SI21224A - Sterilization method using plasma and secondary source - Google Patents

Sterilization method using plasma and secondary source Download PDF

Info

Publication number
SI21224A
SI21224A SI200300182A SI200300182A SI21224A SI 21224 A SI21224 A SI 21224A SI 200300182 A SI200300182 A SI 200300182A SI 200300182 A SI200300182 A SI 200300182A SI 21224 A SI21224 A SI 21224A
Authority
SI
Slovenia
Prior art keywords
plasma
sterilization
sample
radicals
exposed
Prior art date
Application number
SI200300182A
Other languages
Slovenian (sl)
Inventor
Uroš CVELBAR
Miran MOZETIČ
Original Assignee
Uroš CVELBAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uroš CVELBAR filed Critical Uroš CVELBAR
Priority to SI200300182A priority Critical patent/SI21224A/en
Publication of SI21224A publication Critical patent/SI21224A/en

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

The subject of this invention is a method of plasma sterilization using radicals and a secondary source of radiation to this effect. To produce radicals within plasma, the discharge of various gases or their mixtures by some other, typically inert gases is used. A variety of discharge methods performed in a low-pressure area is used for this purpose. A secondary source of radiation, on the other hand, is provided by UV lamps or by gas discharge in a secondary chamber. The proposed method allows a very efficient and quick sterilization of various specimens, performed faster than by any of the traditional methods. It can also ensure low-temperature sterilization appropriate to highly sensitive medical instruments.

Description

1. PRIKAZ PROBLEMA1. DISPLAY OF THE PROBLEM

Kljub temu, da se je študij neaktivnih mikroorganizmov začel že leta 1950, se komercialna sterilizacija medicinskih pripomočkov ni začela do leta 1990. (Seymour S., Disinfection, Sterilization, and Preservation, poglavje 38, str. 747.) Tradicionalno se je v bolnicah uveljavila sterilizacija z vodno paro pri 130°C oz. suho vročino za medicinske pripomočke, ki prenesejo toplotne obremenitve; ali pa etilen oksidnim plinom oz. nizko temperaturno paro formaldehida za toplotno občutljive pripomočke. S povečanjem uporabe medicinskih pripomočkov občutljivih na vlago in toploto, posebej pripomočkov za diagnostiko ali protez se je povečala tudi potreba po čim hitrejši sterilizaciji. Pri tem pa ne prideta v poštev že omenjeni metodi, ker je sterilizacija z etilen oksidnim plinom precej dolgotrajna, ker je potrebno strupeni etilen oksid odstraniti s steriliziranega predmeta, posledično pa je postopek škodljiv tudi za atmosfero, ker uničuje ozon. Formaldehidna para ima podobne toksične učinke kot etilen oksid.Although the study of inactive microorganisms began in 1950, the commercial sterilization of medical devices did not begin until 1990. (Seymour S., Disinfection, Sterilization, and Preservation, Chapter 38, p. 747.) It has traditionally been used in hospitals. enforced steam sterilization at 130 ° C or. dry heat for medical devices that withstand thermal stress; or ethylene oxide gas or low temperature formaldehyde vapor for heat sensitive devices. The increase in the use of moisture and heat sensitive medical devices, especially diagnostic or prosthetic devices, has also increased the need for sterilization as quickly as possible. However, the aforementioned methods are not relevant, since sterilization with ethylene oxide gas is quite time-consuming, because it is necessary to remove toxic ethylene oxide from the sterilized object, and consequently the process is also harmful to the atmosphere because it destroys ozone. Formaldehyde vapor has similar toxic effects to ethylene oxide.

V industriji so najpogostejše metode sterilizacije medicinskih pripomočkov para, etilen oksid, ionizacijska in radiacijska sterilizacija z sevanjem gama (kobalt 60) ali elektronskim curkom. Kljub temu, da so te tehnologije učinkovite, niso primerne za široko uporabo naprav občutljivih na toploto ali vlago ali celo sterilizacijo plastičnih vsadkov. Uporaba ionizacijskih in radiacijskih izvorov ima poleg že omenjenih slabosti metod tudi precej visoko ceno. Zaradi tega se pojavlja potreba po čim cenejši, učinkoviti, hitri, netoksični in okolju prijazni metodi za sterilizacijo, ki bo lahko izvedljiva pri nizkih temperaturah. Odgovor na to je nizko temperaturna plazemska sterilizacija.The most common methods in the industry are steam sterilization methods, ethylene oxide, ionization and radiation sterilization with gamma radiation (cobalt 60) or electron beam. Although effective, these technologies are not suitable for widespread use of heat or moisture sensitive devices or even sterilization of plastic implants. The use of ionization and radiation sources has, in addition to the aforementioned disadvantages of the methods, a rather high cost. As a result, there is a need for a low-cost, efficient, fast, non-toxic and environmentally friendly sterilization method that can be carried out at low temperatures. The answer is low-temperature plasma sterilization.

