SI22337A - Synthesis of nanowires based on copper(i) oxide by reduction in diol without addition of water - Google Patents

Synthesis of nanowires based on copper(i) oxide by reduction in diol without addition of water Download PDF

Info

Publication number
SI22337A
SI22337A SI200600160A SI200600160A SI22337A SI 22337 A SI22337 A SI 22337A SI 200600160 A SI200600160 A SI 200600160A SI 200600160 A SI200600160 A SI 200600160A SI 22337 A SI22337 A SI 22337A
Authority
SI
Slovenia
Prior art keywords
diol
copper
ethylene glycol
cu2o
nanowires
Prior art date
Application number
SI200600160A
Other languages
Slovenian (sl)
Inventor
Alojz Anžlovar
Orel Zorica Crnjak
Majda ŽIGON
Original Assignee
Kemijski Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemijski Institut filed Critical Kemijski Institut
Priority to SI200600160A priority Critical patent/SI22337A/en
Publication of SI22337A publication Critical patent/SI22337A/en

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The subject of invention is a synthesis of nanowires of copper(I) oxide in diol according to a polyol procedure without addition of water. The invention comprises the procedure itself and the prepared Cu2O powder produced by this procedure. The procedure of synthesis of nanowires of copper(I) oxide takes place in diol according to the polyol procedure without addition of water, where the reduction of Cu(II) acetate to Cu2O occurs in di(ethylene glycol) with di(ethylene glycol) serving as a medium and a source of reducing agent. The prepared Cu2O powder consists of particles in the form of nanowires or nanotapes with a length of 2-10 micrometres and a diameter of 5-100 nm and their organized structures, i.e. bundles, cones and small balls, having a layer of diol and its decomposition products on the surface to protect the material from oxidation, enable its better dispersing in organic media and make the Cu2O powder oxidation resistant at the room temperature for more than one year as well as in nitrogen atmosphere up to 200 degrees Celsius.

Description

Sinteza nanožičk na osnovi bakrovega (I) oksida z redukcijo v diolu brez dodatka vodeSynthesis of Copper (I) Oxide Nanoparticles with Diol Reduction without Addition of Water

Predmet izuma je sinteza nanožičk bakrovega(I) oksida v diolu po poliolnem postopku brez dodatka vode. Izum obsega sam postopek ter pripravljene Cu?O nanožičke, izdelane po tem postopku.The object of the invention is the synthesis of copper (I) oxide nanoparticles in a diol by a polyol process without the addition of water. The invention encompasses the process itself and the prepared Cu? O nanowires made by this process.

Bakrov(I) oksid (CU2O) je polprevodnik tipa p in zaradi tega ima potencialno uporabo v tehnologiji polprevodnikov, sončnih celicah in baterijah. CU2O je perspektiven material za nizkocenovne sončne celice zaradi visokega optičnega absorbcij skega koeficienta, nizke elektronske reže in netoksičnosti, kar je opisano v literaturi pod zaporednimi številkami 1-4. Submikronski CU2O je potencialen material za negativne elektrode v litijevih baterijah, kar je opisano v literaturi pod zaporedno številko 5. Uporablja se pri fotokatalitični degradaciji organskih in anorganskih spojin v vidnem spektralnem območju, npr. za fotokemijsko razgradnjo vode. Uporablja se tudi kot katalizator v kemijskem rafiniranju in sintezi različnih organskih spojin, kar je opisano v literaturi pod zaporedno številko 6. Zaradi tega ima priprava visoko kvalitetnih, monodisperznih CU2O nanostruktur velik pomen za kemijsko in elektronsko industrijo.Copper (I) oxide (CU2O) is a p-type semiconductor and therefore has potential applications in semiconductor technology, solar panels and batteries. CU2O is a promising material for low-cost solar cells due to its high optical absorption coefficient, low electron gap and non-toxicity, which is described in the literature under serial numbers 1-4. Submicron CU2O is a potential material for negative electrodes in lithium batteries, as described in the literature under order number 5. It is used for photocatalytic degradation of organic and inorganic compounds in the visible spectral range, e.g. for photochemical degradation of water. It is also used as a catalyst in the chemical refining and synthesis of various organic compounds, which is described in the literature under order number 6. Therefore, the preparation of high quality, monodisperse CU2O nanostructures is of great importance for the chemical and electronics industries.

