SI21615A - LOW SINTERABLE FERROELECTRIC CERAMICS BASED ON Li2O DOPED (Ba, Sr) TiO3 - Google Patents

LOW SINTERABLE FERROELECTRIC CERAMICS BASED ON Li2O DOPED (Ba, Sr) TiO3 Download PDF

Info

Publication number
SI21615A
SI21615A SI200300225A SI200300225A SI21615A SI 21615 A SI21615 A SI 21615A SI 200300225 A SI200300225 A SI 200300225A SI 200300225 A SI200300225 A SI 200300225A SI 21615 A SI21615 A SI 21615A
Authority
SI
Slovenia
Prior art keywords
tio3
li2o
ceramics
bst
ferroelectric ceramics
Prior art date
Application number
SI200300225A
Other languages
Slovenian (sl)
Inventor
Matjaž VALANT
Danilo Suvorov
Original Assignee
Institut "Jožef Stefan"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut "Jožef Stefan" filed Critical Institut "Jožef Stefan"
Priority to SI200300225A priority Critical patent/SI21615A/en
Publication of SI21615A publication Critical patent/SI21615A/en

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

The subject of invention is a ferroelectric ceramics based on (Ba, Sr)TiO3, whose sintering temperature is lowered to less than 920 degrees Celsius with addition of Li2O, which allows it to be sintered simultaneously with metallic silver. The low sinterable ferroelectric ceramics according to the invention is manufactured according to standard production procedures for ceramic elements, i.e. by casting or piling up thick layers or creation of thin layer films. The ceramics is characterised in that to a solid solution of (Ba1-xSrx)TiO3, where x is greater than 0 and less than 1, up to 20 w. % Li2O are added in the form of oxide or in any other form, which decomposes during thermal treatment, enabling the reaction of Li+ ions with BST.

Description

Nizkosinterabilna feroelektrična keramika na osnovi (Ba,Sr)TiO3 dopiranega z Li2OLow -interactive ferroelectric ceramics based on (Ba, Sr) TiO 3 doped with Li 2 O

Predmet izuma je feroelektrična keramika na osnovi (Ba,Sr)TiO3, kateri z dodatkom L12O znižamo temperaturo sintranja na <920°C, kar omogoča sočasno sintranje s kovinskim srebrom.The subject of the invention is ferroelectric ceramics based on (Ba, Sr) TiO 3 , which with the addition of L12O lowers the sintering temperature to <920 ° C, which allows simultaneous sintering with metallic silver.

Nov razvojni trend, ki se pojavlja v mikrovalovni tehnologiji, omogoča integracijo pasivnih komponent (filtri, kondenzatorji, resonatorji) in znatno miniaturizacijo v primerjavi s konvencionalnimi dielektričnimi komponentami. To omogoča tehnologija nizkotemperatumo sočasno sintrane keramike - LTCC (ang. low temperature cofired ceramics). Bistvo tehnologije LTCC je integracija pasivnih komponent v večfunkcionalnih, tridimenzionalnih modulih. Ti moduli so sestavljeni iz posameznih keramičnih plasti z mikrovalovnim vezjem, ki je povezano v tridimenzionalno strukturo. Da se organsko vezivo odstrani, keramične plasti ter elektrodna kovina pa zgostijo, je potrebno takšno tridimenzionalno kompozitno strukturo termično obdelati. Sintranje poteka pri relativno nizki temperaturi, približno 900°C, ki je pogojena s karakteristikami elektrodne kovine v modulu. Sočasno sintranje kovinskih in keramičnih plasti je eden od najzahtevnejših postopkov pri proizvodnji modulov LTCC. Velike nepravilnosti v izdelku se lahko pojavijo zaradi neenake hitrosti krčenja kovine in keramike med sintranjem. Zaradi neenakega krčenja različnih plasti vzorca se lahko med samim procesom sintranja pojavijo različni defekti, kot so razpoke, gubanje, zvijanje, pokanje, delaminacija itd., ki povzročijo bistveno poslabšanje karakteristik modula oziroma celo izgubo funkcionalnosti.A new development trend emerging in microwave technology enables the integration of passive components (filters, capacitors, resonators) and significant miniaturization compared to conventional dielectric components. This is made possible by the low temperature co-sintered ceramics (LTCC) technology. The essence of LTCC technology is the integration of passive components in multifunctional, three-dimensional modules. These modules consist of individual ceramic layers with a microwave circuit that is connected into a three-dimensional structure. In order to remove the organic binder and thicken the ceramic layers and the electrode metal, such a three-dimensional composite structure must be thermally treated. The sintering takes place at a relatively low temperature, about 900 ° C, which is conditioned by the characteristics of the electrode metal in the module. Co-sintering of metal and ceramic layers is one of the most demanding processes in the production of LTCC modules. Large product imperfections can occur due to uneven metal shrinkage rates and ceramics during sintering. Due to unequal shrinkage of different layers of the sample, various defects can occur during the sintering process, such as cracks, wrinkling, twisting, cracking, delamination, etc., which cause a significant deterioration of the module's characteristics or even loss of functionality.