Plazmo kot neravnovesno stanje plina lahko razdelimo v dve kategoriji. V prvo spadajo visoko temperaturne plazme, ki presegajo temperaturo 5.000K. V drugo kategorijo pa spadajo neravnovesne ali nizko temperaturne plazme. Te plazme imajo energijo elektronov v območju od 1 do 10 eV, gostote elektronov pa so od 109 do 1012 cm'3. V teh plazmah je tudiPlasma as an unbalanced gas state can be divided into two categories. The first is high temperature plasma in excess of 5,000K. The second category, however, includes non-equilibrium or low-temperature plasma. These plasmas have electron energies in the range of 1 to 10 eV and electron densities of 10 9 to 10 12 cm 3 . It is in these plasmas as well

U. Cvelbar, M. MozetičU. Cvelbar, M. Mozetich

-2pomanjkanje ravnovesja med temperaturo elektronov Te in temperaturo plina Tg. Razmerje med njima (Te/Tg) je tipično od 10 do 100. Zaradi te lastnosti imajo neravnovesne plazme dovolj energije za porušitev molekularnih vezi obenem pa zaradi slabe izmenjave kinetične energije v plazmi delujejo blago na površino obdelovanca. Obstajajo pa različni načini za generiranje teh plazem, ki imajo glede na generiranje tudi različne lastnosti. Razlikujejo se predvsem po vrstah radikalov, količini le teh, temperaturi plina in elektronov ter stranskih produktih kot je sevanje svetlobe.-2 lack of equilibrium between electron temperature T e and gas temperature T g . The ratio between them (T e / T g ) is typically 10 to 100. Due to this property, the nonequilibrium plasmas have sufficient energy to break the molecular bonds, and at the same time, due to the poor exchange of kinetic energy in the plasma, they act mildly on the surface of the workpiece. There are, however, different ways to generate these plasmas that have different properties depending on the generation. They differ mainly in the types of radicals, the amount of them, the temperature of the gas and electrons, and by-products such as light radiation.

Za sterilizacijo s plazmo je torej potrebno površino obdelati s plinom v neravnovesnem stanju. Ključnega pomena za pravilno tehnološko obdelavo pa so način za ustvarjanje in parametri neravnovesnih stanj ter plin, ki se uporablja za ustvarjenje plazme. Najbolj pogosta metoda za ustvarjanje zelo neravnovesnega plina je vodenje molekul plina skozi nizkotlačno razelektritev. Molekule pri tem vzbudimo, disociiramo in ioniziramo z neelastičnimi trki z elektroni. Vzbujene, atomizirane in ioniziranem molekule imenujemo radikali, katerih koncentracija je odvisna od parametrov razelektritve. Koncentracija radikalov pa je bistvenega pomena za sterilizacijo obdelovanca. Raziskave so pokazale, da so za sterilizacijo pomembne dve ali tri faze, ki se med seboj ciklično izmenjujejo ali v našem primeru dopolnjujejo. V prvi delujemo na bakterije z UV svetlobo in cepimo vezi, v drugi pa nam k temu pomaga tudi neravnovesna plazma z reaktivnimi ioni. V tretji fazi razbite vezi jedkamo z radikali atomov, tako da odstranjujemo posamezne razbite vezi. Nastale produkte odčrpavamo z vakuumskega sistema.Therefore, for plasma sterilization it is necessary to treat the surface with an unbalanced gas. The key to proper technological processing, however, is the mode of generation and parameters of the nonequilibrium states and the gas used to create the plasma. The most common method for generating highly unbalanced gas is to guide gas molecules through low-pressure discharge. In doing so, molecules are excited, dissociated, and ionized by inelastic collisions with electrons. Excited, atomized and ionized molecules are called radicals whose concentration depends on the discharge parameters. The concentration of radicals, however, is essential for the sterilization of the workpiece. Research has shown that two or three phases, which are cyclically alternating or complementary in each other, are important for sterilization. In the first one, we work on bacteria with UV light and cleave the bonds, and in the second we are helped by unbalanced plasma with reactive ions. In the third phase, the broken bonds are etched with the radicals of atoms by removing the individual broken bonds. The resulting products are pumped from the vacuum system.

2. STANJE TEHNIKE2. BACKGROUND OF THE INVENTION

Prespektive uporabe plazemske sterilizacije so v zadnjih nekaj letih narekovale kar nekaj, večinoma akademskih raziskav sterilizacije spor v čistih plazmah plinov, kot so H2, O2, Ar, N2, CO, NO, H2O2, ipd., ali v različnih mešanicah plinov H2+Ar, O2+Ar, N2+Ar, NO+Ar, H2+He, ipd., ter vodne pare.Perspectives on the use of plasma sterilization over the past few years have dictated quite a few, mostly academic, studies of spore sterilization in pure plasma gases such as H2, O2, Ar, N2, CO, NO, H2O2, etc., or in various H 2 + gas mixtures Ar, O 2 + Ar, N2 + Ar, NO + Ar, H2 + He, etc., and water vapor.

