments described, none of them solves a satisfactory technical problem.

Naprava za tridimenzionalno merjenje oblike telesa, predvsem oblike 2o stopal po izumu izkorišča princip meritve stopal, ki temelji na krožnem obhodu in rotaciji laserskega triangulacijskega merilnika sestavljenega iz dveh kamer in laserskega projektorja, osnovne in pohodne ploskve ter mehanizma za zagotavljanje krožnega in rotacijskega gibanja merilnega modula.The device for the three-dimensional measurement of body shape, in particular the 2o foot shape according to the invention, utilizes the principle of foot measurement based on a circular circumference and rotation of a laser triangulation meter consisting of two cameras and a laser projector, a basic and walking surface and a mechanism for providing circular and rotational motion of the measuring module .

Napravo za tridimenzionalno merjenje oblike telesa, predvsem oblike stopal po izumu bomo podrobneje obrazložili na osnovi izvedbenega primera in pripadajočih slik, od katerih kaže:The device for three-dimensional measurement of body shape, especially the shape of the feet according to the invention will be explained in more detail on the basis of an embodiment and the accompanying figures, of which it shows:

slika 1 Figure 1 napravo za merjenje oblike telesa po izumu v aksonometričnem pogledu; a device for measuring body shape according to the invention in axonometric view; slika 2 Figure 2 napravo za merjenje oblike telesa po izumu v stranskem pogledu; a device for measuring body shape according to the invention in lateral view;

slika 3a, b, c, d zaporedje gibov merjena v postopku merjenja oblikeFig. 3a, b, c, d The sequence of motions measured in the shape measurement process

telesa z napravo po izumu; bodies with the device according to the invention; slika 4 Figure 4 shematski prikaz sence pri merjenju; schematic representation of shadow when measuring; slika 5 Figure 5 shematski prikaz delovanja laserskega merilnega modula z eno kamero in laserskim linijskim schematic illustration of laser measuring operation module with one camera and laser line 15 15 projektorjem; projectors; slika 6 Figure 6 shematski prikaz delovanja laserskega merilnega modula z dvema kamerama in laserskim linijskim schematic illustration of laser measuring operation module with two cameras and laser line

projektorjem;projectors;

slika 7a blok shemo naprave za merjenje oblike telesa po izumu;Fig. 7a is a block diagram of a device for measuring body shape according to the invention;

slika 7b blok shemo merilnega modula naprave za merjenje oblike telesa po izumu.7b is a block diagram of a measuring module of a device for measuring body shape according to the invention.

Naprava za tridimenzionalno merjenje oblike telesa, predvsem oblike stopal po izumu, deluje po osnovnem principu meritve stopal, ki temelji na krožnem obhodu in rotaciji laserskega triangulacijskega merilnika. Konstrukcijska izvedba naprave po izumu je prikazana na slikah 1 in 2, blok shema same naprave in merilnega modula pa na slikah 7a, 7b , medtem ko bomo s pomočjo slik 3a, b,c,d pojasnili njeno delovanje.The device for three-dimensional measurement of body shape, in particular the shape of the feet according to the invention, operates according to the basic principle of foot measurement based on the circular circumference and rotation of the laser triangulation meter. The structural design of the device according to the invention is shown in Figures 1 and 2, and the block diagram of the device itself and the measuring module is shown in Figures 7a, 7b, while its operation will be explained with the help of Figures 3a, b, c, d.

Postopek za merjenje oblike telesa, predvsem oblike stopal po izumu, je pri zaporedju gibov v primeru merjenja v smeri urinega kazalca v posameznih fazah naslednji:The procedure for measuring the shape of the body, in particular the shape of the feet according to the invention, in the sequence of movements in the case of clockwise measurement in individual stages, is as follows:

io Začetek rotacije druge osi B (slika 3a). Ko se merilni modul 1 zasuče do kota, ko svetlobna ravnina seka prvo rotacijsko os A, se le-ta ustavi. Nato se začne krožno gibanje merilnega modula 1 okrog prve osi A (slika 3b). Krožno gibanje okrog prve osi A se zaključi in prične rotacija merilnega modula 1 okrog druge osi B (slika 3c). Konča se rotacija okrog druge osi B is (slika 3d).io Start of rotation of the second axis B (Figure 3a). When the measuring module 1 rotates to an angle when the light plane intersects the first rotary axis A, it stops. Then, the circular motion of the measurement module 1 starts around the first axis A (Figure 3b). The circular motion around the first axis A is completed and the rotation of the measurement module 1 around the second axis B begins (Figure 3c). The rotation around the second axis B is completed (Figure 3d).

