SI20391A - Measurement tube of ultrasonic instrument for measuring volumetric fluid throughput - Google Patents
Measurement tube of ultrasonic instrument for measuring volumetric fluid throughput Download PDFInfo
- Publication number
- SI20391A SI20391A SI9900208A SI9900208A SI20391A SI 20391 A SI20391 A SI 20391A SI 9900208 A SI9900208 A SI 9900208A SI 9900208 A SI9900208 A SI 9900208A SI 20391 A SI20391 A SI 20391A
- Authority
- SI
- Slovenia
- Prior art keywords
- ultrasonic
- measuring tube
- fluid
- reflections
- tube
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
Debeljak Zdravko, Janševa 12, SI-4240 Radovljica Hrovatin Rok, Dol pri Borovnici 88, SI-1353 Borovnica Šolar Borut, Frankovo naselje 160, SI-4220 Škofja Loka Zajec Damir, Janeza Puhaija 10, SI-4000 KranjDebeljak Zdravko, Janseva 12, SI-4240 Radovljica Hrovatin Rok, Dol pri Borovnici 88, SI-1353 Borovnica Schoolboy Borut, Frankovo naselje 160, SI-4220 Skofja Loka Zajec Damir, Janeza Puhaija 10, SI-4000 Kranj
MERILNA CEV ULTRAZVOČNEGA MERILNIKA PROSTORNINSKEGA PRETOKA FLUIDOVFLUID VOLUME FLOW VOLUME FLUID MEASURING PIPE
Področje tehnikeThe field of technology
Izum sodi v področje tehnike ultrazvočnih merilnikov pretoka fluidov. Po MPK ga uvrščamo vrazredGOlF 1/66.The invention belongs to the field of technology of ultrasonic fluid flow meters. According to MPK, it is rankedGOlF 1/66.
Tehniški problemTechnical problem
Izum rešuje tehniški problem konstrukcije merilne cevi ultrazvočnega merilnika prostominskega pretoka fluidov, ki bi kar najmanj motila hitrostni profil pretoka fluida in s tem zmanjšala na minimum parazitne ultrazvočne valove.The invention solves the technical problem of the construction of a measuring tube of an ultrasonic fluid flow meter, which would least disturb the velocity profile of the fluid flow and thus minimize parasite ultrasonic waves.
Stanje tehnikeThe state of the art
Pri dosedanjih rešitvah so ultrazvočni pretvorniki bodisi v stenah merilne cevi (EP 440867, EP 559938) ali pa v poglobljenih žepih merilne cevi (DE 4010148, DE 3941546). Iz oddajnega ultrazvočnega pretvornika izhajajoče ultrazvočno valovanje pade, po večkratnem odboju od reflektroijev, na sprejemni ultrazvočni pretvornik. Večkratni prelet v smeri, prečni na smer toka, je potreben zaradi natančnejšega določanja povprečne hitrosti fluida. Pomanjkljivosti teh rešitev so predvsem fluidične motnje, ki so vzrok za nestacionamost hitrostnega profila. Fluidična motnja, ki nastane zaradi sprememb prečnih mer merilne cevi, povzroči amplitudno in fazno nihanje signala, ki zopet zmanjšuje točnost in stabilnost merilnika. Pravtako parazitni valovi poslabšujejo razmerje signal/šum.The solutions available so far include ultrasonic transducers either in the walls of the measuring tube (EP 440867, EP 559938) or in the deep pockets of the measuring tube (DE 4010148, DE 3941546). The emitted ultrasonic transducer emitted by the ultrasonic wave falls, after several reflections from reflections, onto the receiving ultrasonic transducer. Multiple flights in the direction transverse to the direction of flow are needed in order to determine more precisely the average velocity of the fluid. The disadvantages of these solutions are mainly fluid disturbances that cause the speed profile to be unstable. Fluid disturbance caused by changes in the transverse dimensions of the measuring tube causes an amplitude and phase oscillation of the signal, which again reduces the accuracy and stability of the meter. In addition, parasite waves impair the signal-to-noise ratio.