Za najboljše so se izkazali tisti plini, ki so obenem zagotavljali reaktante in visoko koncentracijo vzbujenih stanj, ki sevajo UV svetlobo. Hitrost sterilizacije v enotnem plazemskem sistemu je bila odvisna predvsem od začetne stopnje sevanja UV, ki je cepilo vezi genetskega materiala v sporah. Reaktanti pa so spore razbili, lokalno segreli ali pa deloma pojedkali.The gases that at the same time provided reactants and a high concentration of excited states that emit UV light proved to be the best. The rate of sterilization in a single plasma system depended primarily on the initial level of UV radiation, which cleaved the bonds of genetic material in spores. The reactants, however, broke the spores, heated them locally or partially etched.

Patentirani plazemski sterilizacijski postopki se nanašajo večinoma na sterilizacijo z različnimi tipi plinov v enotnem plazemskem reaktorju. Tu gre večinoma za mikrovalovne plazemske reaktorje z manjšimi koncentracijami disociiranih atomov. Postopki pa so patentirani tudi v enotnih DC reaktorjih (RU2102084). Postopki sterilizacije se nanašajo tudi na uporabne primere, kjer tipično ustvarjamo plazmo primerno za sterilizacijo posameznih produktov, kot so pločevinke ali steklenice (US6230472, US5593649), dekontaminacijo nevarnih kemičnih plinov z mešanico He/CE (W00074730) ali sterilizacijo tankih plasti naPatented plasma sterilization procedures mainly refer to sterilization with different types of gas in a single plasma reactor. These are mostly microwave plasma reactors with lower concentrations of dissociated atoms. However, the processes are also patented in unitary DC reactors (RU2102084). Sterilization processes also apply to useful cases where we typically create plasma suitable for sterilizing individual products such as cans or bottles (US6230472, US5593649), decontamination of hazardous chemical gases with He / CE mixture (W00074730), or thin film sterilization.

U. Cvelbar, M. MozetičU. Cvelbar, M. Mozetich

-3tekočem traku z elektronskim curkom (WO0115199). Zelo popularna pa je tudi sterilizacija pri atmosferskem tlaku s korona plazmo za embalažo živilskih produktov (WO03011346).-3 Electron-jet Conveyor Belt (WO0115199). Atmospheric pressure sterilization from corona plasma for the packaging of food products is also very popular (WO03011346).

Plini, ki se uporabljajo v enotni vakuumski komori (US5650693) pri tlaku od 0.1 do 10 mbar so mešanice plinov sestavljene iz (a) Ar, He, N2, H2 ali njihovih mešanic ter O2 in H2; (b) Ar, He, N2 ali njihovih mešanic z H2; (c) ali njihovih mešanic z O2 (EP0387022, US5115166, US5376332, US54137759, WO9526121). Sterilizacijske plazme so bile generirane tudi z različnimi plini: Ar, He ali Xe (US3851436); Ar, N2, O2, He ali Xe (US3948601); glutaraldehidom (US4207286); O2 (US4321232); Ar, N2, O2, He ali freonom pri pulznem tlaku (US4348357). Za sterilizacijo lahko uporabljamo tudi H2O2 - vodikov peroksid (US4643876) ali mešanice ((a),(b),(c)) že omenjenih plinov H2O2 (EP0456135). Patentirani so tudi plazemsko pulzni-vakuumski cikli v teh plazmah (US5084239, US5178829) . Najdemo pa tudi bolj eksotične mešanice kot so H2, O2, N2 in H2O (DE 10036550) ali NO sam ali O3 (JP162276-1983).Gases used in a single vacuum chamber (US5650693) at a pressure of 0.1 to 10 mbar are gas mixtures consisting of (a) Ar, He, N 2 , H2 or mixtures thereof and O2 and H2; (b) Ar, He, N2 or mixtures thereof with H2; (c) or mixtures thereof with O2 (EP0387022, US5115166, US5376332, US54137759, WO9526121). Sterilization plasmas were also generated with different gases: Ar, He or Xe (US3851436); Ar, N 2 , O 2 , He or Xe (US3948601); glutaraldehyde (US4207286); O 2 (US4321232); Ar, N 2 , O 2 , He or freon at pulse pressure (US4348357). H 2 O 2 - hydrogen peroxide (US4643876) or mixtures ((a), (b), (c)) of the H 2 O 2 gases (EP0456135) mentioned above can also be used for sterilization. Plasma-pulse-vacuum cycles in these plasmas have also been patented (US5084239, US5178829). However, more exotic mixtures are also found such as H 2 , O 2 , N 2 and H 2 O (DE 10036550) or NO alone or O 3 (JP162276-1983).

