SI22072A - Synchronous electro-mechanical converter - Google Patents
Synchronous electro-mechanical converter Download PDFInfo
- Publication number
- SI22072A SI22072A SI200500158A SI200500158A SI22072A SI 22072 A SI22072 A SI 22072A SI 200500158 A SI200500158 A SI 200500158A SI 200500158 A SI200500158 A SI 200500158A SI 22072 A SI22072 A SI 22072A
- Authority
- SI
- Slovenia
- Prior art keywords
- poles
- electromagnetic
- magnetic
- stator
- rotor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/145—Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2201/00—Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
- H02K2201/12—Transversal flux machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2201/00—Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
- H02K2201/15—Sectional machines
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Synchronous Machinery (AREA)
Abstract
Description
Predmet izuma je sinhronski elektromehanski pretvornik. Izum sodi po mednarodni klasifikaciji v H02K1/06, H02K1/14C, H02K3/18, H02K3/28, H02K21/12, H02K21/26, H02K16/02, H02K16/04 in H02K26/00.The subject of the invention is a synchronous electromechanical converter. The invention belongs to the international classification in H02K1 / 06, H02K1 / 14C, H02K3 / 18, H02K3 / 28, H02K21 / 12, H02K21 / 26, H02K16 / 02, H02K16 / 04 and H02K26 / 00.
Problem, ki ga izum rešuje, je konstrukcija elektromagnetnega sklopa sinhronskega elektromehanskega pretvornika, ki omogoča doseganje velikih specifičnih navorov in energijskih izkoristkov, ter postopek za izdelavo ustreznih jeder elektromagnetnih polov. V opisu se privzeto uporablja pojem navora, ki se pri nevrtljivih izvedbah konstrukcije smiselno nadomesti s pojmom sile.The problem solved by the invention is the construction of an electromagnetic assembly of a synchronous electromechanical converter, which enables high specific torques and energy yields, as well as a process for producing suitable cores of electromagnetic poles. By definition, the concept of torque is used by default, which is meaningfully replaced by the concept of force in non-rotating structures.
STANJE TEHNIKEBACKGROUND OF THE INVENTION
Večina obstoječih rešitev uporablja elektromagnetne pole z magnetno permeabilnimi jedri in jih v splošnem lahko razvrstimo v dve skupini. Rešitve v prvi skupini vsebujejo prepletena ali zgoščena navitja električnih faz, ki so nameščena v režah med jedri sosednjih polov, pri čemer imajo jedra v smeri poteka rež približno konstantno razsežnost, ki je približno enaka razsežnosti magnetnih polov v tej smeri. Pri izvedbah z zgoščenimi navitji so navitja ovita okrog jeder posameznih elektromagnetnih polov.Most existing solutions use electromagnetic fields with magnetically permeable nuclei and can generally be classified into two groups. The solutions in the first group comprise intertwined or condensed windings of electrical phases arranged in the slots between the nuclei of adjacent poles, the nuclei having a direction in the direction of the slots having an approximately constant dimension approximately equal to the magnitude of the magnetic poles in that direction. In the case of compacted windings, the windings are wrapped around the cores of the individual electromagnetic poles.
Drugo skupino sestavljajo rešitve s prečnim magnetnim pretokom (transverse flux), med katere sodijo tudi rešitve s krempljastimi poli (claw pole). Njihova prednost v primerjavi z rešitvami iz prve skupine so običajno manjše uporovne izgube v navitjih, vendar so zaradi zahtevnejše izdelave magnetno permeabilnih delov manj razširjene. Rešitve s prečnim pretokom običajno vsebujejo krožna navitja, zaradi česar je pri večfaznih pretvornikih za vsako električno fazo potreben vsaj en stator.The second group consists of transverse flux solutions, which include claw pole solutions. Their advantage over the solutions in the first group is usually the smaller resistive losses in the windings, but they are less widespread due to the more sophisticated manufacture of magnetically permeable parts. Cross-flow solutions typically contain circular windings, which requires that at least one stator is required for multiphase converters for each electrical phase.
BISTVO REŠITVETHE ESSENCE OF THE SOLUTION
Po izumu je problem rešen s konstrukcijo, pri kateri so elektromagnetni poli, ki vsebujejo magnetno permeabilna jedra, razporejeni v strnjene skupine vsaj dveh polov tako, da poli posamezne skupine pripadajo isti električni fazi, pri čemer so sosednji poli iste skupine električno fazno zamaknjeni za 180°. Jedra polov skupine elektromagnetnih polov so oblikovana in razporejena tako, da je skozi posamezen ovoj navitja skupine elektromagnetnih polov speljan vsaj del magnetnega pretoka vsaj vsakega drugega pola skupine, pri čemer ima skozi ovoj speljan magnetni pretok pri vseh polih isti predznak. Jedra se v bližini magnetne reže, ki jih ločuje od magnetnih polov, razširijo v smeri, pravokotni na smer magnetnega polja v reži in smer gibanja magnetnih polov, tako da ima razširjen del ob reži v smeri razširitve približno enako razsežnost kot magnetni poli.According to the invention, the problem is solved by a construction in which electromagnetic poles containing magnetically permeable nuclei are arranged in clustered groups of at least two poles so that the poles of each group belong to the same electrical phase, with the adjacent poles of the same group electrically phase shifted by 180 °. The cores of the poles of a group of electromagnetic poles are designed and arranged in such a way that at least part of the magnetic flux of at least every other pole of the group is passed through each winding of the coil of the electromagnetic poles, with the same sign being transmitted through the envelope. The nuclei extend near the magnetic gap separating them from the magnetic poles in a direction perpendicular to the magnetic field in the slot and the direction of motion of the magnetic poles so that the extended portion along the gap in the expansion direction has approximately the same dimension as the magnetic poles.
KRATEK OPIS SLIKBRIEF DESCRIPTION OF THE DRAWINGS
Rešitve bodo podrobneje opisane s pomočjo primerov na slikah, ki prikazujejo:The solutions will be described in more detail using the examples in the figures that show:
Sl. 1 polpolno navitje skupine elektromagnetnih polov z enostranskimi enovejnimi jedri, ki vsebuje dve električno nasprotno orientirani podnavitjiFIG. 1 half-pole winding of a group of electromagnetic poles with one-sided single-core kernels containing two electrically oriented sub-windings
Sl. 2 polpolno navitje skupine elektromagnetnih polov z enostranskimi enovejnimi jedriFIG. 2 half-pole coils of a group of electromagnetic poles with single-core single-cores
Sl. 3 polpolno navitje skupine elektromagnetnih polov z enostranskimi enovejnimi in dvovejnimi jedriFIG. 3 half-pole winding of a group of electromagnetic poles with single and double-ended cores
Sl. 4 polpolno navitje skupine elektromagnetnih polov z dvostranskimi enovejnimi jedri, ki vsebuje dve električno nasprotno orientirani podnavitjiFIG. 4 half-pole coils of a group of electromagnetic poles with double single cores containing two electrically opposed sub-reels
Sl. 5 polpolno navitje skupine elektromagnetnih polov z dvostranskimi enovejnimi jedriFIG. 5 half-winding group of electromagnetic poles with double single cores
Sl. 6 polpolno navitje skupine elektromagnetnih polov z dvostranskimi enovejnimi in 20 dvovejnimi jedriFIG. 6 half-pole coils of electromagnetic pole group with double single and 20 double cores
Sl. 7 polno navitje skupine elektromagnetnih polov z enostranskimi enovejnimi jedri Sl. 8 polno navitje skupine elektromagnetnih polov z dvostranskimi enovejnimi jedri Sl. 9 polno navitje skupine elektromagnetnih polov z jedri S oblikeFIG. 7 is a complete winding of a group of electromagnetic poles with one-sided single-core cores. Fig. 8 Full winding of a group of electromagnetic poles with double single cores. 9 full winding group of electromagnetic poles with S-shaped cores
Sl. 10 stator z eno skupino elektromagnetnih polov in dvema električno nasprotno 25 orientiranima krožnima polpolnima navitjemaFIG. 10 stator with one set of electromagnetic poles and two electrically opposite 25 oriented circular half-pole windings
Sl. 11 osnovne oblike magnetno permeabilnih jeder elektromagnetnih polovFIG. 11 basic shapes of magnetically permeable cores of electromagnetic poles
Sl. 12 iz ukrivljenega snopa lamel izdelana enostranska jedraFIG. 12 single curved cores made of curved bundle of blades
Sl. 13 iz ukrivljenega snopa lamel izdelana dvostranska jedra, z izjemo jeder S oblikeFIG. 13 double curved blades made of curved bundle except for S-shaped cores
Sl. 14 iz ukrivljenega snopa lamel izdelano jedro S oblikeFIG. 14 S-shaped core made of curved bundle of blades
Sl. 15 par enovejnih enostranskih jeder z delom, preko katerega se sklene magnetni pretok med jedroma, izdelan iz ukrivljenega snopa lamelFIG. 15 pairs of single-core single-core cores with a part through which the magnetic flux between cores is made, made from a curved bundle of blades
Sl. 16 trifazen elektromagnetni sklop z enakomerno razporejenimi elektromagnetnimi poli, katerih število je večje od števila magnetnih polovFIG. 16 three-phase electromagnetic assembly with evenly spaced electromagnetic fields greater than the number of magnetic poles
Sl. 17 trifazen elektromagnetni sklop z enakomerno razporejenimi elektromagnetnimi poli, katerih število je manjše od števila magnetnih polovFIG. 17 three-phase electromagnetic assembly with evenly spaced electromagnetic fields the number of which is less than the number of magnetic poles
Sl. 18 trifazen elektromagnetni sklop, pri katerem je razmik leg sosednjih elektromagnetnih polov odsekoma enak razmiku leg sosednjih magnetnih polovFIG. 18 is a three-phase electromagnetic assembly in which the spacing of adjacent electromagnetic pole sections is equal to the spacing of adjacent magnetic poles
