SI21715A - Triple resonance enhanced nuclear quadropole resonance detection of tnt and other explosives - Google Patents

Triple resonance enhanced nuclear quadropole resonance detection of tnt and other explosives Download PDF

Info

Publication number
SI21715A
SI21715A SI200400007A SI200400007A SI21715A SI 21715 A SI21715 A SI 21715A SI 200400007 A SI200400007 A SI 200400007A SI 200400007 A SI200400007 A SI 200400007A SI 21715 A SI21715 A SI 21715A
Authority
SI
Slovenia
Prior art keywords
nqr
frequency
detection
polarization
nuclei
Prior art date
Application number
SI200400007A
Other languages
Slovenian (sl)
Inventor
Janez Seliger
Robert Blinc
Tomaz Apih
Gojmir Lahajnar
Original Assignee
Inst Jozef Stefan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Jozef Stefan filed Critical Inst Jozef Stefan
Priority to SI200400007A priority Critical patent/SI21715A/en
Publication of SI21715A publication Critical patent/SI21715A/en

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Predmet izuma je nova trojnoreonančna polarizacijsko ojačena NQR metoda za detekcijo trinitrotoluena (TNT) in drugih eksplozivov kot tudi narkotikov in drog, ki vsebujejo nizkofrekvenčna NQR jedra, kot so jedra 14N, poleg visokofrekvenčnih jeder, kot so klor, brom, 17 O. Izum je zasnovan na uporabi visokofrekvenčnih jeder, kot so klor, brom ali 17 O, za polarizacijo protonov preko križanja nivojev ali "solid efekta" in detekcijo nizkofrekvenčnega NQR (npr. 14 N) signala s pulzno NQR na daljavo. V primerjavi s predhodno predlagano kvadrupol-kvadrupolno polarizacijsko ojačeno tehniko se nova metoda izogne problemu počasne spinske difuzije pri polarizaciji v 14 N kvadrupolnem sistemu s tem, da je dvojna resonanca nadomeščena s trojnoresonančno shemo. Na ta način poteka spinska difuzija polarizacijskega ojačenja v protonskem sistemu in ne sistemu 14 N.The subject of the invention is a new triple-resonant polarization amplified NQR method for trinitrotoluene detection (TNT) and other explosives as well as narcotics and rods containing low-frequency NQR cores such as are 14N cores, in addition to high frequency cores such as chlorine, bromine, 17 O. The invention is based on use high frequency cores such as chlorine, bromine or 17 O for polarization of protons through the crossing of levels or "solid and low - frequency NQR detection (e.g., 14 N) signal with pulsed NQR at a distance. Compared to the previously proposed quadrupole-quadrupole polarization reinforced technique is avoided by the new method the problem of slow spin diffusion in polarization in 14 N is a quadrupole system with double resonance replaced by a three-resonance scheme. On this mode is the spin diffusion of the polarization amplifications in the proton system rather than the 14 N system.

Description

Trojnoresonančna ojačena jedrska kvadrupolna resonančna detekcija TNT in drugih eksplozivovTriple-resonance amplified nuclear quadrupole resonance detection of TNT and other explosives

Predmet izuma je nova trojnoresonančna polarizacijsko ojačena jedrsko kvadrupolno resonančna (NQR) metoda detekcije trinitrotoluena (TNT) in drugih eksplozivov kot tudi narkotikov ter drog, ki vsebujejo nizkofrekvenčna NQR jedra kot je n.pr. jedro 14V - poleg visokofrekvenčnih jeder kot so35Cl, ilBr,17O.The subject of the invention is a new tri-resonant polarized amplified nuclear quadrupole resonance (NQR) detection method for trinitrotoluene (TNT) and other explosives as well as narcotics and drugs containing low-frequency NQR nuclei such as e.g. 14 V core - in addition to high frequency cores such as 35 Cl, il Br, 17 O.

Izum temelji na polarizaciji protonov preko križanja nivojev ali »solid efekta« z visokofrekvenčnimi NQR jedri kot so klor, brom ali 17O, prenosu protonske polarizacije na nizkofrekvenčna NQR jedra (kot je dušik) s pomočjo »solid efekta« in detekciji nizkofrekvenčnega NQR signala (npr. jeder 14N) s pomočjo pulznega NQR na daljavo. V primeijavi s predhodno predloženo dvojno (kvadrupol-kvadrupolno) polarizacij sko ojačeno tehniko, nova metoda obide problem počasne spinske difuzije v sistemu kvadrupolnih jeder 14/V tako, da dvojno resonanco nadomesti trojno-resonančna shema. Tako dosežemo, da spinska difuzija ojačene polarizacije poteka v protonskem sistemu in ne v sistemu jeder 14/V. Nova metoda po izumu omogoča večkratno povečanje razmerja signal/šum in zmanjšanje merilnega časa za en ali dva velikostna razreda. Nova metoda je posebej uporabna v primerih, kjer polarizacij sko ojačanje visokofrekvenčnih jeder s pomočjo direktnega kvadupolkvadrupolnega »solid efekta« odpove, ker je hitrost spinske difuzije za polarizacijo nizkofrekvenčnih NQR jeder premajhna. Takšen primer srečamo pri TNT, kjer redka kvadrupolna jedra 17O (1=5/2) polarizirajo okolna kvadrupolna jedra 14V (1=1) preko kvadrupol-kvadrupolnega »solid efekta« le v omejenem radiju okrog mesta 17O, in se zato polarizacija ne prenaša na celotni sistem jeder 14V, zaradi česar s kvadrupol-kvadrupolnim »solid efektom« ni možno znatno povečati signala jeder 14N. Predložena nova metoda je uporabna tudi za detekcijo eksplozivov v tihotapski prtljagi in za detekcijo protipehotnih min.The invention is based on the polarization of protons via level crossing or "solid effect" with high-frequency NQR nuclei such as chlorine, bromine or 17 O, transfer of proton polarization to low-frequency NQR nuclei (such as nitrogen) by "solid effect" and detection of a low-frequency NQR signal ( e.g., nuclei 14 N) using a pulsed NQR at a distance. Compared to the previously presented dual (quadrupole-quadrupole) polarization-enhanced technique, the new method bypasses the problem of slow spin diffusion in a 14 / V quadrupole nucleus system by replacing the double resonance with the triple-resonance scheme. Thus, spin diffusion of enhanced polarization is achieved in the proton system rather than in the 14 / V core system. The new method of the invention allows for a multiple increase of signal / noise ratio and reduction of measurement time by one or two size classes. The new method is particularly useful in cases where the polarization amplification of high-frequency nuclei by a direct quadrupole quadrupole solid effect fails because the spin diffusion rate for the polarization of low-frequency NQR nuclei is too small. This is the case with TNT, where rare quadrupole nuclei of 17 O (1 = 5/2) polarize the surrounding quadrupole nuclei of 14 V (1 = 1) through a quadrupole-quadrupole solid effect only in a limited radius around 17 O, and therefore polarization does not transmit to the entire 14 V core system, which makes it impossible to significantly increase the 14 N core signal with a quadrupole-quadrupole solid-state effect. The proposed new method is also applicable for the detection of explosives in smuggled luggage and for the detection of anti-personnel mines.

Področje izuma je fizika, in se nanaša na meritve in testiranje električnih in magnetnih karakteristik materialov s pomočjo trojnoresonančnih tehnik.FIELD OF THE INVENTION It relates to the measurement and testing of the electrical and magnetic characteristics of materials using triple resonance techniques.

