SI22385A - Method for determination of proportion and quality of hybridoms and application of hybridoms of appropriate quality - Google Patents
Method for determination of proportion and quality of hybridoms and application of hybridoms of appropriate quality Download PDFInfo
- Publication number
- SI22385A SI22385A SI200600207A SI200600207A SI22385A SI 22385 A SI22385 A SI 22385A SI 200600207 A SI200600207 A SI 200600207A SI 200600207 A SI200600207 A SI 200600207A SI 22385 A SI22385 A SI 22385A
- Authority
- SI
- Slovenia
- Prior art keywords
- lysosomes
- hybridomas
- cells
- fused
- proportion
- Prior art date
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Področje tehnike, v katero spada izumFIELD OF THE INVENTION
Predloženi izum je s področja celične biologije, terapevtske biotehnologije in imunologije ter se nanaša na metodo za določanje deleža in kvalitete hibridomov, ki nastanejo s fuzijo evkariontskih celic, npr. dendritičnih in tumorskih celic. V nadaljevanju se bomo osredotočili na fuzijo med dendritičnimi in tumorskimi celicami.The present invention is in the field of cell biology, therapeutic biotechnology and immunology and relates to a method for determining the proportion and quality of hybridomas resulting from fusion of eukaryotic cells, e.g. dendritic and tumor cells. In the following, we will focus on the fusion between dendritic and tumor cells.
Predmet izuma je metoda s konfokalno mikroskopijo za določanje deleža hibridomov s pomočjo fluorescenčno označenih subcelulamih organelov, npr. lizosomov. Hkrati pa lahko s to metodo določimo tudi delež zlitih lizosomov v posameznem hibridomu. Ta informacija je zelo pomembna za ugotavljanje kakovosti celičnega cepiva. Hibridomi iz dendritičnih in tumorskih celic namreč predstavljajo celično cepivo za zdravljenje raka, potencialno pa se lahko hibridomi, pripravljeni po tej metodi, lahko uporabljajo tudi na splošno za modulacijo imunskega odziva.The subject of the invention is a method of confocal microscopy for determining the proportion of hybridomas by means of fluorescently labeled subcellular organelles, e.g. lysosomes. At the same time, the method can also determine the proportion of fused lysosomes in a single hybridoma. This information is very important for determining the quality of the cell vaccine. Indeed, dendritic and tumor cell hybridomas are cellular vaccines for the treatment of cancer, and potentially, hybridomas prepared by this method can also be used generally to modulate the immune response.
Določanje deleža in kvalitete hibridomov je zelo pomembna stopnja pri njihovi proizvodnji.Determining the proportion and quality of hybridomas is a very important step in their production.
Delež hibridomov se po novi metodi s konfokalno mikroskopijo določa z zaznavanjem lizosomov in z medenjem fuzije lizosomov, ki izhajajo iz različnih starševskih celic, ki so lahko humanega in/ali živalskega izvora. Proces fuzije lizosomov je temelj predstavljanja antigenov v antigen predstavitvenih celicah. Zato je tudi v hibridomih iz dendritičnih in tumorskih celic fuzija lizosomov neposredno vključena v antigen predstavitveno pot. Tumorski peptidi iz lizosomov tumorskih celic se namreč povezujejo z molekulami poglavitnega histokompatibilnega sistema (PHK) razreda II, ki izhajajo iz lizosomov dendritičnih celic. Torej izkoriščamo lastnost lizosomov, da se zlivajo med seboj in se povezujejo kot zgoraj ter se samo v tem primeru na celicah predstavijo vsi znani in neznani tumorski antigeni. To pa je predpogoj za kvaliteto hibridomov, primernih za izdelavo celičnega cepiva.According to the new method, the proportion of hybridomas is determined by confocal microscopy by detecting lysosomes and by mediating the fusion of lysosomes derived from different parental cells, which may be of human and / or animal origin. The process of lysosome fusion is the cornerstone of antigen presentation in antigen presenting cells. Therefore, even in dendritic and tumor cell hybridomas, lysosome fusion is directly involved in the antigen presentation pathway. Tumor peptides from tumor cell lysosomes bind to molecules of major histocompatible system (PHK) class II derived from dendritic cell lysosomes. So we take advantage of the property of lysosomes to fuse with each other and connect as above, and only in this case all known and unknown tumor antigens are presented on the cells. This, however, is a prerequisite for the quality of hybridomas suitable for the production of the cell vaccine.
Metoda v smislu izuma je uporabna tudi za označevanje in določanje števila hibridomov, ki sintetizirajo protitelesa, in za druge aplikacije študija dinamike subcelulamih struktur.The method of the invention is also useful for labeling and determining the number of antibody-synthesizing hybridomas and for other applications of subcellular structure dynamics studies.