Sl. 19 trifazen elektromagnetni sklop, pri katerem je razmik leg sosednjih elektromagnetnih polov, ki pripadajo različnim skupinam, za tretjino razmika leg sosednjih magnetnih polov večji od razmika leg sosednjih polov iste skupineFIG. 19 three-phase electromagnetic assembly in which the spacing of adjacent electromagnetic poles belonging to different groups is one third of the spacing of adjacent magnetic poles greater than the spacing of adjacent poles of the same group
Sl. 20 trifazen elektromagnetni sklop z dvema podsklopoma z magnetnimi poli in enim podsklopom z elektromagnetnimi poli, ki vsebuje polpolna navitjaFIG. 20 three-phase electromagnetic assembly with two magnetic pole subassemblies and one electromagnetic pole subassembly containing half-windings
Sl. 21 trifazen elektromagnetni sklop z dvema podsklopoma z magnetnimi poli in enim podsklopom z elektromagnetnimi poli, ki vsebuje polna navitjaFIG. 21 three phase electromagnetic assembly with two magnetic subassemblies and one electromagnetic pole subassembly containing full windings
Sl. 22 trifazen elektromagnetni sklop z enim podsklopom z magnetnimi poli in dvema podsklopoma z elektromagnetnimi poli, ki vsebujeta polpolna navitjaFIG. 22 three-phase electromagnetic assembly with one subassembly with magnetic poles and two subassemblies with electromagnetic poles containing half-coils
Sl. 23 trifazen elektromagnetni sklop z enim podsklopom z magnetnimi poli in dvema podsklopoma z elektromagnetnimi poli, ki vsebujeta polna navitjaFIG. 23 three-phase electromagnetic assembly with one subassembly with magnetic poles and two subassemblies with electromagnetic poles containing full windings
Sl. 24 trifazen elektromagnetni sklop z enim podsklopom z magnetnimi poli in dvema podsklopoma z elektromagnetnimi poli, ki vsebujeta polna navitjaFIG. 24 three phase electromagnetic assembly with one subassembly with magnetic poles and two subassemblies with electromagnetic poles containing full windings
Sl. 25 trifazen elektromagnetni sklop, katerega stator vsebuje 24 elektromagnetnih polov, rotorja pa po 22 magnetnih polovFIG. 25 three-phase electromagnetic assembly, the stator containing 24 electromagnetic poles and the rotor 22 magnetic poles each
OPIS IZUMADESCRIPTION OF THE INVENTION
Sinhronski elektromehanski pretvornik, v nadaljevanju motor, deluje kot večfazni ali enofazni motor oziroma generator. Za večfazno delovanje uporablja električne večfazne sisteme, pri katerih je fazna razlika med sosednjimi psevdofazami enaka 180° deljeno s številom faz, med katere sodita tudi običajni trifazni sistem in dvofazni sistem, z za 90° zamaknjenima fazama.The synchronous electromechanical converter, hereinafter referred to as the motor, acts as a multiphase or single phase motor or generator. For multiphase operation, it uses electrical multiphase systems in which the phase difference between adjacent pseudophases is 180 ° divided by the number of phases, including the conventional three-phase system and the two-phase system, by 90 ° offset phases.
Elektromagnetni sklop motorja vsebuje vsaj en podsklop z elektromagnetnimi poli in vsaj en podsklop z magnetnimi poli. Podsklopi so nameščeni tako, da se lahko magnetni poli gibljejo glede na elektromagnetne pole. Elektromagnetni poli vsebujejo magnetno permeabilna jedra, ki jih od nasproti stoječih magnetnih polov ločuje magnetna reža, ki je ozka v primerjavi z razsežnostjo posameznega magnetnega pola v smeri gibanja rotorja in je prednostno enaka pri vseh polih. Podsklop z magnetnimi poli bomo v nadaljevanju imenovali rotor, podsklop z elektromagnetnimi poli pa stator, privzemajoč, da sta lahko njuni vlogi tudi zamenjani. Konstrukcija ima, glede na obliko in medsebojno lego rotoijev in statorjev, radialno, aksialno in linearno izvedbo.The electromagnetic motor assembly contains at least one sub-assembly with electromagnetic poles and at least one sub-assembly with magnetic poles. The subassemblies are positioned so that the magnetic poles can move relative to the electromagnetic poles. Electromagnetic poles contain magnetically permeable cores, separated from opposite magnetic poles by a magnetic gap that is narrow compared to the dimension of each magnetic pole in the direction of rotor motion and is preferably the same for all poles. The subassembly with magnetic poles will hereinafter be called the rotor and the subassembly with electromagnetic poles the stator, assuming that their roles can also be replaced. The construction has a radial, axial and linear design, depending on the shape and position of the rotoi and the stator.
Rotor vsebuje v smeri svojega gibanja približno enakomerno razporejene, izmenično orientirane magnetne pole 1, ki so orientirani približno vzporedno s smerjo, pravokotno na ploskev, ki meji na magnetno režo s posameznim statorjem. Lege magnetnih polov so v smeri, pravokotni na smer magnetnega polja v reži in smer gibanja rotorja, poravnane. Stator vsebuje proti rotorju usmeijene elektromagnetne pole 2, ki so razporejeni v strnjene skupine vsaj dveh polov tako, da pripadajo poli posamezne skupine isti električni fazi, pri čemer so sosednji poli iste skupine električno fazno zamaknjeni za 180°.The rotor comprises, in the direction of its motion, approximately uniformly spaced, alternately oriented magnetic fields 1, which are oriented approximately parallel to the direction perpendicular to the surface adjacent to the magnetic gap with the individual stator. The positions of the magnetic poles are aligned in a direction perpendicular to the direction of the magnetic field in the slot and the rotor direction. The stator contains anti-rotor electromagnetic poles 2, which are arranged in groups of at least two poles so that the poles of each group belong to the same electrical phase, with the adjacent poles of the same group electrically phase shifted by 180 °.
Magnetni pretok elektromagnetnih polov poteka pretežno skozi njihova magnetno permeabilna jedra 3, ki so oblikovana tako, da se magnetni pretok, ki vanje vstopa iz magnetne reže, zgosti in spelje skozi ali mimo ovojev navitja skupine elektromagnetnih polov 4. Jedra se v bližini magnetne reže, ki jih ločuje od magnetnih polov, razširijo v smeri, pravokotni na smer magnetnega polja v reži in smer gibanja magnetnih polov, tako da ima razširjen del ob reži v smeri razširitve približno enako razsežnost kot magnetni poli in je v tej smeri približno poravnan z nasproti stoječimi magnetnimi poli. Razširjen del jedra, ki meji na magnetno režo, imenujemo glava jedra 5. Glava jedra prehaja v steblo 6, ki ima prednostno vzporedne stranice. Jedro se sestoji iz vsaj ene glave in vsaj enega stebla. Magnetni pretok se v glavi jedra zgosti in veja v eno ali dve stebli. Jedra z enim steblom imenujemo zato eno vej na, takšna z dvema pa dvo vej na. Glava jedra je lahko enovita, lahko pa se sestoji iz dveh, prednostno enakih, delov. Jedro je lahko izdelano enovito, lahko pa vsebuje dva, prednostno enaka elementa.The magnetic flux of the electromagnetic poles mainly passes through their magnetically permeable cores 3, which are designed so that the magnetic flux entering them from the magnetic slot is thickened and driven through or past the windings of the coil group of electromagnetic poles 4. The nuclei are adjacent to the magnetic slot, separating them from the magnetic poles, extend in a direction perpendicular to the magnetic field direction in the slot and the direction of motion of the magnetic poles such that the extended portion along the gap in the expansion direction has approximately the same dimension as the magnetic poles and is approximately aligned with opposite ones in this direction. magnetic poles. The extended part of the nucleus adjacent to the magnetic gap is called the nucleus head 5. The nucleus head passes into the stem 6, which preferably has parallel sides. The core consists of at least one head and at least one stem. The magnetic flux thickens in the nucleus head and branches into one or two stems. Therefore, we call one-stem kernels one branch on, and two branches on two. The core head may be uniform, but may consist of two, preferably equal, parts. The kernel may be made uniformly, but may contain two, preferably identical elements.
Glede na to, ali poli statoija mejijo na eno ali dve magnetni reži, imajo jedra in stator enostransko oziroma dvostransko izvedbo. Enostranska izvedba jedra vsebuje eno glavo, dvostranska pa dve. Pri enostranski izvedbi stator vsebuje tudi enega ali več magnetno permeabilnih delov 7, preko katerih se sklene magnetni pretok med poli statorja na tisti strani, ki ne meji na magnetno režo z rotorjem. Kadar se magnetni pretok posameznega pola preko magnetno permeabilnih delov sklene z obema sosednjima poloma, je lahko razsežnost statoija v smeri poteka stebel jeder manjša kot pri izvedbah, pri katerih se magnetni pretok sklene le z enim od sosednjih polov, ki pa jih, kadar posamezna skupina elektromagnetnih polov vsebuje sodo število polov, odlikuje manjša medfazna sklopitev.Depending on whether the poly statues are bordered by one or two magnetic slots, the cores and stator have a single or double-sided design. The single-sided implementation of the kernel contains one head and the two-sided core has two. In a unilateral embodiment, the stator also comprises one or more magnetically permeable parts 7 through which the magnetic flux between the stator poles is concluded on a side that does not border the magnetic slot with the rotor. When the magnetic flux of an individual pole through the magnetically permeable parts is contracted with both adjacent poles, the dimension of the statue in the direction of the stem of the nuclei may be smaller than in embodiments where the magnetic flux is contracted with only one of the adjacent poles, which when the individual group of electromagnetic poles contains an even number of poles, characterized by a smaller interfacial coupling.