Druga os B rotacije je dodana zaradi sence in s tem povezane nepokritosti merjenja na predelu notranje strani stopala, ko je med merilnim modulom 1 in omenjeno površino sosednja noga (slika 4). Nadalje je pokritost izboljšana z uporabo dveh simetrično nameščenih kamer 7,8 glede na lasersko ravnino (slika 6).The second axis B of the rotation is added because of the shadow and the associated measurement coverage in the area of the inner side of the foot when there is an adjacent leg between the measurement module 1 and said surface (Figure 4). Furthermore, coverage was improved by using two 7.8 symmetrically positioned cameras relative to the laser plane (Figure 6).

Merilni modul 1, temelječ na principu laserske triangulacije z linijskim osvetljevanjem površine, sestoji iz laserskega linijskega projektorja 9 in vsaj ene kamere 7. Laserski linijski projektor 9 osvetljuje merjeno telo s svetlobno ploskvijo. Presečišče med ploskvijo in površino merjenca imenujemo presečna krivulja. Osvetljeno površino posname optično zaznavalo - kamera - z drugega zornega kota. Na mestih presečnih krivulj se svetloba razpršeno odbija in del se je skozi objektiv kamere 7 preslika na senzorsko površino kamere. Premik merjene površine povzroči relativno spremembo lege slike presečne krivulje na zaznavalu. Na sliki določimo slikovne koordinate presečne krivulje, iz katerih na osnovi podatkov o kameri 7, laserskem linijskem projektorju 9 in njuni medsebojni legi izračunamo 3D koordinate točk na površini merjenca. Na sliki 5 je io prikazan princip delovanja laserskega merilnega modula z eno kamero 7.The measurement module 1, based on the principle of laser triangulation with linear illumination of the surface, consists of a laser linear projector 9 and at least one camera 7. The laser linear projector 9 illuminates the measured body with a light surface. The intersection between the surface and the surface of the gauge is called the intersection curve. The illuminated surface is captured by an optical sensor - a camera - from another angle. At the locations of the intersecting curves, light is scattered and the part is imaged through the lens of camera 7 onto the sensor surface of the camera. The displacement of the measured surface causes a relative change in the position of the cross-sectional curve of the sensor. From the figure, we determine the image coordinates of the cross-section curve, from which, based on the camera data 7, the laser line projector 9, and their positions with each other, we calculate the 3D coordinates of the points on the surface of the meter. Figure 5 shows the operating principle of a single camera 7 laser measuring module.

V primeru merjenja kompleksnih (beri: razgibanih) površin je smiselno uporabiti konfiguracijo merilnega modula z dvema kamerama. Pokritost merjene površine se s tem izboljša (slika 6).When measuring complex (read: vibrant) surfaces, it is reasonable to use a dual-camera measurement module configuration. The coverage of the measured area is thus improved (Figure 6).

Na sliki 7a je prikazana blok shema naprave za trodimenzionalno is merjenje oblike telesa po izumu. Napravo sestavljajo mehanski sklopi kot so merilni modul 1, rotacijski mehanizem 2,2' za premikanje merilnega modula 1, napajalnik 3, računalnik 4, monitor 5 in tipkovnica 6. Merilni modul 1 sestavljajo kameri 7,8 in laserski linijski projektor 9.Figure 7a shows a block diagram of a device for measuring three-dimensional body shape according to the invention. The apparatus consists of mechanical assemblies such as the measuring module 1, the rotating mechanism 2.2 'to move the measuring module 1, the power supply 3, the computer 4, the monitor 5 and the keyboard 6. The measuring module 1 consists of cameras 7.8 and a laser line projector 9.

Na računalnik 4 je dvosmerno priključen merilni modul 1 in preko 2o RS232 vmesnika 10 rotacijski mehanizem 2, 2' za premikanje merilnega modula 1. Na drugi strani je računalnik 4 povezan z monitorjem 5 in tipkovnico 6.The measuring module 1 is connected to the computer 4 and a rotary mechanism 2, 2 'to move the measuring module 1 via the RS232 interface 10 through the 2o RS232. On the other hand, the computer 4 is connected to the monitor 5 and the keyboard 6.