Tehnični problemA technical problem
Določanje deleža hibridomov je doslej temeljilo na standardni metodi pretočne citometrije, ki omogoča merjenje rumenih dvojnofluorescenčnih celic, katerih citoplazma vsebuje mešanico zelenih in rdečih fluorescenčnih citoplazemskih označevalcev, ki jih ločeno vnašajo v starševske celice. Vendar pa zaradi tehničnih omejitev pretočna citometrija zazna skupke celic tudi kot hibridome, zato je bolje določati hibridome s konfokalno mikroskopijo (Gabrijel in sod., Quantification of celi hybridoma yields with confocal microscopy and flow cytometry, Biochem. Biophys. Res. Commun., vol. 314, leto 2004, zvezek 3, strani 717-723). V obeh primerih pa se dobljeni rezultati nanašajo zgolj na količino fuzijskega produkta. Izkazalo se je tudi, da je opisana metoda premalo občutljiva pri določanju kvalitete posameznih hibridomov. Poleg tega so nekateri znanstveniki določali število hibridomov v fuziranih vzorcih že po nekajurni inkubaciji na 37°C (Orentas in sod., Electrofusion of a weakly immunogenic neuroblastoma with dendritic celiš produces a tumor vaccine, Celi Immunol., vol. 213, leto 2001, zvezek 1, strani 4-13). To pa po podatkih iz literature ne zadostuje za pripravo biološko učinkovitih celičnih cepiv, saj je potek predstavitve antigenov bistveno počasnejši (Pierre in sod., Developmental regulation of MHC class II transport in mouse dendritic celiš, Nature, vol. 388, leto 1997, zvezek 6644, strani 787-792; Roosnek E in sod., Kinetics of MHC-antigen complex formation on antigen-presenting celiš, J. Immunol., vol. 140, leto 1988, zvezek 12, strani 4079-4082). Tako se na površini hibridomov ne izpostavi dovolj tumorskih antigenov v kompleksih z molekulami PHK. Uporaba takih hibridomov tako ne more izzvati maksimalne aktivacije T celic proti celotnemu spektru tumorskih antigenov, to je znanih in neznanih tumorskih antigenov.So far, the determination of the proportion of hybridomas has been based on the standard flow cytometry method, which allows the measurement of yellow double-fluorescence cells, whose cytoplasm contains a mixture of green and red fluorescence cytoplasmic markers, which are separately introduced into the parent cells. However, due to technical limitations, flow cytometry also detects cell clusters as hybridomas, so it is better to identify hybridomas by confocal microscopy (Gabriel et al., Quantification of whole hybridoma yields with confocal microscopy and flow cytometry, Biochem. Biophys. Res. Commun., Vol 314, 2004, Volume 3, Pages 717-723). In both cases, however, the results obtained relate solely to the amount of fusion product. It also turned out that the method described is not sensitive enough to determine the quality of individual hybridomas. In addition, some scientists have determined the number of hybridomas in fused samples after incubated incubation at 37 ° C (Orentas et al., Electrofusion of a weakly immunogenic neuroblastoma with dendritic cell produces a tumor vaccine, Celi Immunol., Vol. 213, 2001). Volume 1, Pages 4-13). According to the literature, this is not sufficient for the preparation of biologically effective cell vaccines, since the course of antigen presentation is much slower (Pierre et al., Developmental regulation of MHC class II transport in mouse dendritic cellulose, Nature, vol. 388, 1997 6644, pages 787-792; Roosnek E et al., Kinetics of MHC-antigen complex formation on antigen-presenting cellulose, J. Immunol., Vol. 140, 1988, Volume 12, pages 4079-4082). Thus, not enough tumor antigens in complexes with PHK molecules are exposed on the surface of hybridomas. The use of such hybridomas thus cannot induce maximal T cell activation against the full spectrum of tumor antigens, that is, known and unknown tumor antigens.
Torej idealno bi bilo, če bi lahko delež hibridomov določili ob uporabi strategije, ki bi omogočala zaznavanje biološko bolj relevantnega postopka, npr. kot je predstavljanje antigenov.So ideally, the proportion of hybridomas could be determined using a strategy that would allow for the detection of a more biologically relevant process, e.g. such as antigen presentation.
