SI22288A - Method and device for selective etching of composite materials with laser ablation - Google Patents

Method and device for selective etching of composite materials with laser ablation Download PDF

Info

Publication number
SI22288A
SI22288A SI200600140A SI200600140A SI22288A SI 22288 A SI22288 A SI 22288A SI 200600140 A SI200600140 A SI 200600140A SI 200600140 A SI200600140 A SI 200600140A SI 22288 A SI22288 A SI 22288A
Authority
SI
Slovenia
Prior art keywords
composite
laser
treatment method
polymer
gases
Prior art date
Application number
SI200600140A
Other languages
Slovenian (sl)
Inventor
Uroš CVELBAR
Miran MOZETIÄŚ
Original Assignee
Institut "JoĹľef Stefan"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut "JoĹľef Stefan" filed Critical Institut "JoĹľef Stefan"
Priority to SI200600140A priority Critical patent/SI22288A/en
Priority to PCT/SI2007/000025 priority patent/WO2007142610A1/en
Publication of SI22288A publication Critical patent/SI22288A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • B23K26/125Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • B23K26/3584Increasing rugosity, e.g. roughening
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

The subject of invention is a method for surface treatment of composite materials having a polymer matrix and a device with which selective etching of a composite surface is carried out. The method is based on surface treatment of a composite with a jet of energetic particles, first of all a bundle of laser rays, i.e. with laser ablation. Polymer is selectively partly or completely removed from the surface and fillers are left almost intact. Such changes of surface lead to the essential change of surface properties, first of all adhesion and porosity of various coatings on a composite.

Description

METODA IN NAPRAVA ZA SELEKTIVNO JEDKANJE KOMPOZITNIH MATERIALOV Z LASERSKO ABLACIJOMETHOD AND DEVICE FOR LASER ABLASION SELECTIVE CORNING OF COMPOSITE MATERIALS

Predmet izuma sta metoda in naprava za selektivno jedkanje kompozitnih materialov z lasersko ablacijo, torej metoda za obdelavo površine kompozitnih materialov s polimerno matriko in naprava, s katerim dosežemo selektivno jedkanje površine. Metoda temelji na površinski obdelavi kompozita s pulznim curkom energetskih delcev iz laserskega snopa, kar imenujemo laserska ablacija. Med obdelavo z izbranimi parametri pulza ali dodatnimi izvori energetskih delcev in/ali plini, ki omogočijo povečane gostote delcev v interakciji na površini, se spremeni sestava in morfologija površinskega dela kompozita. Polimer se s površine delno ali popolnoma odstrani, tako da ostanejo na površini samo polnila. Ta proces imenujemo selektivno jedkanje kompozita. Takšne spremembe površine pa vodijo k bistveni spremembi površinskih lastnosti, predvsem adhezivnosti in poroznosti različnih prevlek na kompozitu.The object of the invention is a method and apparatus for selective etching of composite materials by laser ablation, that is, a method for surface treatment of composite materials with a polymer matrix and a device for achieving selective etching of the surface. The method is based on the surface treatment of a composite with a pulsed jet of energy particles from a laser beam, called laser ablation. During treatment with selected pulse parameters or additional sources of energy particles and / or gases that allow increased particle densities to interact on the surface, the composition and morphology of the surface part of the composite changes. The polymer is partially or completely removed from the surface, leaving only fillers on the surface. This process is called selective etching of composites. Such surface changes, however, lead to a significant change in the surface properties, especially the adhesiveness and porosity of the various coatings on the composite.

PRIKAZ PROBLEMADISPLAY OF THE PROBLEM

Kompozitni materiali s polimerno matriko (v nadaljnjem besedilu: kompoziti) so se uveljavili v različnih industrijskih panogah. Kompoziti so sestavljeni iz polimerne matrike, v kateri so poljubno porazdeljeni različni delci, ki jih imenujemo polnila. Polnila so lahko organski ali anorganski delci, ki so lahko različnih oblik in velikosti. Lastnosti posameznega kompozita so odvisne od vrste polimerne matrike, vrste in koncentracije polnil ter porazdelitve, včasih tudi orientacije polnil v polimerni matriki. Površinske lastnosti kompozitov (sestava, morfologija, površinska napetost) pa so odvisne predvsem od lastnosti polimerne matrike, ker polimer običajno popolnoma prekrije polnila. Primere najdemo pri kompozitnih prevlekah, kot so različni barvni premazi, ki vsebujejo več različnih polnil. Selektivna obdelava površine pa nam omogoči odstranitev polimera s površine, tako da lahko karakteriziramo površino za npr. kvaliteto in homogenost porazdelitve polnil v polimerni matriki. Pogosto želimo spremeniti površinske lastnosti kompozita za povečanje adhezivnosti kompozita z naneseno plastjo različnih materialov. V teh primerih je najugodnejše, da odstranimo s površine polimer, tako da na površini ostanejo samo razkrita polnila, na katera se bo nanesena plast bolje vezala.Polymer matrix composite materials (hereinafter referred to as "composites") have established themselves in various industries. Composites consist of a polymer matrix in which various particles, called fillers, are arbitrarily distributed. Fillers may be organic or inorganic particles of various shapes and sizes. The properties of each composite depend on the type of polymer matrix, the type and concentration of fillers, and the distribution, sometimes orientation, of the fillers in the polymer matrix. The surface properties of composites (composition, morphology, surface tension), however, depend mainly on the properties of the polymer matrix, since the polymer usually completely covers the fillers. Examples are found in composite coatings such as different paint coatings containing several different fillers. Selective surface treatment allows us to remove the polymer from the surface so that we can characterize the surface for e.g. the quality and homogeneity of the distribution of the fillers in the polymer matrix. We often want to change the surface properties of a composite to increase the adhesiveness of a composite with an applied layer of different materials. In these cases, it is advantageous to remove the polymer from the surface, leaving only the fillers disclosed on the surface, to which the applied layer will better adhere.