Pri nekaterih rešitvah parazitne valove dodatno dušijo z ovirami (DE 3941544) ali z vboklinami in izboklinami na stenah merilne cevi (DE 4010148).In some embodiments, parasite waves are further damped by obstructions (DE 3941544) or by indentations and protrusions on the walls of the measuring tube (DE 4010148).
Druga izvedba števcev, ki jih navaja literatura, ima merilno cev okroglega ali pravokotnega preseka z osno nameščenima ultrazvočnima pretvornikoma (EP 580099, EP 907069, EP 682773). Ena od pomanjkljivosti teh rešitev je v zavitih poteh toka fluida, ki utegne povzročiti turbulence in povečan padec tlaka. Ta problem minimizirajo s posebnimi konstrukcijskimi rešitvami. Takšne izvedbe zahtevajo uporabo ultrazvočnih pretvornikov, ki ozvočujejo merilno cev homogeno (po preseku).Another embodiment of the literature cited has a measuring tube of circular or rectangular cross section with axially mounted ultrasonic transducers (EP 580099, EP 907069, EP 682773). One of the drawbacks of these solutions lies in the convoluted fluid flow paths, which can cause turbulence and increased pressure drop. They minimize this problem with special design solutions. Such embodiments require the use of ultrasonic transducers that sound the measuring tube homogeneously (cross-section).
Izumitelj ni zadovoljen z obstoječimi rešitvami, zato predlaga novo obliko merilne cevi brez fluidičnih ovir in s takšno namestitvijo ultrazvočnih pretvornikov, pri kateri ne prihaja do parazitnih ultrazvočnih valov.The inventor is not satisfied with the existing solutions, so he proposes a new design of the measuring tube without fluid obstacles and with such installation of ultrasonic transducers, which does not produce parasitic ultrasonic waves.
Opis nove rešitveDescription of the new solution
Bistvo nove rešitve je v ravnih stenah merilne cevi in ultrazvočnih pretvornikov umaknjenih iz toka fluida. S pomočjo reflektorjev ultrazvoka je dosežena zahtevana oblika ultrazvočnega snopa na vstopu v tok fluida in pri prihodu na drug pretvornik (sprejemnik). Ker je postopkov merjenja prostominskega pretoka fluidov, glede na poti ultrazvočnega snopa, več, je več tudi variant merilnih cevi po pričujočem izumu. Na slikah 1 do 4 so prikazane štiri različne variante merilnih cevi s pripadajočimi ultrazvočnimi pretvorniki in sicer:The essence of the new solution lies in the flat walls of the measuring tube and ultrasonic transducers withdrawn from the fluid flow. With the help of ultrasound reflectors, the required shape of the ultrasound beam is achieved at the inlet of the fluid flow and upon arrival at another transducer (receiver). As there are more procedures for measuring the volume flux of fluid, depending on the paths of the ultrasonic beam, there are also more variants of measuring tubes according to the present invention. Figures 1 to 4 show four different variants of measuring tubes with their associated ultrasonic transducers, namely:
-3Slika 1 : Vzdolžni prerez merilne cevi z oddajnim in sprejemnim ultrazvočnim pretvornikom in paraboličnima reflektoijema, ki so vsi umaknjeni iz toka fluida.-3Figure 1: Longitudinal section of a measuring tube with a transmitter and receiver ultrasonic transducer and parabolic reflections, all of which are withdrawn from fluid flow.
Slika 2 : Vzdolžni prerez merilne cevi kot na sl. 1 le s krajšo razdaljo med pretvornikoma.Figure 2: Longitudinal section of the measuring tube as in Figs. 1 with only a shorter distance between the inverters.
Slika 3 : Vzdolžni prerez merilne cevi z oddajnim in sprejemnim ultrazvočnim pretvornikom in eliptičnima reflektrojema, ki so vsi umaknjeni iz toka fluida.Figure 3: Longitudinal section of a measuring tube with a transmitter and receiver ultrasonic transducer and elliptical reflectors, all of which are withdrawn from the fluid flow.
