SI20046A - Ultrasonic transducer and procedure for its manufacture - Google Patents
Ultrasonic transducer and procedure for its manufacture Download PDFInfo
- Publication number
- SI20046A SI20046A SI9800203A SI9800203A SI20046A SI 20046 A SI20046 A SI 20046A SI 9800203 A SI9800203 A SI 9800203A SI 9800203 A SI9800203 A SI 9800203A SI 20046 A SI20046 A SI 20046A
- Authority
- SI
- Slovenia
- Prior art keywords
- layer
- metallized
- plate
- channels
- transducers
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 12
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000004033 plastic Substances 0.000 claims abstract description 10
- 229920003023 plastic Polymers 0.000 claims abstract description 10
- 238000002604 ultrasonography Methods 0.000 claims abstract description 7
- 239000011324 bead Substances 0.000 claims description 19
- 230000006978 adaptation Effects 0.000 claims description 16
- 239000003822 epoxy resin Substances 0.000 claims description 13
- 229920000647 polyepoxide Polymers 0.000 claims description 13
- 238000005520 cutting process Methods 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 7
- 229910000679 solder Inorganic materials 0.000 claims description 3
- 238000005476 soldering Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 20
- 230000003044 adaptive effect Effects 0.000 abstract description 4
- 239000003960 organic solvent Substances 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 abstract description 4
- 239000011347 resin Substances 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 239000010432 diamond Substances 0.000 abstract description 2
- 229910003460 diamond Inorganic materials 0.000 abstract description 2
- 239000003345 natural gas Substances 0.000 abstract description 2
- 238000007711 solidification Methods 0.000 abstract 1
- 230000008023 solidification Effects 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 14
- 230000010355 oscillation Effects 0.000 description 11
- 239000011521 glass Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000011888 foil Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000013017 mechanical damping Methods 0.000 description 1
- 230000010358 mechanical oscillation Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0644—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
- B06B1/0648—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of rectangular shape
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2437—Piezoelectric probes
- G01N29/245—Ceramic probes, e.g. lead zirconate titanate [PZT] probes
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/02—Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02836—Flow rate, liquid level
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
ULTRAZVOČNI PRETVORNIK IN POSTOPEK ZA NJEGOVO IZDELAVOTHE ULTRASONIC CONVERTER AND THE PROCEDURE FOR ITS MANUFACTURING
Področje tehnikeThe field of technology
Izum sodi v področje tehnike ultrazvočnih piezoelektričnih pretvornikov. Po MPK spada v razred H 04 R 7/10.The invention belongs to the field of technology of ultrasonic piezoelectric transducers. According to MPK, it belongs to class H 04 R 7/10.
Tehniški problemTechnical problem
Izum rešuje tehniški problem konstrukcije in izdelave piezoelektričnega ultrazvočnega pretvornika majhnih mer, nizke cene in dobre akustične prilagoditve na plin pri frekvencah nad 200 kHz.The invention solves the technical problem of designing and manufacturing a small-size piezoelectric ultrasonic transducer, low cost and good acoustic gas tuning at frequencies above 200 kHz.
Stanje tehnikeThe state of the art
Ultrazvočni merilniki pretoka plinov uporabljajo ultrazvočne pretvornike za oddajanje in sprejemanje ultrazvočnega valovanja. Razlika časa preleta v smeri toka in proti toku je osnova za določanje hitrosti oziroma prostominskega pretoka plina. Merilniki porabe plina v gospodinjstvih so velikoserijski izdelki, pri katerih je za uspešno prodajo izredno pomembna nizka cena v primerjavi z merilniki na meh. Znižanje cene ultrazvočnih pretvornikov pa je eden od načinov za znižanje cene merilnika.Ultrasonic gas flow meters use ultrasonic transducers to transmit and receive ultrasonic waves. The difference in flow time in the direction of flow and flow is the basis for determining the velocity or free flow of gas. Household gas meters are large-scale products where low cost in comparison to bellows meters is extremely important for successful sales. Lowering the price of ultrasonic transducers, however, is one way to reduce the price of the meter.
V doslej znanih rešitvah (DE 2537788, EP 0347096) so imeli ultrazvočni pretvorniki za merilnike pretoka plinov aktivno piezoelektrično ploščico, najpogosteje okrogle oblike, pasivno prilagodilno plast za boljšo akustično prilagoditev na plin in okrov v katerega je ultrazvočni pretvornik zalit z zalivno maso, ki je v posameznih primerih izbrana tako, da duši nihanje pretvornika, da bi na ta način dosegli širši frekvenčni pas. Takšna konstrukcija zahteva bodisi posamično izdelavo ultrazvočnih pretvornikov ali sočasno izdelavo večjega števila pretvornikov v zahtevnejših in tudi dražjih orodjih.In prior art solutions (DE 2537788, EP 0347096), ultrasonic transducers for gas flowmeters have an active piezoelectric plate, most commonly circular, a passive adaptation layer for better acoustic adaptation to gas, and an enclosure into which the ultrasonic transducer is filled with a pouring mass, which is in each case chosen to suppress the oscillation of the inverter in order to reach a wider frequency band. Such construction requires either the individual production of ultrasonic transducers or the simultaneous production of a large number of transducers in more sophisticated and also more expensive tools.