V literaturi pa ni podatkov o mešanih izvorih za sterilizacijo, kjer z plazmo zagotavljamo ione in atome za cepitve in jedkanje mikroorganizmov iz sekundarnega izvora kot je izvor UV svetlobe ali gama sevanja, ki pomaga v začetni fazi in pospeši v nadaljevanju cepitev vezi v mikroorganizmih. Taka metoda namreč mnogo bolj pospeši sterilizacijo in deluje bolj učinkovito.However, there is no literature on mixed sources for sterilization, where the plasma provides ions and atoms for the cleavage and etching of microorganisms from a secondary source, such as UV light or gamma radiation, which helps in the initial phase and further accelerates the cleavage of bonds in microorganisms. Such a method accelerates sterilization much more and works more efficiently.

3. OPIS REŠITVE PROBLEMA3. DESCRIPTION OF THE PROBLEM SOLUTION

Izum obsega novo plazemsko tehnologijo sterilizacije, ki temelji na sterilizaciji s neravnovesno plazmo z veliko dozo radikalov in sekundarnim izvorom UV svetlobe.The invention encompasses a new plasma sterilization technology based on non-equilibrium plasma sterilization with a high dose of radicals and a secondary source of UV light.

Z namenom, da steriliziramo medicinske pripomočke ali katere koli druge predmete, ki jih potrebujemo sterilne jih izpostavimo neposredno nizkotlačni plazmi. Plazmo lahko generiramo na različne načine, prvenstveno pa z razelektritvijo. Uporabimo lahko različne enosmerne in visokofrekvenčne razelektritve v plinu, na primer tlečo razelektritev, magnetronsko razelektritev, razelektritev z vročo katodo, razelektritev z votlo katodo, radiofrekvenčno razelektritev, mikrovalovno razelektritev, ECR razelektritev, lasersko razelektritev, obločno razelektritev. Zelo primerna za sterilizacijsko obdelavo z nizkotlačno plazmo pa je radiofrekvenčna ali mikrovalovna razelektritev.In order to sterilize medical devices or any other items that we need sterile, we expose them directly to low pressure plasma. Plasma can be generated in various ways, primarily by discharge. Various direct and high frequency gas discharges can be used, such as smoldering, magnetron discharge, hot cathode discharge, hollow cathode discharge, radiofrequency discharge, microwave discharge, ECR discharge, laser discharge. Very suitable for low pressure plasma sterilization treatment is radio frequency or microwave discharge.

Razelektritev v reakcijski komori generiramo v čistem kisiku ali mešanici kisika in drugih plinov. Prvenstveno uporabimo mešanice kisika in inertnega plina, kot je argon ali ostali žlahtni plini ali pa vodno paro. Možna pa je uporaba tudi ostalih plinov; N2, NO, N2O2, NH3, H2, H2O2, H2O, CO, CO2tCH4, O3, SO2, EO, zrak, ipd. ali mešanic teh plinov med seboj ali pa mešanice z inertnimi plini Ar, Ne, Xe, He, Rn.The charge in the reaction chamber is generated in pure oxygen or a mixture of oxygen and other gases. Primarily oxygen and inert gas mixtures such as argon or other noble gases or water vapor are used. Other gases may also be used; N 2 , NO, N 2 O 2 , NH 3, H 2 , H 2 O 2 , H 2 O, CO, CO 2 t CH 4, O 3 , SO 2 , EO, air, etc. or mixtures of these gases with one another or mixtures with the inert gases Ar, Ne, Xe, He, Rn.

U. Cvelbar, M. MozetičU. Cvelbar, M. Mozetich

-4Iz sekundarnega vira pa zagotavljamo sevanje, ki omogoča začetno in v nadaljevanju zvezno cepljenje vezi oz. poškodbe genetskega materiala mikroorganizmov. Kot sekundarni vir je najbolj primerna uporaba UV sevanja, uporabljamo lahko pa tudi gama sevanje. UV sevanje ustvarjamo ali zagotavljamo z ločenimi excimer UV svetilkami (sl. 1) ali sekundarnim reaktorjem v katerem uporabljamo kot izvor sevanja plazmo Hg, N2O2, N2, zrak, ali katerikoli drugi močni vir svetlobe v območju UV (sl.2).-4 From a secondary source, however, we provide radiation that allows for the initial and subsequent federal vaccination of the ligaments. damage to the genetic material of the micro-organisms. The use of UV radiation is the most appropriate secondary source, and gamma radiation can be used. UV radiation is generated or provided by separate excimer UV lamps (Fig. 1) or a secondary reactor in which plasma Hg, N2O2, N2, air or any other strong light source in the UV range is used as the radiation source (Fig. 2).