Slika 4 : Vzdolžni prerez merilne cevi z oddajnim in sprejemnim ultrazvočnim pretvornikom in paraboličnima reflektoijema, pri čemer je pot ultrazvočnega vala v cevi v smeri osi toka fluida.Figure 4: Longitudinal cross section of a measuring tube with a transmitter and receiver ultrasonic transducer and parabolic reflections, the path of the ultrasonic wave in the tube being in the direction of the fluid flow axis.
V nadaljevanju bodo vse štiri variante podrobneje opisane. Ker postopki merjenja prostominskega pretoka fluidov predstavljajo stanje tehnike, bodo v opisu zajeti le toliko, kolikor je potrebno za razumevanje nove rešitve.In the following, all four variants will be described in more detail. Because fluid flow measurement procedures represent a state of the art, the description will only cover as much as is necessary to understand the new solution.
Merilna cev 1, prikazana na sliki 1 ima zgornjo steno 11 in spodnjo steno 12 ravno. Obe steni sta paralelni. Na zgornji steni 11 sta dve odprtini, od katerih vsaka vodi v prostor z ultrazvočnim pretvornikom Tl oziroma T2 in reflektoijem Rl oziroma R2. Namestitev pretvornikov je takšna, da je smer oddajanja in sprejemanja ultrazvočnega valovanja proti srednjemu delu merilne cevi 1. Reflektoija Rl in R2 sta parabolična. Ultrazvočno valovanje, izhajajoče iz ultrazvočnega pretvornika Tl oziroma T2, se po odboju od reflektroja Rl oziroma R2 širi v tok fluida kot ravni val brez divergence, zaradi česar v merilni cevi ne nastajajo parazitni valovi. Oddani ultrazvočni val po večkratnem odboju od sten 11 in 12, vstopi v drugo odprtino in se po odboju od reflektoija Rl ali R2 zbere na površini pretvornika Tl oziroma T2, ki sta postavljena v gorišču reflektoijev Rl oziroma R2.The measuring tube 1 shown in Figure 1 has an upper wall 11 and a lower wall 12 straight. Both walls are parallel. There are two openings on the upper wall 11, each leading to a space with an ultrasonic transducer T1 or T2 and a reflectance R1 and R2 respectively. The placement of the transducers shall be such that the direction of transmission and reception of the ultrasonic wave towards the middle part of the measuring tube 1. The reflections Rl and R2 are parabolic. The ultrasonic waves emanating from the ultrasonic transducer Tl or T2, after reflection from the reflector Rl or R2, propagate into the fluid flow as a plane wave without divergence, which causes no parasitic waves to form in the measuring tube. The emitted ultrasonic wave, after multiple reflections from walls 11 and 12, enters the second opening and collects after reflection from the reflections R1 or R2 on the surface of the transducers T1 and T2, respectively, which are placed in the focus of the reflections R1 and R2 respectively.
Bistvena razlika in prednost glede na dosedanje rešitve je v tem, da sta steni 11 in 12 merilne cevi 1 ravni in brez ovir, kar pomeni, da ne povzročata turbulentnih motenj v toku fluida. Zaradi konvergiranj zvočnega snopa pred vstopom v tok fluida ne prihaja do parazitnih valov. Fluidična stabilnost hitrostnega profila toka pomeni večjo stabilnost merilnika, odsotnost parazitnih valov pa povečuje točnost merilnika.The essential difference and advantage over the solutions so far is that the walls 11 and 12 of the measuring tube are 1 straight and without obstructions, which means that they do not cause turbulent disturbances in fluid flow. Due to the convergence of the sound beam, no parasite waves are produced before entering the fluid stream. Fluid stability of the velocity profile of the current means greater stability of the meter, and the absence of parasite waves increases the accuracy of the meter.