Stanje tehnikeThe state of the art
Prednost celičnih hibridomov pred drugimi celičnimi cepivi je ta, da le ti s pomočjo visoko specializiranih antigen predstavitvenih mehanizmov dendritičnih celic na svoji površini predstavijo tako znane kot tudi neznane tumorske antigene v taki obliki (Gong in sod., Induction of antitumor activity by immunization with fusions of dendritic and carcinoma celiš, Nat. Med.,vol 3, leto 1997, strani 558 - 561), da jih prepoznajo limfociti T. Raziskave so na področju celičnih hibridomov napredovale do kliničnih poizkusov, kjer seje izkazalo, da se imunske celice sicer aktivirajo, klinični učinki pa se pokažejo le pri omejeni skupini ljudi. Vzroke za to lahko pripisujemo delno tudi neustrezni metodi za pripravo in določanje deleža hibridomov s pretočno citometrijo. Količina hibridomov kot tudi ustrezno predstavljanje tumorskih antigenov sta namreč ključnega pomena za aktivacijo imunskega odziva. Danes se namreč določa delež hibridomov s pomočjo pretočne citometrije tako, da se obarvajo enake količine partnerskih celic z zelenimi oz. rdečimi fluorescenčnimi citoplazemskimi barvili (Jaroszeski in sod., Flow cytometric detection and quantitation of cell-cell electrofusion products, Methods Mol. Biol., vol. 91, leto 1998, strani 149-156). Število hibridomov se po elektrofuziji določi z iskanjem dvojnofluorescenčnih celic, ki so zaradi mešanja citoplazemskih označevalcev obarvane rumeno. Vendar sčasoma se je ta tehnika izkazala za premalo občutljivo (Hayashi in sod., Immunogenicity and therapeutic efficacy of dendritic-tumor hybrid celiš generated by electrofusion, Ciin. Immunol., vol. 104, strani 14-20) pri določanju kvalitete posameznih celic. Poleg tega se rumeno obarvanje celic pojavi kmalu po fuziji, zato nekateri znanstveniki določajo njihovo število v fuziranih vzorcih že po nekajurni inkubaciji na 37°C (Orentas in sod., Electrofusion of a weakly immunogenic neuroblastoma with dendritic celiš produces a tumor vaccine, Celi Immunol vol. 213, leto 2001, zvezek 1, strani 4-13). V tem času pa na membrani hibridoma veijetno še ne pride do učinkovitega izpostavljanja tumorskih antigenov. Tako pripravljeni hibridomi ne izzovejo množične aktivacije ustreznih imunskih celic proti celotnemu spektru znanih in neznanih tumorskih antigenov. To je lahko tudi eden izmed vzrokov za slabši učinek cepiva, o katerem poročajo v nekaterih raziskavah (Orentas in sod., Electrofusion of a weakly immunogenic neuroblastoma with dendritic celiš produces a tumor vaccine, Celi Immunol vol. 213, leto 2001, zvezek 1, strani 4-13).The advantage of cell hybridomas over other cellular vaccines is that, through highly specialized antigen-presenting mechanisms of dendritic cells, they present on their surface both known and unknown tumor antigens in this form (Gong et al., Induction of antitumor activity by immunization with fusions of dendritic and carcinoma celiš, Nat. Med., vol. 3, 1997, pages 558 - 561) to be recognized by lymphocytes T. Research in the field of cell hybridomas has progressed to clinical trials where immune cells have otherwise been shown to activate. and only a limited group of people show clinical effects. The reasons for this can be attributed in part to the inappropriate method for preparing and determining the proportion of hybridomas by flow cytometry. The amount of hybridomas as well as the proper presentation of tumor antigens are crucial for the activation of the immune response. Today, the proportion of hybridomas is determined by flow cytometry by staining the same amount of partner cells with green or green cells. red fluorescence cytoplasmic dyes (Jaroszeski et al., Flow cytometric detection and quantitation of cell-cell electrofusion products, Methods Mol. Biol., vol. 91, 1998, pages 149-156). The number of hybridomas is determined after electrofusion by searching for double-fluorescence cells, which are colored yellow due to mixing of cytoplasmic markers. However, over time, this technique has proven to be less sensitive (Hayashi et al., Immunogenicity and therapeutic efficacy of dendritic-tumor hybrid whole cell generated by electrofusion, Ciin. Immunol., Vol. 104, pages 14-20) in determining the quality of individual cells. In addition, yellow staining of cells occurs shortly after fusion, which is why some scientists determine their number in fused samples after incubating at 37 ° C (Orentas et al., Electrofusion of a weakly immunogenic neuroblastoma with dendritic cell produces a tumor vaccine, Celi Immunol vol. 213, 2001, vol. 1, pages 4-13). At this time, however, there is likely to be no effective exposure of tumor antigens to the membrane of the hybridoma. Thus prepared hybridomas do not elicit mass activation of relevant immune cells against the full spectrum of known and unknown tumor antigens. This may also be one of the causes of the adverse effect of the vaccine reported in some studies (Orentas et al., Electrofusion of a weakly immunogenic neuroblastoma with dendritic cellulitis produces a tumor vaccine, Celi Immunol vol. 213, 2001, Volume 1, pages 4-13).