Polimer lahko s površine odstranjujemo na različne načine, na primer s kemijskim jedkanjem, ali mehanskim odstranjevanjem. Navedena postopka sta okolju neprijazna, nekakovostna ali cenovno neugodna, predvsem pa z njimi težko zagotovimo lokalno jedkanje. Okolju bolj prijazno je plazemsko jedkanje, ki pa ne zagotavlja selektivne odstranitve materiala na manjših mestih, ter je bolj primerno za selektivno jedkanje večjih površin. Problem pa se pojavi, ko želimo enakomerno selektivno odstraniti material na posameznih mestih ali v luknjah, kar je standardni problem pri izdelavi mikroelektronskih naprav.The polymer can be removed from the surface in various ways, for example by chemical etching or mechanical removal. These procedures are environmentally unfriendly, of poor quality or cost-effective and, above all, make local etching difficult. Plasma etching is more environmentally friendly but does not guarantee the selective removal of material in smaller areas and is more suitable for selective etching of larger areas. However, a problem arises when we want to remove material equally selectively at individual sites or holes, which is a standard problem for microelectronic devices.

STANJE TEHNIKEBACKGROUND OF THE INVENTION

Klasični način jedkanja polimerov s površine kompozitov je mokro kemijsko jedkanje. Takšno jedkanje npr. uporabljajo za obdelavo površine superprevodnih kompozitov (US6214249 in VV002071462) ali pred nanosom kovinskih prevlek (US6080836). Polimer je mogoče odstraniti s površine kompozita tudi z oksidacijo. V te namene uporabljajo plamen, koronsko razelektritev ali mokro kemijsko jedkanje. Jedkanje polimerov pogosto uporabljajo v mikroelektroniki, na primer pri izdelavi integriranih vezij. Pri tem lahko uporabljajo večstopenjske procese, kot na primer pri jedkanju z visokofrekvenčno razelektritvijo, t.j. plazmo (US2002055263, US5705428 inThe classic method of etching polymers from the surface of composites is wet chemical etching. Such etching e.g. used for surface treatment of superconducting composites (US6214249 and VV002071462) or prior to application of metal coatings (US6080836). The polymer can also be removed from the composite surface by oxidation. They use flame, corona discharge or wet chemical etching for these purposes. The etching of polymers is often used in microelectronics, for example in the manufacture of integrated circuits. They may use multi-stage processes such as etching with high-frequency discharge, i.e. plasma (US2002055263, US5705428 in

US2002125207). Plazemsko jedkanje polimerov se npr. uporablja tudi za obdelavo polietilenskih (UHMPE) vlaken/vinil-esterska smola kompozitov za izboljšanje površinske omočljivosti. V tem primeru je plazemsko jedkanje stopnja v postopku izdelave, ki omogoča tako dobro omočljivost površine vlaken, da jih je mogoče impregnirati z vinil-estersko smolo (US5221431). Selektivno plazemsko jedkanje kompozitov pa najdemo v patentu DE10320483, kjer površino obdelamo z radikali reaktivnih plinov.US2002125207). Plasma etching of polymers, e.g. also used for processing polyethylene (UHMPE) fiber / vinyl ester resin composites to improve surface wettability. In this case, plasma etching is a step in the fabrication process which allows the fiber surface to be so wettable that it can be impregnated with vinyl ester resin (US5221431). Selective plasma etching of composites is found in patent DE10320483, where the surface is treated with reactive gas radicals.

Laserska svetloba se za odstranjevanje materiala uporablja v mnogih aplikacijah. Bolj specifična je laserska ablacija ali kombinacija le te z drugimi vrstami izvorov. Mešanico tehnologije laserske svetlobe in električne razelektritve, kjer ustvarimo med vzorcem in anodo lasersko plazmo s katero obdelujemo material najdemo v JP11197947. V splošnem se laserska ablacija veliko uporablja v tiskanju (JP10291319, US5836249, JP9118017, US6165687) in litografiji (DE19817756), kjer imamo opravka s kompozitnimi materiali. Znan je tudi nanos materialov z lasersko ablacijo, s katerim tvorimo kompozite (JP5179429, VV02004042785) ali pa nanje nanašamo material (DE3915261, FR2816756). Laserska ablacija se uporablja kot pripomoček v medicini predvsem za obdelavo tkiv (VV003101529, US5807379) ali katetersko ablacijo (US2003199755, US6701176, WO09638193). Z to medodo izdelujemo tudi nanostrukturne materiale, kot so ogljikove nanocevke (JP2003054922), sintramo materiale (US2004081573) in sintetiziramo kompaktne filme, kot je npr. za uporabo kot optične vodnike pri čemer obdelujemo polimere (US5106211). Pogosto se metoda uporablja tudi za odstranjevanje materiala iz dvoplastnih kompozitov, kjer je spodnja plast prozorna za lasersko svetlobo (JP2001300749).Laser light is used in many applications to remove material. More specific is laser ablation or a combination thereof with other types of sources. A mixture of laser light technology and electrical discharge where a laser plasma is created between the sample and the anode to process the material is found in JP11197947. In general, laser ablation is widely used in printing (JP10291319, US5836249, JP9118017, US6165687) and lithography (DE19817756), where composite materials are concerned. Also known is the application of laser ablation materials to form composites (JP5179429, VV02004042785) or to apply materials (DE3915261, FR2816756). Laser ablation is used as a medical device primarily for tissue processing (VV003101529, US5807379) or catheter ablation (US2003199755, US6701176, WO09638193). This honey also produces nanostructured materials such as carbon nanotubes (JP2003054922), sintered materials (US2004081573), and synthesized compact films such as e.g. for use as optical conductors, treating polymers (US5106211). Often, the method is also used to remove material from two-layer composites where the bottom layer is transparent to laser light (JP2001300749).