Jedra polov so lahko izdelana enovito s pripadajočim delom za sklenitev magnetnega pretoka med poli na strani, ki ne meji na magnetno režo z rotorjem.The cores of the poles may be constructed uniformly with the associated part for contracting the magnetic flux between the poles on the side adjacent to the magnetic slot with the rotor.
Navitje posamezne električne faze sestavljajo navitja skupin elektromagnetnih polov, katerih poli pripadajo tej električni fazi. Jedra polov skupine elektromagnetnih polov so razporejena tako, da je skozi posamezen ovoj navitja skupine elektromagnetnih polov speljan vsaj del magnetnega pretoka vsaj vsakega drugega pola skupine, pri čemer ima magnetni pretok skozi posamezen ovoj pri vseh polih isti predznak. Stebla sosednjih jeder so v smeri razširitve glav razmaknjena, tako da je med njimi dovolj prostora za navitja. Navitje skupine elektromagnetnih polov 4 ima, glede na delež polov skupine, katerih magnetni pretok vsaj delno zajame posamezen ovoj navitja, dve izvedbi. Po prvi izvedbi posamezen ovoj navitja zajame vsaj del magnetnega pretoka vsakega drugega pola skupine, zato takšna navitja imenujemo polpolna. Primeri polpolnih navitij so prikazani na slikah 1 do 6. Po drugi izvedbi posamezen ovoj navitja zajame vsaj del magnetnega pretoka vsakega pola skupine elektromagnetnih polov, zato takšna navitja imenujemo polna. Primeri polnih navitij so prikazani na slikah 7 do 9.The windings of each electrical phase consist of the windings of groups of electromagnetic poles whose poles belong to that electrical phase. The cores of the poles of a group of electromagnetic poles are arranged such that at least part of the magnetic flux of at least every other pole of the group is passed through a single winding of the coil of the electromagnetic poles, with the magnetic flux through a single sheath having the same sign for all poles. The stems of the adjacent nuclei are spaced apart in the direction of the heads, so that there is sufficient space for windings between them. The winding of a group of electromagnetic poles 4 has two designs, depending on the proportion of poles of the group whose magnetic flux is at least partially covered by a single winding sheath. After the first embodiment, each winding covers at least a portion of the magnetic flux of every other pole of the group, so such windings are called half-full. Examples of half-wound windings are shown in Figures 1 to 6. According to another embodiment, each winding envelope captures at least a portion of the magnetic flux of each pole of a group of electromagnetic poles, so such windings are called full ones. Examples of full windings are shown in Figures 7 to 9.
Skupina elektromagnetnih polov s polpolnim navitjem vsebuje prednostno sodo število polov. Jedra polov so razporejena tako, da posamezen ovoj navitja ne zajame magnetnega pretoka dveh sosednjih elektromagnetnih polov skupine. Pri skupinah, ki vsebujejo samo elektromagnetne pole z enovejnimi jedri, so jedra nameščena tako, da stebla sosednjih jeder skupine ležijo na nasprotnih straneh posameznega ovoja navitja. Jedra polov so prednostno enaka, njihove glave pa se nesimetrično razširijo. Glave jeder sosednjih polov skupine se prednostno pretežno razširijo v nasprotnih smereh. Jedri sosednjih polov različnih skupin elektromagnetnih polov sta prednostno obrnjeni v nasprotnem smislu, zaradi česar je prostor za navitja večji, parazitni magnetni pretok med jedroma pa manjši. Navitje je lahko v teh primerih enovito, kar prikazujeta sliki 2 in 5, ali pa vsebuje dve električno nasprotno orientirani podnavitji, od katerih eno zajame magnetni pretok lihih, drugo pa sodih polov skupine, kar prikazujeta sliki 1 in 4, prva za enostransko, druga pa za dvostransko izvedbo. Posamezen ovoj navitja obkroža skupino stebel, v kateri so stebla jeder vsakega drugega pola skupine elektromagnetnih polov, ali skupino delov, s pomočjo katerih se sklene magnetni pretok med poli na strani, ki ne meji na magnetno režo z rotorjem. Skupina elektromagnetnih polov lahko ob polih z enovejnimi jedri vsebuje tudi pole z dvovejnimi jedri, pri čemer se poli z enovejnimi in dvovejnimi jedri znotraj posamezne skupine izmenjujejo. Jedri sosednjih polov različnih skupin elektromagnetnih polov sta prednostno različnega tipa, saj je v tem primeru prostor za navitja večji, parazitni magnetni pretok med jedroma pa manjši. Ovoj navitja skupine elektromagnetnih polov zajame magnetni pretok polov z enovejnimi jedri, magnetni pretok polov z dvovejnimi jedri pa se po razmaknjenih steblih spelje mimo ovoja. Glave enovejnih jeder so prednostno simetrične, glave dvovejnih jeder pa so lahko enovite, vendar so zaradi lažje izdelave in namestitve navitja prednostno dvodelne.A group of half-coil electromagnetic poles contains a preferred even number of poles. The cores of the poles are arranged such that the individual winding of the winding does not capture the magnetic flux of two adjacent electromagnetic poles of the group. For groups containing only electromagnetic fields with single-core cores, the cores are arranged so that the stems of adjacent core groups lie on opposite sides of each winding envelope. The cores of the poles are preferably the same, and their heads extend asymmetrically. The core heads of adjacent halves of the group preferably extend predominantly in opposite directions. The nuclei of adjacent poles of different groups of electromagnetic poles are preferably inverted in the opposite sense, which makes the winding space larger and the parasitic magnetic flux between the nuclei smaller. In these cases, the winding may be uniform, as shown in Figures 2 and 5, or it may contain two electrically oriented substrates, one of which captures the magnetic flux of the odd and the other even barrel groups, shown in Figures 1 and 4, the first one-sided, the second for bilateral implementation. A single winding envelope surrounds a group of stems comprising the cores of each other pole of a group of electromagnetic poles, or a group of parts by which the magnetic flux between the poles is concluded on a side adjacent to the magnetic gap with the rotor. A group of electromagnetic poles may also contain double-core cores in addition to single-core poles, with one- and two-core nuclei exchanging within each group. The nuclei of adjacent poles of different groups of electromagnetic poles are preferably of different types, since in this case the winding space is larger and the parasitic magnetic flux between the nuclei is smaller. The winding of a group of electromagnetic poles captures the magnetic flux of poles with single-cores, and the magnetic flux of poles with double-cores moves past the spaced stems past the sheath. The cores of single cores are preferably symmetrical, while the heads of double cores may be uniform, but for the sake of ease of construction and installation of the windings, they are preferably of two parts.
Takšen primer prikazujeta sliki 3 in 6.Figures 3 and 6 illustrate such an example.
Skupina elektromagnetnih polov s polnim navitjem vsebuje pole z enovejnimi, prednostno enakimi jedri, katerih glave se nesimetrično razširijo in se pri jedrih sosednjih polov skupine prednostno pretežno razširijo v nasprotnih smereh. Jedri sosednjih polov različnih skupin elektromagnetnih polov sta prednostno obrnjeni v nasprotnem smislu, zaradi česar je prostor za navitja večji, parazitni magnetni pretok med jedroma pa manjši. Posamezen ovoj polnega navitja lahko zajame magnetni pretok elektromagnetnih polov enega ali dveh statorjev. Po prvi izvedbi, primer katere prikazujeta sliki 7 in 8, posamezen ovoj navitja zajame magnetni pretok polov dveh skupin elektromagnetnih polov, ki pripadata različnima statorjema. Stebla jeder sosednjih polov skupine se nahajajo na nasprotnih straneh posameznega ovoja navitja. Ovoj navitja zajame magnetni pretok jeder na mestih, kjer njegova ravnina seka glave jeder. Glavnina magnetnega polja skozi ravnino ovoja poteka pravokotno na ravnino in ima v glavah jeder nasproti ležečih elektromagnetnih polov obeh statorjev približno enako smer. Ovoj navitja skupine elektromagnetnih polov ima obliko zanke z ukrivljenima koncema, ki omogočata, da se navitje izogne rotoiju, ki se nahaja med statorjema. V primeru polnega navitja s slike 7 elektromagnetni sklop ob dveh statoijih vsebuje en rotor, v primeru s slike 8 pa tri rotoije. Po drugi izvedbi, ki jo prikazuje slika 9, posamezen ovoj navitja zajame magnetni pretok polov ene skupine elektromagnetnih polov, ki imajo dvostranska jedra oblikovana v obliki črke S, magnetni poli na obeh straneh posameznega jedra pa so enako orientirani. Jedra sosednjih polov skupine so speljana skozi posamezen ovoj navitja z nasprotnih strani. Navitje ima prednostno obliko zanke z ukrivljenima koncema, podobno primeru s slike 9B, saj lahko ima pri enaki razdalji med jedri sosednjih polov večji efektivni prevodni presek kot navitje brez ukrivljenih koncev, podobno primeru s slike 9C.A group of full-coil electromagnetic poles contains poles with single-stranded, preferably identical, cores whose heads extend asymmetrically and preferably extend substantially in opposite directions at the nuclei of adjacent poles. The nuclei of adjacent poles of different groups of electromagnetic poles are preferably inverted in the opposite sense, which makes the winding space larger and the parasitic magnetic flux between the nuclei smaller. A single coil of full winding can capture the magnetic flux of the electromagnetic poles of one or two stators. According to the first embodiment, exemplified in Figures 7 and 8, each winding envelope captures the magnetic flux of the poles of two groups of electromagnetic poles belonging to different stators. The cores of the nuclei of the adjacent halves of the group are located on opposite sides of each winding sheath. The winding envelope captures the magnetic flux of nuclei at places where its plane intersects the nuclei of the nuclei. The bulk of the magnetic field passes through the plane of the sheath perpendicular to the plane and has approximately the same direction in the heads of the nuclei opposite the electromagnetic poles of the two stators. The coil winding of the group of electromagnetic poles has a loop shape with curved ends that allows the winding to escape the rotoi located between the stators. In the case of the full winding of Figure 7, the electromagnetic assembly contains two rotor with two statues, and in the case of Figure 8 three rotories. According to another embodiment shown in Figure 9, each winding envelope captures the magnetic flux of one group of electromagnetic poles having S-shaped double cores, and the magnetic poles on each side of each nucleus are oriented equally. The nuclei of the adjacent halves of the group are passed through a single winding on the opposite sides. The winding has the preferred shape of a loop with curved ends, similar to the case of Figure 9B, since it can have a larger effective conductive cross section than the winding without curved ends, similar to the case of Figure 9C, at the same distance between the nuclei of adjacent poles.
