SI22306A - Exhaust manifold of internal combustion engine with divided segments enclosed in hermetically closed, cooled and isolated exhaust manifold housing - Google Patents
Exhaust manifold of internal combustion engine with divided segments enclosed in hermetically closed, cooled and isolated exhaust manifold housing Download PDFInfo
- Publication number
- SI22306A SI22306A SI200600131A SI200600131A SI22306A SI 22306 A SI22306 A SI 22306A SI 200600131 A SI200600131 A SI 200600131A SI 200600131 A SI200600131 A SI 200600131A SI 22306 A SI22306 A SI 22306A
- Authority
- SI
- Slovenia
- Prior art keywords
- exhaust
- exhaust manifold
- engine
- internal combustion
- pipe
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/04—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
- F01N3/043—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids without contact between liquid and exhaust gases
- F01N3/046—Exhaust manifolds with cooling jacket
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/10—Other arrangements or adaptations of exhaust conduits of exhaust manifolds
- F01N13/102—Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/18—Construction facilitating manufacture, assembly, or disassembly
- F01N13/1805—Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
- F01N13/1811—Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Silencers (AREA)
Abstract
Description
Izpušni zbiralnik motorja z notranjim zgorevanjem z ločenimi segmenti, zaprt v hermetično zaprto, hlajeno in izolirano ohišje izpušnega zbiralnikaInternal combustion engine exhaust manifold with separate segments, enclosed in a hermetically sealed, cooled and insulated exhaust manifold housing
Ozadje izumaBACKGROUND OF THE INVENTION
Predmet tukaj predstavljenega izuma je izpušni zbiralnik motorja z notranjim zgorevanjem z ločenimi segmenti, zaprt v hermetično zaprto, hlajeno in izolirano ohišje izpušnega zbiralnika. Da bi povečali izhodno moč motorjev z notranjim zgorevanjem, izkoristimo izpušne pline, tako da z njimi ženemo turbinski polnilnik, ki stisne zrak pred vstopom v motor in s tem poveča vsebnost za zgorevanje potrebnega kisika. Z višanjem temperature izpušnih plinov se doseže večja moč turbinskega polnilnika in višji tlak zraka pred sesalnim ventilom motorja. Vendar pa zelo visoke temperature izpušnih plinov povečajo tudi temperaturo izpušnega zbiralnika in posledično raztezek izpušnega zbiralnika. Visoka temperatura izpušnega zbiralnika ima za posledico visoko temperaturo zunanjih ploskev izpušnega zbiralnika. Za številne namene z zaprtimi prostori za motor, npr. pri čolnih, je to nevarno in nedovoljeno. Za nekatere druge namene, kot so hpr. električni generatorji, to ni priporočljivo, ker segreva okolico motorja in zvišuje temperaturo zraka v okolici. Višja temperatura okoliškega zraka pa zvišuje temperaturo vsesanega zraka in s tem zmanjšuje gostoto vsesanega zraka. Pri znižani gostoti zraka in povečani temperaturi vsesanega zraka se moč motorja zmanjša, povečajo pa se emisije N0x. Pri vozilih z zaprtimi in zvočno izoliranimi prostori za motor je visoka temperatura zunanjih ploskev izpušnega zbiralnika pomanjkljivost. V zadnjih 50 letih se je pojavilo veliko različnih sistemov izolacije izpušnih zbiralnikov. Izolirani izpušni zbiralniki imajo za posledico še višje temperature: zunanjih ploskev in zbiralnika, s čimer se še dodatno poveča toplotni raztezek izpušnih cevi. Prevelik temperaturni raztezek izpušnega zbiralnika povzroča, da cevi izpušnega zbiralnika pokajo ali se poškodujejo tesnila izpušnega zbiralnika. Obstaja veliko rešitev, pri katerih je izpušni zbiralnik sestavljen iz več segmentov, medsebojno spojenih z vzdolžno gibljivimi spoji ali mehastimi prevelike spoji. Tovrstne rešitve sicer kompenzirajo vendar ne preprečujejo izpušnega zbiralnika in toplotne raztezke, pregrevanja zunanjih ploskev pregrevanja prostora za motor. Zlasti za motorje za čolne obstaja mnogo poznanih rešitev z neposredno ali posredno tekočinsko hlajenimi izpušnimi zbiralniki. Tovrstne rešitve preprečujejo prevelik toplotni raztezek cevi izpušnega zbiralnika in zagotavljajo, da so zunanje ploskve izpušnega zbiralnika dovolj hladne. Za sesalne bencinske motorje je to dobra rešitev, vendar včasih prekomerno poveča težo motorja. Pri motorjih s tlačnim polnjenjem, zlasti takih z velikim prirastkom moči, pa se s premočnim hlajenjem cevi izpušnega zbiralnika zmanjša temperatura izpušnih plinov na vstopu v turbinski polnilnik, s čimer se zmanjša moč turbinskega polnilnika in posledično polnilni tlak turbinskega polnilnika. Vsi ti dejavniki imajo za posledico višjo porabo goriva in nižjo moč motorja. Obenem