Rešitev tehničnega problemaThe solution to a technical problem
Navedene pomanjkljivosti lahko uspešno odpravimo z metodo v smislu izuma. Kontroliramo povprečen delež hibridomov z meijenjem obsega fuzije lizosomov z uporabo konfokalne mikroskopije. Ta metoda omogoča tudi razločevanje lizosomov in omogoča določanje stanja njihove fuzije znotraj hibridomov, kar pretočna citometrija ne more zaznati. Lizosomi so dinamični organeli, ki se lahko fuzirajo in ki so vpleteni v predstavljanje antigenov. Hibridome določimo s pomočjo različno (običajno zeleno in rdeče) označenih lizosomov, ki so v hibridomih neposredno vključeni v proces izražanja antigenov. Med lizosomi iz obeh vrst starševskih celic namreč lahko v določenih inkubacijskih pogojih - čas in temperatura - opazujemo fiziološki proces zlitja lizosomov. Fuzija lizosomov obeh starševskih celic je v hibridomih del antigen predstavitvene poti in omogoča povezovanje tumorskih peptidov, ki se nahajajo v lizosomih tumorskih celic, z molekulami poglavitnega histokompatibilnega sistema, ki izhajajo iz lizosomov dendritičnih celic.These disadvantages can be successfully remedied by the method of the invention. We control the average proportion of hybridomas by varying the extent of lysosome fusion using confocal microscopy. This method also allows the distinguishing of lysosomes and allows the determination of their fusion status within hybridomas, which flow cytometry cannot detect. Lysosomes are dynamic, fusible organelles that are involved in the presentation of antigens. Hybridomas are identified using differentially labeled lysosomes (usually green and red) that are directly involved in the antigen expression process in the hybridomas. Among the lysosomes from both types of parental cells, the physiological process of fusion of lysosomes can be observed under certain incubation conditions - time and temperature. The fusion of the lysosomes of both parent cells is part of the antigen presentation pathway in the hybridomas and allows the association of tumor peptides located in the tumor cell lysosomes with molecules of the major histocompatible system derived from the dendritic cell lysosomes.
Ta pristop omogoča novo metodo za optimizacijo priprave hibridomskih celičnih cepiv na osnovi intracelulamega procesa predstavljanja antigenov.This approach provides a new method for optimizing the preparation of hybridoma cell vaccines based on the intracellular antigen presentation process.
Ta metoda zajema:This method covers:
- označevanje celičnih predelkov, v ožjem smislu so to lizosomi, ki so vpleteni v izražanje antigenov;- labeling of cell compartments, in the narrow sense, these are lysosomes involved in the expression of antigens;
- določanje števila lizosomov v posamezni celici s pomočjo konfokalne mikroskopije;- determination of the number of lysosomes in a single cell by confocal microscopy;
- določanje deleža hibridomov na podlagi števila lizosomov, ki izhajajo iz starševskih celic;- determining the proportion of hybridomas based on the number of lysosomes derived from parental cells;
- določanje deleža zlitih lizosomov v hibridomu v različnih inkubacijskih pogojih s pomočjo npr. konfokalne mikroskopije. S tem pa nam ta metoda hkrati podaja tudi informacijo o aktivnosti antigen predstavitvene poti v hibridomu, od česar je odvisna biološka učinkovitost celičnega cepiva.determining the proportion of fused lysosomes in the hybridoma under different incubation conditions using e.g. confocal microscopy. In addition, this method also provides us with information on the activity of the antigen presentation pathway in the hybridoma, which depends on the biological efficacy of the cellular vaccine.
Prvi predmet izuma je torej metoda za določanje deleža in kvalitete hibridomov evkariontskih celic, označena s tem, da označimo lizosome starševskih celic humanega in/ali živalskega izvora, pri čemer so lahko ena vrsta starševskih celic tumorske celice, ki jih označimo z eno barvo, in so druga vrsta starševskih celic druge evkariontske celice, prednostno dendritične celice, ki jih označimo z drugo barvo, celice fuziramo in merimo obseg fuzije lizosomov.The first object of the invention is therefore a method for determining the proportion and quality of eukaryotic cell hybridomas, characterized by the labeling of lysosomes of parental cells of human and / or animal origin, wherein one type of parental cells may be tumor cells labeled with one color, and they are another type of parental cells of another eukaryotic cell, preferably dendritic cells labeled with a different color, the cells are fused and the extent of lysosome fusion measured.
Natančneje je gornja metoda označena s tem, da,More specifically, the above method is characterized by the fact that,
- fluorescenčno označimo lizosome- Fluorescently label the lysosomes
- s pomočjo konfokalne mikroskopije na znan način določimo minimalno število lizosomov v posameznih starševskih celicah,- by means of confocal microscopy, in a known manner, the minimum number of lysosomes in individual parent cells is determined,
- posamezne starševske celice podvržemo fuziji in jih po fuziji inkubiramo od 2 do 30 ur pri temperaturi od 20 do 37°C,- individual parental cells are fused and incubated after fusion for 2 to 30 hours at a temperature of 20 to 37 ° C,
- s pomočjo konfokalne mikroskopije na znan način poiščemo potencialne hibridome;- Potential hybridomas are identified in a known manner using confocal microscopy;
- določimo število hibridomov kot število celic z minimalnim številom različno obarvanih nezlitih lizosomov iz obeh starševskih celic in minimalnim številom zlitih lizosomov, kijih identificiramo kot drugače obarvane,- determine the number of hybridomas as the number of cells with a minimum number of differently stained unbound lysosomes from both parent cells and a minimum number of fused lysosomes identified as otherwise stained,
- izrazimo delež hibridomov kot razmeije med številom hibridomov in številom vseh fluorescenčno označenih celic.- express the proportion of hybridomas as the ratio between the number of hybridomas and the number of all fluorescently labeled cells.