Naprava izmeri tridimenzionalno obliko stopal tako, da merjena oseba z obema stopaloma stopi na pohodno ploščo 11. Operater, oziroma kar merjena oseba sama sproži meritev s pritiskom na računalniško tipkovnicoThe device measures the three-dimensional shape of the feet by measuring the person with both feet on the hiking board 11. The operator, or the measured person himself, initiates the measurement by pressing a computer keyboard

6, oziroma na drug računalniško prepoznaven način (glasovno, posebna tipka, touch screen, itd). Računalnik 4 pošlje preko RS232 vmesnika 10 signal krmilni elektroniki rotacijskega mehanizma 2,2' za začetek gibanja kakor je prikazano na slikah 3 a, b, c in d. Krmilna elektronika rotacijskega mehanizma 2,2' pošilja preko vmesnika RS232 signale računalniku o tem, kdaj se dejansko prične oziroma zaključi posamezna faza gibanja, io Računalnik 4 namreč zajema sliko s kamer le v času enakomernega gibanja oziroma rotacije merilnega modula, torej v časovnih periodah, ki jih razmejujejo omenjeni signali krmilne elektronike. Po končanih vseh treh gibih se izvede obdelava zajetih podatkov, čigar rezultat predstavlja v prvi fazi oblak tridimenzionlnih točk, ki popisujejo površino obeh stopal. V is nadaljevanju se računalniško izvede analiza omenjenih točk z namenom določitve karakterističnih dimenzij, kakršne so dolžina ter višina, širina in obseh na posameznem prerezu posameznega stopala. Rezultati omenjene analize se grafično prikažejo na monitorju 5, natisnejo na papir in shranijo v bazo podatkov. S tem je meritev končana. V primeru merjenja stopal v prodajalnah se lahko računalniški algoritem nadaljuje še z izbiro čevlja, ki se najbolje prilega kupčevi nogi.6, or in another computer-recognizable way (voice, special key, touch screen, etc.). The computer 4 sends, via RS232 interface 10, a signal to the control electronics of the 2.2 'rotation mechanism to initiate movement as shown in Figures 3 a, b, c and d. The control electronics of the rotary mechanism 2,2 'send signals via the RS232 interface to the computer when the actual phase of motion is actually started or completed, io Computer 4 captures the camera image only during steady motion or rotation of the measuring module, ie in time periods, delimited by said control electronics signals. After completing all three movements, the processing of the captured data is carried out, the result of which in the first phase is a cloud of three-dimensional points that survey the surface of both feet. In the following, the analysis of the mentioned points is performed by computer in order to determine the characteristic dimensions, such as length, height, width and circumferences on the individual cross section of each foot. The results of said analysis are graphically displayed on monitor 5, printed on paper and stored in a database. This completes the measurement. In the case of foot measurements in stores, the computer algorithm can continue to choose the shoe that fits best with the customer's foot.

Z navedenim sosledjem gibanja merilnega modula in prikazano konstrukcijsko izvedbo naprave po izumu so dosežene naslednje prednosti pred obstoječimi vrstami merilnikov:With the stated sequence of motion of the measuring module and the shown construction of the device according to the invention, the following advantages are achieved over existing types of meters:

- predel prstov in pete je zelo dobro izmerjen, ker je smer merjenja približno pravokotna na površino pete oziroma prstov,- the toe and heel area is very well measured because the measurement direction is approximately perpendicular to the heel or toe surface,

- sočasno se meri obe stopali, zaradi česar ni potrebno prestopanje osebe in, kar je najpomembnejše, obe stopali sta v pravilni, sproščeni legi, poleg tega pa je tudi krajši čas meritve;- both feet are measured simultaneously, which makes it unnecessary for a person to cross and, most importantly, both feet are in a correct, relaxed position, as well as a shorter measurement time;

- enostavna in poceni izvedba.- Easy and inexpensive implementation.