se zmanjša prezračevanje zgorevalne komore s svežim zrakom zaradi razmeroma : nižjega polnilnega tlaka za turbinskim polnilnikom v času prekritja ventilov, kar ima za posledico višjo toplotno obremenitev bata in predela glave valja motorj a.The object of the present invention is an internal combustion engine exhaust manifold with separate segments enclosed in a hermetically sealed, cooled and insulated exhaust manifold housing. To maximize the power output of internal combustion engines, we utilize the exhaust gases by blowing a turbocharger that compresses the air before entering the engine, thereby increasing the oxygen content required for combustion. Increasing the exhaust gas temperature results in higher turbocharger power and higher air pressure in front of the engine intake valve. However, very high exhaust temperatures also increase the exhaust manifold temperature and, consequently, the exhaust manifold. A high exhaust manifold temperature results in a high external exhaust manifold surface temperature. For many purposes with enclosed engine compartments, e.g. in boats, this is dangerous and illicit. For some other purposes, such as hpr. electric generators, this is not recommended because it heats the engine surroundings and raises the ambient air temperature. Higher ambient temperature, however, raises the intake air temperature, thereby reducing the intake air density. With reduced air density and increased intake air temperature, engine power decreases and N0 x emissions increase. For vehicles with enclosed and soundproofed engine compartments, the high temperature of the outer faces of the exhaust manifold is a disadvantage. Over the last 50 years, many different systems for isolating exhaust manifolds have emerged. Isolated exhaust manifolds result in even higher temperatures: the outer faces and the manifold, which further increases the thermal expansion of the exhaust pipes. Excessive expansion of the exhaust manifold causes the exhaust manifold pipes to crack or damage the manifold gasket seals. There are many solutions where the exhaust manifold consists of several segments interconnected by longitudinally moving joints or fuzzy oversized joints. Although such solutions compensate, they do not prevent the exhaust manifold and thermal expansion, overheating of the outer surfaces of the engine compartment overheating. Especially for boat engines, there are many known solutions with directly or indirectly liquid-cooled exhaust manifolds. Such solutions prevent excessive expansion of the exhaust manifold pipes and ensure that the outer faces of the exhaust manifold are sufficiently cool. For intake gasoline engines, this is a good solution, but sometimes over-weights the engine. For pressure-fed engines, especially those with high power gains, the exhaust manifold's exhaust pipe cools the exhaust gas temperature at the inlet of the turbocharger, reducing the power of the turbocharger and, consequently, the turbocharger's filling pressure. All of these factors result in higher fuel consumption and lower engine power. At the same time, the ventilation of the combustion chamber with fresh air is reduced due to the relatively: lower charge pressure behind the turbine charger during valve overlap, resulting in a higher thermal load on the piston and the cylinder head compartments a.
V skladu z vsem navedenim je cilj in namen pričujočega izuma zagotoviti lahko, nepredušno, kompaktno izvedbo z integriranim hladilnikom hladilne tekočine motorja. Zunanje ploskve izpušnega zbiralnika so hlajene, medtem ko je notranja izpušna cev izolirana. Sestavljena je iz modularnih segmentov cevi, medsebojno spojenih z drsnimi spoji, ki omogočajo toplotne raztezke in preprečujejo, da bi prišlo do toplotnih deformacij in poškodb zaradi previsokih temperatur. Tako se prihrani velik del energije izpušnih plinov, potrebne za poganjanje turbinskega polnilnika motorja in povečanje moči motorja. Obenem je cilj pričujočega izuma tudi ta, da se zmanjšajo stroški proizvodnj e.Accordingly, the object and purpose of the present invention is to provide a light, airtight, compact design with an integrated engine coolant cooler. The outer surfaces of the exhaust manifold are cooled while the inner exhaust pipe is insulated. It consists of modular pipe segments interconnected by sliding joints, which allow thermal expansion and prevent thermal deformation and damage due to high temperatures. This saves a large part of the exhaust energy required to drive the turbine engine charger and increase engine power. It is also an object of the present invention to reduce the cost of production.