Zaradi specifične izdelave modula LTCC je potrebno izbirati zelo kompatibilne materiale, ki morajo poleg ustreznih dielektričnih lastnosti izpolnjevati še vrsto drugih zahtev povezanih s sočasnim sintranjem. Ena od teh zahtev je nizka temperatura sintranja. Tališča kovin so omejevalni faktor pri uporabi visokih temperatur sintranja. Keramika se torej mora sintrati pri temperaturi, ki je za 50°C do 100°C nižja od temperature tališča elektrode. Taljenje elektrod bi poškodovalo notranjo strukturo modula in s tem povzročilo izgubo funkcionalnosti. Izbor kovin je zelo omejen, ker so nizke mikrovalovne dielektrične izgube povezane z visoko prevodnostjo elektrodne kovine. Zaradi dobre prevodnosti in odpornosti proti oksidaciji se najpogosteje v tehnologiji LTCC uporablja srebro, ki ima tališče pri 961,9°C.Due to the specific construction of the LTCC, it is necessary to select very compatible materials which, in addition to the corresponding dielectric properties, must satisfy a number of other requirements related to simultaneous sintering. One of these requirements is the low sintering temperature. Metal melting points are a limiting factor when using high sintering temperatures. Ceramics must therefore be sintered at a temperature below 50 ° C to 100 ° C below the melting point of the electrode. Melting the electrodes would damage the internal structure of the module and thus cause a loss of functionality. The selection of metals is very limited because low microwave dielectric losses are associated with high conductivity of the electrode metal. Due to its good conductivity and resistance to oxidation, silver is most commonly used in LTCC technology, which has a melting point at 961.9 ° C.

Zaradi zahtevnosti termičnega procesiranja modulov LTCC je funkcionalnost keramičnih plasti v današnjih sistemih LTCC omejena na nizkodielektrične substratne materiale, pri čemer pa se intenzivno razvijajo tudi visokodielektrični kondenzatorski, feritni, polprevodni materiali itd., Vsi ti materiali bi naj bili s stališča termične obdelave in kemijske kompatibilnost združljivi z obstoječo tehnologijo LTCC.Due to the complexity of thermal processing of LTCC modules, the functionality of the ceramic layers in today's LTCC systems is limited to low-dielectric substrate materials, while high-dielectric capacitor, ferrite, semiconductor materials, etc. are being intensively developed, all of these materials being considered from the point of view of thermal treatment and chemical compatibility. compatible with existing LTCC technology.