Kadar pri vrtljivih izvedbah konstrukcije posamezen stator vsebuje elektromagnetne pole samo ene električne faze, se lahko polno navitje nadomesti z dvema krožnima, električno nasprotno orientiranima polpolnima navitjema. Kadar posamezen ovoj polnega navitja zajame magnetni pretok polov dveh statorjev, vsak od obeh statorjev vsebuje po eno krožno navitje, ki zajame magnetni pretok vsakega drugega elektromagnetnega pola statorja, pri čemer zajame pretok polov, katerih stebla jeder ležijo bližje osi vrtenja rotoija. Pri elektromagnetnih polih z jedri S oblike, stator vsebuje obe krožni navitji, pri čemer eno zajame magnetni pretok lihih, drugo pa sodih polov, kar prikazuje slika 10.When, in the case of rotating designs, an individual stator contains electromagnetic fields of only one electrical phase, the full winding may be replaced by two circular, electrically opposite half-wound windings. When a single coil of full winding captures the magnetic flux of the poles of two stators, each of the two stators contains one circular winding which captures the magnetic flux of each other electromagnetic pole of the stator, capturing the flux of poles whose cores lie closer to the axis of rotation of the rotoi. For electromagnetic poles with S-shaped cores, the stator contains both circular windings, one capturing the magnetic flux of odd and the other the barrel poles, as shown in Figure 10.
Magnetno permeabilna jedra polov imajo prednostno veliko magnetno permeabilnost in nasičeno gostoto magnetnega polja ter majhne magnetilne izgube in električno prevodnost. Prednostno so izdelana iz medsebojno električno izoliranih lamel magnetno permeabilne pločevine oziroma folije, lahko pa tudi iz magnetno permeabilnih delcev zalitih v električno neprevodnem materialu ali magnetno permeabilnih feritnih materialov. Kadar so izdelana iz materiala z anizotropnimi magnetnimi lastnostmi, smer z optimalnimi magnetnimi lastnostmi prednostno sovpada s smerjo magnetnega polja v steblu jedra. Pri lameliranih izvedbah smer poteka lamel prednostno sovpada s smerjo gibanja polov rotorja. Jedra elektromagnetnih polov imajo v smeri gibanja magnetnih polov prednostno konstantno razsežnost. Jedra se lahko v bližini magnetne reže razširijo tudi v smeri gibanja polov rotorja, vendar je izdelava takšnih jeder zahtevnejša. Presek stebla jedra je običajno izbran tako, da doseže gostota magnetnega polja v steblu od sedemdeset do devetdeset odstotkov nasičene magnetne gostote materiala jedra. Jedra, pri katerih so središča glav bolj oddaljena od srednjic stebel, iz katerih izhajajo, dopuščajo večji prostor za navitja. Stebla jeder, katerih glave se nesimetrično razširijo, se lahko ukrivijo na stran, ki je nasprotna pretežni smeri razširitve glav, s čimer se pridobi dodaten prostor za navitja.The magnetically permeable poles of the poles preferably have high magnetic permeability and a saturated magnetic field density, as well as low magnetic losses and electrical conductivity. They are preferably made of electrically insulated lamellae of magnetically permeable sheet or foil, but may also be made of magnetically permeable particles embedded in electrically non-conductive material or magnetically permeable ferrite materials. When made of material with anisotropic magnetic properties, the direction with optimal magnetic properties preferably coincides with the direction of the magnetic field in the core of the core. In the case of laminated versions, the direction of the lamellae direction preferably coincides with the direction of movement of the rotor poles. The cores of electromagnetic poles have a constant constant dimension in the direction of motion of the magnetic poles. The cores may also extend in the direction of the rotor poles near the magnetic gap, but making such cores is more difficult. The cross section of a core stem is typically chosen to achieve a magnetic field density in the stem of seventy to ninety percent of the saturated magnetic density of the core material. The cores, where the centers of the heads are further away from the centerline of the stems from which they arise, allow more room for winding. The stems of the cores, whose heads extend asymmetrically, can be curved to the side opposite to the predominant direction of the head extension, thus providing additional winding space.
Na slikah od 11A do 1 IG je prikazan po en primer vsake osnovne oblike jeder polov. Enostransko in dvostransko izvedbo enovejnega jedra z glavo, ki se nesimetrično razširi, prikazujeta sliki 11A in 1 IB. Slika 11C prikazuje dvostransko enovejno jedro S oblike.Figures 11A through 1 IG show one example of each basic shape of the pole nuclei. Figures 11A and 1 IB illustrate the one- and two-sided designs of the asymmetrically extended single-core core with the head asymmetrically expanded. Figure 11C shows a double-sided single-core S-shaped core.
Eno in dvostransko enovej no jedro s simetrično glavo prikazujeta sliki 1 ID in 11E. Sliki 11F in 1 IG pa prikazujeta eno in dvostransko dvovejno jedro z dvodelno glavo.One and two-sided single-core with symmetrical head are shown in Figures 1 ID and 11E. Figures 11F and 1 IG, however, show one and two-sided double-core with two-part head.
Jedra polov z enim steblom in dvema glavama je mogoče uporabiti tudi kot enostranska jedra, pri čemer ena glava jedra meji na magnetno režo z magnetnimi poli, medtem ko je jedro preko druge glave pritrjeno na magnetno permeabilen jarem oziroma njegov del.One-stem and two-head pole kernels can also be used as one-sided kernels, with one kernel head bordered by a magnetic gap with magnetic poles, while the kernel is attached to the magnetically permeable yoke or part thereof via the other head.
Lamelirana jedra so prednostno izdelana iz traku magnetno permeabilne pločevine, katerega širina je enaka razsežnosti jedra v smeri gibanja magnetnih polov. Postopek izdelave poteka tako, da se iz traku narežejo lamele ustrezne dolžine, ki se zložijo in ukrivijo, nakar se iz ukrivljenega snopa lamel odrežejo posamezna jedra. Na koncih snopa se lahko jedra namesto z odrezom oblikujejo z abrazivnimi metodami, npr. brušenjem. Zaradi manjšega deleža odpadne pločevine je prednostno, da se posamezen snop, približno enako dolgih lamel, ukrivi v mnogokratno obliko črke S ter se v primeru enostranskih jeder razreže na večkratnik števila štiri, pri dvostranskih jedrih, z izjemo S jeder, pa na sodo število jeder. Da se odstranijo morebitni medlamelni stiki, se lahko površine rezov dodatno obdelajo, za kar se prednostno uporabljajo elektrokemijski postopki, npr. jedkanje. Običajno se jedra po razrezu toplotno obdelajo, da se izboljšajo njihove magnetne lastnosti. Lamele posameznega jedra se prednostno spnejo z impregniranjem, lahko pa tudi s pomočjo mehanskih elementov. Kadar materiali za impregnacijo oziroma elementi za mehansko spenjanje ne vzdržijo temperatur toplotne obdelave za izboljšanje magnetnih lastnosti, se spenjanje izvede po toplotni obdelavi. Dvovejna jedra se lahko sestavijo iz dveh enovejnih jeder. Postopek izdelave jeder je uporaben tudi za izdelavo parov enovejnih enostranskih jeder, ki so izdelana enovito z delom, preko katerega se sklene magnetni pretok med jedroma. V tem primeru se snop lamel ukrivi tako, da se ovije okrog trna ustrezne oblike. Primere po postopku izdelanih jeder z označenim potekom lamel, oblike izhodiščnih snopov lamel 8 in mesta razreza 9 prikazujejo slike 12, 13, 14 in 15. Pri materialih z anizotropnimi magnetnimi lastnostmi je prednostno, da smer z optimalnimi magnetnimi lastnostmi sovpada z vzdolžno smeijo traku, saj tako v pretežnem delu lamele sovpada s smerjo magnetnega polja, medtem ko v smeri z neoptimalnimi magnetnimi lastnostmi otežuje parazitni magnetni pretok med jedri sosednjih polov. Pri lamelah iz elektropločevine je prednostna uporaba magnetno orientirane pločevine.The laminated cores are preferably made of a strip of magnetically permeable sheet metal whose width is equal to the dimension of the core in the direction of motion of the magnetic poles. The manufacturing process is carried out by cutting from the strip lamellae of appropriate length, which are folded and bent, and then individual cores are cut from the curved bundle of blades. At the ends of the beam, the cores may be formed by abrasive methods instead of by cutting, e.g. grinding. Due to the smaller fraction of scrap metal, it is preferable to bend a single bundle of approximately the same length into a multiple S-shape and to cut it in multiples of four in the case of one-sided cores, with the exception of S cores, to an even number of cores . In order to remove any interfacial contacts, the surface of the incisions may be further treated, preferably using electrochemical processes, e.g. etching. Typically, cores are heat-treated after cutting to improve their magnetic properties. Preferably, the core blades are fastened by impregnation, but also by mechanical elements. Where impregnation materials or mechanical coupling elements do not withstand temperatures of heat treatment to improve magnetic properties, coupling shall be carried out after heat treatment. Dual cores may consist of two single cores. The kernel fabrication process is also useful for making pairs of single-core single-cores that are made uniformly with the part through which the magnetic flux between the nuclei is contracted. In this case, the bundle of blades is curved by wrapping it around the mandrel of the appropriate shape. Examples of the process of fabricated cores with a marked path of the lamellae, the shape of the initial bundles of the lamellae 8 and the cut-off points 9 show figures 12, 13, 14 and 15. For materials with anisotropic magnetic properties, it is preferable that the direction with optimal magnetic properties coincides with the longitudinal laughing of the strip, since, in the majority of the lamella, it coincides with the direction of the magnetic field, while in the direction with non-optimal magnetic properties, it makes it difficult to parasitize the magnetic flux between the nuclei of adjacent poles. The use of magnetically oriented sheet metal is preferable for electric sheet blades.