Selektivna laserska ablacija se uporablja pri izdelavi mikroelektronskih ali polprevodniških naprav, kjer površino vzorčimo (EP0542656, US5348609,Selective laser ablation is used in the fabrication of microelectronic or semiconductor devices where the surface is sampled (EP0542656, US5348609,

VVO9803271), zakrivamo (VVO9719269) ali odstranjujemo material z selektivno ablacijo metalizacijske plasti ali polimernega materiala na njej (US6057173, US4568409, US5035918, US5348609, EP0337658). Selektivno odstranjevanje se uporablja za izdelovanje integriranih elektro-optičnih naprav (US2003048974, US5281798), kjer imamo opravka z večplastnimi kompoziti ali samo optičnih naprav pri oblikovanju polikristaliničnega diamanta (US5500157, EP0618043). Uporablja se tudi za označevanje in odpiranje embalaže (WO0168460). Pri izdelavi polprevodnikov se uporablja tudi lasersko podprto jedkanje v halokarbonskem okolju (plini), v katerem izboljšamo učinkovitost jedkanja (US5348609). Selektivno jedkanje površinskih plasti substrata lahko izvedemo tudi s svetlobo bliskavico, ki ima zadosti visoko energijo za ablacijo, selektivnost pa zagotavljamo z različnimi valovnimi dolžinami svetlobe (US5281798), kar se uporablja za odstranjevanje barve iz letala pri tem pa ne poškoduje ali degradira spodnje plasti, tipično lahkega aluminija.VVO9803271), cover (VVO9719269) or remove material by selective ablation of metallization layer or polymer material thereon (US6057173, US4568409, US5035918, US5348609, EP0337658). Selective removal is used to produce integrated electro-optical devices (US2003048974, US5281798) where multilayer composites or only optical devices are used to form a polycrystalline diamond (US5500157, EP0618043). Also used for marking and opening packaging (WO0168460). Laser-assisted etching in halocarbon environments (gases) is also used in semiconductor fabrication to improve etching efficiency (US5348609). Selective etching of substrate surface layers can also be performed with a light flash having sufficient high energy for ablation, and selectivity is assured by different wavelengths of light (US5281798), which is used to remove paint from the aircraft without damaging or degrading the underlying layers, typically lightweight aluminum.

Večina del se nanaša na večplastne kompozite, ki se uporabljajo v polprevodniški in mikroelektronski industriji. Podatkov o selektivni laserski ablaciji ali selektivni obdelavi površine s kombiniranim curkom energijskim delcev za kompozite s polimerno matriko, ki niso več plastni ampak so v njih polnila poljubno porazdeljena, v patentnih prijavah ni. V članku revije J. Phys. D: App. Phys., 14 (1981) str. 2341 avtorjev K.C.A.Crane in J.R. Brown sicer opisujejo lasersko ablacijo na kompozitnem vlaknu z epoxy matriko, vendar ne dosežejo selektivnosti procesa. Delno selektivno odstranjevanje polimerne matrike PEEK so dosegli avtorji P.E. Dyer et al. v članku J. Mater. Res. 5 (1992) str. 1152, kjer so energije laserskega žarka prevelike in ne aktivirajo površine.Most of the work relates to multilayer composites used in the semiconductor and microelectronics industries. There is no information on selective laser ablation or selective surface treatment with a combined jet of energy particles for polymer matrix composites that are no longer layered but whose fillers are arbitrarily distributed. In an article in the journal J. Phys. D: App. Phys., 14 (1981) p. 2341 by K.C.A.Crane and J.R. Brown describes laser ablation on a composite fiber with an epoxy matrix, but they do not achieve process selectivity. Partial selective removal of the PEEK polymeric matrix was achieved by the authors P.E. Dyer et al. in an article by J. Mater. Really. 5 (1992) p. 1152, where the laser beam energies are too high and do not activate the surface.

Naloga in cilj izuma sta metoda in naprava za selektivno jedkanje kompozitnih materialov z lasersko ablacijo, torej metoda za obdelavo površine kompozitnih materialov s polimerno matriko in naprava, ki omogoča selektivno odstranitev polimera s površine in površino dodatno aktivira.The object and object of the invention is a method and device for selective etching of composite materials by laser ablation, that is, a method for treating the surface of composite materials with a polymer matrix and a device that enables selective removal of the polymer from the surface and activates it additionally.