Detekcija in odstranjevanje poljskih min predstavlja eno najzahtevnejših nalog v več kot 70 državah po svetu. Glede na nedavni porast svetovnega terorizma je velikega pomena tudi odkrivanje eksplozivov, kijih skrite pri sebi ali v prtljagi prenašajo potniki na letališčih. Velik problem je tudi odkrivanje ilegalne droge in narkotikov. NQR ponuja sprejemljivo metodo detekcije eksplozivov, min, drog in narkotikov na daljavo, kot je opisano v člankih: V. S. Grechishkin, N. J. Sinayavsky, Physics-Uspekhi 40, 393 (1997); J. P. Yesinovski, L. L. Buess, A. N. Garoway, Anal. Chem. 67, 2256 (1995); G. I. Allen, P. Czipott, R. Mathews, R. H. Koch, Proč. SPIE 3711, 103 (1999).Detection and removal of field mines is one of the most challenging tasks in over 70 countries worldwide. In view of the recent rise in global terrorism, it is also of great importance to find explosives that are hidden at airports or carried in luggage. A big problem is also the detection of illegal drugs and narcotics. NQR offers an acceptable method for the detection of long-range explosives, mines, drugs and narcotics, as described in articles: V. S. Grechishkin, N. J. Sinayavsky, Physics-Uspekhi 40, 393 (1997); J. P. Yesinovski, L. L. Buess, A. N. Garoway, Anal. Chem. 67, 2256 (1995); G. I. Allen, P. Czipott, R. Mathews, R. H. Koch, Proc. SPIE 3711, 103 (1999).

NQR detekcija je možna zato, ker vsi glavni eksplozivi (TNT, RDX, ΗΜΧ, PETN, itd.) vsebujejo dušik, kije kvadrupolamo jedro. Omenjeni eksplozivi se uporabljajo tudi v poljskih minah. Glavna odlika NQR metode je ta, da je pri detekciji spojin molekulsko specifična. Metoda ni odvisna od nobene druge lastnosti mine (kot je npr. kovinsko ohišje mine), saj zaznava prisotnost eksplozivov neposredno preko detekcije kvadupolamih jeder v njih. Isto velja tudi za detekcijo narkotikov. Tudi prisotnost drugih spojin dušika (npr. v gnojilih v zemlji) ne moti detekcije npr. mine - prav zaradi velike razlike v resonančnih frekvencah dušika v eksplozivu mine in v ostalih spojinah v zemlji. Seveda je intenziteta izmerjenega signala sorazmerna s številom NQR jeder v merjenem objektu.NQR detection is possible because all major explosives (TNT, RDX, ΗΜΧ, PETN, etc.) contain nitrogen, which quadrupoles the nucleus. These explosives are also used in field mines. The main feature of the NQR method is that it is molecular specific for the detection of compounds. The method does not depend on any other property of the mine (such as a metal minefield) as it detects the presence of explosives directly through the detection of quadrupole nuclei in them. The same is true for narcotics detection. Also, the presence of other nitrogen compounds (eg in soil fertilizers) does not interfere with the detection of e.g. mines - precisely because of the large difference in the resonant frequencies of nitrogen in explosives and in other compounds in the earth. Of course, the intensity of the measured signal is proportional to the number of NQR nuclei in the object being measured.

NQR metoda ne more zaznati eksploziva v minah s kovinskim ohišjem, ker radiofrekvenčno valovanje ne more prodreti skozi kovino. To vsekakor ne predstavlja omejitve v uporabi NQR metode, saj je NQR detektor vedno možno prirediti tako, da deluje kot detektor kovin s tem, da prisotnost kovine vpliva na frekvenčno uglasitev NQR sonde. Glavna pomanjkljivost NQR metode je njena nizka občutljivost, ki je približno sorazmerna s kvadratom NQR frekvence merjenega jedra. Metoda je posebej uspešna pri detekciji 14V NQR v eksplozivu RDX, pri katerem so resonančne NQR frekvence v območju med 3 in 5 MHz. Pri TNT, ki se najpogosteje uporablja kot eksploziv v poljskih minah, pa so na žalost resonančne 14V NQR frekvence v območju pod 0.9 MHz. V tem primeru je NQR signal prešibek, da bi se ga dalo izmeriti v smiselnem merilnem času, tako da je pri praktični uporbi NQR metode ta signal treba kakorkoli ojačati. Ta problematika je opisana v delih: Robert Blinc, Janez Seliger, Denis Arčon, Pavel Cevc, Veselko Žagar, Phys. Status Solidi A 180, 541 (2000); Janez Seliger, Robert Blinc, Gojmir Lahajnar, Denis Arčon, Pavel Cevc, Slovenski patent št. 20551, podeljen 5.11.2001; M. Nolte, A. Privalov, J. Altmann, V. Anferov, F. Fujara, J. Phys. D: Appl. Phys. 35, 939 (2002). Janko Lužnik, Janez Pirnat, Zvonko Trontelj, Solid State Communications 121, 653 (2002); Zvonko Trontelj, Janko Lužnik, Robert Blinc, Gojmir Lahajnar, Janez Seliger, Slovenski patent št. 20595, podeljen 31.12. 2001; in R. E. Slusher, E.The NQR method cannot detect explosives in mines with a metal casing because radio waves cannot penetrate metal. This is certainly not a limitation on the use of the NQR method, since the NQR detector can always be adjusted to act as a metal detector by having the presence of metal affect the frequency tuning of the NQR probe. The main disadvantage of the NQR method is its low sensitivity, which is approximately proportional to the square of the NQR frequency of the measured kernel. The method is particularly successful in detecting 14 V NQRs in an RDX explosive where the resonant NQR frequencies are in the range of 3 to 5 MHz. However, for TNT, which is most commonly used as an explosive in field mines, the 14 V NQR frequencies in the range below 0.9 MHz are unfortunately resonant. In this case, the NQR signal is too weak to be measured within a reasonable measurement time, so in practical application of the NQR method this signal must be amplified in any way. This problem is described in the following works: Robert Blinc, Janez Seliger, Denis Arčon, Pavel Cevc, Veselko Žagar, Phys. Status Solids A 180, 541 (2000); Janez Seliger, Robert Blinc, Gojmir Lahajnar, Denis Arčon, Pavel Cevc, Slovenian Patent no. 20551, shared 5/11/2001; M. Nolte, A. Privalov, J. Altmann, V. Anferov, F. Fujara, J. Phys. D: Appl. Phys. 35, 939 (2002). Janko Luznik, Janez Pirnat, Zvonko Trontelj, Solid State Communications 121, 653 (2002); Zvonko Trontelj, Janko Lužnik, Robert Blinc, Gojmir Lahajnar, Janez Seliger, Slovenian Patent no. 20595, shared on 31.12. 2001; and RE Slusher, E.

L. Hahn, Phys. Rev. 128, 2042 (1962). Gornja ugotovitev velja tudi za hitro detekcijo eksplozivov in narkotikov pri pregledovanju potnikov in prtljage na letališčih.L. Hahn, Phys. Rev. 128, 2042 (1962). The above observation also applies to the rapid detection of explosives and narcotics when screening passengers and baggage at airports.

V odsotnosti zunanjega magnetnega polja ima jedro 14 N (1=1) tri NQR frekvence:In the absence of an external magnetic field, the core 14 N (1 = 1) has three NQR frequencies:

(i) <2> (i) < 2 >

Vo=v+-v_ (3) ki so značilne za dano vrsto snovi. V gornjih enačbah je e2qQ/h kvadrupolna sklopitvena konstanta in η asimetrij ski parameter.V o = v + -v_ (3) which are characteristic of a given type of substance. In the above equations, e 2 qQ / h is a quadrupole coupling constant and an η asymmetry parameter.

Razmerje signal/šum pri NQR metodi je možno izboljšati na tri različne načine. To so:The signal-to-noise ratio of the NQR method can be improved in three different ways. These are:

- Jedrska kvadrupolna dvojna resonanca (NQDR), pri kateri se šibki signal meri preko njegovega vpliva na močni (običajno ^NMR) signal.- Nuclear quadrupole double resonance (NQDR), in which a weak signal is measured by its effect on a strong (usually ^ NMR) signal.

Ta način je uspešen v laboratorijskih pogojih, ne pa na terenu. Pri detekciji 14A NQR vojaškega TNT je bilo možno izboljšati razmerje signal/šum za faktor 30 glede na standardno metodo 14/V NQR (R. Blinc, J. Seliger, D. Arčon, P. Cevc, V. Žagar, Phys. Status Solidi A 180, 541 (2000); Janez Seliger, Robert Blinc, Gojmir Lahajnar, Denis Arčon, Pavel Cevc, Slovenski patent št. 20551, podeljen 5. 11. 2001).This mode is successful in laboratory conditions but not in the field. In detecting 14 A NQR of military TNT, it was possible to improve the signal to noise ratio by a factor of 30 according to the standard 14 / V NQR method (R. Blinc, J. Seliger, D. Arčon, P. Cevc, V. Žagar, Phys. Status Solidi A 180, 541 (2000); Janez Seliger, Robert Blinc, Gojmir Lahajnar, Denis Arčon, Pavel Cevc, Slovenian Patent No. 20551, granted 5 November 2001).