Uporaba UV sevanja iz sekundarnega vira omogoča direktno uničevanje genetskega materiala mikroorganizmov. Erozijo mikroorganizmov s plazmo v primarnem reaktorju pa omogoča disociirana plazma, ki atom po atom, z jedkanjem ustvarja volatilne komponente produktov. Ti produkti so običajno rezultat interakcije radikalov, največkrat atomov iz plazme. V kolikor uporabljamo za reaktant kisikove atome so rezultati take erozije zelo učinkoviti, saj ti agresivno sodelujejo v interakcijah z mikroorganizmi in jih učinkovito odstranjujejo s površine, nastale produkte običajno ekološko neškodljive (H2O, CO2, ipd.) pa odčrpamo. Pri velikih koncentracijah kisikovih atomov lahko mikroorganizme na površini zelo hitro oksidiramo v kolikor nimajo temperaturno prevodnega stika s podlago. Na podoben način pa jih lahko odstranjujemo tudi iz polimernih materialov, kjer je uporaba take sterilizacije zelo primerna tudi za umetne medicinske vsadke kot so npr. žile. Izpostava plazmi namreč zniža površinsko energijo in na površino vstavi polarne skupine bogate s kisikom, kot so (-OOH, OH, =0, -CHO, -COOH) in pusti na površini nekatere vezi razcepljene. Zaradi tega je oprijemljivost organskega materiala, kot je človeško tkivo dosti boljša in trdnejša.The use of UV radiation from a secondary source allows the direct destruction of the genetic material of the micro-organisms. The erosion of microorganisms by plasma in the primary reactor, however, is facilitated by dissociated plasma, which, by etching, creates volatile components of the products by etching. These products are usually the result of the interaction of radicals, most often plasma atoms. If oxygen atoms are used for the reactant, the results of such erosion are very effective as they aggressively interact with the microorganisms and effectively remove them from the surface, and the resulting products are usually ecologically harmless (H2O, CO2, etc.). At high concentrations of oxygen atoms, microorganisms on the surface can be oxidized very quickly if they do not have temperature-conducting contact with the substrate. In a similar way, they can also be removed from polymeric materials, where the use of such sterilization is well suited for artificial medical implants such as e.g. veins. Namely, the plasma exposure lowers the surface energy and inserts oxygen-rich polar groups on the surface such as (-OOH, OH, = 0, -CHO, -COOH) and leaves some bonds on the surface. This makes the adhesion of organic material such as human tissue much better and firmer.

Pri sterilizaciji v primarnem reaktorju pomaga oz. je zaželena tudi taka plazma, ki vsebuje ione, ki udarjajo na površino mikroorganizmov in pomagajo pri poškodbah genetskega materiala.Sterilization in the primary reactor is aided or abolished. such plasma containing ions that strike the surface of microorganisms and help to damage the genetic material is also desirable.

Metodo optimiziramo z uporabo plazme s čim več radikali, ki agresivno sodelujejo pri eroziji mikroorganizmov in ioni, ki pomagajo pri eroziji s poškodbami genetskega materiala in cepljenja vezi na površini. Z sekundarnim izvorom pa zagotavljamo konstantno uničevanje genetskega materiala in cepljenja vezi ter s tem pospešujemo sterilizacijski postopek.The method is optimized by using as many radicals as possible to aggressively participate in the erosion of microorganisms and ions that assist in erosion by damaging genetic material and grafting bonds on the surface. The secondary source ensures constant destruction of the genetic material and the cleavage of the ligaments, thus accelerating the sterilization process.

Ta postopek se od ostalih doslej znanih postopkov razlikuje predvsem po dvokomponentnem razumevanju sterilizacije. Vsi dosedanji postopki temeljijo na sterilizaciji z plazmo v enotnem sistemu, kjer plazma iz mešanice plinov zagotavlja izvor UV svetlobe in istočasno radikale, kot so atomi. Pri tem se je običajno potrebno odpovedati nekaterim koristim ene ali druge lastnosti, poleg tega pa so lahko nastali produkti jedkanja tudi strupeni in ekološko neustrezni. Primer uporabe plina, ki zagotavlja oboje, je NO ali N2O2, toda pri jedkanju mikroorganizmov obstaja velika možnost nastanka cianidnih komponent.This procedure differs from other known methods, mainly in the two-component understanding of sterilization. All the procedures to date are based on plasma sterilization in a single system where the plasma from the gas mixture provides the source of UV light and at the same time radicals such as atoms. It is usually necessary to renounce some of the benefits of one or the other, and the resulting etching products may also be toxic and ecologically inappropriate. An example of using gas to provide both is NO or N2O2, but there is a high possibility of cyanide components being formed when etching microorganisms.

Pri našem dvokomponentnem postopku je v nizkotlačni komori zaradi hitre in učinkovite obdelave mogoča zelo dobra sterilizacija, ki je primerna tudi za zelo občutljive materiale ali snovi. Glede na potrebe sterilizacijskega materiala lahko uravnavamo parametre sterilizacije zIn our two-component process, a very good sterilization is possible in the low-pressure chamber due to the rapid and efficient treatment, which is also suitable for very sensitive materials or substances. Depending on the needs of the sterilization material, the parameters of sterilization can be adjusted by

U. Cvelbar, M. MozetičU. Cvelbar, M. Mozetich

-5različno uporabo plinov in regulacijami zveznega ali pulznega delovanja plazemskega generatorja in sekundarnega izvora.-5Different use of gases and regulation of continuous or pulsed operation of the plasma generator and secondary origin.