Izvedba merilne cevi 1,prikazane na sliki 2 se razlikuje od prejšnje izvedbe le po tem, da sta ultrazvočna pretvornika Tl in T2 nameščena nad srednjim delom merilne cevi 1 ter oddajata in sprejemata ultrazvočno valovanje v in iz smeri priključkov (koncev) merilne cevi 1. Prednost te izvedbe je v reducirani celotni dolžini merilne cevi 1.The embodiment of the measuring tube 1 shown in Figure 2 differs from the previous one only in that the ultrasonic transducers Tl and T2 are located above the middle part of the measuring tube 1 and emit and receive ultrasonic waves into and out of the direction (terminals) of the measuring tube 1. The advantage of this embodiment is the reduced full length of the measuring tube 1.
Pri varianti merilne cevi 1, prikazani na sliki 1 je sprememba smeri ultrazvočnega valovanja manjša od 90 stopinj, dočim je pri varianti, prikazani na sliki 2 večja od 90 stopinj, zaradi tega je pri prvi varianti vpad ultrazvočnega valovanja na parabolični reflektor pod večjimIn the case of the measuring tube 1 shown in Figure 1, the change in the direction of the ultrasonic wave is less than 90 degrees, while in the case of the variant shown in Figure 2 it is greater than 90 degrees.
-4kotom, kar pomeni ožji snop in manjšo odprtino v zgornji steni 11 merilne cevi 1. Manjša odprtina pomeni zopet manjšo fluidično motnjo, kar je pomembno zlasti pri merjenju pretoka tekočin, zato je ta izvedba bolj primerna za meijenje pretoka tekočin, dočim je za meijenje pretoka plinov možno s pridom uporabiti varianto, prikazano na sl. 2.-4, which means a narrower beam and a smaller opening in the upper wall 11 of the measuring tube 1. A smaller opening means again a smaller fluid disturbance, which is especially important when measuring the flow of liquids, so this design is more suitable for changing the flow of liquids than it is for changes. The gas flow can advantageously be utilized by the variant shown in FIG. 2.
Merilna cev 1, prikazana na sliki 3 ima reflektoija RI in R2, ki sta dela plašča rotacijskih elipsoidov El in E2. Ultrazvočna pretvornika Tl in T2 sta nameščena v goriščih Gl 1 in G21 rotacijskih elipsoidov El in E2. Rotacijska elipsoida sta postavljena tako, da imata skupno drugo žarišče G12 oziroma G22. Spodnja stena 12 merilne cevi 1 je nameščena tako, da se preko nje gorišČe G12 elipsoida El zrcali na zgornjo steno 11 merilne cevi 1. Valovanje, ki izhaja iz ultrazvočnega pretvornika Tl oziroma T2 se po odboju od reflektroja RI ali R2 konvergentno usmeri proti spodnji steni 12 merilne cevi 1 in nato v preslikano gorišče Gl2 ali G22 na zgornji steni 11 merilne cevi 1. Po odboju se valovanje divergentno širi do reflektorja RI ali R2, ki ga nato konvergentno usmeri v sprejemni pretvornik Tl oziroma T2.Measurement tube 1 shown in Figure 3 has reflections RI and R2, which are part of the sheath of rotary ellipsoids El and E2. The ultrasonic transducers Tl and T2 are located in the focal points Gl 1 and G21 of the rotational ellipsoids El and E2. The rotating ellipsoids are arranged so that they have a common focal point G12 and G22 respectively. The lower wall 12 of measuring tube 1 is positioned to mirror the upper wall 11 of measuring tube 1 through the top G12 of the ellipsoid El 1. The wave resulting from the ultrasonic transducer Tl or T2 is converged towards the lower wall after reflection from the RI or R2 reflector. 12 of the measuring tube 1 and then to the mapped focal point Gl2 or G22 on the upper wall 11 of the measuring tube 1. After reflection, the wave propagates divergently to the reflector RI or R2, which then converges it to the receiving transducer T1 and T2, respectively.
Prednost te rešitve je poleg fluidične stabilnosti tudi odsotnost parazitnih valov zaradi konvergentnega vstopanja ultrazvočnega valovanja v odprtino merilne cevi.The advantage of this solution is, in addition to fluid stability, the absence of parasite waves due to the convergent entry of ultrasonic waves into the opening of the measuring tube.