- Zeemansko polarizacijsko ojačena NQR, pri kateri se meri signal čiste NQR v zunanjem magnetnem polju nič, potem ko je bil ojačan s prenosom jedrske polarizacije iz sistema predhodno polariziranih jeder lH. Za ta pristop ni potrebno homogeno magnetno polje kot pri standardni dvojno resonančni metodi, in je zato primeren za izvenlaboratorijsko praktično uporabo.- Zeeman polarized amplified NQR, which measures the signal of pure NQR in the external magnetic field zero after it has been amplified by transferring nuclear polarization from a system of previously polarized nuclei l H. This approach does not require a homogeneous magnetic field as in the standard double resonance method , and is therefore suitable for off-site practical use.

- Kvadrupol-kvadrupolno ojačena NQR, kjer se meri signal čiste NQR v zunanjem magnetnem polju nič, potem ko je bil ojačen s prenosom polarizacije drugih visokofrekvenčnih kvadrupolnih jeder preko »solid efekta«.- Quadrupole-quadrupole-amplified NQR, where the pure NQR signal in the external magnetic field is measured to be zero after it has been amplified by transmitting the polarization of other high-frequency quadrupole nuclei via a "solid effect".

Osnovni lH-l4N jedrski kvadrupolno resonančni eksperiment je opisan v članku: R. E. Slusher, E. L. Hahn, Phys. Rev. 128, 2042 (1962). V tem poskusu magnetno polje ciklira med visokim poljem (npr. 0.5 T) in poljem nič, in začetno polarizacijo sistema protonskih spinov adiabatno demagnetiziramo. V polju nič potem vzorec obsevamo z dolgim radiofrekvenčnim (rf) pulzom. Po obsevanju z rf poljem v zunanjem magnetnem polju nič dvignemo magnetno polje na prvotno visoko vrednost (adiabatna remagnetizacija), in merimo protonski NMR signal. Pri resonančnem pogoju, ko sta frekvenca rf sevanja in 14ANQR frekvenca vN0R enaki, se nasitijo 14A NQR prehodi in signal lH NMR se zmanjša na račun prenosa polarizacije iz protonskega NMR sistema v dušikov NQR sistem. Ta proces lahko predstavimo s tokom energije iz nasičenega sistema dušikovih jeder (z neskončno »spinsko temperaturo«) v adiabatno ohlajeni protonski sistem.The basic l H- l4 N nuclear quadrupole resonance experiment is described in the paper: RE Slusher, EL Hahn, Phys. Rev. 128, 2042 (1962). In this experiment, the magnetic field cycles between a high field (eg 0.5 T) and a field of zero, and the initial polarization of the proton spin system is adiabatically demagnetized. In the zero field, the sample is then irradiated with a long radio frequency (rf) pulse. After irradiation with an rf field in an external magnetic field, zero the magnetic field to its original high value (adiabatic remagnetization), and measure the proton NMR signal. Under the resonance condition, when the rf radiation frequency and the 14 ANQR frequency in N0R are the same, 14 A NQR transients are saturated and the l H NMR signal is reduced due to the transfer of polarization from the proton NMR system to the nitrogen NQR system. This process can be represented by the flow of energy from a saturated system of nitrogen nuclei (with an infinite "spin temperature") into an adiabatically cooled proton system.

Občutljivost NQDR tehnike se da še povečati s tem, da se doseže boljši energijski pretok med obema jedrskima podsistemoma. Ta možnost je bila eksperimentalno uresničena z metodo »NQDR z večkratnim križanjem nivojev« (R. Blinc, J. Seliger in drugi, J. Chem. Phys. 51, 5082 (1972)), pri kateri se protonski NMR nivoji in dušikovi NQR nivoji večkrat križajo med časovnim intervalom rf obsevanja (glej Sliko 1). Metoda je opisana v delu: R. Blinc, J. Seliger in drugi, J. Chem. Phys. 51, 5082 (1972). Za vzdrževanje visoke spinske temperature jeder 14A so bile pri tej metodi uporabljene hitre spremembe faze rf polja za 180°.The sensitivity of the NQDR technique can be further enhanced by achieving a better energy flow between the two nuclear subsystems. This possibility was experimentally realized by the method of "NQDR with multiple level crossing" (R. Blinc, J. Seliger et al., J. Chem. Phys. 51, 5082 (1972)), in which proton NMR levels and nitrogen NQR levels they cross several times during the rf irradiation time interval (see Figure 1). The method is described in part by: R. Blinc, J. Seliger and others, J. Chem. Phys. 51, 5082 (1972). In order to maintain the high spin temperature of the 14 A nuclei, rapid phase changes of the rf field phase by 180 ° were used in this method.

Spekter je širok (~30 kHz) in šest dušikovih resonančnih črt vzorca TNT ni razločenih (Slika 2). Vzrok nerazločenosti črt v širokem spektru gre na račun izpovprečenja dipolne sklopitve med protoni in dušikom, ki omogoča toplotni kontakt med obema sistemoma jeder (»spinquenching« efekt).The spectrum is wide (~ 30 kHz) and the six nitrogen resonance lines of the TNT sample are indistinguishable (Figure 2). The reason for the indistinguishability of lines across a wide spectrum is due to the elimination of dipole coupling between protons and nitrogen, which enables thermal contact between the two core systems (spinquenching effect).

Da bi se povečala ločljivost 14A NQR spektrov, smo uporabili dvojnoresonančne tehnike, opisane v delih: J. Seliger, V. Žagar, R. Blinc, Z. Naturforsch. 49A, 31 (1993); J. Seliger, V. Žagar, R. Blinc, J. Magn. Reson. Al 06,214 (1994).In order to increase the resolution of the 14 A NQR spectra, we used the dual resonance techniques described in the works: J. Seliger, V. Žagar, R. Blinc, Z. Naturforsch. 49A, 31 (1993); J. Seliger, V. Zagar, R. Blinc, J. Magn. Reson. Al 06,214 (1994).

Poleg tega, da ta metoda omogoča visoko ločljivost in večjo občutljivost, je njena odlika tudi v možnosti asignacije prehodov v_ in v+ (glej Sliko 3) pri danem jedru 14A, kar je daleč od trivialnosti za kompleksen 14ANQR spekter.In addition to providing high resolution and higher sensitivity, it also has the potential to assign v_ and v + transitions (see Figure 3) to a given 14 A core, which is far from trivial for the complex 14 ANQR spectrum.

V omenjenem poskusu magnetno polje adiabatno ciklira med visoko in nizko velikostjo polja Bo, določeno z resonančnim pogojem χΗΒ0/2π = νθ(14a).In the aforementioned experiment, the magnetic field cycles adiabatically between the high and low sizes of the Bo field determined by the resonant condition χ Η Β 0 / 2π = ν θ ( 14 a).

Ko je nizko magnetno polje enako Bo, vzorec obsevamo z dolgim rf pulzom, katerega frekvenco zvezno spreminjamo v območju, ki pokriva frekvenci obeh prehodov v+ in v_. Med vsakokratno spremembo frekvence rf sevanja so najprej vzbujeni prehodi v_ in nato prehodi v+. Rezultat tega je zelo efekten pretok toplotne energije od kvadrupolnega sistema 14A v protonski sistem z visoko spinsko temperaturo, kar se kaže v velikem padcu (»minimumu«) protonskega signala (glej Sliko 4). Protonski signal se močno zmanjša le, če frekvenčna sprememba pokriva oba prehoda v_ in r+. Prav to tudi omogoča določitev tako v_ kot v+ preko variacije zgornje in spodnje meje frekvenčnega spreminjanja rf izvora.When the low magnetic field is equal to Bo, the sample is irradiated with a long rf pulse whose frequency is continuously varied in the range that covers the frequencies of both v + and v_. During each change in the frequency of rf radiation, transitions v_ are excited first and then transitions in + . This results in a very effective flow of thermal energy from the quadrupole 14 A system into the proton system with high spin temperature, which is reflected in the large drop ("minimum") of the proton signal (see Figure 4). A proton signal is greatly reduced only if the frequency change covers both transitions v_ and r + . This also makes it possible to determine both v_ and v + via the variation of the upper and lower bounds of the frequency variation of the rf origin.