4. IZVEDBENI PRIMERI4. IMPLEMENTING EXAMPLES

Sledi opis dveh izvedbenih primerov plazemske sterilizacije s sekundarnim izvorom, ki pojasnjuje mehanizem te plazemske tehnologije sterilizacije. Metoda sterilizacije, ki je predmet tega izuma, je opisana s pomočjo slik, ki prikazujejo:The following is a description of two embodiments of secondary source plasma sterilization that explains the mechanism of this plasma sterilization technology. The sterilization method of the present invention is described by means of figures showing:

51.1 Shema plazemskega reaktorja za sterilizacijo s sekundarnim izvorom UV svetlobe z 3 ločenimi UV svetili.51.1 Schematic diagram of a plasma reactor for sterilization with a secondary UV light source with 3 separate UV lights.

51.2 Shema postavitve 3 ločenih UV svetil za sistem iz Sl. 1.51.2 Schematic of the layout of 3 separate UV lamps for the system of FIG. 1.

51.3 Shema plazemskega reaktorja za sterilizacijo s sekundarnim izvorom UV svetlobe iz sekundarne komore s plazmo.51.3 Schematic diagram of a plasma reactor for sterilization with a secondary UV light source from a secondary plasma chamber.

Na sliki 1 je prikazana shema plazemskega reaktorja z 3-mi UV izvori, ki so pomembne v prvi fazi sterilizacije, v nadaljevanju pa omogočajo hitrejšo sterilizacijo s cepitvami vezi v mikroorganizmih. Plazemski reaktor se sestoji iz razelektritvene komore (5), ki je v našem primeru steklena cev dolžine in zunanjega premera 30 cm. V komoro prek dozirnih ventilov (3) puščamo plin, ki zagotavlja erozivnost mikroorganizmov s plazemskimi radikali. V našem primeru puščamo v komoro kisik iz jeklenke (1) ali mešanico kisika in inertnega plina ali pa vodika (mešanica vodika z inertnim plinom) (2), da zagotavljamo reaktivnost in homogenost plazme v reaktorju (5). To lahko počnemo tudi za različne druge mešanice plinov iz več drugih jeklenk. V plazemskem reaktorju (5) generiramo plazmo z RF generatorjem (6), ki ima nazivno moč 800 W in industrijsko frekvenco 27.12 MHz. Izvor UV svetlobe pa zagotavljamo z 3-mi excimer UV svetilkami (4), simetrično porazdeljenimi okoli komore. Komoro stalno črpamo z dvostopenjsko rotacijsko vakuumsko črpalko (10) z nominalno črpalno hitrostjo 64m3h'’ preko molekularne pasti (9). Tlak merimo s kalibriranim Piranijevim vakuummetrom (8). Plazmo pa kontroliramo z optično katalitično sondo (7).Figure 1 shows a schematic diagram of a plasma reactor with 3 UV sources, which are important in the first stage of sterilization, and subsequently allow for faster sterilization by cleavage of bonds in microorganisms. The plasma reactor consists of a discharge chamber (5), which in our case is a glass tube of 30 cm length and outer diameter. Gas is released into the chamber through the metering valves (3), which ensures the erosivity of the microorganisms with the plasma radicals. In our case, oxygen from the cylinder (1) or a mixture of oxygen and inert gas or hydrogen (a mixture of hydrogen with an inert gas) (2) is allowed to enter the chamber to ensure reactivity and homogeneity of the plasma in the reactor (5). We can also do this for various other gas mixtures from several other cylinders. Plasma reactor (5) generates plasma using an RF generator (6) having a rated power of 800 W and an industrial frequency of 27.12 MHz. The UV light source is provided by 3 excimer UV lamps (4) distributed symmetrically around the chamber. The chamber is continuously pumped with a two-stage rotary vacuum pump (10) at a nominal pumping speed of 64m 3 h '' via a molecular trap (9). Measure the pressure with a calibrated Prani vacuum gauge (8). The plasma is controlled by an optical catalytic probe (7).

Slika 2 predstavlja primer porazdelitve treh UV svetilk (4) okoli steklene cilindrične komore (5) v kateri generiramo plazmo z RF generatorjem (6). S tako porazdelitvijo zagotavljamo relativno enakomerno porazdelitev vpadle UV svetlobe na vzorec, ki ga steriliziramo.Figure 2 is an example of the distribution of three UV lamps (4) around a glass cylindrical chamber (5) in which plasma is generated by an RF generator (6). Such a distribution ensures a relatively uniform distribution of the incident UV light on the sample to be sterilized.