Claims (5)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Naprava za tridimenzionalno merjenje oblike telesa, označena s tem,1. A device for the three-dimensional measurement of body shape, characterized in that: 5 da je sestavljena iz merilnega modula (1), rotacijskega mehanizma (2,2') za premikanje merilnega modula (1), napajalnika (3), računalnika (4), monitorja (5) in tipkovnice (6).5 that it consists of a measuring module (1), a rotary mechanism (2,2 ') for moving the measuring module (1), a power supply (3), a computer (4), a monitor (5) and a keyboard (6). 2. Naprava za tridimenzionalno merjenje oblike telesa, po zahtevku 1 io označena s tem, da merilni modul (1) sestavljajo najmanj ena kamera (7) in laserski linijski projektor (9).A three-dimensional body shape measuring device according to claim 1 io, characterized in that the measuring module (1) consists of at least one camera (7) and a laser line projector (9). 3. Naprava za tridimenzionalno merjenje oblike telesa, po zahtevku 1A device for the three-dimensional measurement of body shape according to claim 1 15 označena s tem, da merilni modul (1) sestavljajo kameri (7, 8) in laserski linijski projektor (9).15, characterized in that the measuring module (1) consists of cameras (7, 8) and a laser line projector (9). 4. Postopek za tridimenzionalno merjenje oblike telesa,4. Procedure for three-dimensional measurement of body shape, 20 označen s tem, da se merjenje začne z rotacijo druge osi (B), pri čemer je na začetku merilni modul (1) zasukan približno 45° glede na smer proti prvi rotacijski osi (A) in ko se merilni modul (1) zasuče do kota, ko svetlobna ravnina seka prvo rotacijsko os (A), se le-ta ustavi, nakar se začne krožno gibanje merilnega modula (1) okrog prve osi (A) in ko se zaključi in prične rotacija merilnega modula (1) okrog druge rotacijske osi (B) , ki se nato zaključi pri obratu merilnega modula20, characterized in that the measurement starts with the rotation of the second axis (B), with the beginning of the measuring module (1) rotated about 45 ° relative to the direction towards the first rotary axis (A) and when the measuring module (1) is rotated to the angle when the light plane intersects the first rotary axis (A), it stops, then begins the circular motion of the measuring module (1) around the first axis (A) and when the rotation of the measuring module (1) ends around the second of the rotary axis (B), which is then terminated at the rotation of the measuring module 5 (1) za približno 45° glede na smer proti prvi rotacijski osi (A).5 (1) by about 45 ° relative to the direction of the first rotary axis (A).
SI200600269A 2006-11-07 2006-11-07 Device and procedure for threedimensional measurement of body shape SI22424A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI200600269A SI22424A (en) 2006-11-07 2006-11-07 Device and procedure for threedimensional measurement of body shape
EP07835574A EP2088890A1 (en) 2006-11-07 2007-11-07 Three-dimensional scanning of feet
PCT/SI2007/000038 WO2008057056A1 (en) 2006-11-07 2007-11-07 Three-dimensional scanning of feet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200600269A SI22424A (en) 2006-11-07 2006-11-07 Device and procedure for threedimensional measurement of body shape

Publications (1)

Publication Number Publication Date
SI22424A true SI22424A (en) 2008-06-30

Family

ID=39203083

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200600269A SI22424A (en) 2006-11-07 2006-11-07 Device and procedure for threedimensional measurement of body shape

Country Status (3)

Country Link
EP (1) EP2088890A1 (en)
SI (1) SI22424A (en)
WO (1) WO2008057056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112254672A (en) * 2020-10-15 2021-01-22 天目爱视(北京)科技有限公司 Height-adjustable's intelligent 3D information acquisition equipment