Še večjo ločljivost se doseže, če namesto spreminjanja frekvence rf izvora uporabimo dvojnoresonančno obsevanje. Pri tem prvo frekvenco vl približno izberemo tako, da velja Vj « v+, nato drugo frekvenco v2 variramo toliko časa, daje točno izpolnjen pogoj v2 = v_ V naslednjem koraku potem pustimo frekvenco v2 nespremenjeno in variramo Vj, dokler ni natanko izpolnjen pogoj v, = v+. Ločljivost te metode je okrog 0.1 kHz. Frekvence 14VNQR za TNT pri sobni temperaturi so podane v Tabeli 1, njihove temperaturne odvisnosti pa so prikazane na Sliki 5.Even higher resolution is achieved by using dual resonance irradiation instead of changing the frequency rf of the origin. Here the first frequency in l is approximately chosen so that Vj «v + , then the second frequency in 2 is varied until the exact condition v 2 = v_ In the next step, then we leave the frequency in 2 unchanged and vary Vj until it is exact the condition v, = v + is fulfilled. The resolution of this method is about 0.1 kHz. The 14 VNQR frequencies for TNT at room temperature are given in Table 1 and their temperature dependencies are shown in Figure 5.

Tabela 1Table 1

v0(kHz)in 0 (kHz) (kHz) (kHz) v+ (kHz)v + (kHz) 1 1 160 160 712 712 872 872 2 2 92.5 92.5 769 769 861.5 861.5 3 3 110.5 110.5 742.5 742.5 853 853 4 4 132 132 718 718 850 850 5 5 92 92 755 755 847 847 6 6 95 95 742 742 837 837 7 7 -0 -0 -807 -807 -807 -807

Jedrske kvadupolne dvojnoresonančne tehnike, opisane zgoraj, omogočajo hitro in efektno določanje 14tVNQR parametrov na manj kot gram težkih vzorcih eksplozivov in narkotikov. Vendar pa zahteva po visoko homogenem magnetnem polju za detekcijo protonov ter pričakovano maskiranje signala vzorca s protoni, ki ne pripadajo vzorcu, ne dopuščajo uporabe te metode v izvenlaboratorijski praksi.The nuclear quadrupole dual-resonance techniques described above enable the rapid and effective determination of 14 tVNQR parameters on less than a gram of heavy samples of explosives and narcotics. However, the requirement for a highly homogeneous magnetic field for the detection of protons and the expected masking of the sample signal by non-sample protons do not allow this method to be used in out-of-laboratory practice.

V zeemansko polarizacij sko ojačenem NQR (PE-NQR) eksperimentu (Slika 6) je signal čiste NQR v magnetnem polju nič ojačen s prenosom polarizacije iz sistema jeder lH, ki je bil predhodno polariziran v magnetnem polju. V tem poskusu je vzorec najprej v močnem magnetnem polju, za katerega pa ni potrebno, da je homogeno, saj služi le za polarizacijo protonov in ne detekcijo protonskega NMR signala.In the Zeeman-polarized amplified NQR (PE-NQR) experiment (Fig. 6), the signal of pure NQR in the magnetic field is zero amplified by the transfer of polarization from the nucleus l H system previously polarized in the magnetic field. In this experiment, the sample is first in a strong magnetic field, which is not required to be homogeneous, since it serves only to polarize the protons and not to detect the proton NMR signal.

V naslednji stopnji poskusa magnetno polje adiabatno znižamo, bodisi tako, da magnet izključimo ali pa ga odmaknemo. Med to adiabatno demagnetizacijo se razcep protonskih NMR črt zmanjšuje in končno izenači z majhnim razcepom 142VNQR črt, ko prične energija odtekati iz »vročega« dušikovega NQR sistema v »hladni« protonski NMR sistem. Ob tem se dušikov NQR sistem »ohladi« (polarizira), kar zaznamo kot i4tV NQR signal s standardnimi NQR merilnimi tehnikami v magnetnem polju nič (če zanemarimo zemeljsko magnetno polje). Detekcija se začne takoj po izključitvi magnetnega polja. Signal 14jVNQR se ojača za faktorIn the next stage of the experiment, the magnetic field is reduced adiabatically, either by switching off the magnet or by moving it away. During this adiabatic demagnetization, the cleavage of proton NMR lines is reduced and finally equated to a small cleavage of 14 2VNQR lines when energy begins to flow from the "hot" nitrogen NQR system to the "cold" proton NMR system. At the same time, the nitrogen NQR system is "cooled" (polarized), which is detected as an i4 tV NQR signal with standard NQR measurement techniques in the magnetic field of zero (if we neglect the earth's magnetic field). Detection begins immediately after the magnetic field is switched off. The 14 jVNQR signal is amplified by a factor

F = Ke«(“vK !(N„ +Nn), če ni zmanjšanja polarizacije 14/V zaradi hitre kvadrupolne relaksacije.F = K e "(" vK! (N "+ N n ) if there is no decrease in the 14 / V polarization due to the fast quadrupole relaxation.

Zeemanska PE-NQR tehnika je bila preizkušena pri nizki temperaturi (77 K) na signalu 14jV NQR 4-nitrobenzojeve kisline ((.NOi^eH^COOH) v magnetnemu polju permanentnega magneta NdFeB (v obliki kocke (7cm)3) (Sliki 7 in 8).The Zeeman PE-NQR technique was tested at low temperature (77 K) on a 14 jV NQR 4-nitrobenzoic acid ((.NOi ^ eH ^ COOH) signal in a NdFeB permanent magnet (cube (7cm) 3 )) (Figs. 7 and 8).

Eksperimentalni parametri so bili:The experimental parameters were:

vJ’M=982kHzvJ'M = 982kHz

M = 8.5 ± 2 MHz (magnetno polje 200 ± 50 mT)M = 8.5 ± 2 MHz (magnetic field 200 ± 50 mT)

Nh/(jVh+Nn)=0.85N h / (jV h + N n ) = 0.85

F(napovedani)=7.4F (predicted) = 7.4

Izmeijeni faktor ojačenja F(merjeni)«7 se dobro ujema z napovedano velikostjo 7.4. En cikel PE-NQR izboljša razmerje signal/šum toliko kot povprečno 1000-krat ponovljena sekvenca pri metodi brez polarizacije (Slika 8). Kot je bilo pričakovati, homogenost polarizacijskega magnetnega polja ni kritična, ampak je povečanje razmerja signal/šum sorazmerno zgolj z velikostjo povprečnega polja.The modified gain factor F (measured) «7 fits well with the predicted magnitude of 7.4. One PE-NQR cycle improves the signal-to-noise ratio as much as an average of 1000 times the repeated sequence for the non-polarization method (Figure 8). As expected, the homogeneity of the polarizing magnetic field is not critical, but the increase in the signal / noise ratio is only proportional to the size of the average field.

Če povzamemo, je Zeemanska PE-NQR metoda efektna, če je:In summary, the Zeeman PE-NQR method is effective if:

- razmerje protonske NMR frekvence proti frekvenci 14 N NQR visoko- Proton NMR to 14 N NQR ratio high

- 14 TV NQR spin-mrežni relaksacijski čas dovolj dolg, da polarizacij sko magnetno polje upade na vrednost nič, jedra 14 N pa ostanejo polarizirana- 14 TV NQR spin network relaxation time long enough for the polarization magnetic field to fall to zero and the 14 N cores remain polarized

- število vodikovih atomov NH v vzorcu vsaj primerljivo s številom dušikovih atomov Nn v njem.- the number of hydrogen atoms N H in the sample is at least comparable to the number of nitrogen atoms N n in it.