Po izumu je naloga rešena z metoda in naprava za selektivno jedkanje kompozitnih materialov s polimerno materiko z lasersko ablacijo po neodvisnih patentnih zahtevkih.According to the invention, the problem is solved by a method and device for selective etching of composite materials with a polymeric material with laser ablation according to independent claims.

Polimer kompozitnega materiala se po izumu s površine delno ali popolnoma odstrani, tako da ostanejo na površini samo polnila. To pomeni bistveno spremembo površinskih lastnosti kompozita, predvsem adhezivnosti in poroznosti različnih prevlek na kompozitu.According to the invention, the polymer of the composite material is partially or completely removed from the surface so that only fillers remain on the surface. This means a significant change in the surface properties of the composite, especially the adhesiveness and porosity of the various coatings on the composite.

OPIS REŠITVE PROBLEMADESCRIPTION OF THE PROBLEM SOLUTION

Izum obsega metodo in napravo za obdelavo kompozitov. Površino kompozitov obdelamo s curkom energetskih delcev. Za energetske delce lahko vzamemo fotone in ione. Med obdelavo se zaradi interakcije energijskih delcev spremeni sestava in morfologija površinskega dela kompozita. Zaradi selektivne interakcije se polimer s površine delno ali popolnoma odstrani, tako da ostanejo na površini samo polnila, ki po večini ostanejo nedotaknjena. Selektivna interakcija je večinoma posledica hitrega lokalnega segrevanja, kjer se na meji med površino in vakuumom ustvari kvaziravnovesno stanje z velikimi gostotami delcev. Na lokaliziranem območju se ob induciranju laserskega pulza pojavljajo koncentracije nabitih delcev in celo atomov, ki dodatno jedkajo, cepijo površinske vezi in nastajajo polarne skupine v kolikor dodatno iniciramo pline. Ta pojav imenujemo aktivacijo površine. Zaradi jedkanja se poveča se tudi hrapavost površine. Takšne spremembe površine vodijo k bistveni spremembam površinskih lastnosti, predvsem adhezivnosti in poroznosti različnih prevlek na kompozitu.The invention encompasses a method and apparatus for processing composites. The surface of the composites is treated with a jet of energy particles. Photons and ions can be taken as energy particles. During the processing, the composition and morphology of the surface of the composite changes due to the interaction of the energy particles. Due to the selective interaction, the polymer is partially or completely removed from the surface, leaving only fillers on the surface that remain mostly intact. Selective interaction is mainly due to rapid local warming, where a quasi-equilibrium state with high particle densities is created at the interface between the surface and the vacuum. In the localized area, concentrations of charged particles and even atoms appear in the laser pulse induction, which further corrode, cleave surface bonds, and produce polar groups if gases are additionally initiated. This phenomenon is called surface activation. Etching also increases the surface roughness. Such surface changes lead to significant changes in the surface properties, especially the adhesiveness and porosity of the various coatings on the composite.

Izum bo opisan z izvedbenim primerom in slikami, ki prikazujejo:The invention will be described by way of example and pictures showing:

Slika 1. Shema prečnega prereza kompozita s polimerno matriko in dvema vrstama polnil.Figure 1. Cross-sectional diagram of a composite with a polymer matrix and two types of fillers.

Slika 2. SEM slika površine kompozita s polimerno matriko pred obdelavo.Figure 2. SEM image of the surface of the composite with the polymer matrix before processing.

Slika 3. Analiza hrapavosti neobdelanega vzorca kompozita s polimerno matriko izFigure 3. Roughness analysis of the untreated polymer composite matrix composite sample from

Sl. 1.FIG. 1.

Slika 4. SEM slika površine kompozita s polimerno matriko po obdelavi z laserskim curkom.Figure 4. SEM image of a polymer matrix composite surface after laser jet treatment.

Sl. 5. Analiza hrapavosti vzorca kompozita po obdelavi z laserskim curkom iz Sl. 4.FIG. 5. Roughness analysis of the composite sample after treatment with the laser jet of FIG. 4.

Sl. 6. Shema naprave za obdelavo kompozita s curkom energijskih delcev.FIG. 6. Schematic diagram of an apparatus for treating a composite with a jet of energy particles.

Na sliki 1 je prikazana shema značilnega kompozita. Kompozit v splošnem vsebuje polimerno matriko 1, v kateri so dispergirana različna polnila 2 in 3. Površina kompozita je tipično prekrita s plastjo polimera, kar je značilno predvsem za kompozite, ki so izdelani s postopkom stiskanja pri povišani temperaturi. Lastnosti površine takšnega kompozita (kot so morfologija in površinska napetost) so odvisne od vrste polimerne matrike, ne pa od vrste polnil. Ker se polimer med stiskanjem pri povišani temperaturi zmehča, je površina kompozita precej gladka. Površinska energija kompozita pa je ustreza površinski energiji polimera, ki je tipično zelo nizka, t.j. manjša od 40mN/m. Taki polimeri so npr. Parafin, PTFE, PMDS, PP, PE, PPS, PMMA, ipd. Polnila pa so tipično zelo širokega spektra od organskih barvnih pigmentov do ogljikovih spojin.Figure 1 shows a schematic of a typical composite. The composite generally contains a polymer matrix 1 in which the various fillers 2 and 3 are dispersed. The surface of the composite is typically covered with a polymer layer, which is typical especially for composites made by the process of pressing at elevated temperature. The surface properties of such a composite (such as morphology and surface tension) depend on the type of polymer matrix, not the type of fillers. As the polymer softens during compression at elevated temperature, the surface of the composite is quite smooth. The surface energy of the composite, however, corresponds to the surface energy of the polymer, which is typically very low, i.e. less than 40mN / m. Such polymers are e.g. Paraffin, PTFE, PMDS, PP, PE, PPS, PMMA, etc. Fillers, however, are typically of a very wide range, from organic color pigments to carbon compounds.