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282687B (en) 2005-10-14 2011-11-16 应用研究联盟新西兰有限公司 Method of monitoring a surface feature and apparatus therefor
ES2380531B1 (en) * 2009-07-17 2013-04-04 Elio Berhanyer, S.L. THREE-DIMENSIONAL SCANNER WITHOUT CONTACT FOR THE MEASUREMENT OF OBJECTS
CN102034264B (en) * 2010-09-30 2013-01-30 香港理工大学 Three-dimensional foot scanner
US9179844B2 (en) 2011-11-28 2015-11-10 Aranz Healthcare Limited Handheld skin measuring or monitoring device
US9019359B2 (en) 2012-03-29 2015-04-28 Nike, Inc. Foot imaging and measurement apparatus
CN103344363B (en) * 2013-06-26 2015-01-07 北京航空航天大学 Flat valgus correcting force measuring instrument
FR3009168B1 (en) * 2013-07-31 2015-08-28 Gabilly DEVICE FOR VISIOMETRIC EXAMINATION OF THE FOOT
CN106377015B (en) * 2015-04-15 2020-04-21 郑士超 Foot shape scanner
US10492712B2 (en) 2016-03-30 2019-12-03 Aetrex Worldwide, Inc. System and method for identifying physical properties of feet
WO2017173183A1 (en) * 2016-03-30 2017-10-05 Aetrex Worldwide, Inc. Improved system and method for identifying physical properties of feet
US10013527B2 (en) 2016-05-02 2018-07-03 Aranz Healthcare Limited Automatically assessing an anatomical surface feature and securely managing information related to the same
CZ309231B6 (en) * 2016-07-29 2022-06-08 Univerzita Tomáše Bati ve Zlíně Method of producing customized footwear
CZ2016581A3 (en) * 2016-09-20 2017-06-14 Univerzita Tomáše Bati ve Zlíně A device for 3D scanning of spatial objects, especially the foot and adjacent parts of the human foot
US11116407B2 (en) 2016-11-17 2021-09-14 Aranz Healthcare Limited Anatomical surface assessment methods, devices and systems
KR101885716B1 (en) * 2016-12-07 2018-08-06 주식회사 에이치비티 Apparatus for foot scanning
EP4183328A1 (en) 2017-04-04 2023-05-24 Aranz Healthcare Limited Anatomical surface assessment methods, devices and systems
CN107348616A (en) * 2017-08-22 2017-11-17 武汉维码科技有限公司 A kind of three-dimensional biped scanner
CN107518522B (en) * 2017-10-13 2022-09-16 郑州马飞电子技术有限公司 Three-dimensional foot laser scanner
US12039726B2 (en) 2019-05-20 2024-07-16 Aranz Healthcare Limited Automated or partially automated anatomical surface assessment methods, devices and systems
CN113100754B (en) * 2020-01-21 2023-02-03 天目爱视(北京)科技有限公司 3D information acquisition measuring equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8923169D0 (en) 1989-10-13 1989-11-29 British United Shoe Machinery Digitising irregularly shaped articles
EP0671679B1 (en) 1994-03-07 2000-01-26 INTECU Gesellschaft für Innovation, Technologie und Umwelt mbH Method and device to measure without contact tridimensional objects based on optical triangulation
US5671055A (en) 1996-01-23 1997-09-23 Acushnet Company Apparatus, system and method for laser measurement of an object shape
IT1287977B1 (en) 1996-10-31 1998-09-10 Label Elettronica Srl UNIT FOR THE CREATION OF PERSONALIZED SHOES FOR HANDICAP HOLDERS AT THE LOWER ENDS
JPWO2003008904A1 (en) 2001-07-17 2004-11-11 三洋電機株式会社 Shape measuring device
DE10309788A1 (en) * 2003-03-05 2004-09-16 Corpus.E Ag Simple optical detection of the spatial shape of bodies and body parts with mechanically inaccurately positioned imagers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112254672A (en) * 2020-10-15 2021-01-22 天目爱视(北京)科技有限公司 Height-adjustable's intelligent 3D information acquisition equipment
CN112254672B (en) * 2020-10-15 2022-02-15 天目爱视(北京)科技有限公司 Height-adjustable's intelligent 3D information acquisition equipment

Also Published As

Publication number Publication date
EP2088890A1 (en) 2009-08-19
WO2008057056A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
SI22424A (en) Device and procedure for threedimensional measurement of body shape
US9289158B2 (en) Calibration-free and precise optical detection of a three-dimensional shape
US7433502B2 (en) Three-dimensional, digitized capturing of the shape bodies and body parts using mechanically positioned imaging sensors
US7557966B2 (en) Apparatus and method for scanning an object
ES2342262T3 (en) PROCEDURE AND PROVISION TO DETECT THE SPACE FORM OF AN OBJECT.
US5689446A (en) Foot contour digitizer
US6549639B1 (en) Body part imaging system
US11045113B2 (en) Method for determining the alignment of a system, and a display system
US5457325A (en) Contact-free procedure for measuring the three dimensional shape of an object, particularly a human foot, by imaging the object and the indentation left by the object
RU2230487C2 (en) Human body region measuring method
US10492569B2 (en) Sole measuring device
EP1193467A2 (en) Foot measurement system and method
JP2017503225A (en) Motion capture system
KR101097933B1 (en) Portable body measuring system
Blenkinsopp et al. A method to measure dynamic dorsal foot surface shape and deformation during linear running using digital image correlation
KR102277292B1 (en) Measuring device for walking state
CN110934597B (en) Operation method of abnormal gait monitoring equipment
WO2018065803A1 (en) Foot shape acquisition using depth sensor and pressure plate technology
JP2015009032A (en) Lower limb shape change measuring apparatus, method, and program
DE69709001D1 (en) Biomedical device, in particular for measuring and evaluating the posture of the rear part of the foot
EP2023816A1 (en) Balance monitor
Gaertner et al. Multiple structured light system for the 3D measurement of feet
RU2034509C1 (en) Method of contactless measurement of foot surface
CN217566068U (en) Fixing device for accurate measurement of sensor
Wiedemann et al. Photogrammetric survey of dinosaur skeletons

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20070213

KO00 Lapse of patent

Effective date: 20140617