Material, ki je predmet izuma, se uvršča v kategorijo novih materialov za tehnologijo LTCC ter za vse ostale tehnologije, kjer je potrebno sočasno sintranje keramike s srebrno elektrodo kot so na primer tehnologije za izdelavo nekaterih izvedb prilagodljivih dielektričnih resonatorjev [P.K. Petrov s sod., Elect. Lett., 37, 2001, str. 17], večplastnih kondenzatorjev [S.M. Rhim s sod., J. Am. Ceram. Soc., 83, 2000, str. 3009] in elementov s pozitivnim temperaturnim koeficienton upornosti [J.K. Lee s sod., J. Am. Ceram. Soc., 85, 2002, str. 1173]. Material temelji na trdni raztopini BaTiCb in SrTiCF s splošno formula (Bai_xSrx)TiO3 (v nadaljevanju BST). Je feroelektrik in se odlikuje po tem, da je dielektrična konstanta odvisna od prednapetosti oziroma, da je mogoče dielektrično konstanto uravnavati s prednapetostjo. Takšne materiale imenujemo električno prilagodljivi materiali. BST je zelo dobro raziskan električno prilagodljiv material, ki se lahko uporablja v obliki monolitnega keramičnega elementa ali pa v obliki debelih oziroma tankih filmov. Električne lastnosti trdne raztopine s sestavo (Bao 6Sro.4)Ti03 so: dielektrična konstanta -3400, dielektrične izgube tan5=10' m električna prilagodljivost Δε=16.4%. Lastnosti lahko z nizkimi koncentracijami dopantov (nr. Fe, Y, Ga, Mn) bistveno spremenimo. Posebej izrazito lahko znižamo dielektrične izgube celo pod tanb = 5TO’3 in zvečamo električno prilagodljivost na Δε=23.3% [S.B. Hemer s sod., Mater. Lett., 15, 1993, str 317],The inventive material is classified in the new materials category for LTCC technology and for all other technologies requiring the simultaneous sintering of ceramics with a silver electrode, such as technologies for making some versions of adaptive dielectric resonators [PK Petrov et al., Elect. Lett., 37, 2001, p. 17], multilayer capacitors [SM Rhim et al., J. Am. Ceram. Soc., 83, 2000, p. 3009] and elements with a positive temperature coefficient of resistance [JK Lee et al., J. Am. Ceram. Soc., 85, 2002, p. 1173]. The material is based on a solid solution of BaTiCb and SrTiCF with the general formula (Bai_ x Sr x ) TiO3 (hereinafter BST). It is a ferroelectric and is characterized by the fact that the dielectric constant depends on the prestress, or that the dielectric constant can be controlled by the voltage. Such materials are called electrically flexible materials. BST is a very well researched electrically adaptable material that can be used in the form of a monolithic ceramic element or in the form of thick or thin films. The electrical properties of the solid solution with the composition (Bao 6Sro.4) Ti03 are: dielectric constant -3400, dielectric losses tan5 = 10 'm electrical adaptability Δε = 16.4%. Properties can be significantly altered by low concentrations of dopants (eg Fe, Y, Ga, Mn). In particular, dielectric losses can be reduced even below tanb = 5TO ' 3 and increase the electrical adaptability to Δε = 23.3% [SB Hemer et al., Mater. Lett., 15, 1993, p. 317],

Osnovna težava, ki onemogoča uporabo BST v tehnologiji LTCC in vseh drugih napravah, ki zahtevajo sočasno sintranje keramike in srebra, je previsoka temperatura sintranja. Ta znaša za prah s sestavo (Bao.6Sro.4)Ti03 s povprečno velikostjo delcev pod 1 pm okoli 1350°C. V preteklosti so bile že izvedene nekatere študije, s katerimi seje poskušalo temperaturo sintranja BST ustrezno znižati. Z dodatkom B2O3 je mogoče temperaturo sintranja BST znižati na 1100 do 1150°C, pri čemer ostanejo dielektrične in feroelektrične lastnosti takšnega materiala podobne lastnostim nedopiranega BST [ S. M. Rhim, J. Amer. Ceram. Soc., 83, 2000, str. 1145], Z uporabo alumosilikatnih fluksov bistvenega znižanja temperature sintranja ni bilo mogoče doseči [H.F. Cheng s sod., J. Am. Ceram. Soc., 76, 1993, str. 827],The basic problem that prevents the use of BST in LTCC technology and all other devices requiring the simultaneous sintering of ceramics and silver is the sintering temperature being too high. This amounts to dust with a composition (Bao.6Sro.4) Ti03 with an average particle size below 1 pm of about 1350 ° C. In the past, some studies have already been conducted to try to lower the BST sintering temperature accordingly. With the addition of B2O3, the sintering temperature of BST can be lowered to 1100 to 1150 ° C, leaving the dielectric and ferroelectric properties of such a material similar to the properties of undoped BST [S. M. Rhim, J. Amer. Ceram. Soc., 83, 2000, p. 1145], a significant decrease in sintering temperature could not be achieved by using alumosilicate fluxes [H.F. Cheng et al., J. Am. Ceram. Soc., 76, 1993, p. 827],

Naloga in cilj izuma je izdelati BST prah, ki bi imel temperaturo sintranja <920°C ter bil pri teh pogojih kemijsko kompatibilen s kovinskim srebrom. To bi omogočilo sočasno sintranje BST prahu in srebrnih elektronskih elementov.It is an object of the invention to produce a BST powder having a sintering temperature <920 ° C and being chemically compatible with metallic silver under these conditions. This would allow for the simultaneous sintering of BST dust and silver electronic elements.