V zadnjih letih so raziskave usmerjene na enodimenzionalne nanostruktume materiale ne samo zaradi osnovnih raziskav temveč tudi zaradi njihove uporabe v nanotehnologiji. Uporabljeni enodimenzionalni polprevodniki nano-velikosti v nanonapravah (nanodevice) imajo zanimive fizikalne lastnosti, zaradi tega so uporabni v optoelektroniki kot svetlobni viri (light-emitting device) z zelo nizko porabo energije. Enodimenzionalne (ID) nanostrukture imajo velik znanstveni in praktičen pomen zaradi enkratne kombinacije elektronskih, optičnih in mehanskih lastnosti. Različne sintetske metode se uporabljajo za pripravo ID nanostruktur, kot so ogljikove nanocevke, anorganske nanožičke/palice in nanocevke.In recent years, research has focused on one-dimensional nanostructures materials not only for basic research but also for their use in nanotechnology. The nanoscale nanoscale nanosized semiconductors used in the nanoscale have interesting physical properties, making them useful in optoelectronics as light-emitting devices with very low power consumption. One-dimensional (ID) nanostructures are of great scientific and practical importance because of the unique combination of electronic, optical and mechanical properties. Various synthetic methods are used to prepare ID nanostructures such as carbon nanotubes, inorganic nanotubes / rods and nanotubes.

Pregled obstoječe patentne literature od leta 1990 naprej je pokazal veliko število patentov s področja sinteze bakrovega (I) oksida (CU2O) različnih oblik, velikosti delcev in z različnimi postopki redukcije oziroma z različnimi uporabljenimi reducenti v vodnem mediju. Patentirani sintetski postopki so hidrometalurška redukcija (W02005083132), razkroj aerosolaA review of the existing patent literature from 1990 onwards revealed a large number of patents in the synthesis of copper (I) oxide (CU2O) of different shapes, particle sizes, and with different reduction processes or with different reducing agents used in aqueous medium. The patented synthetic processes are hydrometallurgical reduction (W02005083132), aerosol decomposition

-2(US5861136, SG34371, JP8319116), elektroliza (GB191514310, CN1556250, SU1787942, SU1663050), sežiganje (PL276329), UV obsevanje (CN1190042) in različni postopki kemijskega obarjanja (JP2003165725, JP2003165724, CN1240761, JP7118013, JP5319825, JP5221637, DE19883828935). Cu2O nanodelce brez definirane oblike so že pripravlili v di (etilen glikolu) (JP20044155622), ID Cu2O so že sintetizirali po mokrem kemijskem postopku (wet Chemical method) v vodnem mediju in z redukcijo s hidrazinom(CN1384055). Za Cu2O nanožičke, pripravljene z redukcijo v vodnem mediju (CN1384055) avtorji ne navajajo nobenih podatkov o oksidacijski stabilnosti teh produktov, prav tako ni nobenih podatkov o adsorbciji organskih spojin na površini in s tem o njihovi disperzibilnosti v organskih medijih.-2 (US5861136, SG34371, JP8319116), Electrolysis (GB191514310, CN1556250, SU1787942, SU1663050), Incineration (PL276329), UV irradiation (CN1190042), and various chemical precipitation processes (JP2003165725, JP2001211531519257253257253257257257257253257253257253257253257257257257257257257253) ). Non-defined Cu 2 O nanoparticles were already prepared in di (ethylene glycol) (JP20044155622), and Cu 2 O IDs were already synthesized by wet chemical method in aqueous medium and reduced with hydrazine (CN1384055). For Cu 2 O nanowires prepared by reduction in aqueous medium (CN1384055), the authors do not provide any data on the oxidation stability of these products, nor is there any data on the adsorption of organic compounds on the surface and thus their dispersibility in organic media.

V znanstveni literaturi, navedeni pod številkami 1 do 5, so navedbe s področja priprave Cu2O nanodelcev različnih struktur, vendar pa so bile Cu2O nanožičke pripravljene le v vodnem mediju z uporabo hidrazina kot redukcijskega sredstva, ki je izredno toksičen, kar je opisano v literaturi pod št. 6. Avtoiji ne navajajo direktnih podatkov o oksidacijski stabilnosti teh struktur. Postopek sušenja v vakuumu in velika količina kisika, adsorbiranega na površini, pa nakazujeta, da so te Cu2O nanožičke neobstojne na zraku. Avtoiji ne navajajo nobenih podatkov njihovi disperzibilnosti v organskih medijih.In the scientific literature cited in points 1 to 5, the indications given in the preparation of Cu 2 O nanoparticles of different structures, but they were Cu 2 O nanowires prepared only in an aqueous medium using hydrazine as the reducing agent, which is extremely toxic, which is described in the literature under no. 6. The cars do not provide direct data on the oxidation stability of these structures. The vacuum drying process and the large amount of oxygen adsorbed on the surface, however, indicate that these Cu 2 O nanowires are unstable in air. Cars do not provide any information about their dispersibility in organic media.

Literatura:Literature:

1. Yin M., Wu C.K., Burda C„ Koberstein J.T., Zhu Y., O'Brien S., JACS 2005,127, 95069511.1. Yin M., Wu C.K., Burda C.Koberstein J.T., Zhu Y., O'Brien S., JACS 2005.127, 95069511.

2. Yu Y„ Du E.P., Yu Y.C„ Zhang Υ.Υ., Wong P.K., Solid State Chem. 2004,177,46404647.2. Yu Y „Du E.P., Yu Y.C„ Zhang Υ.Υ., Wong P.K., Solid State Chem. 2004,177,46404647.