Povzetek izumaSummary of the Invention
Izpušni zbiralnik po pričujočem izumu je varjena konstrukcija iz nerjavnega jekla, ki sestoji iz posamičnih izpušnih cevi 4, 5, 26, prednostno izdelanih iz ognjevzdržnega jekla z nizko stopnjo oksidacije, npr. iz nerjavnega jekla EN 1.4435 ali EN 1.4841, in medsebojno spojenih z vzdolžno gibljivimi spoji 35 in povezanih na vstopni strani izpušnega zbiralnika na motorno tesnilno ploščo 1, na izstopni strani pa na izstopno tesnilno ploščo 28. Posamične ne nujno absolutno nepredušne izpušne cevi 4, 5 in 26 so vdelane v hermetično zaprt plašč izpušnega zbiralnika 13, 1, 7, napolnjen z izpušnimi plini pod tlakomThe exhaust manifold of the present invention is a welded stainless steel structure consisting of individual exhaust pipes 4, 5, 26, preferably made of low-oxidation refractory steel, e.g. made of EN 1.4435 or EN 1.4841 stainless steel, and interconnected with longitudinally movable joints 35 and connected at the inlet side of the exhaust manifold to the motor gasket 1 and at the outlet side to the outlet gasket 28. Individual, not absolutely airtight, exhaust pipes 4, 5 and 26 are embedded in an airtight enclosure of the exhaust manifold 13, 1, 7 filled with pressurized exhaust gas
46, in spojene z rahlo puščajočimi spoji 35. Tovrstna konstrukcija tudi preprečuje, da bi strupene sestavine izpušnih plinov uhajale v okolico. Celotna konstrukcija je prekrita z izoliranimi zunanjimi ploskvami 9 izpušnega zbiralnika in delno s tekočim motornim hladilnim sredstvom 17, ki se hladi izven ploskev 12, 14, 1 in 28 izpušnega zbiralnika. Motorno hladilno sredstvo se hladi v integriranem hladilniku motornega hladilnega sredstva (slika 1).46, and fused with slightly leaky joints 35. This construction also prevents toxic components of the exhaust from leaking into the surroundings. The whole structure is covered by the insulated outer surfaces of the exhaust manifold 9 and partly by the liquid engine coolant 17 cooled outside the exhaust manifolds 12, 14, 1 and 28. The engine coolant is cooled in the integrated engine coolant cooler (Figure 1).
Cilj in namen izumaAim and purpose of the invention
Izum je zasnovan tako, da posamezne izpušne cevi niso neposredno hlajene. Posledična višja temperatura izpušnih cevi ima le neznaten negativen učinek na življenjsko dobo izpušnih cevi. Cevi so zgolj zaprte v hermetično tesen, hlajen in izoliran plašč izpušnega zbiralnika z zelo nizkim hladilnim učinkom. Nehlajeni izpušni plini zagotavljajo višjo moč turbinskega polnilnika, z višjo močjo motorja, z višjim polnilnim tlakom, zaradi česar je prezračevanje zgorevalne i komore v času prekritja ventilov boljše, toplotna obremenitev bata in predelov glav valjev motorja pa je zmanjšana. Zasnova s posameznimi cevmi, spojenimi z drsnimi elementi, dopušča toplotno raztezanje izpušnih cevi brez toplotnih napetosti. Obenem pa uporabljeno ognjevzdržno jeklo z nizko stopnjo oksidacije, npr. nerjavno jeklo EN 1.4435 ali EN 1.4841, omogoča dolgo življenjsko dobo. Tesnila med zbiralnikom so trajna, znatno motorjem in izpušnim so zmanjšane toplotne deformacijske sile, ki bi sicer uničile tesnilo. Delno tesneči spoji med posameznimi izpušnimi cevmi omogočajo, da plini uhajajo v hermetično tesen, hlajen in izoliran plašč izpušnega zbiralnika, dokler se ne doseže zadosten protitlak, ki onemogoči nadaljnje uhajanje. Delno hlajena in delno izolirana konstrukcija izpušnega zbiralnika ima nizko zunanjo temperaturo, s čimer je preprečena previsoka temperatura zraka v prostoru z motorjem. Zaradi nižje temperature vsesanega zraka dovaja turbinski polnilnik motorju še več zraka, kar predstavlja še dodatne prednosti glede moči in porabe goriva.The invention is designed so that individual exhaust pipes are not directly cooled. The resulting higher exhaust pipe temperature has only a minor negative effect on the exhaust pipe life. The pipes are only enclosed in a hermetically sealed, cooled and insulated exhaust manifold with a very low cooling effect. Uncooled exhaust gases provide higher turbocharger power, higher engine power, and higher filling pressure, which makes the combustion chamber ventilation better during valve overlap and the thermal load on the piston and cylinder head compartments is reduced. The design with individual tubes joined by sliding elements permits thermal expansion of the exhaust pipes without heat stresses. At the same time, low-oxidation refractory steel is used, e.g. stainless steel EN 1.4435 or EN 1.4841, provides a long service life. The seals between the manifold are durable, significantly reducing the thermal deformation forces that would otherwise destroy the seal, significantly reducing the engine and exhaust. The partially sealed joints between the exhaust pipes allow the gases to escape into a hermetically sealed, cooled and insulated exhaust manifold until sufficient back pressure is reached to prevent further leakage. The partially cooled and partially insulated structure of the exhaust manifold has a low outside temperature, which prevents excessive air temperature in the engine compartment. Due to the lower intake air temperature, the turbocharger gives the engine even more air, which adds further benefits in terms of power and fuel consumption.