Večfazna izvedba statorja vsebuje enako število, prednostno enako razporejenih, elektromagnetnih polov vsake od vsaj dveh električnih faz. Število polov rotorja, ki mejijo na posamezno magnetno režo s statorjem, (M), se od števila elektromagnetnih polov statoija (E) razlikuje za zmnožek med številom skupin statorja, katerih elektromagnetni poli pripadajo posamezni električni fazi, (G), in naravnim številom (n), ki ni večkratnik števila električnih faz (F), M = E ± nG. Da se uskladita povprečna električna faza statorja in povprečna magnetna faza rotoija na območju posamezne skupine elektromagnetnih polov, so sosednji elektromagnetni poli, ki pripadajo različnim skupinam, medsebojno električno fazno zamaknjeni za 180° + sgn(A7- E) (180° / F) n. Število «je prednostno enako ena, saj je v tem primeru povprečna absolutna fazna razlika med magnetno fazo rotorja in električno fazo statorja lahko najmanjša. Večji izkoristek magnetnih polov rotoija je mogoče doseči, kadar stator vsebuje skupine z večjim številom elektromagnetnih polov. Pri izvedbah z vrtljivim rotorjem, pri katerih stator vsebuje več kot eno skupino elektromagnetnih polov posamezne faze, skupno težišče elektromagnetnih polov posamezne faze prednostno sovpada z osjo vrtenja rotoija, zaradi česar so lahko upogibne obremenitve gredi rotorja manjše.The multiphase implementation of the stator comprises an equal number, preferably equally spaced, of the electromagnetic poles of each of the at least two electrical phases. The number of rotor poles adjacent to each stator magnetic slot (M) differs from the number of stato electromagnetic poles (E) by the product of the number of stator groups whose electromagnetic poles belong to each electric phase (G) and the natural number ( n), which is not a multiple of the number of electrical phases (F), M = E ± nG. In order to reconcile the average stator electrical phase with the average magnetic phase of the rotoi in the area of each group of electromagnetic poles, adjacent electromagnetic poles belonging to different groups are displaced 180 ° + sgn (A7-E) (180 ° / F) n . The number "is preferably equal to one, since in this case the average absolute phase difference between the magnetic phase of the rotor and the electrical phase of the stator may be the smallest. Higher utilization of rotoi magnetic poles can be achieved when the stator contains groups with a larger number of electromagnetic poles. In embodiments with a rotary rotor in which the stator contains more than one group of electromagnetic poles of each phase, the total center of gravity of the electromagnetic poles of each phase preferably coincides with the axis of rotation of the rotoi, which can result in lower bending loads of the rotor shafts.
Poli večfaznega statorja so lahko približno enakomerno razporejeni. Pri takšni razporeditvi je razmik leg sosednjih polov posamezne skupine elektromagnetnih polov enak razmiku leg sosednjih polov, ki pripadajo različnim skupinam. Odstopanje magnetne faze rotorja od električne faze statorja se proti prehodom med skupinami elektromagnetnih polov povečuje. Primer takšne izvedbe prikazujeta sliki 16 in 17.The polyphase stator poles can be approximately evenly spaced. In this arrangement, the spacing of the adjacent poles of each group of electromagnetic poles is the same as the spacing of the adjacent poles belonging to different groups. The deviation of the rotor magnetic phase from the stator electrical phase increases towards the transitions between groups of electromagnetic poles. Figures 16 and 17 show an example of such an embodiment.
Kadar je število polov rotoija, ki mejijo na posamezno magnetno režo s statorjem, (M), večje od števila elektromagnetnih polov statorja (E), so lahko elektromagnetni poli razporejeni tako, da je razmik leg sosednjih polov posamezne skupine približno enak povprečnemu razmiku leg sosednjih polov rotorja, lege sosednjih elektromagnetnih polov, ki pripadajo različnim skupinam, pa so bolj razmaknjene. Primer takšne izvedbe prikazuje slika 18. Zaradi najmanjše povprečne absolutne fazne razlike med magnetno fazo rotoija in električno fazo statorja omogoča takšna izvedba največji specifični navor, vendar ima običajno večji zastojni navor in bolj trapezni potek inducirane napetosti v navitjih skupin elektromagnetnih polov kot izvedba z enakomerno razporejenimi poli.When the number of rotoi poles adjacent to a single stator magnetic gap (M) is greater than the number of stator electromagnetic poles (E), the electromagnetic poles may be arranged such that the spacing of adjacent poles of each group is approximately equal to the average spacing of adjacent the rotor poles and the positions of adjacent electromagnetic poles belonging to different groups are more spaced. An example of such an embodiment is shown in Figure 18. Due to the smallest average absolute phase difference between the magnetic phase of the rotoi and the electrical phase of the stator, such a design allows for the highest specific torque, but usually has a greater stalling torque and a more trapezoidal induced voltage in the windings of groups of electromagnetic poles than the version with evenly spaced poly.
Kadar je število polov rotoija, ki mejijo na posamezno magnetno režo s statorjem, (M), večje od števila elektromagnetnih polov statorja (£) in je število n večje od ena, so lahko elektromagnetni poli posamezne skupine približno enakomerno razporejeni tako, da obsegajo za tretjino pola večje število polov rotorja, kot je število elektromagnetnih polov v skupini. Razmik leg sosednjih elektromagnetnih polov različnih skupin je za (n - 1) / F povprečnega razmika leg sosednjih polov rotorja večji od razmika leg sosednjih polov iste skupine. Zaradi manjše povprečne absolutne fazne razlike med magnetno fazo rotorja in električno fazo statorja ima takšna izvedba večji specifični navor kot izvedba z enakomerno razporejenimi poli. Povečan razmik med skupinami elektromagnetnih polov dovoljuje večji presek navitij. Primer takšne izvedbe, pri kateri je število n enako ena, prikazuje slika 19.When the number of rotoi poles adjacent to a single stator magnetic gap (M) is greater than the number of stator electromagnetic poles (£) and the number n is greater than one, the electromagnetic poles of each group may be approximately evenly distributed such that one third of the pole is larger than the number of rotor poles than the number of electromagnetic poles in the group. The position spacing of adjacent electromagnetic poles of different groups is (n - 1) / F of the average spacing of adjacent pole rotor positions greater than the spacing of adjacent poles of the same group. Due to the smaller average absolute phase difference between the magnetic phase of the rotor and the electrical phase of the stator, such a design has a higher specific torque than the one with evenly spaced poles. Increased spacing between groups of electromagnetic poles allows for a larger cross section of windings. An example of such an embodiment in which the number n is equal to one is shown in Figure 19.
Pri statorjih, pri katerih je razmik leg sosednjih polov različnih skupin večji kot razmik leg sosednjih polov posamezne skupine elektromagnetnih polov, se lahko med skupinami elektromagnetnih polov nahajajo poli iz magnetno permeabilnega materiala, ki ne pripadajo nobeni električni fazi. S tem se zmanjša nihanje polja v magnetnih polih pri prehodih med skupinami.For stators where the spacing of adjacent poles of different groups is greater than the spacing of adjacent poles of each group of electromagnetic poles, poles of magnetically permeable material that do not belong to any electrical phase may be located between the groups of electromagnetic poles. This reduces the field oscillation in the magnetic fields during transitions between groups.
Enofazna izvedba statoija vsebuje samo eno skupino elektromagnetnih polov. Število polov rotoga, ki mejijo na posamezno magnetno režo s statorjem, (A/), je enako številu elektromagnetnih polov statoija (£). Elektromagnetni poli so enakomerno razporejeni, ali pa so razporejeni tako, da se razmik njihovih leg periodično nekoliko spreminja. Pri izvedbah z vrtljivim rotorjem skupno težišče elektromagnetnih polov statoija prednostno sovpada z osjo vrtenja rotorja, zaradi česar so lahko upogibne obremenitve gredi rotoija manj še, kar pripomore k mimej šemu teku.The single-phase statue design contains only one set of electromagnetic poles. The number of rotog poles adjacent to each stator magnetic slot (A /) is equal to the number of stato electromagnetic poles (£). The electromagnetic fields are evenly spaced or arranged so that the spacing of their positions varies periodically. In rotary rotor designs, the total center of gravity of the electromagnetic poles of the statue preferably coincides with the axis of rotation of the rotor, which may cause the bending loads of the rotoi shaft to be less, which contributes to the bypass flow.