3. Snoke, D., Coherent Exciton Waves, Science, 1996, 273, 1351-1352.3. Snoke, D., Coherent Exciton Waves, Science, 1996, 273, 1351-1352.

4. Chen, Υ.Τ. & Zhang, W. & Zhou, B.Z. & Xu, X.Q. & Fan, Y.Q. & Guo, Y.J. &4. Chen, Υ.Τ. & Zhang, W. & Zhou, B.Z. & Xu, X.Q. & Fan, Y.Q. & Guo, Y.J. &

Zhang, Z. X., Polyol Process to Large-scale Synthesis of Cu2O with Disk-like Structure, Chinese Chem. Letters, 2005, 16 (2), 245-248.Zhang, ZX, Polyol Process for Large-scale Synthesis of Cu 2 O with Disk-like Structure, Chinese Chem. Letters, 2005, 16 (2), 245-248.

5. Poizot, P. et al., Nano-sized Transition-metal Oxides for Lithium-ion Batteries,5. Poizot, P. et al., Nano-sized Transition-Metal Oxides for Lithium-Ion Batteries,

Nature, 2000, 407, 496-499.Nature, 2000, 407, 496-499.

6. Wang W. Et al., Sythesis and Characterization of Cu2O Nanowires by a Novel Reduction Route, Adv. Mat, 2002, 14(1), 67-69.6. Wang W. Et al., Synthesis and Characterization of Cu 2 O Nanowires by a Novel Reduction Route, Adv. Mat, 2002, 14 (1), 67-69.

-3Opis izuma-3Description of the invention

Izum bo opisan s pomočjo izvedbenih primerov in slik, ki prikazujejo:The invention will be described by way of embodiments and illustrations showing:

Slika 1: IR spekter Cu2O nanožičk (konc. Cu acetata = 0,03 mol/1),Figure 1: IR spectrum of Cu 2 O nanoparticles (conc. Cu acetate = 0.03 mol / l),

Slika 2: XRD diiraktogram Cu2O nanožičk (konc. Cu acetata = 0,03 mol/1),Figure 2: XRD diagram of Cu 2 O nanoparticles (Cu acetate concn. = 0.03 mol / l),

Slika 3: SEM mikrografija Cu2O nanožičk (konc. Cu acetata = 0,03 mol/1),Figure 3: SEM micrograph of Cu 2 O nanoparticles (conc. Cu acetate = 0.03 mol / l),

Slika 4: SEM mikrografija Cu2O nanožičk, organiziranih v dendritsko strukturo v obliki krogle (konc. Cu acetata = 0,03 mol/1),Figure 4: SEM micrograph of Cu 2 O nanoparticles organized into a dendritic sphere-shaped structure (conc. Cu acetate = 0.03 mol / l),

Slika 5: SEM mikrografija Cu2O nanožičk, organiziranih v kroglice s premerom 10-20 pm (konc. Cu acetata - 0,03 mol/1),Figure 5: SEM micrograph of Cu 2 O nanoparticles organized into 10-20 pm diameter beads (Cu acetate conc. - 0.03 mol / l),

Slika 6: Rezultati TGA meritev Cu2O nanožičk v N2 atmosferi,Figure 6: Results of TGA measurements of Cu 2 O nanoparticles in N 2 atmosphere,

Slika 7: IR spekter vzorca takoj po pripravi (a) in IR spekter vzorca po 18 mesecih na zraku pri sobni temperaturi (b),Figure 7: IR spectrum of the sample immediately after preparation (a) and IR spectrum of the sample after 18 months in air at room temperature (b),

Slika 8: SEM mikrografija nanožičk, organiziranih v dendritsko strukturo z obliko krogle (konc. Cu acetata = 0,06 mol/1),Figure 8: SEM micrograph of nanosheets organized into a dendritic sphere-shaped structure (conc. Cu acetate = 0.06 mol / l),

Slika 9: SEM mikrografija nanožičk, ki tvorijo kroglice premera 10-20 pm (konc. Cu acetata = 0,06 mol/1).Figure 9: SEM micrograph of nanoparticles forming beads 10-20 pm in diameter (conc. Cu acetate = 0.06 mol / l).