Na sliki 3 je prikazana shema plazemskega reaktorja z sekundarno komoro, v kateri ustvarjamo plazmo, kije močan izvor UV svetlobe. Plazemski reaktor se tako sestoji iz dveh, med seboj ločenih, vakuumskih cilindričnih razelektritvenih komor. V notranji reaktor (5), kjer erozivno steriliziramo vzorce, puščamo plin prek ventilov (3) iz jeklenke s kisikom (1) ali mešanico kisika in inertnega plina ali pa vodika (mešanica vodika z inertnim plinom) (2), da zagotavljamo reaktivnost in homogenost plazme v reaktorju (5). V sekundarni reaktor (13), ki je ločen od rotacijske črpalke in sistema prek ventila (11) pa vpušča plin iz jeklenke (14), kiFigure 3 shows a schematic of a secondary-chamber plasma reactor in which plasma is created, which is a strong source of UV light. The plasma reactor thus consists of two separate vacuum cylindrical discharge chambers. Into the reactor (5), where the samples are erosionally sterilized, gas is leaked through valves (3) from an oxygen cylinder (1) or a mixture of oxygen and inert gas or hydrogen (hydrogen mixture with inert gas) (2) to ensure reactivity and plasma homogeneity in the reactor (5). In the secondary reactor (13), which is separated from the rotary pump and the system via a valve (11), it injects gas from a cylinder (14) which

U. Cvelbar, M. Mozetič pri plazemski razelektritvi plina npr. N2O2 ustvarja vir UV svetlobe. Ta plin v našem primeru, vpustimo v komoro po vakuumiranju prek rotacijske črpalke (10). Vir UV svetlobe lahko zagotavljamo tudi z drugimi plini, kot je N2 ali celo z vpustom zraka preko ventila (12). Razelektritev v plazemskem primarnem in sekundarnem reaktorju generiramo z istim RF generatorjem (6), ki ima nazivno moč 800 W in industrijsko frekvenco 27.12 MHz. Komoro stalno črpamo z dvostopenjsko rotacijsko vakuumsko črpalko (10) z nominalno črpalno hitrostjo 64m3h ' preko molekularne pasti (9). Tlak merimo s kalibriranim Piranijevim vakuummetrom (8). Plazmo pa kontroliramo z optično katalitično sondo (7).U. Cvelbar, M. Plasma gas discharge mech. N2O2 creates a source of UV light. This gas, in our case, is vented into the chamber after vacuuming via a rotary pump (10). The UV light source can also be provided by other gases such as N2 or even by venting through the valve (12). The discharge in the plasma primary and secondary reactor is generated by the same RF generator (6) having a rated power of 800 W and an industrial frequency of 27.12 MHz. The chamber is continuously pumped by a two-stage rotary vacuum pump (10) at a nominal pumping speed of 64m 3 h 'via a molecular trap (9). Measure the pressure with a calibrated Prani vacuum gauge (8). The plasma is controlled by an optical catalytic probe (7).