Od klasične metode za določanje števila hibridomov se nova metoda v smislu izuma razlikuje po tem, da ne označujemo citoplazme, pač pa lizosome, ki so neposredno vključeni v proces predstavljanja tumorskih antigenov. Število lizosomov znotraj hibridomov lahko določamo le s konfokalno mikroskopijo. Tako se nova metoda s konfokalno mikroskopijo od doslej uporabljene metode s pretočno citometrijo razlikuje tudi po tem, da ne podaja le natančne informacije o kvantiteti hibridomov, pač pa je primerna tudi za določanje kvalitete posameznih celic, torej tudi o kvaliteti hibridomov v suspenziji celičnega cepiva.The new method of the invention differs from the classical method for determining the number of hybridomas in that we do not label cytoplasm but lysosomes that are directly involved in the process of presenting tumor antigens. The number of lysosomes within hybridomas can only be determined by confocal microscopy. Thus, the new method by confocal microscopy differs from the flow cytometry method used so far in that it not only provides accurate information on the quantity of hybridomas, but is also suitable for determining the quality of individual cells, ie the quality of hybridomas in suspension of the cell vaccine.
Do zdaj ni bilo na razpolago metode, ki bi omogočala določanje deleža hibridomov s pomočjo celičnih predelkov, ki so neposredno vključeni v antigen predstavitveno pot hibridoma.So far, no method has been available to allow the determination of the proportion of hybridomas by cellular compartments directly involved in the antigen presentation pathway of hybridomas.
Pri metodi v smislu izuma izkoriščamo lastnost lizosomov, da se zlivajo med seboj. Med seboj se zlivajo tudi lizosomi celic različnega izvora.The method of the invention exploits the property of lysosomes to merge with one another. Cell lysosomes of different origin also merge with each other.
Za označevanje lizosomov uporabljamo fluorescenčno označene molekule dekstranov ali drugih podobnih molekul, ki se v celico vključujejo po endocitotični poti. Za vsako od obeh vrst starševskih celic, to je npr. dendritičnih in tumorskih celic, uporabimo drugo fluorescenčno barvilo, navadno uporabljamo zeleno in rdeče fluorescenčno označene celice, lahko pa tudi drugih barv. Potovanje dekstranov v lizosome traja od nekaj do najmanj 20 ur in več pri 37°C, odvisno od vrste celic. Molekule dekstranov odstranimo iz zgodnjih in poznih endosomalnih predelkov z nekajurno inkubacijo naFluorescently labeled molecules of dextrans or other similar molecules are used to label the lysosomes, which are incorporated into the cell by the endocytotic pathway. For each of the two types of parental cells, e.g. dendritic and tumor cells, we use a different fluorescent dye, we usually use green and red fluorescently labeled cells, but we can also use other dyes. The journey of dextran to lysosomes lasts from a few to at least 20 hours and more at 37 ° C, depending on the cell type. Dextran molecules are removed from early and late endosomal compartments by non-ciliary incubation at
37°C v hranilnem mediju v odsotnosti dekstranov, da ne bi prišlo do motenj meritev kvantifikacije pri lizosomih.37 ° C in nutrient medium in the absence of dextran to avoid disturbing quantification measurements in lysosomes.
Ta metoda je temelj tako za določanje količine hibridomov v celičnem cepivu kot tudi za določanje aktivnosti antigen predstavitvene poti v hibridomih v različnih inkubacijskih pogojih.This method is the basis both for determining the amount of hybridomas in the cell vaccine and for determining the activity of the antigen presentation pathway in hybridomas under different incubation conditions.
Metoda v smislu izuma obsega naslednje zaporedne stopnje:The method of the invention comprises the following sequential steps:
a) na znan način določanje minimalnega števila označenih lizosomov v posameznih starševskih celicah;a) in a known manner, determining the minimum number of labeled lysosomes in each parent cell;
b) zajemanje konfokalnih slik fuziranih in kontrolnih vzorcev, to je vzorcev celic, ki niso bile izpostavljene elektro fuzijskemu postopku;b) capturing confocal images of fused and control samples, that is, samples of cells that were not exposed to the electro-fusion process;
c) zajemanje zaporednih vertikalnih optičnih ravnin s pomočjo konfokalne mikroskopije za vsak predpostavljeni hibridom;c) capture consecutive vertical optical planes using confocal microscopy for each presumed hybrid;
d) določanje števila nezlitih lizosomov iz vsake starševske celice posebej in določanje števila zlitih lizosomov;d) determining the number of non-fused lysosomes from each parent cell individually and determining the number of fused lysosomes;
e) določanje števila hibridomov v posameznem vzorcu na podlagi minimalnega števila zelenih in rdečih lizosomov, torej na podlagi minimalnega števila lizosomov iz obeh starševskih celic, in minimalnega števila rumenih lizosomov, to je zlitih lizosomov, pri čemer v stopnji a) s pomočjo konfokalne mikroskopije zajemamo zaporedne vertikalne optične ravnine za nekaj naključno izbranih nefuziranih, z dekstrani označenih celic. Število lizosomov na posamezno celico določimo tako, da preštejemo vse lizosome na vsaki optični ravnini izbrane celice in pri tem upoštevamo, da se slika vsakega lizosoma lahko nahaja v največ treh optičnih ravninah. Postopek štetja izvedemo ločeno za vsako vrsto celic. Po končanem postopku štetja določimo minimalno število lizosomov na celico.e) determining the number of hybridomas in each sample on the basis of the minimum number of green and red lysosomes, that is, on the basis of the minimum number of lysosomes from both parental cells, and the minimum number of yellow lysosomes, that is, fused lysosomes, where in step a) confocal microscopy successive vertical optical planes for a few randomly selected unfused, dextran-labeled cells. The number of lysosomes per cell is determined by counting all lysosomes on each optical plane of the selected cell, taking into account that the image of each lysosome can be located in up to three optical planes. The counting process is performed separately for each cell type. After the counting process is completed, a minimum number of lysosomes per cell is determined.