V Sliki 2 je predstavljen SEM (elektronski mikroskop) posnetek površine preprostega neobdelanega kompozitaspolimernomatriko PP in enim polnilom, kije v tem primeru grafit. Površina je razmeroma gladka in na njej ni opaziti delcev polnil.Figure 2 presents a SEM (electron microscope) image of the surface of a simple untreated PP composite composite polymer and a single filler, in this case graphite. The surface is relatively smooth and no filler particles are visible on it.

Površina neobdelanega kompozita je razmeroma gladka. To lahko vidimo iz Slike 3, ki predstavlja hrapavost neobdelanega kompozita, izmerjeno z metodo pomikanja igle po površini vzorca. Iz slike je mogoče razbrati, da je poprečna hrapavost manjša od 1pm, kar je precej manj od značilne dimenzije polnil, ki je v našem primeru okoli 10pm.The surface of the untreated composite is relatively smooth. This can be seen from Figure 3, which represents the roughness of the raw composite measured by the needle displacement method over the sample surface. It can be seen from the figure that the average roughness is less than 1pm, which is much less than the typical dimension of fillers, which in our case is about 10pm.

V kolikor neobdelani kompozit iz Slike 2 izpostavimo laserski svetlobi dobimo selektivno jedkanje površine. V Sliki 4 je predstavljen SEM posnetek površine obdelanega kompozita, ki je bil izpostavljen laserski ablaciji oz. curku laserske svetlobe z energijo 40mJ/mm2. Izvor laserskega curka za ablacijo je bil excimer laser z valovno dolžino 308nm (Lambda Physik 105E). Iz slike 4 vidimo, da na površini ni opaziti polimera, le delce polnila, ki izstopajo iz površine.If the untreated composite of Figure 2 is exposed to laser light, selective etching of the surface is obtained. Figure 4 presents a SEM image of the surface of a treated composite exposed to laser ablation or. laser light beam with an energy of 40mJ / mm 2 . The source of the laser ablation laser was an excimer laser with a wavelength of 308nm (Lambda Physik 105E). It can be seen from Figure 4 that no polymer is visible on the surface, only filler particles exiting the surface.

Spremembo hrapavosti površine vidimo v Sliki 5, ki predstavlja hrapavost obdelanega kompozita, analizirano z metodo pomikanja igle po površini vzorca. Iz slike je vidno, da je poprečna hrapavost okoli δμιτι, kar je isti red velikosti, kot je značilna dimenzije polnil, ki je okoli 10μιτι. Dodatno se pojavi povečana omočljivost površine, ki kaže na povečanje površinske energije z odstranjevanjem ter tudi aktivacijo.The change in surface roughness is seen in Figure 5, which represents the roughness of the treated composite analyzed by the needle displacement method over the sample surface. The figure shows that the transverse roughness is about δμιτι, which is the same order of magnitude as the typical dimension of the filler, which is about 10μιτι. Additionally, an increased surface wettability occurs, indicating an increase in surface energy through removal and also activation.