Po izumu je naloga rešena po neodvisnem patentnem zahtevku.According to the invention, the problem is solved according to an independent patent claim.

Izum bo opisan na osnovi izvedbenih primerov in slik, ki prikazujejo:The invention will be described on the basis of embodiments and illustrations showing:

Slika 1: Dinamičen dilatometerski posnetek zgoščevanja (Bao.6Sro.4)Ti03 prahu s povprečno velikostjo delcev 0.8 pm in dodatkom 1.5% L12O (hitrost segrevanja je 10°C/min),Figure 1: Dynamic dilatometer recording of the thickening (Bao.6Sro.4) Ti03 powder with an average particle size of 0.8 pm and the addition of 1.5% L12O (heating rate is 10 ° C / min),

Slika 2: Izotermni dilatometerski posnetek zgoščevanja (Bao.6Sro.4)Ti03 prahu s povprečno velikostjo delcev 0.8 pm in dodatkom 1.5% L12O,Figure 2: Isothermal dilatometer thickener (Bao.6Sro.4) Ti03 powder with an average particle size of 0.8 pm and the addition of 1.5% L12O,

Slika 3: Mikrostruktura keramike (Bao 6Sro.4)Ti03 z dodatkom 1.5% L12O, sintrane 2h na 900°C,Figure 3: Microstructure of ceramics (Bao 6Sro.4) Ti03 with the addition of 1.5% L12O, sintered for 2h at 900 ° C,

Slika 4: Frekvenčna in temperaturna odvisnost dielektričnosti keramike s sestavo (Bao.6Sro.4)Ti03 z dodatkom 0.5 ut.% L12O sintrane 2h pri 900°C.Figure 4: Frequency and temperature dependence of the dielectricity of ceramics with the composition (Bao.6Sro.4) Ti03 with the addition of 0.5 wt% L12O sintered for 2h at 900 ° C.

Po izumu se BST prahu, ki je lahko komercialen ali posebej sintetiziran, doda do 20 ut.% L12O v obliki oksida ali kateri koli drugi obliki, ki med termično obdelavo razpade in omogoči reakcijo Li+ ionov z BST (npr. L12CO3 ali CH3COOL1 - Li-acetat). Del BST tako reagira z Li+ in tvori Li-titanatno fazo, presežek BaO in SrO pa se kompenzira s tvorbo (Ba,Sr)-ortotitanatne faze. Opisana reakcija povzroči površinsko aktivacijo preostale BST faze, ki je posledica generacije površinskih strukturnih defektov, ter tvorbo tekoče faze med procesom sintranja. To pospeši zgoščevanje že pri zelo nizkih temperaturah (<920°C). Kljub prisotnosti tekoče faze zaradi zelo nizkih temperatur termične obdelave zrna BST ne rastejo vendar pa se njihova površinska struktura regenerira. Po končanem sintranju vsebuje BST keramika nizke koncentracije Li-titanatne in (Ba,Sr)-ortotitanatne faze ter matrično BST fazo, ki zagotavlja ustrezne dielektrične lastnosti ter tudi električno prilagodljivost.According to the invention, up to 20% by weight of L12O in the form of oxide or any other form which, during thermal treatment, decomposes and enables the reaction of Li + ions with BST (eg L12CO3 or CH3COOL1 - Li-acetate). Part of the BST thus reacts with Li + to form the Li-titanate phase, and the excess BaO and SrO is compensated by the formation of the (Ba, Sr) -ortotitanate phase. The reaction described results in the surface activation of the remaining BST phase resulting from the generation of surface structural defects and the formation of a liquid phase during the sintering process. This accelerates compaction even at very low temperatures (<920 ° C). Despite the presence of the liquid phase, due to the very low temperatures of thermal treatment, BST grains do not grow, but their surface structure regenerates. After sintering, BST contains ceramics with low concentrations of Li-titanate and (Ba, Sr) -ortotitanate phases, as well as a matrix BST phase, which provides adequate dielectric properties as well as electrical adaptability.