Pri vseh izvedbah statorja je mogoče zastoj ni navor zmanjšati tako, da so jedra elektromagnetnih polov glede na magnetne pole nagnjena v smeri gibanja rotorja, saj zastojni navor s povečevanjem nagiba pada. Vendar pa s povečevanjem nagiba hkrati pada tudi dosegljiv specifični navor. Zastojni navor je mogoče zmanjšati tudi tako, da se razmik leg polov skupine elektromagnetnih polov periodično nekoliko spreminja, prednostno s periodo, ki je enaka številu polov statoija ali mnogokratniku števila polov skupine elektromagnetnih polov. Z metodami za zmanjšanje zastoj nega navora se običajno hkrati doseže tudi manjša neenakomernost navora in bolj sinusni potek inducirane napetosti v navitjih skupin elektromagnetnih polov.In all stator designs, the deadlock can not be reduced so that the nuclei of the electromagnetic poles are tilted in the direction of the rotor relative to the magnetic fields, since the stalled torque decreases as the slope increases. However, as the slope increases, the attainable specific torque also decreases. The deadlock torque can also be reduced by varying the position of the pole positions of the group of electromagnetic poles periodically, preferably with a period equal to the number of poles of the statue or a multiple of the poles of the group of electromagnetic poles. Methods for reducing torque congestion usually also lead to less torque unevenness and a more sine wave induced voltage in the winding groups of electromagnetic poles.
Magnetno permeabilni deli, s pomočjo katerih se pri enostranskih statorjih sklene magnetni pretok med poli, sestavljajo magnetno permeabilen jarem statoija. Lahko so izdelani kot samostojni elementi ali enovito z jedri polov. Prednostno so izdelani iz medsebojno električno izoliranih lamel magnetno permeabilne pločevine oziroma folije, lahko pa tudi iz magnetno permeabilnih delcev zalitih v električno neprevodnem materialu ali magnetno permeabilnih feritnih materialov.The magnetically permeable parts, by which magnetic fluxes between the poles are contracted in one-sided stators, constitute the magnetically permeable yoke of the statue. They can be designed as standalone elements or uniform with core poles. They are preferably made of electrically insulated lamellae of magnetically permeable sheet metal or foil, but may also be made of magnetically permeable particles embedded in electrically non-conductive material or magnetically permeable ferrite materials.
Število skupin statorja, katerih elektromagnetni poli pripadajo posamezni električni fazi, (G), je prednostno enako ena ali dva. Zaradi boljše izkoriščenosti magnetnih polov rotoija, je mogoče z manjšim številom skupin doseči večje specifične navore. Uporovne izgube v navitjih so lahko manjše, kadar je število skupin elektromagnetnih polov manjše. Statogi z večjim številom elektromagnetnih polov lahko imajo manjše uporovne izgube v navitjih, ob pogoju, da večina magnetnega pretoka magnetnih polov poteka skozi jedra elektromagnetnih polov. Ker se število polov rotoga prednostno malo razlikuje od števila elektromagnetnih polov statoija, imajo statorji z večjim številom polov večje izgube zaradi spremenljivih magnetnih polj.The number of stator groups whose electromagnetic poles belong to each electric phase (G) is preferably equal to one or two. Due to the better utilization of the rotoi magnetic poles, it is possible to achieve higher specific torques with a smaller number of groups. The resistance losses in the windings may be lower when the number of groups of electromagnetic poles is smaller. Statues with more electromagnetic poles may have lower resistive losses in the windings, provided that most of the magnetic flux of the magnetic poles passes through the nuclei of the electromagnetic poles. Because the number of rotog poles is preferably slightly different from the number of stato electromagnetic poles, stators with larger poles have greater losses due to variable magnetic fields.
Kadar so elektromagnetni poli statorja enakomerno razporejeni in je njihovo število različno od števila polov rotorja, ki mejijo na magnetno režo s statoijem, (AT), je zastojni navor sorazmeren kvocientu med številom skupin statorja, katerih elektromagnetni poli pripadajo posamezni električni fazi, (G), in številom elektromagnetnih polov (E). Zato je za majhen zastojni navor prednostno, da stator vsebuje veliko število elektromagnetnih polov, ki so razporejeni v čim manjše število skupin.When the stator electromagnetic poles are evenly spaced and their number is different from the number of rotor poles adjacent to the statue magnetic slot (AT), the stalled torque is proportional to the quotient between the number of stator groups whose electromagnetic poles belong to each electrical phase, (G) , and the number of electromagnetic poles (E). It is therefore preferable for a small stall torque that the stator contains a large number of electromagnetic poles arranged in as few groups as possible.
Vmesni prostor med jedri sosednjih elektromagnetnih polov znaša prednostno od dveh do šestih desetin razsežnosti jedra v smeri gibanja rotorja. Izvedbe, ki vsebujejo enovejna in dvovejna jedra polov, imajo običajno nekoliko manjši parazitni magnetni pretok med sosednjimi poli. Ker stator pri izvedbah z dvostranskimi jedri polov ne vsebuje magnetno permeabilnih delov za sklenitev magnetnega pretoka med poli, je mogoče s spreminjanjem števila polov in razmika med poli, z uporabo jeder enotne oblike in dimenzij, izdelati statorje skoraj poljubnih dimenzij.The intermediate space between the nuclei of adjacent electromagnetic poles is preferably from two to six tenths of the dimension of the nucleus in the direction of rotor motion. Embodiments containing single and double core poles typically have a slightly smaller parasite magnetic flux between adjacent poles. Since the stator does not contain magnetically permeable parts for contracting magnetic flux between poles in designs with double core poles, it is possible to produce stators of almost arbitrary dimensions by varying the number of poles and the spacing between poles, using cores of uniform shape and dimensions.
Rotor ima, glede na to ali meji na magnetno režo z enim ali dvema statorjema, enostransko oziroma dvostransko izvedbo. Pri enostranski izvedbi rotorja so magnetni poli pritrjeni na magnetno permeabilen jarem, preko katerega se sklene magnetni pretok med poli rotorja na strani, ki ne meji na magnetno režo s statorjem. Pri dvostranskih izvedbah je prednostno, da posamezen magnetni pol meji na obe magnetni reži, rotor pa, z morebitno izjemo polov, ne vsebuje magnetno permeabilnih ali električno prevodnih delov. Da se poveča mehanska togost oziroma sklene magnetni pretok med sosednjimi magnetnimi poli, dvostranski rotor pri nekaterih izvedbah vsebuje jarem iz magnetno permeabilnega materiala, na katerega so z obeh strani pritijeni magnetni poli. Poli rotorja so prednostno razporejeni tako, da so lege polov z obeh strani jarma približno poravnane.The rotor, whether or not bordered by a magnetic slot with one or two stators, has a single or double-sided design. In the unilateral design of the rotor, the magnetic poles are attached to a magnetically permeable yoke, through which the magnetic flux between the rotor poles is concluded on a side adjacent to the magnetic slot with the stator. In bilateral embodiments, it is preferred that the individual magnetic pole is adjacent to both magnetic slots, and the rotor, with the possible exception of poles, contains no magnetically permeable or electrically conductive parts. In order to increase the mechanical stiffness or contract the magnetic flux between adjacent magnetic poles, the double-sided rotor in some embodiments contains a yoke of magnetically permeable material to which magnetic poles are attached on both sides. The rotor poles are preferably arranged such that the positions of the poles on each side of the yoke are approximately aligned.
Hkrati je prednostno, da so poravnani poli na obeh straneh jarma enako orientirani, saj je v takšnem primeru izkoristek magnetnih polov rotorja večji, njihovo magnetenje pa lažje.At the same time, it is preferable that the aligned poles on both sides of the yoke are oriented equally, since in such a case the efficiency of the magnetic poles of the rotor is greater and their magnetization easier.
Poli rotorja so lahko glede na statorske pole nagnjeni v smeri gibanja rotorja, s čimer se doseže manjši zastojni navor, manjša neenakomernost navora in bolj sinusni potek inducirane napetosti v navitjih skupin elektromagnetnih polov. Pri nekaterih izvedbah statorja se lahko zastojni navor zmanjša tudi tako, da se razmik leg magnetnih polov rotoija periodično nekoliko spreminja.The rotor poles can be tilted relative to the stator poles in the direction of the rotor movement, thereby achieving a smaller stalling torque, less torque unevenness and a more sine wave induced voltage in the winding groups of electromagnetic poles. In some stator embodiments, the stalling torque may also be reduced by varying the spacing of the rotoi magnetic pole positions periodically.
Kot magnetni poli se prednostno uporabljajo trajni magneti, pri katerih je mogoče največje specifične navore doseči z uporabo visokoenergijskih materialov na bazi redkih zemelj. Izdelani so kot posamezni ali večpolni magneti in so prednostno pravokotne oblike oziroma v obliki medsebojno enakih segmentov. Magnetni poli lahko vsebujejo dele za zgoščevanje magnetnega pretoka. Pri izvedbah s površinsko razporejenimi magneti, se njihov optimalen izkoristek običajno doseže, kadar zavzemajo od šestdeset do petinosemdeset odstotkov obsega ploskve rotorja, ki meji na posamezno magnetno režo s statorjem.Permanent magnets are preferably used as magnetic poles, where the maximum specific torques can be achieved by using high-energy rare earth materials. They are made as single or multipole magnets and are preferably rectangular in shape or in the form of segments that are identical to one another. Magnetic poles may contain magnetic flux thickening parts. In embodiments with surface-mounted magnets, their optimum utilization is usually achieved when they occupy sixty to fifty-eight percent of the circumference of the rotor surface adjacent to the individual magnetic slot with the stator.
Pri izvedbah z vrtljivim rotorjem, je število polov rotoija, ki mejijo na posamezno magnetno režo s statorjem, (M), sodo Število.For rotary rotor designs, the number of rotoi poles adjacent to a single magnetic slot with a stator is (M), even.
Navitje posamezne faze sestavlja prednostno ena ali več vzporedno vezanih vej.Preferably, the winding of each phase consists of one or more parallel branches.