Opis slikDescription of the pictures
Slika 1: prečni prerez A-A hlajenega in izoliranega izpušnega zbiralnika motorja z notranjim zgorevanjem.Figure 1: A-A cross-section of an internal combustion engine cooled and insulated exhaust manifold.
Slika 2: debelejša tesnilna plošča nadomeščena s tanjšo tesnilno ploščo.Figure 2: Thicker sealing plate replaced by thinner sealing plate.
Slika 3: vzdolžni prerez B-B izpušnega zbiralnika, prikazanega na sliki 2.Figure 3: Longitudinal section B-B of the exhaust manifold shown in Figure 2.
Slika 4: cev izpušnega zbiralnika vstavljena skozi drsni element v sosednjo cev.Figure 4: Exhaust manifold pipe inserted through sliding element into adjacent pipe.
Slika 5: cev izpušnega zbiralnika vstavljena v drsni element cevi z večjim premerom.Figure 5: Exhaust manifold pipe inserted into a larger diameter pipe element.
Slika 6: cev izpušnega zbiralnika vstavljena v dvojni drsni element.Figure 6: Exhaust manifold pipe inserted into double slide element.
Slika 7: rešitev brez integriranega hladilnika motornega hladilnega sredstva.Figure 7: Solution without integrated engine cooler.
integriranim (slika 1) .integrated (Figure 1).
Slika 1 predstavlja prečni prerez Ά-Ά hlajenega in izoliranega izpušnega zbiralnika motorja z notranjim zgorevanjem, prikazanega na sliki 3, z hladilnikom motornega hladilnega sredstvaFigure 1 is a cross-sectional view of a Ά-Ά cooled and insulated exhaust manifold of the internal combustion engine shown in Figure 3 with a engine coolant cooler
Integrirani izpušni zbiralnik vključuje močnejšo tesnilno ploščo 1, katere prosta ploskev je obrnjena proti motorju z notranjim zgorevanjem. Močnejša tesnilna plošča 1 se lahko po varjenju še obdela, tako da se zagotovi ravna površina, potrebna za tesnjenje. Na drugo stran tesnilne plošče 1 je, prednostno z avtomatičnim varilnim postopkom, privarjena posoda za motorno hladilno sredstvo, sestavljena iz tanjših plošč 12, 13 in 14. Plošče 1, 12, 13 in 14, zvarjene skupaj z zvari 8, sestavljajo posodo za hladilno tekočino 17. Na vrhu posode za motorno hladilno sredstvo je z zvari 8 na ploščo 12 privarjena cev 15 z notranjim navojem 18 in tesnilno ploskvijo 16, s čimer je omogočeno, da se vstavi zamašek za zapiranje motornega hladilnega sredstva 17 (ki ni prikazan na slikah). V zgornjem delu posode za hladilno sredstvo je nameščen toplotni izmenjevalnik 21 med naravno vodo iz okolja in motornim hladilnim sredstvom. Podrobnosti toplotnega izmenjevalnika so prikazane na sliki 3. Kolena 4 izpušnega zbiralnika so vstavljena v izpušne luknje tesnilne plošče 1 ali 2 in so privarjena na tesnilno ploščo 1 ali 47 z zvari 3. Na nasprotnem koncu so kolena 4 privarjena na izpušno cev 5 in spojena z nadaljnjimi izpušnimi cevmi 5 in 26, kot je prikazano na slikah 3 in 7. Po drugi strani se izpušna cev (4, 5 in 26) nahaja v prostoru 46 z izpušnimi plini pod povišanim tlakom, ki je zavarovan s tesno se prilegajočo ploščo 7, privarjeno na ploščo 13 z zvari 8. Malo dlje navzven se na majhni razdalji nahaja plošča 9, poravnana s ploščo 14 in privarjena na ploščo 13 z zvari 8. Ozki prostor med ploščama 7 in 9 je napolnjen s plinastim, trdnim ali tekočim izolacijskim materialom, s čimer se izboljša izolacija cevi izpušnega zbiralnika. Cevi 6 so vstavljene v luknje v debelejši tesnilni plošči 1 in v luknje v ploščah 7 in 9. Cevi 6 so z zvari 8 privarjene na debelejšo tesnilno ploščo 1 in na plošči 7 in 9. Z vijaki 11, ki se nahajajo v ceveh 6, in s pomočjo ustreznih matic 10 je celotni izpušni zbiralnik skupaj z integriranim hladilnikom motornega hladilnega sredstva pričvrščen na glave valjev motorja. Privarjeni vzdolžni plošči 48 in 49 izboljšata učinkovitost hlajenja, ker usmerjata pretok hladilnega sredstva skozi cevi 19 hladilnika motornega hladilnega sredstva.The integrated exhaust manifold includes a stronger sealing plate 1 whose free surface faces the internal combustion engine. Stronger sealing plate 1 can still be machined after welding to provide the flat surface required for sealing. Preferably, by means of an automatic welding process, on the other side of the sealing plate 1 is a welded motor coolant tank consisting of thinner plates 12, 13 and 14. The plates 1, 12, 13 and 14, welded together with welds 