Izvedbeni primer 1:Example 1:

Predreagiranemu prahu s sestavo (Bao.6Sro.4)Ti03 dodamo 0.5 ut% Li2O v obliki 5% raztopine Li-acetata v ocetni kislini. Zmes homogeniziramo in kalciniramo lOh pri temperaturi 850°C. Kalcinat zmeljemo do povprečne velikosti delcev manjše od 1 pm ter tako pripravljen prah stisnemo v kolute, ki jih sintramo 2h pri 900°C. Dielektričnost tako pripravljene keramike pri 20°C in frekvenci 1MHz znaša 3470, dielektrične izgube tanb < 10-4, temperaturna in frekvenčna odvisnost dielektričnosti pa je prikazana na grafu po sliki 4. Električna prilagodljivost pri sobni temperaturi in prednapetosti 2kV/mm znaša 15.7%.To the pre-reacted powder with the composition (Bao.6Sro.4) Ti03 was added 0.5 wt% Li 2 O in the form of a 5% solution of acetic acid Li-acetate. The mixture was homogenized and calcined at 10OH at 850 ° C. The calcinate is ground to an average particle size of less than 1 pm and the powder thus prepared is compressed into sintered wheels for 2 hours at 900 ° C. The dielectricity of the ceramics thus prepared at 20 ° C and a frequency of 1MHz is 3470, the dielectric loss of tanb <10 -4 , and the temperature and frequency dependence of the dielectricity is shown in the graph in Figure 4. Electrical adaptability at room temperature and bias of 2kV / mm is 15.7%.

Izvedbeni primer 2:Example 2:

Predreagiranemu prahu s sestavo (Bao.6Sro.4)Ti03 dodamo 0.5 ut% Li2O v obliki polikristaliničnega L12CO3. Zmes homogeniziramo in kalciniramo lOh pri temperaturi 850°C. Kalcinat zmeljemo do povprečne velikosti delcev manjše od 1 pm ter tako pripravljen prah stisnemo v kolute, ki jih sintramo 2h pri 900°C. Dielektričnost tako pripravljene keramike pri 20°C in frekvenci 1MHz znaša 3456, dielektrične izgube tand<10-4, temperaturna in frekvenčna odvisnost dielektričnosti pa je enaka kot v izvedbenem primeru 1. Električna prilagodljivost pri sobni temperaturi in prednapetosti 2kV/mm znaša 15.7%Pre-reacted powder with the composition (Bao.6Sro.4) Ti03 was added 0.5 wt% Li 2 O in the form of polycrystalline L12CO3. The mixture was homogenized and calcined at 10OH at 850 ° C. The calcinate is ground to an average particle size of less than 1 pm and the powder thus prepared is compressed into sintered wheels for 2 hours at 900 ° C. The dielectricity of the thus prepared ceramics at 20 ° C and the frequency 1MHz is 3456, the dielectric loss tand <10 -4 , and the temperature and frequency dependence of the dielectricity is the same as in Execution Case 1. Electrical flexibility at room temperature and bias 2kV / mm is 15.7%

Izvedbeni primer 3:Example 3:

Predreagiranemu prahu s sestavo (Bao.6Sro.4)Ti03 dodamo 1.5 ut% Li2O v obliki 5% raztopine Li-acetata v ocetni kislini. Zmes homogeniziramo in kalciniramo lOh pri temperaturi 850°C. Kalcinat zmeljemo do povprečne velikosti delcev manjše od 1 pm ter tako pripravljen prah stisnemo v kolute, ki jih sintramo 2h pri 900°C. Dielektričnost tako pripravljene keramike pri 20°C in frekvenci 1MHz znaša 3260, dielektrične izgube tan5 = 7-10“4, temperaturna in frekvenčna odvisnost dielektričnosti pa se v nobeni karakteristiki bistveno ne razlikuje od odvisnosti prikazane v izvedbenem primeru 1. Električna prilagodljivost pri sobni temperaturi in prednapetosti 2kV/mm znaša 15.4%To the pre-reacted powder with the composition (Bao.6Sro.4) Ti03 was added 1.5 wt% Li 2 O in the form of a 5% solution of acetic acid Li-acetate. The mixture was homogenized and calcined at 10OH at 850 ° C. The calcinate is ground to an average particle size of less than 1 pm and the powder thus prepared is compressed into sintered wheels for 2 hours at 900 ° C. The dielectricity of the thus prepared ceramic at 20 ° C and the frequency 1MHz is 3260, the dielectric losses tan5 = 7-10 “ 4 , and the temperature and frequency dependence of the dielectricity is not significantly different from the one shown in embodiment 1. Electrical adaptability at room temperature and bias of 2kV / mm is 15.4%