Posamezna veja navitja prednostno vsebuje enako število elektromagnetnih polov vsakega statoija, kar omogoča najmanjše izravnalne tokove med posameznimi vejami, kadar elektromagnetni poli statoijev niso elektromagnetno enakovredni. Pri izvedbah z vrtljivim rotorjem, pri katerih posamezen stator vsebuje več kot eno skupino elektromagnetnih polov posamezne faze, skupno težišče elektromagnetnih polov posamezne veje prednostno sovpada z osjo vrtenja rotorja, kar zagotavlja najmanjše upogibne obremenitve gredi rotoija, tudi v primeru izpada katere od vej oziroma celotnega navitja posamezne faze.Each winding branch preferably contains the same number of electromagnetic poles of each statue, which allows for the lowest offset currents between the individual branches when the electromagnetic poles of the statues are not electromagnetically equivalent. In designs with a rotary rotor in which a single stator contains more than one group of electromagnetic poles of each phase, the total center of gravity of the electromagnetic poles of each branch preferably coincides with the axis of rotation of the rotor, providing the least bending load on the rotoi shaft, even in the event of failure of one of the branches or the whole single phase windings.
Elektromagnetni sklop ima glede na medsebojno lego statoijev in rotorjev tri osnovne izvedbe, ki se lahko tudi kombinirajo. Pri prvi izvedbi vsebuje sklop en stator s polpolnimi navitji in en enostranski rotor. Stator vsebuje pole z enostranskimi jedri in enega ali več delov, preko katerih se sklene magnetni pretok med poli statorja na tisti strani, ki ne meji na magnetno režo z rotorjem. Primeri izvedb z enim statorjem in enim rotoijem so prikazani na slikah 16, 17, 18 in 19.The electromagnetic assembly has three basic designs, which can also be combined, depending on the position of the statues and rotors. In the first embodiment, the assembly comprises one stator with half-wound windings and one single-sided rotor. The stator contains poles with one-sided cores and one or more parts through which the magnetic flux between the stator poles is contracted on the side not adjacent to the magnetic slot with the rotor. Examples of embodiments with one stator and one rotoi are shown in Figures 16, 17, 18 and 19.
Pri drugi izvedbi se stator, ki vsebuje elektromagnetne pole z dvostranskimi jedri, nahaja med dvema rotorjema, ki se usklajeno gibljeta. Rotorja vsebujeta medsebojno enako število polov, pri čemer so enako orientirani magnetni poli obeh rotoijev v smeri gibanja rotorja prednostno zamaknjeni največ za G / (2£) razmika leg sosednjih polov rotoija. Največji navor je mogoče doseči, kadar magnetni poli rotorjev v smeri gibanja rotoija niso zamaknjeni, medtem ko je z zamikom za G / (2£j razmika leg sosednjih polov rotoija mogoče doseči najmanjši zastojni navor. Slika 20 prikazuje primer izvedbe s polpolnimi navitji, medtem ko je na sliki 21 prikazan primer izvedbe s polnimi navitji in elektromagnetnimi poli z S jedri.In another embodiment, the stator comprising electromagnetic fields with double-sided cores is located between two rotors that move in concert. The rotors comprise an equal number of poles, with the equally oriented magnetic poles of the two rotoi being preferably offset by a maximum of G / (2 £) the spacing of the adjacent rotoi poles. Maximum torque can be obtained when the magnetic poles of the rotors are not displaced in the direction of the rotoi, while the lag of the adjacent rotoi poles can be achieved by a lag of G / (2 £ j). when Figure 21 shows an example of an embodiment with full windings and electromagnetic fields with S cores.
Pri tretji izvedbi se rotor nahaja med dvema statorjema. Število in razporeditev polov sta pri obeh statorjih prednostno enaka, elektromagnetni poli obeh statorjev pa so prednostno elektromagnetno približno enakovredni. Statoija sta glede na magnetne pole rotorja nameščena tako, daje povprečna faza navitja posamezne električne faze pri obeh statoijih približno usklajena. Primera takšne izvedbe s polnimi navitji prikazujeta sliki 23 in 24. Posamezen ovoj polnega navitja zajame magnetni pretok elektromagnetnih polov obeh statoijev. Kadar statorja vsebujeta polpolna navitja, posamezen ovoj navitja skupine elektromagnetnih polov zajame magnetni pretok polov enega statorja. Slika 22 prikazuje primer takšne izvedbe s polpolnimi navitji.In the third embodiment, the rotor is located between two stators. The number and arrangement of poles are preferably the same for both stators, and the electromagnetic poles of both stators are preferably electromagnetically equivalent. With respect to the magnetic poles of the rotor, the statues are positioned such that the average winding phase of the individual electrical phase is approximately coordinated in both statues. Examples of such a full winding embodiment are shown in Figures 23 and 24. Each full winding envelope captures the magnetic flux of the electromagnetic poles of both statues. Where the stators contain half-windings, each winding of the group of electromagnetic poles captures the magnetic flux of the poles of one stator. Figure 22 shows an example of such an embodiment with half-full windings.
Kadar imata večfazna statorja s polpolnimi navitji enako število in razporeditev polov, lege magnetnih polov rotorja, ki mejijo na magnetni reži s statorjema, pa so poravnane, ima izvedba elektromagnetnega sklopa, glede na zamik med poli prvega in drugega statorja, več podizvedb. Po prvi sta, glede na razporeditev elektromagnetnih polov, statorja v smeri gibanja rotorja eden proti drugemu prednostno zamaknjena največ za G / (2E) razmika leg sosednjih polov rotorja. Posamezna veja navitja posamezne faze prednostno vsebuje enako število, nasproti ležečih elektromagnetnih polov prvega in drugega statorja. Takšne podizvedbe odlikujejo najmanjše mehanske upogibne napetosti v rotorju in vzbujevalne sile na magnetne pole, ki povzročajo lastna nihanja rotorja, ter majhne upogibne obremenitve gredi rotorja, ki se ne povečajo tudi v primeru izpada katere od vej oziroma celotnega navitja posamezne faze, zaradi česar imajo najmimejši tek. Najmanjši zastojni navor je mogoče doseči, kadar sta statorja v smeri gibanja rotoija zamaknjena za G / (2E) razmika leg sosednjih polov rotorja.When multi-phase stators with half-pole windings have the same number and arrangement of poles, and the positions of the magnetic poles of the rotor adjacent to the magnetic slot with the stator are aligned, the implementation of the electromagnetic assembly, depending on the offset between the poles of the first and second stator, has several sub-versions. According to the former, depending on the arrangement of the electromagnetic poles, the stator in the direction of the rotor motion towards each other is preferably offset by a maximum of G / (2E) spacing of the positions of the adjacent rotor poles. Each winding branch of each phase preferably contains the same number opposite the electromagnetic poles of the first and second stator. Such sub-designs are characterized by the smallest mechanical bending stresses in the rotor and the excitation forces on the magnetic fields that cause the rotor's own oscillations, and the small bending loads of the rotor shaft, which do not increase even in the event of a failure of one of the branches or the entire winding of each phase, making them the smallest tek. The minimum congestion torque can be achieved when the stator is offset by the G / (2E) position of the adjacent rotor poles in the direction of the rotoi.
Po drugi podizvedbi sta statorja, glede na razporeditev elektromagnetnih polov, v smeri gibanja rotoija eden proti drugemu zamaknjena za celo število polov rotorja, prednostno za kvocientu Ml (2G) najbližje celo število. Takšne podizvedbe omogočajo največji specifični navor, saj so magnetni poli najmanj razmagnetilno obremenjeni. Zaradi manjšega nihanja polja in manjšega deleža višjih harmonskih frekvenc spremenljivih polj v polih rotorja, so običajno manjše tudi izgube vsled spremenljivih magnetnih polj v rotorju. Mehanske upogibne napetosti v rotorju in vzbujevalne sile na magnetne pole, ki povzročajo lastna nihanja rotorja, so velike v primeijavi s prvo podizvedbo, večja pa je tudi medfazna sklopitev navitij. Kadar večfazni stator vsebuje po eno skupino elektromagnetnih polov posamezne faze, je pomanjkljivost takšne podizvedbe velika upogibna obremenitev gredi rotoija. Pri statorjih z enakomerno razporejenimi poli, sta število polov rotorja in število polov statorja prednostno izbrana tako, da so nasproti ležeči elektromagnetni poli obeh statorjev zamaknjeni za polovico razmika leg sosednjih polov statorja, zaradi česar sta razmagnetilna obremenitev in nihanje polja v magnetnih polih rotorja najmanjša.According to another sub-embodiment, the stator is offset by the integer number of the rotor poles, preferably by the quotient Ml (2G), closest to the integer, in terms of the arrangement of the electromagnetic poles. Such sub-designs provide the highest specific torque, since magnetic poles are the least magnetically loaded. Due to the smaller field oscillation and the smaller proportion of higher harmonic frequencies of the variable fields in the rotor poles, the losses due to the variable magnetic fields in the rotor are usually smaller. The mechanical bending stresses in the rotor and the excitation forces on the magnetic poles that cause the rotor's own oscillations are large in comparison with the first sub-design, and the interfacial winding is also larger. When a multiphase stator contains one group of electromagnetic poles of each phase at a time, the disadvantage of such a sub-design is a large bending load on the rotoi shaft. In the case of stators with evenly spaced poles, the number of rotor poles and the number of stator poles are preferably selected so that the opposite electromagnetic poles of both stators are offset by half the position of the position of adjacent stator poles, thus minimizing the magnetizing load and field fluctuations in the magnetic poles of the rotor.
Elektromagnetni sklop lahko vsebuje več rotorjev in statorjev. Motor lahko vsebuje enega ali več, prednostno enakih, elektromagnetnih sklopov. Pri radialnih izvedbah motoijev z več elektromagnetnimi sklopi so lahko ti nameščeni koncentrično ali soosno. Večfazni motorji, ki vsebujejo enofazne statoije, vsebujejo vsaj po en stator oziroma par statorjev vsake električne faze.An electromagnetic assembly may contain several rotors and stators. The engine may comprise one or more, preferably identical, electromagnetic circuits. In the case of radial motors with multiple electromagnetic assemblies, these may be arranged concentrically or coaxially. Multiphase motors containing single-phase statues contain at least one stator or a pair of stators of each electrical phase.