Na sliki 4 je prikazana četrta varianta merilne cevi 1. Tudi v tem primeru sta ultrazvočna pretvornika Tl in T2 s pripadajočima reflektoijema RI in R2 postavljena izven toka fluida. Oba reflektroja sta parabolična. Valovanje, izhajajoče iz reflektorja je ravni, nedivergentni val, ki vstopa v fluid vzporedno z osjo toka fluida. Zaradi tega vzporednega valovanja v merilni cevi 1 ne prihaja do parazitnih valov, ki bi se v cevi širili poševno na stene cevi. Ultrazvočna pretvornika Tl in T2 s pripadajočima reflektoijema RI in R2 sta umaknjena od krajišč merilne cevi, da lahko fluid nemoteno vstopa in izstopa iz merilne cevi 1, poleg tega pa sta od fluida ločena še s stenama 111 oziroma 112.Figure 4 shows the fourth variant of measuring tube 1. In this case, too, the ultrasonic transducers Tl and T2, with their respective reflections RI and R2, are positioned out of the fluid flow. Both reflectors are parabolic. The ripple emanating from the reflector is a straight, non-divergent wave that enters the fluid parallel to the axis of the fluid flow. This parallel wave does not cause parasite waves in the measuring tube 1 to propagate obliquely into the pipe walls. The ultrasonic transducers Tl and T2, with their respective reflections RI and R2, are removed from the ends of the measuring tube so that fluid can enter and exit the measuring tube 1 smoothly and are separated from the fluid by walls 111 and 112 respectively.
Prednosti predlaganih rešitev so poleg že navedenih še manjša občutljivost ultrazvočnih pretvornikov na morebitne fluidične tlačne udare in odlaganje drobnih prašnih delcev, ki so prisotni v toku fluida, a so premajhni, da bi jih sito na vhodu izločilo.The advantages of the proposed solutions are, in addition to those already mentioned, the lower sensitivity of ultrasonic transducers to possible fluid pressure shocks and the deposition of fine dust particles present in the fluid stream but too small to be eliminated by the sieve at the inlet.
Postopki meijenja prostominskega pretoka fluidov, razen postopka, kateremu je namenjena nova rešitev, prikazana na sl. 3, so razumljivi brez posebne razlage, postopek meijenja prostominskega pretoka fluida pri katerem je oddajni oziroma sprejemni ultrazvočni pretvornik v enem od gorišč rotacijskega elipsoida pa je opisan v spisu DE 19549162.Processes for changing the free-flowing fluid flow, except for the process for which a novel solution is shown in FIG. 3 are understood without special explanation, and the procedure for changing the fluid volume flow in which the transmitter or receiver ultrasonic transducer is in one of the focal points of the rotary ellipsoid is described in file DE 19549162.