Izvedbeni primer 4: Predreagiranemu prahu s sestavo (Bao gSroUTiCb dodamo 2.5 ut% Li2O v obliki 5% raztopine Li-acetata v ocetni kislini. Zmes homogeniziramo in kalciniramo lOh pri temperaturi 850°C. Kalcinat zmeljemo do povprečne velikosti delcev manjše od 1 pm ter tako pripravljen prah stisnemo v kolute, ki jih sintramo 2h pri 900°C. Dielektričnost tako pripravljene keramike pri 20°C in frekvenci 1MHz znaša 2730, dielektrične izgube tand = 1-10 3, temperaturna in frekvenčna odvisnost dielektričnosti pa se v nobeni karakteristiki bistveno ne razlikuje od odvisnosti prikazane v izvedbenem primeru 1. Električna prilagodljivost pri sobni temperaturi in prednapetosti 2kV/mm znaša 15.3%.Embodiment 4: Pre-reacted powder with composition (Bao gSroUTiCb was added 2.5 wt% Li 2 O in the form of a 5% solution of acetic acid Li-acetate. The mixture was homogenized and calcined lOh at a temperature of 850 ° C. The calcinate was ground to an average particle size of less than 1 pm and the powder thus prepared is compressed into sintered coils for 2h at 900 ° C. The dielectricity of the ceramics thus prepared at 20 ° C and 1MHz is 2730, and the dielectric losses tand = 1-10 3 , and the temperature and frequency dependence of the dielectricity in none does not differ significantly from the dependence shown in embodiment 1. Electrical flexibility at room temperature and bias of 2kV / mm is 15.3%.

Eksperimentalno smo preiskusili sestave, ki so vsebovale do 20 ut.% Li2O in ugotovili, da vse funkcionirajo tako, kot je v patentu opisano. Glede na dosežene dielektrične lastnosti so boljše keramike, ki vsebujejo do 10% ut. Li2O. Najboljše lastnosti izkazujejo keramike z največ 5 ut. % Li2O, katera je tudi opisana v izvedbenih primerih.Experiments were tested for compositions containing up to 20 wt% Li 2 O and found that they all function as described in the patent. Depending on the dielectric properties achieved, ceramics containing up to 10% by weight are better. Li 2 O. Ceramics with a maximum of 5 wt. % Li 2 O, which is also described in embodiments.

Nizkosinterabilna feroelektrična keramika na osnovi (Ba,Sr)TiO3 dopiranega z Li2O po izumu, ki je izdelana po standardnih metodah izdelave keramičnih elementov, z nalivanjem ali nalaganjem debelih slojev ali tvorbo tankoslojnih filmov, je značilna po tem, da je trdni raztopini (Bai.xSrx)TiO3 z 0>x>l dodanih do 20 ut.% Li2O v obliki oksida ali kateri koli drugi obliki, ki med termično obdelavo razpade in omogoči reakcijo Li+ ionov z BST.Low-interactivity ferroelectric ceramics based on (Ba, Sr) TiO3 doped with Li 2 O according to the invention, which is made according to standard methods of making ceramic elements, by pouring or depositing thick layers or forming thin films, characterized in that it is a solid solution ( Bai. X Sr x ) TiO3 with 0>x> l added up to 20 wt.% Li 2 O in the form of oxide or any other form that decomposes during thermal treatment and enables the reaction of Li + ions with BST.