Po izumu je opisan postopek sinteze bakrovega(I) oksida (Cu2O) z definirano strukturo v obliki nanožičk dolžine 2-10 pm in premera 5-100 nm in njihovih organiziranih struktur: snopov, stožcev in kroglic iz bakrovih spojin iz skupine: Cu (II) karbonat, Cu (II) acetat, Cu (II) acetil acetonat, Cu (II) oksid, Cu (II) hidroksid, Cu (II) nitrat, Cu (II) klorid, v diolu iz skupine: etilen glikol, di(etilen glikol), tetra(etilen glikol), 1,2-propan diol, 1,3-propan diol, glicerol, brez dodatka vode in s plastjo diola in njegovih razkrojnih produktov na površini, ki ščiti material pred oksidacijo in omogoča lažje dispergiranje v organskih medijih. Bistvo postopka sinteze je mešanje in segrevanje izhodne spojine v diolu, ki je hkrati medij in vir reducenta, ki reducira Cu2+ v Cu+. Reducent je razkrojni produkt diola, ki ni natančno kemijsko definiran. Najverjetneje gre za različne vrste aldehidov, ki se oksidirajo do karboksilnih kislin oziroma v končni stopnji do CO2.The invention describes a process for the synthesis of copper (I) oxide (Cu 2 O) with a defined structure in the form of nanowires of 2-10 pm in length and 5-100 nm in diameter and their organized structures: bundles, cones and beads of copper compounds from the group: Cu (II) carbonate, Cu (II) acetate, Cu (II) acetyl acetonate, Cu (II) oxide, Cu (II) hydroxide, Cu (II) nitrate, Cu (II) chloride, in the diol of the group: ethylene glycol, di (ethylene glycol), tetra (ethylene glycol), 1,2-propane diol, 1,3-propane diol, glycerol, without water and with a layer of diol and its degradation products on the surface, which protects the material from oxidation and makes it easier dispersion in organic media. The essence of the synthesis process is to mix and heat the starting compound in the diol, which is both a medium and a reducing agent source that reduces Cu 2+ to Cu + . Reducent is a decomposition product of a diol that is not precisely chemically defined. Most likely, these are different types of aldehydes that are oxidized to carboxylic acids or ultimately to CO 2 .

Postopek sinteze nanožičk obsega:The process of synthesis of nanowires comprises:

-41. Raztapljanje bakrove spojine iz skupine: Cu (II) karbonat, Cu (II) acetat, Cu (II) acetil acetonat, Cu (II) oksid, Cu (II) hidroksid, Cu (II) nitrat, Cu (II) klorid, kot izhodne spojine v diolu iz skupine: etilen glikol, di(etilen glikol), tetra(etilen glikol), 1,2-propan diol, 1,3-propan diol, glicerol, s pomočjo ultrazvoka v koncentracijskem območju od 0,005 do 0,5 mol/1-41. Dissolving copper compounds from the group: Cu (II) carbonate, Cu (II) acetate, Cu (II) acetyl acetonate, Cu (II) oxide, Cu (II) hydroxide, Cu (II) nitrate, Cu (II) chloride, as starting compounds in the diol of the group: ethylene glycol, di (ethylene glycol), tetra (ethylene glycol), 1,2-propane diol, 1,3-propane diol, glycerol, by ultrasound in a concentration range from 0.005 to 0.5 mol / 1

2. Mešanje in segrevanje raztopine od 3 do 10 ur pri temperaturi od 100 °C do 300 °C2. Stirring and heating the solution for 3 to 10 hours at a temperature of 100 ° C to 300 ° C

3. Izolacija produkta s centrifugiranjem in čiščenje produkta s spiranjem z etanolom in centrifugiranjem pri 1000 - 10000 obr./min. od 10 min. do 2 uri.3. Isolation of the product by centrifugation and purification of the product by washing with ethanol and centrifugation at 1000 - 10000 rpm. from 10 min. to 2 p.m.

4. Sušenje na zraku.4. Air drying.

Prednosti pred obstoječim stanjem tehnike:Advantages over the current state of the art:

- Enostopenjska sinteza Cu2O nanožičk z definirano strukturo v obliki nanožičk dolžine 2 - 10 pm in premera 5-100 nm in njihovih organiziranih struktur (snopov, stožcev in kroglic) v organskem mediju (diolu) brez uporabe hidrazina. Zaradi nizke toksičnosti in nizkega parnega tlaka diolov ta postopek zelo malo obremenjuje okolje in je zaradi tega okolju prijazen.- Single-step synthesis of Cu 2 O nanoparticles with defined structure in the form of nanoparticles of 2 - 10 pm in length and 5-100 nm in diameter and their organized structures (bundles, cones and beads) in organic medium (diol) without the use of hydrazine. Due to the low toxicity and low vapor pressure of diols, this process is very environmentally friendly and environmentally friendly.

Oksidacij ska stabilnost Cu2O nanožičk do 200 °C v dušikovi atmosferi in na zraku pri sobni temperaturi najmanj eno leto, kar omogoča enostavno hranjenje in uporabo. Organofilna površina nanožičk omogoča lažje vmešavanje v različne organske matrice (npr. polimeri) in s tem lažjo pripravo polimernih nanokompozitov. Kompoziti Cu2O polimerna matrica so uporabni za nizkocenovne sončne celice in Li-baterije.The oxidation stability of Cu 2 O nanoparticles up to 200 ° C in nitrogen and air at room temperature for at least one year makes it easy to store and use. The organophilic surface of the nanowires makes it easier to interfere with various organic matrices (eg polymers), thereby facilitating the preparation of polymer nanocomposites. Cu 2 O polymer matrix composites are useful for low-cost solar cells and Li-batteries.