Primerjava Slik 2 in 3 s Slikama 4 in 5 pokaže, da je obdelava kompozita z laserskim ablacijo bistveno spremenila morfologijo in sestavo površine kompozita. Pred obdelavo je bila površina prekrita s plastjo polimera, po laserski obdelavi z ablacijo pa na površini ni najti polimera, ampak zgolj delce polnil. Temu ustrezno se je spremenila tudi hrapavost kompozita. Vzrok za takšno spremembo so različna fizikalne in kemijske lastnosti polimerne matrike in polnil. Polimer ima vselej nižje tališče od polnil, hkrati pa ima bistveno višji parni tlak kot polnila. Ko izpostavimo površino kompozita pulzni laserski svetlobi z valovno dolžino 308nm, se površina lokalno ogreje. Vdorna globina laserske svetlobe s takšno valovno dolžino je namreč izredno majhna, zato se večina žarkovne energije sprosti v površinski plasti. Tako polimer kot tudi polnila na površini se močno ogrejeta. Ker je parni tlak polimera pri povišani temperaturi izredno visok, polimer odpari s površine, medtem ko ostanejo polnila praktično nepoškodovana, saj je parni tlak polnil pri tej temperaturi še vedno nizek. Izboljšane lastnosti selektivnega jedkanja kompozita dosežemo z dodajanjem reaktivnih plinov, ki povečujejo lokalne velike koncentracije delcev, ki pomagajo bolje in hitreje razgrajevati odparele dele površine ter dodatno aktivirajo površino. Ti reaktivni plini so tipično kisik, dušik, vodne pare, dušikovi oksidi ter mešanice teh plinov z inertnimi plini, prvenstveno z argonom. S tem preprečujemo tudi ponovno posedanje od jedkanih snovi na površino, ki ostane po ablaciji popolnoma čista. Pare polimera, ki izstopajo s površine kompozita, bi se pri navadnem zračnem tlaku lahko vezale nazaj na površino kompozita in s tem upočasnile jedkanje z lasersko ablacijo. Dodan plin ali mešanica plinov mora biti prvenstveno nižji od 150 Pa.Comparison of Figures 2 and 3 with Figures 4 and 5 shows that laser ablation treatment of the composite significantly changed the morphology and composition of the composite surface. Before treatment, the surface was covered with a layer of polymer, and after laser ablation treatment, no polymer was found on the surface, but only filler particles. The roughness of the composite also changed accordingly. This change is due to the different physical and chemical properties of the polymer matrix and the fillers. The polymer always has a lower melting point than the fillers, while having a significantly higher vapor pressure than the fillers. When the surface of the composite is exposed to pulsed laser light with a wavelength of 308 nm, the surface is heated locally. The penetration depth of laser light with such a wavelength is extremely small, so most of the beam energy is released in the surface layer. Both polymer and surface fillers are highly heated. Because the vapor pressure of the polymer is extremely high at elevated temperature, the polymer evaporates from the surface while the fillers remain virtually undamaged, since the vapor pressure of the filler at this temperature is still low. The improved properties of selective etching of the composite are achieved by the addition of reactive gases, which increase the local high concentrations of the particles, which help to better and faster decompose the aged parts of the surface and further activate the surface. These reactive gases are typically oxygen, nitrogen, water vapor, nitrogen oxides, and mixtures of these gases with inert gases, primarily argon. This also prevents the surface from abrasion from being etched on the surface, which remains completely clean after ablation. The vapors of the polymer protruding from the surface of the composite could, under ordinary air pressure, bind back to the surface of the composite and thus slow the etching by laser ablation. The gas added or the gas mixture should preferably be less than 150 Pa.

Naprava, ki nam omogoča takšne procese je prikazana v Sliki 6, ki njeno prikazuje shemo naprave. Naprava se sestoji iz vakuumske posode 4, v kateri obdelujemo kompozitne materiale 11. Vakuumsko posodo črpamo z eno ali več vakuumskimi črpalkami 7, ki je ločena od sistema z ventilom 8 in rekombinacijskim sistemom 9, ki omogoča rekombinacije reaktivnih radikalov in odstranjevanje nezaželenih snovi iz sistema. V reaktorski sistem spuščamo zrak prek ventila 10. Pred obdelavo namestimo kompozit 11 na nosilec 12, ki je gibljiv, tako da lahko z curkom delcev natančno dosežemo poljuben del površine kompozita. Primarni izvor curka energetskih delcev je laser 5 s primerno valovno dolžino, ki se napaja preko optično laserskega sistema 6. Dodaten izvor energijskih delcev za selektivno jedkanje, predvsem, za povečanje gostote delcev ob površini je nizko energijski ionski top 17, napajan preko sistema 18. V izrednih primerih se lahko uporablja tudi elektronski top 19, napajan preko sistema 20, ko je potrebno predvsem dodatno segrevanje posameznega dela. Obstaja pa tudi kombinirana možnost, da namestimo na pozicijo elektronskega topa tudi dodaten ionski izvor, da dosežemo homogeno jedkanje ob uporabi ionskega topa 17. Po namestitvi kompozita 11 na nosilec 12, evakuiramo vakuumsko komoro 4, da dosežemo primerni tlak (značilno pod 1 Pa), površino pa obdelamo primarno s pulznim curkom energetskih fotonov iz izvora 5. Čas obdelave oziroma število laserskih pulzov in njihova dolžina ter energija oz. intenziteta so odvisni predvsem od vrste kompozita 11. Ker je vdorna globina energetskih delcev iz vseh izvorov majhna, z obdelavo spremenimo samo površino kompozita 11, ne da bi pri tem znatno spremenili njegove lastnosti spodnjih plasti. Z puščanjem dodatnega reaktivnega plina ali mešanice plinov iz jeklenk 13, 14 preko zapornih 15 in vpustnih 16 ventilov lahko spreminjamo pogoje obdelave in tudi dodatno aktivacijo površine, tako da dosežemo želene lastnosti kompozita, ki ga jedkamo. Reaktivni plini 13 so tipično kisik, vodna para, dušikov oksid, dušik, ti plini uporabljeni v medsebojnih mešanicah, ali pa kombinacije le teh z inertnimi plini, značilno argonom 14. S premikanjem nosilca 12 ali celo curka delcev 17 lahko obdelamo poljubni del površine kompozita, tako da lahko z napravo, ki je prikazana na sliki 6, izrišemo kakršnokoli natančno področje na kompozitu 11, na katerem želimo spremeniti površinske lastnosti. Natančnost področja je odvisna samo od širine snopa energijskih delcev, prvenstveno laserskega snopa v ablaciji, ki ha kolminiramo s kvarčnimi lečami.The device that enables us to do such processes is shown in Figure 6, which shows the scheme of the device. The apparatus consists of a vacuum container 4 in which the composite materials are treated 11. The vacuum vessel is pumped with one or more vacuum pumps 7, which is separated from the system by a valve 8 and a recombination system 9, which enables the recombination of reactive radicals and the removal of undesirable substances from the system . Air is vented into the reactor system via valve 10. Prior to treatment, the composite 11 is mounted on a flexible carrier 12 so that any part of the surface of the composite can be precisely reached by a particle jet. The primary source of the energy particle jet is laser 5 with a suitable wavelength, which is fed through the optical laser system 6. An additional source of energy particles for selective etching, in particular, to increase the particle density near the surface is a low energy ion cannon 17 fed through the system 18. In exceptional cases, an electronic top 19 powered by the system 20 may also be used, where additional heating of the individual part is required. There is also the combined possibility of mounting an additional ion source at the electron gun position to achieve a homogeneous etching using an ion cannon 17. After attaching the composite 11 to the support 12, evacuate the vacuum chamber 4 to obtain a suitable pressure (typically below 1 Pa). , and the surface is treated primarily with a pulse jet of energy photons from source 5. The processing time or the number of laser pulses and their length and energy or energy. the intensities depend mainly on the type of composite 11. Since the intrusion depth of the energy particles from all sources is small, only the surface of the composite 11 is changed by treatment without significantly changing its lower layer properties. By leaking additional reactive gas or gas mixture from cylinders 13, 14 via shut-off 15 and inlet 16 valves, the machining conditions and also additional surface activation can be modified to achieve the desired properties of the corrosive composite. Reactive gases 13 are typically oxygen, water vapor, nitrous oxide, nitrogen, these gases used in mixtures with one another, or combinations thereof with inert gases, typically argon 14. By moving the carrier 12 or even the particle jet 17, any part of the surface of the composite can be treated. , so that with the device shown in Fig. 6, we can draw any exact area on the composite 11 on which we want to change the surface properties. The precision of the area depends only on the width of the beam of energy particles, primarily the laser beam in the ablation, which colminates with quartz lenses.