Claims (1)

PATENTNI ZAHTEVEK:PATENT APPLICATION: 1. Nizkosinterabilna feroelektrična keramika na osnovi (Ba,Sr)TiC>3 dopiranega z Li2O izdelana po standardnih metodah izdelave keramičnih elementov, z nalivanjem ali nalaganjem debelih slojev ali tvorbo tankoslojnih filmov, označena s tem, da je trdni raztopini (Bai_xSrx)TiO3 z 0>x>l dodanih do 20 ut.%, prednostno do 10% ut. Li2O in še bolj prednostno do 5 ut. % Li2O v obliki oksida ali kateri koli drugi obliki, ki med termično obdelavo razpade in omogoči reakcijo Li+ ionov z BST.1. Low-interactivity ferroelectric ceramics based on (Ba, Sr) TiC> 3 doped with Li 2 O, manufactured using standard methods of ceramic element fabrication, by pouring or depositing thick layers or forming thin films, characterized in that it is a solid solution (Bai_ x Sr x ) TiO3 with 0>x> l added up to 20% by weight, preferably up to 10% by weight. Li 2 O and more preferably up to 5 wt. % Li 2 O in the form of oxide or any other form which decomposes during thermal treatment and enables the reaction of Li + ions with BST.
SI200300225A 2003-09-09 2003-09-09 LOW SINTERABLE FERROELECTRIC CERAMICS BASED ON Li2O DOPED (Ba, Sr) TiO3 SI21615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200300225A SI21615A (en) 2003-09-09 2003-09-09 LOW SINTERABLE FERROELECTRIC CERAMICS BASED ON Li2O DOPED (Ba, Sr) TiO3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200300225A SI21615A (en) 2003-09-09 2003-09-09 LOW SINTERABLE FERROELECTRIC CERAMICS BASED ON Li2O DOPED (Ba, Sr) TiO3

Publications (1)

Publication Number Publication Date
SI21615A true SI21615A (en) 2005-04-30

Family

ID=34511409

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200300225A SI21615A (en) 2003-09-09 2003-09-09 LOW SINTERABLE FERROELECTRIC CERAMICS BASED ON Li2O DOPED (Ba, Sr) TiO3

Country Status (1)

Country Link
SI (1) SI21615A (en)

Similar Documents

Publication Publication Date Title
EP3434660B1 (en) Dielectric composition, dielectric layer, electronic component and laminate electronic component
KR100418599B1 (en) An oxide having a perovskite structure, barium titanite, and manufacturing method therefor, dielectric ceramic, and ceramic electronic component
EP3434659B1 (en) Dielectric composition, dielectric layer, electronic component and laminate electronic component
EP3434657A1 (en) Dielectric composition, dielectric element, electronic component and laminate electronic component
JP5742373B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and dielectric porcelain manufacturing powder manufacturing method
EP3434658A1 (en) Dielectric composition, dielectric element, electronic component and laminate electronic component
JPH02279555A (en) Ceramic material of high permittivity
JP4108836B2 (en) Dielectric porcelain composition
US9064638B2 (en) Dielectric ceramic, stack ceramic electronic component, and method of manufacturing these
CN102347132A (en) Laminate type semiconductor ceramic capacitor with varistor function
KR100474948B1 (en) Method for making raw ceramic powder, raw ceramic powder, dielectric ceramic produced using raw ceramic powder, and monolithic ceramic electronic component using dielectric ceramic
Song et al. Copper cofire X7R dielectrics and multilayer capacitors based on zinc borate fluxed barium titanate ceramic
JP6541822B2 (en) Non-ferroelectric high dielectric material and method of manufacturing the same
KR20070089619A (en) Dielectric ceramic composition, electronic component and manufacturing method thereof
TW426864B (en) Dielectric ceramic composition
SI21615A (en) LOW SINTERABLE FERROELECTRIC CERAMICS BASED ON Li2O DOPED (Ba, Sr) TiO3
JP2020164338A (en) Ceramic composition, and electronic component using the ceramic composition
CN110304916A (en) A kind of anti-reduction BaTiO3Base media ceramic and preparation method
CN114773054B (en) Sodium bismuth titanate ternary-based high-dielectric ultra-wide temperature lead-free multilayer ceramic capacitor dielectric material and preparation
JP2757402B2 (en) Method for producing high-permittivity dielectric ceramic composition
Haq et al. Free standing tapes of donor doped BaTiO 3 for multilayer positive temperature coefficient thermistors
JP2762831B2 (en) Method for producing semiconductor porcelain composition
CN117790182A (en) Dielectric composition and electronic component
Ilakotani et al. U: 1NTKKNA1. t.!..:-;. Ü'. L'UL MULTILAYER CERAMIC CAPACITOR
Hakotani et al. Cu internal electrode multilayer ceramic capacitor

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20041004

KO00 Lapse of patent

Effective date: 20110420