- Velika specifična površina Cu2O nanožičk in njihovih organiziranih struktur je prednost na področju katalize saj je učinkovitost katalizatoijev odvisna od specifične površine.- The large specific surface area of Cu 2 O nanoparticles and their organized structures is an advantage in the field of catalysis, since the efficiency of catalysts depends on the specific surface area.

Izvedbeni primer 1:Example 1:

Pripravimo raztopino bakrovega (II) acetata v di(etilen glikolu) v koncentraciji 1x10'2 mol/dm3 z mešanjem in soniciranjem 20 min pri sobni temperaturi v ultrazvočni kopeli. Raztopino prenesemo v reaktor, opremljen z mešalom, povratnim hladilnikom, oljno kopeljo s kontaktnim termometrom in uporovnim termometrom za merjenje temperature v reaktorju. Nastavljena temperatura na kontaktnem termometru oljne kopeli je 190 °C. Raztopino segrevamo s hitrostjo 6-8 °C/min do nastavljene temperature in nato držimo temperaturo konstantno. Barva raztopineA solution of copper (II) acetate in di (ethylene glycol) at a concentration of 1x10 ' 2 mol / dm 3 is prepared by stirring and sonicating for 20 min at room temperature in an ultrasonic bath. Transfer the solution to a reactor equipped with an agitator, a reflux condenser, an oil bath with a contact thermometer and a resistance thermometer to measure the temperature in the reactor. The set temperature on the oil bath contact thermometer is 190 ° C. The solution was heated at a rate of 6-8 ° C / min to the set temperature and then kept constant. The color of the solution

-5se spremeni iz začetne modro zelene v rjavo-zeleno. Po 6 urah in 40 minutah segrevanja izključimo gretje in produkt prelijemo v čašo. Suspenzijo pustimo stati preko noči, da se produkt usede. Če se produkt ne usede, ga centrifugiramo nekaj ur pri najmanj 2000 obratih/min. Odstranimo topilo in spiramo 2x s po 150 ml 98% etanola. Usedlino suspendiramo v etanolu in pustimo, da se usede čez noč. Nato centrifugiramo od 10 min. do 2 uri pri najmanj 1000 obratih/min in ločimo tekočo fazo od usedline. Usedlino posušimo na zraku.-5 changes from initial blue green to brown green. After 6 hours and 40 minutes of heating, turn off the heat and pour the product into a beaker. Allow the suspension to stand overnight for the product to settle. If the product does not settle, centrifuge for at least 2000 rpm for several hours. Remove the solvent and wash twice with 150 ml of 98% ethanol each. The sediment was suspended in ethanol and allowed to settle overnight. It was then centrifuged for 10 min. up to 2 hours at a minimum of 1000 rpm and separate the liquid phase from the sediment. The precipitate is air dried.

Izvedbeni primer 2:Example 2:

Pripravimo raztopino bakrovega (II) acetata v di(etilen glikolu) v koncentraciji 4xl0'2 mol/dm3 z mešanjem in soniciranjem 20 min pri sobni temperaturi v ultrazvočni kopeli. Raztopino prenesemo v reaktor, opremljen z mešalom, povratnim hladilnikom, oljno kopeljo s kontaktnim termometrom in uporovnim termometrom za meijenje temperature v reaktoiju. Nastavljena temperatura na kontaktnem termometru oljne kopeli je 190 °C. Raztopino segrevamo s hitrostjo 6-8 °C/min do nastavljene temperature in nato držimo temperaturo konstantno. Barva raztopine se spremeni iz prvotne modro zelene v ijavo-zeleno. Po 6 urah segrevanja izključimo gretje in produkt prelijemo v čašo. Suspenzijo pustimo stati preko noči, da se produkt usede. Če se produkt ne usede, ga centrifugiramo nekaj ur pri najmanj 2000 obratih/min. Nato odstranimo topilo in spiramo 2x s po 150 ml 98% etanola. Usedlino suspendiramo v etanolu in pustimo, da se usede čez noč. Centrifugiramo od 10 min. do 2 uri pri najmanj 1000 obratih/min in ločimo tekočo fazo od usedline. Usedlino posušimo na zraku.Prepare a solution of copper (II) acetate in di (ethylene glycol) at a concentration of 4x10 ' 2 mol / dm 3 by stirring and sonicating for 20 min at room temperature in an ultrasonic bath. Transfer the solution to a reactor equipped with an agitator, a reflux condenser, an oil bath with a contact thermometer and a resistance thermometer to change the temperature in the reactor. The set temperature on the oil bath contact thermometer is 190 ° C. The solution was heated at a rate of 6-8 ° C / min to the set temperature and then kept constant. The color of the solution changes from the original blue-green to brown-green. After 6 hours of heating, turn off the heat and pour the product into a beaker. The suspension is allowed to stand overnight for the product to settle. If the product does not settle, centrifuge for at least 2000 rpm for several hours. The solvent was then removed and washed twice with 150 ml of 98% ethanol each. The sediment was suspended in ethanol and allowed to settle overnight. Centrifuge for 10 min. up to 2 hours at a minimum of 1000 rpm and separate the liquid phase from the sediment. The precipitate is air dried.