v stopnji b) vzorec celic po fuziji in od 2 do 30 umi inkubaciji na temperaturi od 20 do 37 °C analiziramo s pomočjo konfokalnih slik, ki jih zajamemo s konfokalnim mikroskopom, pri čemer zeleno fluorescenco zbujamo z argonskim lasegem, rdečo fluorescenco pa s helij neonskim laserjem;in step b) a sample of cells after fusion and from 2 to 30 µm incubation at a temperature of 20 to 37 ° C is analyzed by confocal images captured by a confocal microscope, with green fluorescence evoked by argon hair and red fluorescence by helium neon lasers;
v stopnji c) v vzorcu fuziranih celic na znan način poiščemo potencialne hibridome in s pomočjo konfokalne mikroskopije zajamemo zaporedne vertikalne optične ravnine za vsak predpostavljeni hibridom;in step c), in the fused cell sample, potential hybridomas are identified in a known manner and sequential vertical optical planes for each hypothesized hybrid are captured by confocal microscopy;
v stopnji d) s pomočjo računalniškega programa določimo število zelenih, rdečih in rumenih (zlitih) lizosomov in na podlagi števila rdečih, zelenih in rumenih lizosomov določimo, katere celice so hibridomi. Na osnovi tega lahko tudi določimo, ali je hibridom primerne kvalitete, to je s čim večjim številom zlitih lizosomov;in step d), using a computer program, determine the number of green, red, and yellow (fused) lysosomes, and, based on the number of red, green, and yellow lysosomes, determine which cells are hybridomas. On this basis, we can also determine whether hybrids are of adequate quality, that is, with as many fused lysosomes as possible;
v stopnji e) preštejemo hibridome v vzorcu, nato pa njihov delež izrazimo kot razmeije med številom hibridomov in številom vseh fluorescenčno označenih celic.in step e), the hybridomas in the sample are counted, and then their proportion is expressed as the ratio between the number of hybridomas and the number of all fluorescently labeled cells.
Drugi predmet izuma je uporaba hibridomov, dobljenih po metodi v smislu izuma, s čim večjim številom zlitih lizosomov za pripravo celičnega cepiva proti raku.Another object of the invention is to use hybridomas obtained by the method of the invention with as many fused lysosomes as possible for the preparation of a cellular cancer vaccine.
Kot je znano, se za pripravo celičnega cepiva proti raku kot ena vrsta starševskih celic uporabijo tumorske celice pacienta, ki ga je treba cepiti. Te celice bi lahko obdelali po metodi v smislu izuma in hibridome, dobljene in izbrane, kot je zgoraj navedeno, bi uporabili za pripravo celičnega cepiva, s katerim bi cepili tega pacienta.As is known, the tumor cells of a patient to be vaccinated are used to prepare a cancer cell vaccine as one type of parental cell. These cells could be treated by the method of the invention and the hybridomas obtained and selected as indicated above would be used to prepare a cell vaccine to vaccinate this patient.
Tretji predmet izuma je uporaba hibridomov, dobljenih po metodi v smislu izuma in izbranih, kot je zgoraj navedeno, za modulacijo imunskega odziva.A third object of the invention is the use of hybridomas obtained by the method of the invention and selected as above for modulating the immune response.
Metodo v smislu izuma podrobneje pojasnjujemo s slikama 1 in 2.The method of the invention is explained in more detail in Figures 1 and 2.