Claims (15)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Metoda sterilizacijske obdelave označena s tem, da izpostavimo vzorec plazmi in sekundarnemu izvoru sevanja.1. A method of sterilization treatment characterized by exposing the plasma sample and the secondary radiation source. 2. Metoda po zahtevku 1 označena s tem, daje sekundarni izvor sevanja UV svetloba ali gama sevanje.2. The method of claim 1, wherein the secondary radiation source is UV light or gamma radiation. 3. Metoda po zahtevku 1 označena s tem, da izpostavimo vzorec kisikovim radikalom.Method according to claim 1, characterized in that the sample is exposed to oxygen radicals. 4. Metoda po zahtevku 1 označena s tem, da plazmo generiramo v mešanici kisika O2 in še enega plina, tipično argon ali drugi inertni plin.Method according to claim 1, characterized in that the plasma is generated in a mixture of O 2 oxygen and another gas, typically argon or other inert gas. 5. Metoda po zahtevku 1 označena s tem, da izpostavimo vzorec radikalom vodne pare (H2O, OH) ali vodikovega peroksida (H2O2).5. The method of claim 1, wherein the sample is exposed to water vapor (H2O, OH) or hydrogen peroxide (H2O2) radicals. 6. Metoda po zahtevku 5 označena s tem, da izpostavimo vzorec mešanici radikalov z drugim plinom, tipično argon ali drugi inertni plin.Method according to claim 5, characterized in that the sample is exposed to a mixture of radicals with another gas, typically argon or other inert gas. 7. Metoda po zahtevku 1 označena s tem, da generiramo plazmo v mešanici kisika in dušika ali pa v plinih dušikovih oksidov kot so dušikov monoksid (NO), dušikov dioksid (NO2), N2O2 inN20.Method according to claim 1, characterized in that the plasma is generated in a mixture of oxygen and nitrogen or in gases of nitrogen oxides such as nitrogen monoxide (NO), nitrogen dioxide (NO2), N2O2 and N20. 8. Metoda po zahtevku 7 označena s tem, da izpostavimo vzorec mešanici radikalov z drugim plinom, tipično argon ali drugi inertni plin.Method according to claim 7, characterized in that the sample is exposed to a mixture of radicals with another gas, typically argon or other inert gas. U. Cvelbar, M. MozetičU. Cvelbar, M. Mozetich 9. Metoda po zahtevku 1 označena s tem, da plazmo generiramo v mešanici kisika in ogljika ali v plinih ogljikovih oksidov, kot sta ogljikov monoksid (CO) in ogljikov dioksid (CO2).9. The method of claim 1, wherein the plasma is generated in a mixture of oxygen and carbon or in carbon monoxide gases such as carbon monoxide (CO) and carbon dioxide (CO 2 ). 10. Metoda po zahtevku 9 označena s tem, da izpostavimo vzorec mešanici radikalov z drugim plinom, tipično argon ali drugi inertni plin.10. The method of claim 9, wherein the sample is exposed to a mixture of radicals with another gas, typically argon or other inert gas. 11. Metoda po zahtevku 1 označena s tem, da izpostavimo vzorec radikalom iz žveplovega dioksida (SO2), etilen oksida (EO) ali mešanici teh radikalov z drugim plinom, tipično argon ali drugi inertni plin.11. The method of claim 1, wherein the sample is exposed to sulfur dioxide (SO 2 ), ethylene oxide (EO) radicals, or a mixture of these radicals with another gas, typically argon or other inert gas. 12. Metode po zahtevkih 1-11 označene s tem, da izpostavimo vzorec zveznemu delovanju plazme.Methods according to Claims 1-11, characterized in that the sample is subjected to continuous plasma action. 13. Metode po zahtevkih 1-11 označene s tem, da izpostavimo vzorec pulznemu delovanju plazme.Methods according to Claims 1-11, characterized in that the sample is exposed to the pulse action of the plasma. 14. Metode po zahtevkih 1-13 označene s tem, da izpostavimo vzorec zveznemu delovanju sekundarnega izvora sevanja.Methods according to claims 1-13, characterized in that the sample is exposed to the continuous action of the secondary radiation source. 15. Metode po zahtevkih 1-13 označene s tem, da izpostavimo vzorec pulznemu delovanju sekundarnega izvora sevanja.Methods according to Claims 1-13, characterized in that the sample is exposed to the pulse action of a secondary radiation source.
SI200300182A 2003-07-16 2003-07-16 Sterilization method using plasma and secondary source SI21224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200300182A SI21224A (en) 2003-07-16 2003-07-16 Sterilization method using plasma and secondary source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200300182A SI21224A (en) 2003-07-16 2003-07-16 Sterilization method using plasma and secondary source

Publications (1)

Publication Number Publication Date
SI21224A true SI21224A (en) 2003-12-31

Family

ID=29778207

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200300182A SI21224A (en) 2003-07-16 2003-07-16 Sterilization method using plasma and secondary source

Country Status (1)

Country Link
SI (1) SI21224A (en)

Similar Documents

Publication Publication Date Title
EP0207417B1 (en) Hydrogen peroxide plasma sterilization system
EP0278623B1 (en) Hydrogen peroxide plasma sterilization system
JP2780228B2 (en) Plasma sterilization method and apparatus by pulsed sterilizing agent treatment
US5115166A (en) Plasma sterilizer and method
US5084239A (en) Plasma sterilizing process with pulsed antimicrobial agent treatment
US20090317295A1 (en) Sterilizer and Sterilization Method Using the Same
US5184046A (en) Circular waveguide plasma microwave sterilizer apparatus
US5325020A (en) Circular waveguide plasma microwave sterilizer apparatus
US5645796A (en) Process for plasma sterilizing with pulsed antimicrobial agent treatment
US5413759A (en) Plasma sterilizer and method
EP1558295B1 (en) Plasma treatment module-equipped sterilization apparatus and sterilization method
JPH06169975A (en) Apparatus and method for plasms sterilization
Soloshenko et al. Features of sterilization using low-pressure DC-discharge hydrogen-peroxide plasma
JP4407252B2 (en) Processing equipment
US20040005261A1 (en) Plasma sterilization apparatus
US6707254B1 (en) Low temperature plasma sterilising system and method
KR100913632B1 (en) Medical treatment sterilization method and the system in compliance with the ozone and a plasma
CN101370527B (en) Sterilization method and plasma sterilization apparatus
US5376332A (en) Plasma sterilizing with downstream oxygen addition
SI21224A (en) Sterilization method using plasma and secondary source
Xu Study of low-temperature plasma sterilization for medical application

Legal Events

Date Code Title Description
IF Valid on the prs date
KO00 Lapse of patent

Effective date: 20070316