Claims (8)

PATENTNI ZAHTEVKIPATENT APPLICATIONS METODA IN NAPRAVA ZA SELEKTIVNO JEDKANJE KOMPOZITNIH MATERIALOV Z LASERSKO ABLACIJOMETHOD AND DEVICE FOR LASER ABLASION SELECTIVE CORNING OF COMPOSITE MATERIALS 1. Metoda za selektivno jedkanje kompozitnih materialov s polimerno matriko, označena s tem, da je kompozitni material izpostavljen pulznemu curku energetskih fotonov iz laserskega izvora, pri čemer je izvor fotonov za ablacijo lahko laser s katerokoli valovno dolžino, prednostno pa s takšno valovno dolžino, pri kateri je vstopna globina curka fotonov majhna v primerjavi z debelino kompozita, prednostno reda velikosti debeline polnil v kompozitu in sta vzajemno ali zvezno kombinirana snopa ionov ali/in elektronov.1. A method for selectively etching composite materials with a polymeric matrix, characterized in that the composite material is exposed to a pulsed jet of energy photons from a laser source, the ablation photon source being a laser of any wavelength, preferably of such wavelength, at which the inlet depth of the photon jet is small compared to the thickness of the composite, preferably of the order of magnitude of the thickness of the fillers in the composite, and are bundles of electrons or electrons combined. 2. Metoda za obdelavo kompozita po zahtevku 1, označena s tem, da vakuumskoreaktorsko posodo izčrpamo do tlaka nižjega od 1Pa, celotno površino ali del površine pa izpostavimo curku delcev.2. Composite treatment method according to claim 1, characterized in that the vacuum reactor vessel is pumped to a pressure lower than 1Pa and the whole or part of the surface is exposed to a particle jet. 3. Metoda za obdelavo kompozita po zahtevkih 1 in 2, označena s tem, da v vakuumsko-reaktorsko posodo za povečanje gostote delcev in efektivnosti selektivnega jedkanja spuščamo reaktivni plin ali mešanico plinov, katerih skupni tlak ne preseže 150Pa.Composite treatment method according to claims 1 and 2, characterized in that a reactive gas or mixture of gases whose total pressure does not exceed 150Pa is discharged into the vacuum reactor vessel to increase the particle density and selective etching efficiency. 4. Metoda za obdelavo kompozita po zahtevkih 1, 2 in 3, označena s tem, da je reaktivna atmosfera kisik, dušik, vodna para, dušikov oksid ali mešanica teh plinov.Composite treatment method according to claims 1, 2 and 3, characterized in that the reactive atmosphere is oxygen, nitrogen, water vapor, nitrous oxide or a mixture of these gases. 5. Metoda za obdelavo kompozita po zahtevku 4, označena s tem, da v reaktivna atmosfera mešanica enega ali več reaktivnih plinov z inertnimi plini, prvenstveno argonom.5. Composite treatment method according to claim 4, characterized in that in the reactive atmosphere a mixture of one or more reactive gases with inert gases, preferably argon. 6. Metoda za obdelavo kompozita po zahtevkih 1, do 5, označena s tem, da je reaktivna atmosfera v stanju plazme.Composite treatment method according to claims 1 to 5, characterized in that the reactive atmosphere is in the plasma state. 7. Naprava za selektivno jedkanje kompozitnih materialov, označena s tem, da sestoji iz reaktorske-vakuumske posode (4), črpane z eno ali več vakuumskimi črpalkami (7), sistema za doziranje plinov in tremi kombiniranimi izvori energetskih delcev ter rekombinacijskim sistemom (9) reakcijskih produktov..7. A selective etching device for composite materials, characterized in that it consists of a reactor-vacuum vessel (4), pumped with one or more vacuum pumps (7), a gas metering system and three combined sources of energy particles and a recombination system (9 ) of reaction products .. 8. Naprava po zahtevku 7, označena s tem, da so izvori energetskih delcev fotonski, ionski ali elektronski izvor.Device according to claim 7, characterized in that the sources of the energy particles are photonic, ionic or electronic sources.
SI200600140A 2006-06-06 2006-06-06 Method and device for selective etching of composite materials with laser ablation SI22288A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200600140A SI22288A (en) 2006-06-06 2006-06-06 Method and device for selective etching of composite materials with laser ablation
PCT/SI2007/000025 WO2007142610A1 (en) 2006-06-06 2007-05-22 Method and device for selective etching of composite materials by laser ablation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200600140A SI22288A (en) 2006-06-06 2006-06-06 Method and device for selective etching of composite materials with laser ablation