Izvedbena primera v bistvu ne omejujejrta izuma temveč ga le pojasnjujeta.The embodiments do not essentially limit the invention but merely explain it.

Rezultat postopka po izumu je Cu2O prah, ki ga sestavljajo delci v obliki nanožičk oziroma nanotrakov dolžine 2-10 pm in premera 5-100 nm in njihovih organiziranih struktur, to je snopov, stožcev in kroglic in s plastjo diola in njegovih razkrojnih produktov na površini, ki ščiti material pred oksidacijo in omogoča lažje dispergiranje v organskih medijih. Tako pripravljen Cu2O prah je oksidacij sko obstojen pri sobni temperaturi več kot eno leto in v dušikovi atmosferi do 200 °C.The result of the process according to the invention is a Cu 2 O powder consisting of nanoparticles or nanotubes particles of 2-10 pm in length and 5-100 nm in diameter and their organized structures, i.e. bundles, cones and beads, and with a layer of diol and its degradation products on the surface, which protects the material from oxidation and makes it easier to disperse in organic media. The Cu 2 O powder thus prepared is oxidation-resistant at room temperature for more than one year and up to 200 ° C under a nitrogen atmosphere.

-6Za uspešen prenos v industrijo mora biti izpolnjenih več pogojev, od katerih so najpomembnejši: a) cenovna zanimivost, b) možnost sinteze oziroma priprave v velikih količinah in c) okoljevarstvena sprejemljivost celotnega sintetskega postopka. Po izumu so bile pripravljene enodimenzionalne nanostrukture Cu2O in njihove organizirane strukture, kot so snopi, stožci in dendritske krogle, pripravljene po preprostem postopku z redukcijo v diolu brez uporabe površinsko aktivnih snovi. Cu2O nanožičke so stabilne do 200 °C v dušikovi atmosferi slika 6 - in najmanj eno leto na zraku pri sobni temperaturi - slika 7a in 7b. Na površini imajo zaščitno plast diola, ki omogoča lažje mešanje z organskimi matricami in s tem lažjo pripravo polimernih nanokompozitov - slika 1. Cu2O nanožičke, predvsem pa nihove organizirane dendritske strukture - Sliki 3 in 4 - imajo izredno veliko specifično površino, kar je zelo pomembno za uporabo na področju katalize.-6 For a successful transfer to the industry, several conditions must be fulfilled, the most important of which are: a) price attractiveness, b) the possibility of synthesis or preparation in large quantities, and c) the environmental acceptability of the entire synthetic process. According to the invention, one-dimensional Cu 2 O nanostructures have been prepared and their organized structures such as bundles, cones and dendritic spheres prepared by a simple diol reduction process without the use of surfactants. Cu 2 O nanowires are stable up to 200 ° C under nitrogen atmosphere Figure 6 - and at least one year in air at room temperature - Figure 7a and 7b. On the surface, they have a protective layer of diol, which makes it easier to mix with organic matrices and thus easier to prepare polymer nanocomposites - Figure 1. Cu 2 O nanowires, and especially their organized dendritic structures - Figures 3 and 4 - have an extremely large specific surface, which is very important for use in the field of catalysis.