8, constitute the coolant vessel fluid 17. At the top of the engine coolant container, a pipe 15 with an internal thread 18 and a sealing surface 16 is welded to the plate 12 on the plate 12, thereby enabling the insertion of the engine coolant closure 17 (not shown in the figures). ). A heat exchanger 21 is installed between the natural environment water and the engine coolant in the upper portion of the coolant tank. Details of the heat exchanger are shown in Figure 3. Exhaust manifold elbows 4 are inserted into the exhaust holes of sealing plate 1 or 2 and welded to sealing plate 1 or 47 by welds 3. At the opposite end, elbows 4 are welded to the exhaust pipe 5 and connected by further exhaust pipes 5 and 26, as shown in Figures 3 and 7. On the other hand, the exhaust pipe (4, 5 and 26) is located in the high pressure exhaust chamber 46, protected by a tightly fitting plate 7, welded to plate 13 by welds 8. A little farther outward, a panel 9 aligned with plate 14 and welded to plate 13 by welds 8. A narrow space between plates 7 and 9 is filled with gaseous, solid or liquid insulating material, thus improving the exhaust manifold pipe insulation. The tubes 6 are inserted into the holes in the thicker sealing plate 1 and into the holes in plates 7 and 9. The tubes 6 are welded to the thicker sealing plate 1 and plate 7 and 9 by welds 8, with the screws 11 located in the tubes 6, and, by means of suitable nuts 10, the complete exhaust manifold together with the integrated engine coolant cooler is secured to the cylinder heads. Welded longitudinal plates 48 and 49 improve cooling efficiency by directing the flow of refrigerant through the pipes of the engine coolant cooler.
Na sliki 2 je debelejša tesnilna plošča 1 nadomeščena s tanjšo tesnilno ploščo 47, medtem ko je lahka litina 2 ulita in obdelana na tesnilni površini. S tako rešitvijo se ohrani potrebna togost tesnilne ploskve, ne da bi imeli težave z varjenjem debelejših in tanjših plošč skupaj.In Figure 2, the thicker sealing plate 1 is replaced by a thinner sealing plate 47, while the light cast 2 is cast and machined on the sealing surface. This solution preserves the necessary rigidity of the sealing surface without the hassle of welding thicker and thinner plates together.
Na sliki 3 je prikazan vzdolžni prerez B-B izpušnega zbiralnika s slike 2 po izumu. Izpušna cev 5, privarjena na kolena 4, je v skladu z zasnovami na slikah 4, 5 in 6 s pomočjo delno tesnečega gibljivega spoja 35 (ali 41 in 42) spojena s sosednjo izpušno cevjo 5, ki je prav tako privarjena na kolena 4, s spojem 35 (41 ali 42) in nadalje spojena s sestavno cevjo izpušnega zbiralnika 26. Cev 26 je tesno, zvarjeno spojena s cevjo 27 z zvari 8, in z izpušno tesnilno ploščo 28. Vsi sestavni deli izpušnega zbiralnika 4, 5 in 26 omogočajo s pomočjo gibljivih spojev 35 (pa tudi 41 oz. 42) prosto toplotno raztezanje komponent izpušnega zbiralnika,; kljub visoki izpušni temperaturi. Taka zasnova ima za posledico nizke toplotne napetosti in deformacije sestavnih delov izpušnega zbiralnika. Skromni delež izpušnih plinov, ki uhaja skozi delno tesneče spoje 35 (pa tudi 41 oz. 42), se ujame v tesnečem prostoru 46 s hlajenim in izoliranim zunanjim plaščem izpušnega zbiralnika, obdanim s ploščami 1 (slika 1), 13 in 7 (slika 1). Celo to minimalno uhajanje plinov pa se skoraj povsem prekine, ko se vzpostavi višji tlak v tesnjeni, hlajeni in izolirani komori 46. Hladilno sredstvo motorja z notranjim zgorevanjem vstopa v izpušni zbiralnik skozi vstopno odprtino 34 cevi 24, privarjene na ploščo 12 z zvarom 8. Hladilno sredstvo kroži okrog plošče 13, pri čemer ga dodatno usmerjata plošči 39 in 45, ki sta z zvari 8 privarjeni na ploščo 13 in vplivata na smer pretoka hladilnega sredstva. Ob strani kolena 4 in cevi 5 vsake izpušne odprtine so privarjene cevi 6 med ploščami 7, 14 in 1 (kot je prikazano na sliki 1), ki ščitijo pred preveliko toploto vijake 11, zategnjene z maticami 10 (oboje je razvidno s slike 1), obenem pa tudi prispevajo k togosti celotne konstrukcije. Taka zasnova omogoča uporabo dolgih vijakov 11, ki dovoljujejo primerne raztezke, s čimer je omogočeno varno zategovanje tesnila izpušnega zbiralnika, ki na slikah ni prikazan. Zunanja plošča 12 je privarjena na