Slika 1 prikazuje način določanja števila lizosomov z zaporednim zajemanjem slike v konfokalnih optičnih ravninah s pomočjo konfokalne mikroskopije. Pri štetju lizosomov smo upoštevali možnost, da se vsak lizosom lahko pojavi v več kot eni ravnini. Slika 1 a predstavlja zaporedje vertikalnih optičnih ravnin. Debelina optične ravnine je 0,5 pm. Bel krogec v vsaki ravnini označuje lizosom. Oznaka A.E. pomeni arbitrarno enoto. Na sliki 1 b je zaporedje linijskih diagramov, ki prikazujejo intenziteto fluorescence vsakokratnega, na levi strani na sliki 1 a označenega lizosoma, in potrjuje našo domnevo, da se slika lizosoma lahko razteza tudi preko treh optičnih ravnin.Figure 1 shows a method for determining the number of lysosomes by sequential image acquisition in confocal optical planes by confocal microscopy. When counting lysosomes, we considered the possibility that each lysosome could occur in more than one plane. Figure 1 a represents a sequence of vertical optical planes. The thickness of the optical plane is 0.5 pm. The white circle in each plane indicates the lysosome. Mark A.E. means an arbitrary unit. Figure 1 b shows a sequence of line diagrams showing the fluorescence intensity of the respective lysosome on the left side of Figure 1 a, and confirms our assumption that the lysosome image can also extend across three optical planes.
Slika 2 a predstavlja vzorec celic, ki so bile izpostavljene visokonapetostnemu električnemu sunku. Slika je bila zajeta s presevno svetlobo; zelena in rdeča področja pa predstavljajo z dekstrani označene lizosome. Po elektrofuziji so bile celice na sliki inkubirane 20 ur pri 37°C. Okvir obdaja hibridom, ki vsebuje vsaj minimalno število zelenih in rdečih ali vsaj minimalno število rumenih lizosomov in dve jedri (J).Figure 2 a represents a sample of cells exposed to a high voltage electric shock. The image was captured by the screening light; green and red areas, however, are dextran-labeled lysosomes. After electrofusion, the cells in the image were incubated for 20 hours at 37 ° C. The frame is surrounded by hybrids containing at least a minimum number of green and red or at least a minimum number of yellow lysosomes and two nuclei (J).
Konfokalna slika 2 b je povečava hibridoma v okvirju slike 2 a. Rumena področja predstavljajo zlite (zelene in rdeče) lizosome v hibridomu. Povprečno prekrivanje zelenih in rdečih področij na tej sliki je 75%.Confocal Figure 2 b is a magnification of the hybridoma in the frame of Figure 2 a. The yellow areas represent the fused (green and red) lysosomes in the hybridoma. The average overlap of green and red areas in this figure is 75%.
Daljici v desnem spodnjem kotu slik 2 a in 2 b predstavljata merilo, ki je 20 pm.The bottom right corner of Figures 2 a and 2 b represent the 20 pm scale.
Izum pojasnjuje naslednji primer.The invention illustrates the following example.
PrimerExample
Oba vzorca starševskih celic (dendritičnih in tumorskih) pred elektrofuzijo ločeno inkubiramo v prisotnosti zelenih ali rdečih dekstranov tipično od 4 do 20 in več ur. Po inkubaciji celice speremo in jih inkubiramo dodatnih nekaj ur v hranilnem mediju v odsotnosti dekstranov. Povprečno število lizosomov v posamezni celici določimo s štetjem lizosomov z računalniškim programom v vsaki izmed posnetih (konfokalna mikroskopija) zaporednih vertikalnih optičnih ravnin posamezne nefuzirane celice (slika 1 a). Pri tem upoštevamo, da se vsak lizosom lahko nahaja v največ treh optičnih ravninah (slika 1 b). Enake količine celic z zeleno ali rdeče označenimi lizosomi izpostavimo fuzijskemu postopku v električnem polju in jih nato inkubiramo 20 ur na 37°C. Vzorce nato analiziramo s pomočjo slik, ki so posnete s konfokalno mikroskopijo (slika 2 a, 2 b). Pri tem s pomočjo konfokalne mikroskopije iščemo potencialne hibridome, celice z minimalnim številom zelenih, rdečih in rumenih lizosomov. Potencialne hibridome nato analiziramo s pomočjo posnetih zaporednih vertikalnih optičnih ravnin tako, da s pomočjo računalniškega programa preštejemo število zelenih, rdečih in rumenih lizosomov v hibridomu. Delež rumenih, zlitih lizosomov v hibridomu nato izrazimo kot razmerje med številom rumenih pikslov in med številom vseh fluorescenčnih pikslov na vsaki optični ravnini posameznega hibridoma. Nato določimo delež vseh hibridomov v vzorcu, in sicer ga izrazimo kot razmeije med številom hibridomov in številom vseh fluorescenčno označenih celic na konfokalnih slikah.Both samples of parental cells (dendritic and tumor) were incubated separately before electrofusion in the presence of green or red dextran typically 4 to 20 hours or more. After incubation, the cells were washed and incubated for an additional few hours in nutrient medium in the absence of dextran. The average number of lysosomes in a single cell is determined by counting the lysosomes with a computer program in each of the recorded (confocal microscopy) sequential vertical optical planes of each unfused cell (Figure 1 a). In doing so, we consider that each lysosome can be located in up to three optical planes (Figure 1 b). Equal amounts of cells with green or red labeled lysosomes are exposed to the fusion procedure in an electric field and then incubated for 20 hours at 37 ° C. Samples were then analyzed using images taken with confocal microscopy (Figures 2 a, 2 b). Confocal microscopy is used to look for potential hybridomas, cells with a minimal number of green, red and yellow lysosomes. Potential hybridomas are then analyzed using recorded sequential vertical optical planes by counting the number of green, red, and yellow lysosomes in the hybrid using a computer program. The proportion of yellow, fused lysosomes in the hybridoma is then expressed as the ratio of the number of yellow pixels to the number of all fluorescence pixels on each optical plane of each hybridoma. We then determine the proportion of all hybridomas in the sample, expressing it as the relationship between the number of hybridomas and the number of all fluorescently labeled cells in the confocal images.