Karakterizacija produktaProduct characterization

IR spekter Cu2O nanožičk po izvedbenem primeru 1 po sliki 1 kaže intenziven absorbcijski trak pri 630 cm'1, ki je značilen za Cu2O. Spekter vsebuje manj intenzivne trakove pri 1054 in 1101 cm'1, ki kažejo, da so v vzorcu prisotni tudi ostanki organskega medija (di(etilen glikola) ali etilen glikola), ki so najveijetneje adsorbirani na površini. XRD spekter vzorca Cu2O nanožičk kaže karakteristične vrhove za Cu2O pri 20 vrednostih: 36,4; 42,4; 61,5; 73,6 - po sliki 2. Na SEM mikrografijah Cu2O vzorcev, pripravljenih po izvedbenem primeru 1, vidimo delce Cu2O v obliki nanožičk oziroma nanotrakov dolžine od 2 - 10 pm in širine 5-100 nm - po sliki 3 organizirane v snope, stožce in kroglice velikosti 10-20 pm - po slikah 4 in 5. TGA krivulja vzorca Cu2O nanožičk kaže, da so strukture termično stabilne najmanj do 200 °C v dušikovi atmosferi - Slika 6. Primerjava IR spektrov istega vzorca Cu2O nanožičk takoj po pripravi Slika 7a - in po 18 mesecih na zraku pri sobni temperaturi - Slika 7b - kaže, da so te strukture na sobni temperaturi in zraku oksidacij sko obstojne. SEM mikrografiji Cu2O nanožičk s koncentracijo izhodne spojine = 0,06 mo 1/1 kažeta podobne strukture kot pri koncentraciji bakrovega (II) acetata 0.03 mol/1 - po slikah 8 in 9.The IR spectrum of Cu 2 O nanoparticles according to Example 1 of Figure 1 shows an intense absorption band at 630 cm < -1 >, which is characteristic of Cu2O. The spectrum contains less intense bands at 1054 and 1101 cm < -1 >, indicating that the sample also contains residues of organic medium (di (ethylene glycol) or ethylene glycol) most likely adsorbed on the surface. The XRD spectrum of a sample of Cu2O nanoparticles shows characteristic peaks for Cu 2 O at 20 values: 36.4; 42.4; 61.5; 73,6 - according to Figure 2. On SEM micrographs of Cu 2 O samples prepared according to Example 1, we see Cu 2 O particles in the form of nanowires or nanotubes with a length of 2 - 10 pm and a width of 5-100 nm - in Fig. 3 organized in bundles, cones and beads of 10-20 pm in size - according to Figures 4 and 5. The TGA curve of the Cu 2 O nanoparticles sample shows that the structures are thermally stable at least up to 200 ° C in a nitrogen atmosphere - Figure 6. Comparison of IR spectra of the same Cu 2 sample About nanoparticles immediately after preparation Figure 7a - and after 18 months in air at room temperature - Figure 7b - shows that these structures are quite stable at room temperature and oxidation air. SEM micrographs of Cu 2 O nanoparticles with a concentration of starting compound = 0.06 mo 1/1 show similar structures to those of copper (II) acetate 0.03 mol / l - according to Figures 8 and 9.

Claims (5)

ZahtevkiClaims 1. Postopek sinteze nanožičk bakrovega(I) oksida, označen s tem, da redukcija prekurzorja, ki je bakrova spojina v koncentracijskem območju od 0,005 do 0,5 mol/1 iz skupine: Cu (II) karbonat, Cu (II) acetat, Cu (II) acetil acetonat, Cu (II) oksid, Cu (II) hidroksid, Cu (II) nitrat, Cu (II) klorid, do CU2O poteka v diolu iz skupine: etilen glikol, di(etilen glikol), tetra(etilen glikol), 1,2-propan diol, 1,3-propan diol, glicerol, brez dodatka vode v temperaturnem območju od 100 do 300 °C pri čemer diol služi kot medij in kot vir reducenta.A process for the synthesis of copper (I) oxide nanowires, characterized in that the precursor reduction, which is a copper compound in the concentration range from 0.005 to 0.5 mol / l in the group: Cu (II) carbonate, Cu (II) acetate, Cu (II) acetyl acetonate, Cu (II) oxide, Cu (II) hydroxide, Cu (II) nitrate, Cu (II) chloride, to CU2O are in the diol of the group: ethylene glycol, di (ethylene glycol), tetra ( ethylene glycol), 1,2-propane diol, 1,3-propane diol, glycerol, without the addition of water in the temperature range from 100 to 300 ° C, with the diol serving as a medium and as a reducing agent. 2. Postopek po zahtevku 1, označen s tem, da poteka raztapljanje bakrovega (II) acetata v topilu di(etilen glikolu) v koncentracijskem območju od 0,005 do 0,5 mol/1 s pomočjo ultrazvoka.Process according to claim 1, characterized in that the dissolution of copper (II) acetate in solvent di (ethylene glycol) is carried out in a concentration range from 0.005 to 0.5 mol / l by means of ultrasound. 3. Postopek po zahtevku 1, označen s tem, da poteka mešanje in segrevanje raztopine od 3 do 10 ur pri temperaturi od 160 °C do 190 °C.Process according to claim 1, characterized in that the solution is stirred and heated for 3 to 10 hours at a temperature of 160 ° C to 190 ° C. 4. Postopek po zahtevku 1, označen s tem, daje izolacija produkta izvedena s centrifugiranjem in čiščenje produkta s spiranjem z etanolom in centrifugiranjem od 10 minut do 2 uri pri 1000 - 10000 obr/min ter, da se produkt po postopku osuši.Method according to claim 1, characterized in that the product isolation is carried out by centrifugation and purification of the product by washing with ethanol and centrifuging for 10 to 2 hours at 1000 - 10000 rpm and for the product to be dried by the process. 5. Prah CU2O, označen s tem, daje pripravljen po postopku po zahtevkih od 1 do 4, pri čemer ga sestavljajo delci v obliki nanožičk oziroma nanotrakov dolžine 2-10 pm in premera 5 100 nm in njihovih organiziranih struktur, to je snopov, stožcev in kroglic in s plastjo diola in njegovih razkrojnih produktov na površini, ki ščiti material pred oksidacijo in omogoča lažje dispergiranje v organskih medijih, ter da je prah CU2O prah oksidacijsko obstojen pri sobni temperaturi več kot eno leto in v dušikovi atmosferi do 200 °C.5. Powder CU2O, characterized in that it is prepared by the process according to claims 1 to 4, comprising particles in the form of nanowires or nanotubes 2-10 pm in length and 5 100 nm in diameter and their organized structures, i.e. bundles, cones and beads and a layer of diol and its degradation products on the surface, which protects the material from oxidation and facilitates dispersion in organic media, and that the CU2O powder is oxidation-resistant at room temperature for more than one year and in a nitrogen atmosphere up to 200 ° C.
SI200600160A 2006-07-05 2006-07-05 Synthesis of nanowires based on copper(i) oxide by reduction in diol without addition of water SI22337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200600160A SI22337A (en) 2006-07-05 2006-07-05 Synthesis of nanowires based on copper(i) oxide by reduction in diol without addition of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200600160A SI22337A (en) 2006-07-05 2006-07-05 Synthesis of nanowires based on copper(i) oxide by reduction in diol without addition of water