debelejšo tesnilno ploščo 28 izpuha, na obroče 30 in 21 toplotnega izmenjevalnika ter na odvodno cev 23 hladilnega sredstva odvoda 33 hladilnega sredstva. Cevi 19 toplotnega izmenjevalnika so pritrjene na plošče 20 in 29 toplotnega izmenjevalnika ter z obročastimi tesnili 38 zatesnjene na obroče 21 in 30 toplotnega izmenjevalnika. Naravna voda iz okolja pride v cevi toplotnega izmenjevalnika skozi pokrove 22 toplotnega izmenjevalnika, tesno pritrjene na obroče 21 in 30 toplotnega izmenjevalnika. Pritrdilni vijaki za pokrov 22 ' toplotnega izmenjevalnika niso prikazani na sliki. Cev 27 je privarjena tako na izpušno tesnilno ploščo 28 kot na ploščo 13.Figure 3 shows a longitudinal section of the B-B exhaust manifold of Figure 2 according to the invention. The exhaust pipe 5 welded to the elbows 4 is connected to the adjacent exhaust pipe 5, which is also welded to the elbows 4 according to the designs of Figures 4, 5 and 6 by means of a partially sealing flexible joint 35 (or 41 and 42). with joint 35 (41 or 42) and further connected to the exhaust manifold assembly pipe 26. Pipe 26 is tightly welded to the pipe 27 by welds 8, and to the exhaust gasket 28. All exhaust manifold components 4, 5 and 26 allow by means of flexible joints 35 (as well as 41 and 42 respectively) free thermal expansion of the exhaust manifold components; despite the high exhaust temperature. Such a design results in low thermal stresses and deformation of the exhaust manifold components. A modest proportion of exhaust gas escaping through partially sealed joints 35 (as well as 41 and 42 respectively) is trapped in the sealing space 46 by the cooled and insulated outer jacket of the exhaust manifold surrounded by panels 1 (Figure 1), 13 and 7 (Figure 1). However, even this minimum gas leakage is almost completely interrupted when the higher pressure in the sealed, cooled and insulated chamber is established 46. The internal combustion engine coolant enters the exhaust manifold through the inlet 34 of the pipe 24 welded to the plate 12 by weld 8. The refrigerant circulates around the plate 13, being further directed by plates 39 and 45, which are welded to the plate 13 by welds 8 and affect the direction of flow of the refrigerant. On the side of the knee 4 and the pipes 5 of each exhaust outlet, the pipes 6 between the plates 7, 14 and 1 (as shown in Figure 1) are welded to protect the screws 11, tightened by the nuts 10, from excessive heat (both shown in Figure 1). , but also contribute to the rigidity of the entire structure. This design allows for the use of long screws 11 that allow for suitable elongation, thereby enabling secure tightening of the exhaust manifold gasket not shown in the figures. The outer plate 12 is welded to the thicker exhaust gasket 28, to the heat exchanger rings 30 and 21 and to the coolant outlet pipe 23 to the coolant outlet 33. The heat exchanger pipes 19 are secured to the heat exchanger plates 20 and 29 and sealed with the ring seals 38 to the heat exchanger rings 21 and 30. Natural water from the environment enters the heat exchanger pipes through the heat exchanger covers 22, tightly attached to the heat exchanger rings 21 and 30. The retaining screws for the heat exchanger cover 22 'are not shown. Pipe 27 is welded to both the exhaust gasket 28 and the plate 13.
Na sliki 4 je prikazana cev 5 izpušnega zbiralnika, vstavljena skozi drsni element 35 v naslednjo-sosednj o cev 5. Ta delno tesneči spoj omogoča izpušnim plinom, da se neovirano pretakajo skozi cevi 5, pri tem pa s svojo prosto aksialno gibljivostjo kompenzira toplotne raztezke obeh cevi. Uhajajoči izpušni plini ustvarjajo protitlak v komori 46, kot je prikazano na slikah 3 in 7. Ko je protitlak vzpostavljen, se uhajanje nevtralizira in zreducira na zanemarljivo raven.Figure 4 shows an exhaust manifold pipe 5 inserted through the sliding element 35 into the next-adjacent pipe 5. This partially sealed joint allows the exhaust gases to flow freely through the pipes 5, compensating for thermal expansion by its free axial motility. both pipes. Exhaust gases generate backpressure in chamber 46 as shown in Figures 3 and 7. When counterpressure is established, the leakage is neutralized and reduced to a negligible level.