Publications (1)

Publication Number Publication Date
SI22288A true SI22288A (en) 2007-12-31

Family

ID=38547037

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200600140A SI22288A (en) 2006-06-06 2006-06-06 Method and device for selective etching of composite materials with laser ablation

Country Status (2)

Country Link
SI (1) SI22288A (en)
WO (1) WO2007142610A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103054A1 (en) 2011-01-25 2012-08-02 The Board Of Trustees Of The University Of Illinois Method of selectively etching a three-dimensional structure
DE102018220637A1 (en) * 2018-11-29 2020-06-04 Thyssenkrupp Ag Process for processing fiber composite components and fiber composite component
DE102019103130A1 (en) * 2019-02-08 2020-08-13 Bayerische Motoren Werke Aktiengesellschaft Method for creating a functional structure and component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903153A1 (en) * 1989-02-02 1990-08-09 Fraunhofer Ges Forschung Surface treatment of fibre composite materials
US5281798A (en) * 1991-12-24 1994-01-25 Maxwell Laboratories, Inc. Method and system for selective removal of material coating from a substrate using a flashlamp
EP0751972A4 (en) * 1995-01-23 1999-06-16 Sandia Corp Polymer surface treatment with pulsed particle beams
US6624383B1 (en) * 2000-08-30 2003-09-23 Parker-Hannifin Corporation Using laser etching to improve surface contact resistance of conductive fiber filler polymer composites
FR2827205B1 (en) * 2001-07-12 2003-12-05 Airbus France PROCESS FOR PRODUCING HOLES, PARTICULARLY MICROPROFORATIONS IN A COMPOSITE MATERIAL, DEVICE FOR IMPLEMENTING SAME AND ACOUSTIC SHOCKING LAYER CONSISTING OF SAID MATERIAL
EP1363164B1 (en) * 2002-05-16 2015-04-29 NaWoTec GmbH Procedure for etching of materials at the surface with focussed electron beam induced chemical reactions at said surface

Also Published As

Publication number Publication date
WO2007142610A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
Prakash et al. Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition
JP5705280B2 (en) Method for producing p-type semiconductor zinc oxide film, and pulse laser deposition method using transparent substrate
Han et al. Multi-pulsed white light sintering of printed Cu nanoinks
Bazaka et al. Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication
KR20120138812A (en) Manufacturing method for transparent conductive carbon film, and transparent conductive carbon film
JP3901156B2 (en) Mask forming method and removing method, and semiconductor device, electric circuit, display module, color filter, and light emitting element manufactured by the method
KR102384916B1 (en) Preparation method of large-area graphene thin films by using energy-beam irradiation
Zhao et al. Field emission from screen-printed carbon nanotubes irradiated by tunable ultraviolet laser in different atmospheres
RU2544892C1 (en) Method of producing micro- and nanostructures of surface of materials
SI22288A (en) Method and device for selective etching of composite materials with laser ablation
Řezníčková et al. Surface properties of polymers treated with F2 laser
DE102008064134B4 (en) Process for coating objects by means of a low-pressure plasma
Kononenko et al. Photoinduced laser etching of a diamond surface
CN107892297B (en) Diamond treatment method and modified diamond
Vo et al. Control of growth mode and crystallinity of aluminium-doped zinc oxide thin film at room temperature by self-assembled monolayer assisted modulation on substrate surface energy
Li et al. Effects of ultraviolet nanosecond laser irradiation on structural modification and optical transmission of single layer graphene
Dong et al. Few-layer graphene film fabricated by femtosecond pulse laser deposition without catalytic layers
Sola et al. Electron beam induced growth of silica nanorods and heterostructures in porous silicon
Siskova et al. Non-chemical approach toward 2D self-assemblies of Ag nanoparticles via cold plasma treatment of substrates
Sinar et al. Laser assisted reduction of printed GO films and traces
KR20200076643A (en) Tungsten doped grapheneoxide, manufacturing method thereof and electron emitter including the same
IL159045A (en) Direct surface patterning of carbon
McCann et al. Carbon Nanoparticle Functionalization of Laser Textured Polymer Surfaces for Chemical and Biological Speciation.
Watanabe et al. Submicron writing by laser irradiation on metal nano-particle dispersed films toward flexible electronics
Fan et al. Si-based solid blue emitters from 3C-SiC nanocrystals

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20060803

KO00 Lapse of patent

Effective date: 20160609