Claims (5)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200600207A SI22385B (en) | 2006-09-05 | 2006-09-05 | Method for determination of proportion and quality of hybridoms and application of hybridoms of appropriate quality |
AT07803258T ATE493650T1 (en) | 2006-09-05 | 2007-09-05 | METHOD FOR DETERMINING THE QUANTITY AND QUALITY OF HYBRIDOMES |
PCT/EP2007/059296 WO2008028929A1 (en) | 2006-09-05 | 2007-09-05 | Method for determining the quantity and quality of hybridomas as well as the use of hybridomas of suitable quality |
DE602007011647T DE602007011647D1 (en) | 2006-09-05 | 2007-09-05 | METHOD FOR DETERMINING THE QUANTITY AND QUALITY OF HYBRIDOMES |
EP07803258A EP2069782B1 (en) | 2006-09-05 | 2007-09-05 | Method for determining the quantity and quality of hybridomas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200600207A SI22385B (en) | 2006-09-05 | 2006-09-05 | Method for determination of proportion and quality of hybridoms and application of hybridoms of appropriate quality |
Publications (2)
Publication Number | Publication Date |
---|---|
SI22385A true SI22385A (en) | 2008-04-30 |
SI22385B SI22385B (en) | 2015-09-30 |
Family
ID=39356824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200600207A SI22385B (en) | 2006-09-05 | 2006-09-05 | Method for determination of proportion and quality of hybridoms and application of hybridoms of appropriate quality |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI22385B (en) |
-
2006
- 2006-09-05 SI SI200600207A patent/SI22385B/en active Search and Examination
Also Published As
Publication number | Publication date |
---|---|
SI22385B (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cordero Cervantes et al. | Peering into tunneling nanotubes—The path forward | |
Rust et al. | Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex | |
Liu et al. | Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain | |
Ray et al. | Quantitative tracking of protein trafficking to the nucleus using cytosolic protein delivery by nanoparticle-stabilized nanocapsules | |
Abounit et al. | Identification and characterization of tunneling nanotubes for intercellular trafficking | |
Haraguchi et al. | Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes | |
Ndjamen et al. | Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulum; parasitophorous vacuoles are hybrid compartments | |
Webb et al. | pHLARE: a new biosensor reveals decreased lysosome pH in cancer cells | |
Sahl et al. | Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation | |
Zhen et al. | Cbx2 stably associates with mitotic chromosomes via a PRC2-or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes | |
Schierer et al. | Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC | |
Maia et al. | Modulation of Golgi‐associated microtubule nucleation throughout the cell cycle | |
Palida et al. | PKMζ, but not PKCλ, is rapidly synthesized and degraded at the neuronal synapse | |
Jakobs et al. | Light microscopic analysis of mitochondrial heterogeneity in cell populations and within single cells | |
Aristova et al. | Monomethine cyanine probes for visualization of cellular RNA by fluorescence microscopy | |
Bayerl et al. | Guidelines for visualization and analysis of DC in tissues using multiparameter fluorescence microscopy imaging methods | |
Krapp et al. | The Schizosaccharomyces pombe septation initiation network (SIN) is required for spore formation in meiosis | |
Zhang et al. | In Situ Visualization of Epidermal Growth Factor Receptor Nuclear Translocation with Circular Bivalent Aptamer | |
Müller-Taubenberger et al. | Monomeric red fluorescent protein variants used for imaging studies in different species | |
SI22385A (en) | Method for determination of proportion and quality of hybridoms and application of hybridoms of appropriate quality | |
Gabrijel et al. | Monitoring lysosomal fusion in electrofused hybridoma cells | |
Kang et al. | Optogenetic STING clustering system through nanobody-fused photoreceptor for innate immune regulation | |
Huang et al. | Nanotopography enhances dynamic remodeling of tight junction proteins through cytosolic complexes | |
Söhnel et al. | Monitoring and quantification of the dynamics of stress granule components in living cells by fluorescence decay after photoactivation | |
Oses et al. | The dynamical organization of the core pluripotency transcription factors responds to differentiation cues in early S-phase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20070108 |
|
SP73 | Change of data on owner |
Owner name: CELICA D.O.O., LJUBLJANA; SI Effective date: 20080724 |
|
OU02 | Decision according to article 73(2) ipa 1992, publication of decision on partial fulfilment of the invention and change of patent claims |
Effective date: 20150807 |