Poleg tega je treba upoštevati še čas, potreben za polarizacijo protonov v zunanjem magnetnem polju (spin-mrežni relaksacijski čas), kar je tudi lahko vzrok časovnih omejitev v izvedbi poskusa.In addition, the time required for the proton polarization in the external magnetic field (spin-network relaxation time) to be taken into account may also be the cause of the time constraints in the experiment.

Prenos protonske polarizacije s pomočjo križanja nivojev 14N-1 H v magnetnem polju je tehnično in ekonomsko zelo zahteven, saj zahteva vzpostavitev statičnega magnetnega polja velikosti 0.1 T ali več na mestu preiskovanega vzorca kakršen je npr. protipehotna mina. V praksi to predstavlja dodatno težavo, saj mora preiskovalec prenašati magnet ali magnetizacijsko tuljavo za generiranje statičnega magnetnega polja na preiskovanem mestu. Omenjeni problem je v nekaterih primerih možno odpraviti s kvadrupol-kvadrupolno polarizacijsko ojačeno jedrsko kvadrupolno resonančno detekcijo jeder z nizko NQR frekvenco kot je14 N, in sicer s pomočjo »solid efekta«, če je v molekuli prisotno še drugo jedro z visoko NQR frekvenco. Rešitev je opisana v slovenskem patentu št. 20995, podeljenem 28. 2. 2003, avtorjev Roberta Blinca, Janeza Seligerja, Tomaža Apiha in Gojmira Lahajnarja.The transfer of proton polarization by means of the crossing of 14 N- 1 H levels in a magnetic field is technically and economically very demanding, since it requires the establishment of a static magnetic field of size 0.1 T or more at the location of the sample being tested, such as. anti-personnel landmines. In practice, this poses an additional problem as the investigator must carry a magnet or magnetization coil to generate a static magnetic field at the investigated site. This problem can in some cases be remedied by quadrupole-quadrupole polarization-amplified nuclear quadrupole resonance detection of nuclei with a low NQR frequency of 14 N, by means of a "solid effect" if another nucleus with a high NQR frequency is present in the molecule. The solution is described in Slovenian patent no. 20995, awarded February 28, 2003, by Robert Blinc, John Seliger, Tomaž Apih, and Gojmir Lahajnar.

Za opis metode si oglejmo primer vzorca, ki vsebuje dve vrsti kvadrupolamih jeder Q1 in Q2. Nadalje naj imajo jedra 0, dosti višjo NQR frekvenco kot jedra Q2. Z vključitvijo močnega radiofrekvenčnega polja, ki niha s frekvenco, ki je enaka frekvenčni razliki prehodov med kvadrupolnimi nivoji jeder Qx in Q2, induciramo simultane prehode v obeh spinskih sistemih, in na ta način se prenaša polarizacija iz sistema Q}v sistemQ2. Zaradi dipolame sklopitve med jedri Q2se ojačena polarizacija prenese tudi na druga jedra Q2, ki niso nujno v bližini jedra (Slika 9).For a description of the method, let's look at an example of a sample containing two types of quadrupole nuclei Q 1 and Q 2 . Furthermore, the kernels should have 0, much higher NQR frequency than the kernels Q 2 . By incorporating a strong radio frequency field oscillating at a frequency equal to the frequency difference of transitions between the quadrupole levels of the nuclei Q x and Q 2 , we induce simultaneous transitions in both spin systems, thus transferring polarization from system Q } to systemQ 2 . Due to the coupling dipole between Q 2 nuclei, the amplified polarization is also transferred to other Q 2 nuclei, which are not necessarily near the nucleus (Figure 9).

V ravnovesju se s tem polarizacija S jederQ2, ki je sorazmerna z dušikovim NQR signalom pri frekvenci ,v primerjavi s polarizacijo So brez kvadrupol kvadrupolnega »solid efekta«, poveča za faktorIn equilibrium, the polarization of S nucleiQ 2 , which is proportional to the nitrogen NQR signal at frequency, is increased by a factor by comparison with the polarization S o without the quadrupole quadrupole "solid effect".

S/So =1 +S / S o = 1 +

Da kjer so:Yes where are:

So ravnovesni g2NQR signal brez dodatnega rf obsevanja, ravnovesni (Ž,NQR signal z rf obsevanjem, /^verjetnost za simultani prehod na časovno enoto v primeru kvadrupol-kvadrupolnega »solid efekta«,S o equilibrium g 2 NQR signal without additional rf irradiation, equilibrium (Ž, NQR signal with rf irradiation, / ^ probability for simultaneous transition to a time unit in the case of a quadrupole-quadrupole solid effect,

WQi hitrost spin-mrežne relaksacije kisikovih jeder Q,W Qi is the speed of spin-network relaxation of oxygen nuclei Q,

WQi hitrost spin-mrežne relaksacije jeder Q2, in ε naravna pogostost jeder Qx.W Qi is the rate of spin-mesh relaxation of Q 2 nuclei, and ε is the natural frequency of Q x nuclei.

Pri pogoju Ws = <»D ωΓ , kjer j e ωβ dipolama širina črte, ωο =Ίπν.For the condition W s = <»D ω Γ , where ω β is the dipole width of the line, ω ο = Ίπν.

in ωχ = γΒχ, so potrebne razmeroma visoke amplitude radiofrekvenčnega polja Bx (večje kot ali enake 100 Gauss), če naj bo metoda efektna. Seveda je treba omeniti, da amplituda Bx sama po sebi ni kritična, saj manjši velikosti Bx ustreza le nižje ojačanje, efekt sam pa nikakor ne odpade, saj z njo ni povezan resonančni pogoj.and ω χ = γΒ χ , relatively high amplitudes of the radio frequency B x (greater than or equal to 100 Gauss) are required if the method is to be effective. Of course, it should be noted that the amplitude B x is not critical in itself, since the smaller size B x corresponds only to the lower amplification, and the effect itself is not eliminated, since it is not associated with a resonant condition.

Nadaljni pogoj za uspešno delovanje te metode je, da mora biti spin-mrežni relaksacijski čas (Tj) jeder g2 dovolj dolg, medtem ko mora biti spin-mrežni relaksacijski čas druge vrste jeder Qx dovolj kratek. Nadalje mora biti spinska difuzija polarizacije jeder Q2 dovolj izdatna, da se polarizira celotni sistem jeder Q2. Ni dovolj, da se polarizirajo zgolj tista jedra Q2, ki so neposredno vezana na skupine, ki vsebujejo jedra Qx.A further condition for the successful operation of this method is that the spin-mesh relaxation time (Tj) of nuclei g 2 must be sufficiently long, whereas the spin-mesh relaxation time of another type of nucleus Q x must be sufficiently short. Furthermore, the spin diffusion of the polarization of Q 2 nuclei must be sufficient enough to polarize the entire system of Q 2 nuclei. It is not enough to polarize only one of the core Q 2, which are directly linked to the group containing cores Q x.

Mnogokrat karakteristični čas spinske difuzije jeder Q2 ni dovolj kratek, da bi se polariziral celotni sistem jeder Q2. Tedaj je ojačenje NQR signala razmeroma majhno. Da bi premostili to težavo, podajamo iznajdbo nove trojnoresonančne metode.Many times the characteristic spin diffusion time of Q 2 nuclei is not short enough to polarize the entire Q 2 nucleus system. The amplification of the NQR signal is then relatively small. To overcome this problem, we present the invention of a new three-resonance method.

Naloga in cilj izuma je trojnoresonančna metoda za ojačenje pulznih NQR signalov v nizkofrekvenčni NQR z naslednjimi karakteristikami:The object and object of the invention is a three-resonance method for amplifying pulsed NQR signals into a low-frequency NQR with the following characteristics:

- Visoko efektivna polarizacija protonskega spinskega sistema preko Qi -H »solid efekta«,- Highly effective polarization of the proton spin system via Qi -H solid effect,

- Hiter (manj kot 1 ms trajajoč) prenos protonske polarizacije iz okolice jeder ^na preostali protonski spinski sistem,- Rapid (less than 1 ms duration) transfer of proton polarization from the nucleus surroundings ^ to the rest of the proton spin system,

- Prenos polarizacije iz protonskega spinskega sistema na spinski sistem Qz bodisi s križanjem nivojev ali pa s β/ -‘H »solid efektom«.- Transfer of polarization from the proton spin system to the spin system Q by either crossing the levels or by the β / -'H "solid effect".