Iskraemeco, d.d.Iskraemeco, d.d.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI9900208A SI20391A (en) | 1999-09-06 | 1999-09-06 | Measurement tube of ultrasonic instrument for measuring volumetric fluid throughput |
EP00103344A EP1096236A3 (en) | 1999-09-06 | 2000-02-22 | Ultrasonic flowmeter for fluids |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI9900208A SI20391A (en) | 1999-09-06 | 1999-09-06 | Measurement tube of ultrasonic instrument for measuring volumetric fluid throughput |
Publications (1)
Publication Number | Publication Date |
---|---|
SI20391A true SI20391A (en) | 2001-04-30 |
Family
ID=20432527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI9900208A SI20391A (en) | 1999-09-06 | 1999-09-06 | Measurement tube of ultrasonic instrument for measuring volumetric fluid throughput |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1096236A3 (en) |
SI (1) | SI20391A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10120355A1 (en) * | 2001-04-26 | 2002-10-31 | Elster Gmbh | Ultrasonic flow measurement of fluids such as natural gas, has acoustic transceivers that direct divergent beams of sound waves to sections of the pipe shaped to form parabolic reflectors |
DE102004060118A1 (en) * | 2004-12-13 | 2006-06-14 | Endress + Hauser Flowtec Ag | Device for determining and / or monitoring volume and / or mass flow |
DE102005007241B4 (en) * | 2005-02-17 | 2007-05-31 | Hydrometer Gmbh | Flowmeter |
DE102006038620A1 (en) * | 2006-08-17 | 2008-02-21 | Hydrometer Gmbh | Flowmeter |
DE102006041530B4 (en) * | 2006-09-05 | 2008-10-30 | Continental Automotive Gmbh | Method for air mass measurement and air mass sensor |
DE102007011546B4 (en) | 2007-03-09 | 2009-07-30 | Hydrometer Gmbh | fluid meter |
DE102012101098A1 (en) * | 2012-02-10 | 2013-08-14 | Endress + Hauser Flowtec Ag | Ultrasonic flowmeter and method for determining the flow rate or volumetric flow of a fluid |
CN110108330B (en) * | 2019-06-04 | 2024-09-24 | 武汉友讯达科技有限公司 | Water meter measuring tube and ultrasonic water meter |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004461A (en) * | 1975-11-07 | 1977-01-25 | Panametrics, Inc. | Ultrasonic measuring system with isolation means |
US5277070A (en) * | 1991-08-01 | 1994-01-11 | Xecutek Corporation | Ultrasonic gas flow measurement method and apparatus |
FR2776379B1 (en) * | 1998-03-19 | 2000-04-28 | Schlumberger Ind Sa | GAS COUNTER WITH DUST FILTERS |
-
1999
- 1999-09-06 SI SI9900208A patent/SI20391A/en not_active IP Right Cessation
-
2000
- 2000-02-22 EP EP00103344A patent/EP1096236A3/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
EP1096236A3 (en) | 2002-07-31 |
EP1096236A2 (en) | 2001-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2742257C2 (en) | Flow meter having a measuring channel | |
US11035708B2 (en) | Clamp-on ultrasonic sensor having coupling element adapted for respective measuring tube | |
EP1742024B1 (en) | Ultrasonic flowmeter with triangular cross section | |
EP0681685B1 (en) | Fluid flow meter | |
US5962790A (en) | Ultrasonic path bundle and systems | |
US5717145A (en) | Detector for an ultrasonic flow meter | |
US7503225B2 (en) | Ultrasonic flow sensor having a transducer array and reflective surface | |
JPH05502295A (en) | ultrasonic flow meter | |
DK161259B (en) | FLOW FLOW METER WITH ULTRO SOUND AND PROCEDURE FOR OPERATING A TRANSFER IN A FLOW FLOW | |
US20150204704A1 (en) | Ultrasonic, Flow Measuring Device | |
SI20391A (en) | Measurement tube of ultrasonic instrument for measuring volumetric fluid throughput | |
US20230243683A1 (en) | Flowmeter and method for meausuring the flow of a fluid | |
JPH09511570A (en) | Ultrasonic transducer holding device | |
US5907099A (en) | Ultrasonic device with enhanced acoustic properties for measuring a volume amount of fluid | |
JPS6159216A (en) | Acoustic type fluid flowmeter | |
US6338277B1 (en) | Flowmeter for attenuating acoustic propagations | |
US11835372B2 (en) | Clamp-on ultrasonic transducer arrangement independent of measuring tube diameter at a measuring point and method for commissioning the same | |
EP1439377A2 (en) | Ultrasound flow meter using a parabolic reflecting surface | |
KR100311855B1 (en) | Fluid flow meter | |
US3204457A (en) | Ultrasonic flowmeter | |
JP2001021398A (en) | Ultrasonic flowmeter | |
JP5113354B2 (en) | Ultrasonic flow meter | |
JP4368591B2 (en) | Ultrasonic flow meter | |
JP2000065613A (en) | Ultrasonic flowmeter | |
JPH11271117A (en) | Ultrasonic flowmeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
IF | Valid on the prs date | ||
KO00 | Lapse of patent |
Effective date: 20060419 |