Slika 5 prikazuje cev 5 izpušnega zbiralnika, vstavljeno skozi drsni element cevi s širšim premerom 41. Sosednja cev 5 vstopa v cev 41 skozi zoženi konec 35 cevi 41. Ti delno tesneči spoji omogočajo izpušnim plinom, da se neovirano pretakajo skozi cevi 5, pri tem pa kompenzirajo toplotne raztezke obeh cevi. Uhajajoči izpušni plini ustvarjajo protitlak v komori 46, kot je prikazano na slikah 3 in 7. Ko je protitlak vzpostavljen, se uhajanje nevtralizira in zreducira na zanemarljivo raven.Figure 5 shows an exhaust manifold pipe 5 inserted through a sliding pipe element of a wider diameter 41. An adjacent pipe 5 enters the pipe 41 through a tapered end 35 of the pipe 41. These partially sealed joints allow the exhaust gas to flow freely through the pipes 5, however, they compensate for the thermal expansion of both pipes. Exhaust gases generate backpressure in chamber 46 as shown in Figures 3 and 7. When counterpressure is established, the leakage is neutralized and reduced to a negligible level.
Slika 6 prikazuje cev 5 izpušnega zbiralnika, vstavljeno v dvojni drsni element 35 cevi 42. Cev 42 je z zvari 8 privarjena na sosednjo cev 5. Ta delno tesneči spoj omogoča izpušnim plinom, da se neomejeno pretakajo skozi cevi 5, pri tem pa kompenzira toplotne raztezke obeh cevi. Zmanjšana količina uhajajočih izpušnih plinov ustvarja protitlak v komori 46, kot je prikazano na slikah 3 in 7. Ko je protitlak vzpostavljen, se uhajanje v prostor 46 nevtralizira in zreducira na zanemarljivo raven.Figure 6 shows an exhaust manifold pipe 5 inserted into a double slide element 35 of the pipe 42. The pipe 42 is welded to the adjacent pipe 5 by welds 8. This partially sealed joint allows the exhaust gases to flow indefinitely through the pipes 5 while compensating for heat elongation of both tubes. Reduced leakage of exhaust gases creates backpressure in chamber 46, as shown in Figures 3 and 7. When backpressure is established, the leakage to chamber 46 is neutralized and reduced to a negligible level.
Slika 7 prikazuje podobno rešitev, vendar brez integriranega hladilnika motornega hladilnega sredstva. Naravna voda ali motorno hladilno sredstvo 34 vstopa v hladilno območje 17 (sliki 1 in 2) skozi vstopno cev 24. Naravna voda ali motorno hladilno sredstvo kroži nad ploščo 13 in pod njo do odvoda 43 skozi cev 44. V primeru hlajenja z naravno vodo je navedeni odvod nameščen v bližini tesnilne plošče 28 turbinskega polnilnika. Izstopajoča naravna voda se lahko izrabi za hlajenje turbinskega polnilnika ali pa vstopa neposredno v koleno izpuha. Nobeno od obojega ni prikazano na sliki 7. V primeru hlajenja izpušnega .zbiralnika z motornim hladilnim sredstvom navedeno hladilno sredstvo zapusti izpušni zbiralnik 43 po cevi 44. Na obeh straneh vsakega izpušnega kolena 4 izpušnih cevi 5 so v območju izpušnih plinov 46 privarjene cevi 6 med ploščami 7, 14 in 1 (kot je prikazano na sliki 1), ki ščitijo pred preveliko toploto vijake 11, zategnjene z maticami 10 (oboje je razvidno s slike 1), obenem pa tudi prispevajo k togosti celotne konstrukcije. Taka zasnova omogoča uporabo dolgih vijakov 11, ki dovoljujejo primerne raztezke, s čimer je omogočeno varno zategovanje tesnila izpušnega zbiralnika, ki na slikah ni prikazan. Zunanja plošča 12 je privarjena na debelejšo tesnilno ploščo 28 izpuha. Z navojem opremljena praznilna cev 48 hladilne tekočine s praznilnim zamaškom, ki na sliki 7 ni prikazan, se lahko odpre in s tem omogoči izpraznitev hladilne tekočine.Figure 7 shows a similar solution, but without an integrated engine coolant cooler. Natural water or engine coolant 34 enters cooling zone 17 (Figures 1 and 2) through inlet pipe 24. Natural water or engine coolant circulates above plate 13 and below it to outlet 43 through pipe 44. In the case of natural water cooling, said outlet installed near the sealing plate 28 of the turbine charger. Outstanding natural water can be used to cool the turbine charger or enter directly into the exhaust knee. Neither is shown in Figure 7. In the case of engine coolant exhaust cooling, said coolant exits the exhaust manifold 43 via pipe 44. On both sides of each exhaust knee 4 of the exhaust pipes 5, there are welded pipes 6 between the exhaust gases 46. plates 7, 14 and 1 (as shown in Figure 1) that protect against excessive heat the screws 11, tightened by nuts 10 (both can be seen in Figure 1), while contributing to the rigidity of the overall structure. This design allows for the use of long screws 11 that allow for suitable elongation, thereby enabling secure tightening of the exhaust manifold gasket not shown in the figures. The outer plate 12 is welded to the thicker exhaust gasket 28. Threaded coolant drain pipe 48 with a drain plug not shown in Figure 7 can be opened to allow the coolant to drain.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200600131A SI22306A (en) | 2006-05-25 | 2006-05-25 | Exhaust manifold of internal combustion engine with divided segments enclosed in hermetically closed, cooled and isolated exhaust manifold housing |