V nadaljnem je podan podrobni opis izuma s pomočjo slik 1-10.The following is a detailed description of the invention by means of Figures 1-10.

Slika 1. NQDR eksperiment z večkratnim križanjem nivojev. Protonski NMR signal se meri po adiabatno demagnetizacijskem-remagnetizacijskem ciklu. NQR prehode dušika se nasiti z rf obsevanjem v polju nič, kar omogoča pretakanje energije med obema podsistemoma.Figure 1. NQDR experiment with multiple level crossing. The proton NMR signal is measured after an adiabatic demagnetization-remagnetization cycle. The NQRs of the nitrogen crossings are saturated by rf irradiation in a zero field, which allows energy to flow between the two subsystems.

Slika 2. NQDR spekter TNT v zunanjem magnetnem polju nič kot funkcija frekvence rf izvora .Figure 2. NQDR spectrum of TNT in the external magnetic field zero as a function of frequency rf origin.

Slika 3. 14V kvadrupolni (1=1) jedrski energijski nivoji in frekvence prehodov med nivoji. Tu je K = eqV2z/h kvadrupolna sklopitvena konstanta in 7 = (^-1^)/^ asimetrijski parameter za dano mesto jeder14 N. Vsaki vrsti jedra 14 V v TNT pripadajo 3 resonančne črte v0, v_ in v+, torej je v spektru TNT 6 3 = 18 črt.Figure 3. 14 In quadrupole (1 = 1) nuclear energy levels and frequency of transitions between levels. Here K = eqV 2z / h is a quadrupole coupling constant and 7 = (^ -1 ^) / ^ asymmetric parameter for a given location of nuclei 14 N. Each type of nucleus 14 V in TNT has 3 resonance lines in 0 , v_ and v + . therefore, in the TNT spectrum, 6 3 = 18 lines.

Slika 4. Protonski signal kot funkcija zunanjega magnetnega polja v območju vQ=v+-v_.Figure 4. Proton signal as a function of external magnetic field in the range v Q = v + -v_.

14 V NQR prehod v TNT v prisotnosti rf polja, ki se frekvenčno zvezno premika preko območja (»rf sweep«), ki pokriva oba prehoda v+ in v_. Za primerjavo je prikazana intenziteta protonskega signala v odsotnosti tega frekvenčno spremenljivega rf polja. 14 In NQR, the TNT gateway in the presence of an rf field that moves freely across the area ("rf sweep"), covering both v + and v_ transitions. For comparison, the intensity of the proton signal in the absence of this frequency-varying rf field is shown.

Slika 5. Temperaturna odvisnost14N kvadrupolnih resonančnih frekvenc v_ in v+ v TNT.Figure 5. Temperature dependence of 14 N quadrupole resonant frequencies v_ and v + in TNT.

Slika 6. Shema PE-NQR eksperimenta. Zunanje magnetno polje polarizira protonski jedrski podsistem. Po znižanju magnetnega polja na vrednost nič in križanju 14 V NQR in XH razcepljenih NMR nivojev se meri 14 N NQR signal v magnetnem polju nič.Figure 6. Schematic of the PE-NQR experiment. The external magnetic field is polarized by the proton nuclear subsystem. After reducing the magnetic field to zero and crossing 14 V NQR and X H split NMR levels, a 14 N NQR signal in the magnetic field zero is measured.

Slika 7. Profil magnetnega polja NdFeB magneta, uporabljenega v eksperimentu.Figure 7. Magnetic field profile of the NdFeB magnet used in the experiment.

Slika 8. Polarizacijsko ojačenje 14 N NQR signala vzorca (NO^JHjCOOH (4nitrobenzojeva kislina) v magnetnem polju 200 mT (J. Lužnik, J. Pirnat, Z. Trontelj, Solid State Commun. 121,653 (2002)).Figure 8. Polarization amplification of a 14 N NQR signal of a sample (NO ^ JHjCOOH (4nitrobenzoic acid) in a 200 mT magnetic field (J. Lužnik, J. Pirnat, Z. Trontelj, Solid State Commun. 121,653 (2002)).

a) po eni sekvenci metode brez polarizacije (ni signala)a) after one non-polarization method sequence (no signal)

b) po 1000 sekvencah metode brez polarizacijeb) after 1000 sequences of the method without polarization

c) po eni PE-NQR sekvenci (polarizacija v polju 200 mT)c) after one PE-NQR sequence (polarization in 200 mT field)

Slika 9. Časovna odvisnost »statičnega« magnetnega polja Bo in rf magnetnih polj B, (0,) in Bl (Q2) v trojnoresonančnem merilnem ciklu.Figure 9. Time dependence of the "static" magnetic field B o and rf of the magnetic fields B, (0,) and B l (Q 2 ) in the triple-resonance measurement cycle.

Slika 10. Določitev 14 N NQR frekvence vQ = v+ = v_ n vzorcu CH2NH2Br .Figure 10. Determination of 14 N NQR frequency in Q = v + = v_ n sample CH 2 NH 2 Br.

Metoda zahteva tri sisteme jeder v vzorcu:The method requires three core systems in the sample:

- sistem kvadrupolnih jeder (Q) z NQR frekvenco več MHz in veliko hitrostjo spinmrežne relaksacije (klor, brom, 17 O,...), sistem protonskih spinov (lH), in- a quadrupole nucleus system (Q) with a multi-MHz NQR frequency and high spin relaxation rate (chlorine, bromine, 17 O, ...), proton spin system ( 1 H), and

- sistem kvadrupolnih jeder (Q2), ki nas zanima (dušik); metodo pa sestavljajo trije koraki (Slika 9) in sicer:- system of quadrupole nuclei (Q 2 ) of interest (nitrogen); the method consists of three steps (Figure 9), namely:

- Polarizacija protonskega spinskega sistema s pomočjo »solid efekta« Qx- H,- Polarization of the proton spin system by the "solid effect" Q x - H,

- Prenos polarizacije protonskega spinskega sistema v spinski sistem Q2s pomočjo križanja nivojev (»level-crossing«) ali »solid efekta«, ter- Transfer of polarization of the proton spin system to the Q 2 spin system by means of level crossing or solid effect, and

- Detekcija jeder Q2 s pulzno NQR.- Detection of Q 2 nuclei with pulsed NQR.

V prvem koraku se sistem obseva v šibkem statičnem magnetnem polju z močnim rf magnetnim poljem (več mT) pri frekvenci ωΰιΗ . Tu je <yftNQR frekvenca jeder <2, ter ωΗ protonska resonančna frekvenca v nizkem statičnem magnetnem polju. To nizko statično magnetno polje je velikosti tipično lmT ali manj. Izbira takega polja je kompromis med protonskim spin-mrežnim relaksacijskim časom, ki običajno močno narašča z naraščajočim zunanjim statičnim magnetnim poljem v področju mT, in razširitvijo NQR črt zaradi magnetnega polja. Kinetični enačbi spinskih temperatur spinskih sistemov Qx in H sta:In the first step, the system is irradiated in a weak static magnetic field with a strong rf magnetic field (several mT) at a frequency ω ΰι ~ ω Η . Here, <y ft is the NQR frequency of nuclei <2, and ω Η is the proton resonance frequency in a low static magnetic field. This low static magnetic field is typically lmT or smaller in size. The choice of such a field is a trade-off between the proton spin-mesh relaxation time, which usually increases sharply with the increasing external static magnetic field in the mT region, and the extension of NQR lines due to the magnetic field. The kinetic equations for the spin temperatures of the spin systems Q x and H are:

(6) dNJdt = -WQ/N, +iraN2+(6) dNJdt = -W Q / N, + ir a N 2 +

Tu sta JVjin jV2 zasedenosti gornjih in spodnjih energijskih nivojev jeder Ql. Podobno sta n, in n2 zasedenosti gornjih in spodnjih energijskih nivojev protonov. WH je hitrost protonske spinmrežne relaksacije, Wsejq verjetnost na časovno enoto za simultani »solid efekt« prehod v obeh spinskih sistemih, JTgin WQ d pa verjetnosti prehodov na časovno enoto med energijskimi nivoji spinskega sistema Qx, ki jih inducira kristalna mreža. Simbol «označuje prehod navzgor in simbol d prehod navzdol. Obe verjetnosti prehodov lahko podamo z izrazoma:Here JVjin jV 2 are the occupations of the upper and lower energy levels of the nuclei Q l . Similarly, n, and n 2 of the occupancy of the upper and lower energy levels of protons. W H is the speed of the proton spinmrežne relaxation, W JQ probability per unit time for simultaneous "solid effect" transition in the two spin systems, JT g and W Q and d probability of transition per unit time between the energy levels spin system Q x, which induces crystal lattice. The symbol "indicates the upward transition and the d downstream symbol. Both transition probabilities can be given by the expressions:

(7)(7)

Tuje WQi hitrost spin-mrežne relaksacije spinskega sistema g,, T mrežna temperatura, γ pa meri razliko v zasedenosti obeh energijskih nivojev v ravnovesju. V protonskem spinskem sistemu pri razmeroma nizki resonančni frekvenci ne razlikujemo med verjetnostima na časovno enoto za prehod navzgor in prehod navzdol.The foreign W Qi spin spin relaxation rate of the spin system g ,, T is the net temperature, and γ measures the difference in the occupancy of the two energy levels in equilibrium. In a proton spin system, at relatively low resonance frequency, we do not distinguish between probabilities per time unit for upward and downward passage.

V ravnovesju, ko dNx!dt = Q> in dn,/di = 0, sta zasedenosti obeh protonskih energijskih nivojev podani z izrazoma:In equilibrium, when dN x ! Dt = Q> and dn, / di = 0, the occupations of both proton energy levels are given by:

(8)(8)

N,N,

Tuje (9)Foreign (9)

+ -2LS_ + AL£L+ -2LS_ + AL £ L

Pri tem je ε = NQJ NH število jeder Q,, N&, deljeno s številom protonov, NH. Kadar velja WH « WSE in hkrati WH « WQi, dobimo β -γ. Magnetizacija protonskega spinskega sistema je enaka ravnovesni protonski magnetizaciji v statičnem magnetnem polju, pri katerem je protonska Larmorjeva frekvenca enaka ωΟι. Relaksacijski čas, ki privede do tega dinamičnega ravnovesja obeh spinskih sistemov, je približno določen z daljšim od obeh časov in (ε1ΡΕΕ)\ Ta relaksacijski čas je tipično mnogo krajši od protonskega spinmrežnega relaksacijskega časa pri ustreznem magnetnem polju, ko ωΗ = a>Q.In this case, ε = N Q JN H is the number of nuclei Q ,, N & , divided by the number of protons, N H. When W H «W SE and at the same time W H « W Qi , we obtain β -γ. The magnetization of the proton spin system is equal to the equilibrium proton magnetization in a static magnetic field, at which the proton Larmor frequency is equal to ω Οι . Relaxation time, which leads to the dynamic balance of the two spin systems, is approximately determined by the longer of the two times, and (ε1Ρ ΕΕ) \ This relaxation time is typically much shorter than the proton spinmrežnega relaxation time at the corresponding magnetic field when ω Η = a> Q.

V drugem koraku se protonska magnetizacija preko križanja nivojev (»level-crossing«) prenese v kvadrupolni spinski sistem Q2. Kadar je resonančna frekvenca pod 1 MHz, zunanje magnetno polje najprej dvignemo do velikosti približno 25 mT in potem znižamo na velikost nič. Med višanjem in nižanjem zunanjega magnetnega polja se protonski energijski nivoji križajo z energijskimi nivoji jeder Q2 in tako polarizirajo spinski sistem Q2. Zaradi enostavnosti privzamemo, da ima jedro Q2 samo dva energijska nivoja. Zasedenosti teh dveh energijskih nivojev Ρλ in P2 sta v začetku enaki ravnotežnim zasedenostim:In the second step, the proton magnetization is transmitted through the level-crossing (level-crossing) to the quadrupole spin system Q 2 . When the resonant frequency is below 1 MHz, the external magnetic field is first raised to a size of about 25 mT and then lowered to zero. During the rise and fall of the external magnetic field, the proton energy levels intersect with the energy levels of the Q 2 nuclei, thus polarizing the Q 2 spin system. For simplicity, we assume that the Q 2 core has only two energy levels. The occupations of these two energy levels Ρ λ and P 2 are initially equal to the equilibrium occupations:

(10)(10)

No t x p2 = —-(! + «)·N o tx p 2 = —- (! + «) ·

Tuje a = ha)Q2 /2kT .Foreign a = ha) Q2 / 2kT.

Po križanju nivojev (»level-crossing«) se zasedenosti P, in P2 spremenita v (11) (12)After level-crossing, the occupations P, and P 2 change to (11) (12)

Ρ2 =^(ι+ s).Ρ 2 = ^ (ι + s).

Tuje e Nq2 n H δ = a-— + β--— ΝΆΗForeign e Nq 2 n H δ = a-— + β --— Ν Ά + Ν Η

Povečanje polarizacije spinskega sistema Q2 je enako δ! a .V optimalnem primeru, ko je β~γ, dobimo:The increase in polarization of the spin system Q 2 equals δ! a. In the optimal case, when β ~ γ, we obtain:

δ/α =—— + -^—. (13)δ / α = —— + - ^ -. (13)

Nq2 + NH coQi Nq2 + NH Nq 2 + N H co Qi Nq 2 + N H

V modelni spojini CH^NH^Brso jedra Qx bodisi 8I5r(va = 10804£Zfe) ali 795r(va = 12933£/Zz). Jedra Q2 so 14 N z resonančno frekvenco 680 kHz (Slika 10).In the model compound CH ^ NH ^ The fast nucleus Q x is either 8I 5r (va = 10804 £ Zfe) or 79 5r (va = 12933 £ / Zz). Q 2 cores are 14 N with a resonant frequency of 680 kHz (Figure 10).

Uporabili smo 81 Br za polarizacijo protonov v zunanjem magnetnem polju 0.8 mT. Maksimalna velikost protonskega signala izmerjena takoj po prenosu vzorca v običajno magnetno polje (yHO = 32MHz) je bila približno enaka eni tretjini polnega protonskega NMR signala v tem magnetnem polju. Ker je razmerje va lvH 0 = \Q.%Q4MHz / 32MHz blizu ene tretjine, je jasno, da je bil eksperimentalno dosežen pogoj β = γ (glej izraz (9)). Če izračunamo še pričakovano povečanje dušikovega NQR signala s trojnoresonančno tehniko (izraz (13) pri NH / N& =6), dobimo č/a«14. (14) 81 Br was used to polarize protons in an external magnetic field of 0.8 mT. The maximum proton signal size measured immediately after the sample was transferred to a normal magnetic field (y HO = 32MHz) was approximately equal to one-third of the full proton NMR signal in that magnetic field. Since the ratio in a lv H 0 = \ Q.% Q4MHz / 32MHz is close to one-third, it is clear that the condition β = γ was obtained experimentally (see expression (9)). If we calculate the expected increase in the nitrogen NQR signal by the three-resonance technique (expression (13) at N H / N & = 6), we obtain b / a «14. (14)

Trojnoresonančna tehnika torej omogoča znatno povečanje NQR signala v nizkofrekvenčni NQR spektroskopiji. Čas med dvema zaporednima meritvama s to tehniko je enak nekajkratnemu faktorju daljšega od časov (fJF^J^ali potrebnima za polarizacijo protonov, plus nekaj desetink sekunde potrebnih za proces križanja nivojev (»levelcrossing«), in je tipično krajši od 1 sekunde. Če se Q2 nanaša na 14 N s spin-mrežnim relaksacijskim časom nekaj sekund, pridobimo hkrati na intenziteti signala in hitrosti ponavljanja sekvence. Omejitve te tehnike se pojavijo, ko je koncentracija jeder Ql nizka in ko hitrost spin-mrežne relaksacije ni dovolj visoka mora biti večja ali vsaj približno enaka WH , če naj bo nova tehnika učinkovita), ter ko jedra Q2 hitro relaksirajo.The three-resonance technique therefore allows a significant increase in the NQR signal in low-frequency NQR spectroscopy. The time between two consecutive measurements with this technique is equal to several times the factor longer than the time (fJF ^ J ^ or required for proton polarization, plus the few tens of seconds required for the levelcrossing process, and is typically less than 1 second. Q 2 refers to 14 N with a spin-mesh relaxation time of a few seconds, obtained simultaneously at signal intensity and repetition rate. Limitations of this technique occur when the concentration of nuclei Q l is low and when the spin-mesh relaxation rate is not high enough. be greater than or at least approximately equal to W H if the new technique is to be effective) and when Q 2 nuclei relax rapidly.