Publications (1)

Publication Number Publication Date
SI22337A true SI22337A (en) 2008-02-29

Family

ID=39357030

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200600160A SI22337A (en) 2006-07-05 2006-07-05 Synthesis of nanowires based on copper(i) oxide by reduction in diol without addition of water

Country Status (1)

Country Link
SI (1) SI22337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212721A (en) * 2013-05-10 2013-07-24 厦门大学 Method for synthesizing copper nanowire under catalysis of nickel ions
CN103787402A (en) * 2014-01-23 2014-05-14 复旦大学 Method for preparing cuprous oxide nanowire material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212721A (en) * 2013-05-10 2013-07-24 厦门大学 Method for synthesizing copper nanowire under catalysis of nickel ions
CN103787402A (en) * 2014-01-23 2014-05-14 复旦大学 Method for preparing cuprous oxide nanowire material
CN103787402B (en) * 2014-01-23 2015-06-17 复旦大学 Method for preparing cuprous oxide nanowire material

Similar Documents

Publication Publication Date Title
Theerthagiri et al. Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants
El-Naggar et al. Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review
Dippong et al. A possible formation mechanism and photocatalytic properties of CoFe2O4/PVA-SiO2 nanocomposites
Sudha et al. Review on the photocatalytic activity of various composite catalysts
Khoza et al. The effect of solvents, acetone, water, and ethanol, on the morphological and optical properties of ZnO nanoparticles prepared by microwave
Porro et al. Purification of carbon nanotubes grown by thermal CVD
Margha et al. Bi2O3–BiFeO3 glass-ceramic: controllable β-/γ-Bi2O3 transformation and application as magnetic solar-driven photocatalyst for water decontamination
Xu et al. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells
Jung et al. Recent progress on carbon quantum dots based photocatalysis
Said et al. Structural, optical and photocatalytic properties of mesoporous CuO nanoparticles with tunable size and different morphologies
Zhang et al. Facile synthesis of core–shell–satellite Ag/C/Ag nanocomposites using carbon nanodots as reductant and their SERS properties
Popa et al. Interplay between ferromagnetism and photocatalytic activity generated by Fe3+ ions in iron doped ZnO nanoparticles grown on MWCNTs
Hashemizadeh et al. Cu: Ni bimetallic nanoparticles: facile synthesis, characterization and its application in photodegradation of organic dyes
Boran Encapsulation of CuO nanoparticles inside the channels of the multi-walled carbon nanotubes functionalized with thermal stress
Kuang et al. AgI microplate monocrystals with polar {0001} facets: spontaneous photocarrier separation and enhanced photocatalytic activity
Zhang et al. Necklace‐Like Nanostructures: From Fabrication, Properties to Applications
Li et al. One-step synthesis of monodisperse AuNPs@ PANI composite nanospheres as recyclable catalysts for 4-nitrophenol reduction
Maryam et al. Enhanced photocatalytic and antibacterial activity of NiSe2–TiO2 nanocomposites under visible light
SI22337A (en) Synthesis of nanowires based on copper(i) oxide by reduction in diol without addition of water
Landge et al. Solvent-free synthesis of nanoparticles
Chen et al. Corundum‐Type In2O3 Urchin‐Like Nanostructures: Synthesis Derived from Orthorhombic InOOH and Application in Photocatalysis
Naghash-Hamed et al. The catalytic performance of CuFe2O4@ CQD nanocomposite in nitroaniline group reduction: High-perform heterogeneous nanocatalyst
Watson Decoration of graphene oxide with silver nanoparticles and controlling the silver nanoparticle loading on graphene oxide
CN111417596B (en) Fibrous carbon nanostructure, method for evaluating the same, and method for producing surface-modified product thereof
Hojaghani et al. Sonochemical synthesis of two new copper (II) complexes with azo ligands derived from anthranilic acid and β-naphtol

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20061116

KO00 Lapse of patent

Effective date: 20110224