PCT/SI2007/000027 WO2007139522A1 (en) | 2006-05-25 | 2007-05-24 | Exhaust manifold in a cooled and isolated housing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200600131A SI22306A (en) | 2006-05-25 | 2006-05-25 | Exhaust manifold of internal combustion engine with divided segments enclosed in hermetically closed, cooled and isolated exhaust manifold housing |
Publications (1)
Publication Number | Publication Date |
---|---|
SI22306A true SI22306A (en) | 2007-12-31 |
Family
ID=38445973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200600131A SI22306A (en) | 2006-05-25 | 2006-05-25 | Exhaust manifold of internal combustion engine with divided segments enclosed in hermetically closed, cooled and isolated exhaust manifold housing |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI22306A (en) |
WO (1) | WO2007139522A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008015434A1 (en) * | 2008-03-22 | 2009-09-24 | Mahle International Gmbh | Exhaust gas leading component |
AT521516B1 (en) * | 2018-10-29 | 2020-02-15 | Avl List Gmbh | Internal combustion engine, in particular for marine applications |
CN111365110B (en) * | 2020-03-27 | 2021-04-20 | 潍柴重机股份有限公司 | Water jacket exhaust pipe assembly, engine fuel supply system and method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2653263C3 (en) * | 1976-11-24 | 1983-05-11 | Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen | Exhaust pipe |
DE4342572C1 (en) * | 1993-12-14 | 1994-11-24 | Mtu Friedrichshafen Gmbh | Exhaust system for a turbocharged internal combustion engine |
DE29518189U1 (en) * | 1995-02-03 | 1996-01-18 | Loup, Rudolf, 73655 Plüderhausen | Exhaust manifold system |
DE19514020A1 (en) * | 1995-04-13 | 1996-10-17 | Daimler Benz Ag | Exhaust manifold, in particular for an internal combustion engine in a motor vehicle, and method for its production |
DE19810726A1 (en) * | 1998-03-12 | 1999-09-16 | Motoren Werke Mannheim Ag | Exhaust gas manifold with integral cooling for IC engine |
-
2006
- 2006-05-25 SI SI200600131A patent/SI22306A/en not_active IP Right Cessation
-
2007
- 2007-05-24 WO PCT/SI2007/000027 patent/WO2007139522A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2007139522A1 (en) | 2007-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8826661B2 (en) | Cooling structure of supercharger | |
US6397589B1 (en) | Exhaust pipes and assemblies | |
US6176082B1 (en) | Exhaust manifold cooling assembly for an internal combustion engine | |
US9057319B2 (en) | Multi-stage turbocharger arrangement | |
SI22306A (en) | Exhaust manifold of internal combustion engine with divided segments enclosed in hermetically closed, cooled and isolated exhaust manifold housing | |
US4205527A (en) | Exhaust manifold | |
CA2878576C (en) | Marine conversion of a diesel engine | |
US8505927B2 (en) | Flange fastening section and cooling system of flange fastening section | |
US20160177814A1 (en) | Removal of Heat in Exhaust Shielding with Jacket Fluid Cooled Components | |
JP2009108704A (en) | Engine cooling system | |
EP2836691B1 (en) | Charge air guide element for internal combustion engine | |
US9458755B2 (en) | Radiant heat discharge arrangement | |
KR100387424B1 (en) | Intercooler for air cooling and water cooling | |
RU2255236C1 (en) | Power plant with stirling engine, heat accumulator and intermediate heat carrier | |
ES2388156A1 (en) | Gas heat exchanger, in particular for the exhaust gases of an engine | |
CN110345456A (en) | Internal combustion engine smoke evacuation pre-cooling and UTILIZATION OF VESIDUAL HEAT IN integral system | |
CN221144556U (en) | Exhaust pipe cooling cabin penetrating piece and aluminum alloy ship | |
CN219736057U (en) | Smoke-water heat exchange device of gas generator set | |
KR101795352B1 (en) | End cover for charge air cooler | |
CN211524944U (en) | Engine supercharging and cooling device | |
ES2333191B1 (en) | HEAT EXCHANGER FOR GASES, ESPECIALLY OF EXHAUST GASES OF AN ENGINE. | |
JPS6332116A (en) | Cooling device for internal combustion engine | |
JP2001193578A (en) | Egr device | |
SU739250A1 (en) | Heating system for internal combustion engine | |
KR20230086354A (en) | Egr cooler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20060809 |
|
KO00 | Lapse of patent |
Effective date: 20101228 |