Claims (3)

Patentni zahtevkiPatent claims 1. Trojnoresonančna ojačena jedrska kvadrupolna resonančna detekcija TNT v minah in drugih eksplozivov, kot tudi detekcija narkotikov in drog, označena s tem, da se nizkofrekvenčna NQR jedra, kot so 14N, polarizirajo (i) s prenosom polarizacije iz protonskega sistema preko »solid efekta« (na primer »solid efekta« protoni lH 14 77), (ii) kjer je bil protonski sistem predhodno polariziran preko še drugega »solid efekta«, na primer 17O- XH »solid efekta«, s prenosom polarizacije z visokofrekvenčnih NQR jeder, kot so 17O, s pomočjo »solid efekta« ali križanja nivojev na protonski sistem, pri čemer je bil »solid efekt« dosežen pri (i) z obsevanjem sistema z radiofrekvenčnimi poljem s frekvenco, ki ustreza razliki frekvenc izbranih kvadrupolnih prehodov (14JV), in protonskih prehodov v dipolamem polju ali zemeljskem magnetnem polju, medtem ko je bil »solid efekt« pri (ii) dosežen z obsevanjem sistema z rf poljem s frekvencami, ki ustrezajo razliki frekvenc, pripadajočih NQR frekvenci (17O) visokofrekvenčnega jedra in frekvenci protonov v dipolamem polju ali v zemeljskem magnetnem polju, in kjer se nizkofrekvenčna NQR jedra, kot na primer jedra 14 77, detektirajo na daljavo z običajno pulzno NQR spektroskopijo po vklučitvi dodatnega obsevanja z rf polji.1. Triple-resonance amplified nuclear quadrupole resonant TNT detection in mines and other explosives, as well as narcotics and drug detection, characterized in that low-frequency NQR nuclei such as 14 N are polarized (i) by transferring polarization from the proton system via solid effect "(for example," solid effect "protons l H 14 77), (ii) where the proton system previously polarized by a second" solid effect ", for example 17 O X H" solid effect ", with the transfer of polarization from high frequency NQR cores, such as 17 O, by "solid effect" or crossing levels on a proton system, the "solid effect" being obtained by (i) irradiating the system with radio frequency fields at a frequency corresponding to the frequency difference of the selected quadrupole transients ( 14 JV), and proton transitions in a dipole field or in the earth's magnetic field, while the "solid effect" of (ii) was obtained by irradiating the system with an rf field with frequencies corresponding to the frequency difference, the associated NQR frequency ( 17 O) of the high-frequency nucleus and the proton frequency in the dipole field or in the earth's magnetic field, and where low-frequency NQR nuclei, such as nuclei 14 77, are detected remotely by conventional pulse NQR spectroscopy after the inclusion of additional irradiation with rf fields . 2. Trojnoresonančna ojačena jedrska kvadrupolna resonančna detekcija TNT v minah in drugih eksplozivov, kot tudi detekcija narkotikov in drog, označena s tem, da je detekcija nizkofrekvenčnih NQR jeder, kot so jedra 14 77, po zahtevku 1 karakterizirana s tem, da je »solid efekt« v koraku (ii) nadomeščen s prenosom polarizacije s pomočjo križanja nivojev.2. Triple-resonance amplified nuclear quadrupole resonance detection of TNT in mines and other explosives, as well as the detection of narcotics and drugs, characterized in that the detection of low-frequency NQR nuclei such as nuclei 14 77 according to claim 1 is characterized by being "solid effect ”in step (ii) is replaced by polarization transfer by means of level crossing. 3. Trojnoresonančna ojačena jedrska kvadrupolna resonančna detekcija TNT v minah in drugih eksplozivov, kot tudi detekcija narkotikov in drog, označena s tem, da je detekcija nizkofrekvenčnih NQR jeder, kot so jedra 1477, po zahtevkih 1 in 2 karakterizirana s tem, da se polarizacijski in detekcijski cikel ponavljata.3. Triple-resonance amplified nuclear quadrupole resonance detection of TNT in mines and other explosives, as well as narcotics and drug detection, characterized in that the detection of low-frequency NQR nuclei such as cores 14 77 according to claims 1 and 2 is characterized in that the polarization and detection cycles are repeated.
SI200400007A 2004-01-12 2004-01-12 Triple resonance enhanced nuclear quadropole resonance detection of tnt and other explosives SI21715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200400007A SI21715A (en) 2004-01-12 2004-01-12 Triple resonance enhanced nuclear quadropole resonance detection of tnt and other explosives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200400007A SI21715A (en) 2004-01-12 2004-01-12 Triple resonance enhanced nuclear quadropole resonance detection of tnt and other explosives

Publications (1)

Publication Number Publication Date
SI21715A true SI21715A (en) 2005-08-31

Family

ID=34882412

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200400007A SI21715A (en) 2004-01-12 2004-01-12 Triple resonance enhanced nuclear quadropole resonance detection of tnt and other explosives

Country Status (1)

Country Link
SI (1) SI21715A (en)

Similar Documents

Publication Publication Date Title
Yesinowski et al. Detection of 14N and 35Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques
US8917092B2 (en) Method and apparatus usable for mining and mineral exploration
MXPA04005567A (en) Method and sensor element for detecting and/or analyzing compound generating simultaneously nuclear quadrupole resonance and nuclear magnetic resonance, or double nuclear quadrupole resonance, and arrangement therefor.
Schnegg et al. Frequency domain Fourier transform THz-EPR on single molecule magnets using coherent synchrotron radiation
Ostafin et al. 14N-NQR based device for detection of explosives in landmines
Potapov et al. Dynamic nuclear polarization-enhanced 1H–13C double resonance NMR in static samples below 20 K
Barras et al. Detection of ammonium nitrate inside vehicles by nuclear quadrupole resonance
Rowe et al. Mine detection by nuclear quadrupole resonance
Rudakov Some aspects of the effective detection of ammonium nitrate-based explosives by pulsed NQR method
Blinc et al. Nuclear quadrupole double resonance techniques for the detection of explosives and drugs
Itozaki et al. Nuclear quadrupole resonance for explosive detection
Miller Nuclear quadrupole resonance detection of explosives
Suits et al. 14N magnetic resonance for materials detection in the field
Osan et al. NQR: From imaging to explosives and drugs detection
Hemnani et al. 14 N NQR spectrometer for explosive detection: A review
SI21715A (en) Triple resonance enhanced nuclear quadropole resonance detection of tnt and other explosives
Quiroz et al. Interleaved NQR detection using atomic magnetometers
Monea et al. The use of nuclear quadrupole resonance spectroscopy for detection of prohibited substances: Techniques and equipment
Tomaselli et al. Tunneling-induced spin alignment at low and zero field
Ionita et al. NQR detector: HW solutions and constructive issues
Mozzhukhin et al. Remote sensing for the detection of explosives and energetic materials by 14 N NQR and 14 N NMR
Miller Nuclear quadrupole resonance detection of explosives: an overview
SI22459A (en) Polarisation amplified two-channel nqr/nmr (pa nqr/nmr) detection of solid and liquid explosives by using multi-pulse series
Zhu et al. Nuclear quadrupole resonance signal detectability enhancement methods—An overview
Kim et al. Polarization enhancement technique for nuclear quadrupole resonance detection

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20050504

KO00 Lapse of patent

Effective date: 20130903