Pri radialni izvedbi konstrukcije so magnetni poli orientirani v radialni smeri glede na os vrtenja rotorja. Del, ki vsebuje magnetne pole, ima običajno obliko obroča. Pri radialni izvedbi z enim rotorjem in enim statorjem je možna izvedba z notranjim ali zunanjim rotorjem. Pri aksialni izvedbi konstrukcije so magnetni poli orientirani vzporedno z osjo vrtenja rotorja. Del, ki vsebuje magnetne pole, ima običajno obliko diska. Pri linearni izvedbi konstrukcije so magnetni poli orientirani pravokotno glede na smer gibanja rotorja. Slika 25 prikazuje primer radialne konstrukcije z dvostranskim statorjem in dvema rotorjema.In the radial construction, the magnetic poles are oriented in the radial direction with respect to the axis of rotation of the rotor. The part containing the magnetic poles has the usual shape of a ring. In the case of radial design with one rotor and one stator, it is possible to implement with internal or external rotor. In the axial construction, the magnetic poles are oriented parallel to the axis of rotation of the rotor. The part containing the magnetic poles usually has a disk shape. In a linear construction, the magnetic poles are oriented perpendicular to the direction of rotor motion. Figure 25 shows an example of a radial structure with a double stator and two rotors.
Sklop z elektromagnetnimi poli lahko sestavlja več, prednostno enakih, modulov. Spoji sklopa z elektromagnetnimi poli oziroma njegovih delov z ostalimi deli motorja so električno neprevodni in prednostno dobro toplotno prehodni.An assembly of electromagnetic poles may consist of several, preferably identical, modules. The joints of the assembly with the electromagnetic pole or its parts with the other parts of the motor are electrically non-conductive and preferably well thermal transient.
Ohišje motorja je prednostno izdelano iz kovine, prednostno aluminijevih ali magnezijevih zlitin. Da se poveča sposobnost odvoda toplote z motorja, lahko ohišje vsebuje kanale za hladilni medij, pri čemer je prednostno, da potekajo kanali vzporedno s ploskvami, preko katerih so statorji v stiku z ohišjem.The motor housing is preferably made of metal, preferably aluminum or magnesium alloys. In order to increase the heat dissipation capability of the motor, the housing may include ducts for the cooling medium, with the advantage that the ducts run parallel to the surfaces through which the stators are in contact with the housing.
Opisana rešitev ima nekatere prednosti v primerjavi z znanimi rešitvami. Ker je dolžina posameznega ovoja navitja manjša kot pri znanih rešitvah iz prve skupine, so manjše tudi uporovne izgube v navitjih, ki so primerljive s tistimi, pri rešitvah s prečnim magnetnim pretokom. Izdelava navitij je zaradi njihove preproste oblike zelo enostavna. Izdelati jih je mogoče ločeno, nakar se posamezna jedra polov namestijo vanje. Preprosta oblika navitij omogoča doseganje velikih polnilnih faktorjev, še posebej z vodniki pravokotnega preseka. Zaradi oblike in lege navitij je mogoč dober odvod toplote z njih.The described solution has some advantages over the known solutions. Since the length of each winding is smaller than the known solutions of the first group, the resistive losses in windings are also smaller, which are comparable to those of the transverse magnetic flux solutions. The simple design of the windings makes it very easy. They can be made separately, after which the individual cores of the poles are mounted on them. The simple winding design makes it possible to achieve large filling factors, especially with rectangular cross section guides. Due to the shape and location of the windings, a good heat dissipation from them is possible.
Ker ovoji navitja pri večini izvedb zelo tesno obkrožijo jedra elektromagnetnih polov, spremenljivo magnetno polje z oddaljevanjem od magnetno permeabilnih delov hitro pada. Tudi pri opisanih izvedbah s pari krožnih navitij je soosno spremenljivo magnetno polje znatno manjše kot pri večini znanih rešitev s prečnim magnetnim pretokom.Because in most designs the windings of the windings are very tightly encircled by the nuclei of the electromagnetic poles, the variable magnetic field rapidly decreases with the distance from the magnetically permeable parts. Even with the described embodiments with pairs of circular windings, the coaxially varying magnetic field is significantly smaller than with most known cross-magnetic flux solutions.
Opisana konstrukcija omogoča izdelavo elektromehanskih pretvornikov z majhnimi energijskimi izgubami, velikim specifičnim navorom, zelo majhnim zastojnim navorom, majhno neenakomernostjo navora, mirnim tekom in dobro sposobnostjo odvoda toplote.The described construction enables the production of electromechanical converters with low energy losses, high specific torque, very low downtime, low torque unevenness, smooth running and good heat dissipation capability.
Zato lahko imajo motorji oziroma generatoiji v primerjavi z znanimi rešitvami manjšo maso, bolj kompaktno obliko in večji specifični navor, zaradi česar so še posebej primerni za direktni pogon. Hkrati jih odlikuje enostavna izdelava elektromagnetnih sklopov.As a result, engines or generators can have a smaller mass, more compact design and higher specific torque than known solutions, making them particularly suitable for direct drive. At the same time, they are distinguished by their simple construction of electromagnetic assemblies.
Claims (34)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200500158A SI22072A (en) | 2005-05-26 | 2005-05-26 | Synchronous electro-mechanical converter |
PCT/SI2006/000023 WO2006126973A1 (en) | 2005-05-26 | 2006-05-24 | Stator comprising claw-shaped poles which are arranged on both sides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI200500158A SI22072A (en) | 2005-05-26 | 2005-05-26 | Synchronous electro-mechanical converter |
Publications (1)
Publication Number | Publication Date |
---|---|
SI22072A true SI22072A (en) | 2006-12-31 |
Family
ID=36972669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI200500158A SI22072A (en) | 2005-05-26 | 2005-05-26 | Synchronous electro-mechanical converter |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI22072A (en) |
WO (1) | WO2006126973A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018042445A (en) * | 2015-10-22 | 2018-03-15 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Motor and motor control circuit |
CN109004777B (en) * | 2018-07-26 | 2024-07-16 | 河北工业大学 | Magnetic flux reverse claw pole motor assembly |
JP2022547506A (en) * | 2019-09-06 | 2022-11-14 | エムオーティーエックス リミテッド | rotary transverse flux motor |
WO2023208834A1 (en) * | 2022-04-25 | 2023-11-02 | Rolls-Royce Deutschland Ltd & Co Kg | Assembly for an electric machine, and method for producing an assembly for an electric machine |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4237396A (en) * | 1977-10-06 | 1980-12-02 | P A Management Consultants Limited | Electromagnetic machines with permanent magnet excitation |
DE2913691C2 (en) * | 1979-04-05 | 1983-12-01 | Danfoss A/S, 6430 Nordborg | Stand for a brushless electric motor |
FR2730873A1 (en) * | 1995-02-20 | 1996-08-23 | Centre Nat Rech Scient | Heteropolar electrical machine with global winding |
US6445105B1 (en) * | 1999-04-06 | 2002-09-03 | General Electric Company | Axial flux machine and method of fabrication |
JP3395155B2 (en) * | 1999-05-07 | 2003-04-07 | 株式会社日立製作所 | Linear motor and manufacturing method thereof |
AT504456A1 (en) * | 1999-06-22 | 2008-05-15 | Bombardier Transp Gmbh | transverse flux |
GB2374206B (en) * | 2001-04-03 | 2005-07-06 | Sunonwealth Electr Mach Ind Co | Direct current brushless motor having a radial air-gap. |
JP3855914B2 (en) * | 2002-11-12 | 2006-12-13 | 株式会社日立製作所 | Linear drive |
-
2005
- 2005-05-26 SI SI200500158A patent/SI22072A/en not_active IP Right Cessation
-
2006
- 2006-05-24 WO PCT/SI2006/000023 patent/WO2006126973A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2006126973A1 (en) | 2006-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7723888B2 (en) | Synchronous electromechanical transformer | |
RU2330368C2 (en) | Multi-phase structures of toothed terminals for electric machine | |
JP7155023B2 (en) | Metal ribbon stator and motor with same | |
US7042130B2 (en) | Electrical machine construction using axially inserted teeth in a stator ring or armature | |
US5831367A (en) | Line-start reluctance motor with grain-oriented rotor laminations | |
CN101981785A (en) | Rotating electrical machine | |
TWI429168B (en) | Permanent magnet rotating machine | |
EP2190103B1 (en) | Axial gap type coreless rotating machine | |
KR20180006306A (en) | Stators and coils for axial-flux dynamoelectric machines | |
KR20060090570A (en) | Radial airgap, transverse flux motor | |
WO2004054068A2 (en) | Rotor for line-start reluctance motor | |
US4810914A (en) | Linear actuator with multiple closed loop flux paths essentially orthogonal to its axis | |
KR20000077167A (en) | A rotary electric machine | |
US20140340185A1 (en) | Rotary Connection for Electric Power Transmission | |
US20140084716A1 (en) | Rotating electrical machine with so-called double homopolar structure | |
CN104426315A (en) | Three-phase electromagnetic motor | |
WO2000014851A1 (en) | High frequency synchronous rotary electrical machine | |
SI22072A (en) | Synchronous electro-mechanical converter | |
SI21830A (en) | Synchronous electromechanical transducer | |
CN106208431B (en) | transverse flux motor iron core | |
RU2599056C1 (en) | High-speed multi-phase synchronous generator | |
CN112789785B (en) | Claw pole motor with toroidal coil and meandering coil | |
RU2312444C2 (en) | Two-stack synchronous generator | |
EP3084929B1 (en) | Stator for an electric machine | |
WO2020084871A1 (en) | Electrical machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20060608 |
|
KO00 | Lapse of patent |
Effective date: 20101229 |