Cena piezoelektričnega ultrazvočnega pretvornika je sestavljena iz cene piezoelektričnega materiala, kije sorazmerna masi in cene izdelave, ki je neodvisna od velikosti piezoelektrične ploščice. Z obstoječo tehnologijo zato ni možna bistvena pocenitev ultrazvočnih pretvornikov.The price of a piezoelectric ultrasonic transducer consists of the price of the piezoelectric material, which is proportional to the mass and the cost of manufacture, which is independent of the size of the piezoelectric plate. Existing technology therefore makes it impossible to significantly reduce the cost of ultrasonic transducers.
Opis nove rešitveDescription of the new solution
Bistvo nove rešitve je hkratna izdelava večjega števila pretvornikov z razrezom večje piezoelektrične ploščice.The essence of the new solution is the simultaneous production of a large number of transducers with the cutting of a larger piezoelectric plate.
Podrobneje bo nova rešitev pojasnjena v nadaljevanju in s pomočjo slik, ki prikazujejo:The new solution will be explained in more detail below and with the help of pictures showing:
Slika 1 : Ultrazvočni pretvornik po izumu.Figure 1: Ultrasound transducer of the invention.
Slika 2 : Piezokeramična ploščica z metalizirammi kanali v (prečnem prerezu).Figure 2: Piezoceramic tile with metallic channels in (cross section).
Slika 3 : Piezokeramična ploščica s kanali zapolnjeni z električno prevodno smolo (v prečnem prerezu).Figure 3: Piezoceramic tile with channels filled with electrically conductive resin (cross section).
Slika 4 : Piezokeramična ploščica s prilagodilno plastjo in nakazanimi rezi.Figure 4: Piezoceramic tile with an adjustable layer and pointed cuts.
Slika 5 : Skupina pretvornikov po izumu (v prečnem prerezu).Figure 5: A group of transducers according to the invention (in cross section).
Ultrazvočni pretvornik po izumu je narejen iz piezoelektrične keramike. Piezoelektrična ploščica 11 je polarizirana po debelini, kar pomeni, daje dipolni električni moment orientiran v smeri debeline ploščice 11 oziroma pravokotno na oddajno ploskev 31 piezoelektrične ploščice 11 (slika 1). Zgornja ploskev 31 (slika 1) in spodnja ploskev 32 pretvornika imata elektrodi v obliki tanke plasti napatjene kovine in sta električno spojeni z elektronskim vezjem. Pri električnem vzbujanju ploščica 11 zaniha z najbližjo ali kombinacijo najbližjih izrazitejših resonančnih frekvenc. V primeru pretvornika, ki je predmet izuma, zaniha ploščica 11 v planamem načinu. To je sofazno ravninsko nihanje pri katerem se piezoelektrična ploščica 11 sofazno razteza in krči v obeh pravokotnih prečnih smereh. Posledično se ploščica 11 deformira v debelinski smeri z nasprotno fazo glede na prečno nihanje. Tako nastalo nihanje debeline (thickness mode vibration) pretvornika je osnova za generacijo zvočnih valov v plinu. Za oddajo ultrazvoka je uporabljena zgornja ploskev 31 pretvornika. Zaradi velike razlike akustičnih impedanc, to je produkta zvočne hitrosti in gostote v plinu in keramiki, je za učinkovit prenos energije od zgornje ploskve 31 pretvornika v plin in obratno, potrebna impedančna prilagodilna plast 5. Resonančna frekvenca ultrazvočnega pretvornika je obratno sorazmerna z odgovarjajočo mero piezoelektrične ploščice 11. V primeru planamega nihanja je to širina oziroma dolžina ploščice 11, v primeru nihanja debeline pa je to debelina ploščice Π. V ultrazvočnem pretvorniku, ki je predmet izuma, je uporabljen planami način nihanja zaradi sprejemljivih mer ploščice 11 v prečni smeri (okoli 5 mm) pri frekvenci ultrazvoka nekaj sto kHz. V primeru nihanja debeline z enako frekvenco bi morala biti debelina piezokeramične ploščice 11 okoli 5 mm, kar pri enaki površini sevalne ploskve pomeni večjo maso piezoelektričnega materiala. To tudi pomeni večji materialni strošek in slabšo homogenost keramike.The ultrasonic transducer of the invention is made of piezoelectric ceramics. The piezoelectric plate 11 is polarized in thickness, which means that the dipole electric moment is oriented in the thickness direction of the plate 11 or perpendicular to the transmitter surface 31 of the piezoelectric plate 11 (Figure 1). The upper surface 31 (Figure 1) and the lower surface 32 of the converter have electrodes in the form of a thin layer of charged metal and are electrically coupled to an electronic circuit. In electrical excitation, plate 11 oscillates with the closest or a combination of the nearest more pronounced resonant frequencies. In the case of the converter of the invention, the plate 11 is rotated in the planar mode. This is a sophisticated plane oscillation in which the piezoelectric plate 11 extends and shrinks in both orthogonal transverse directions. Consequently, the plate 11 deforms in the thickness direction with the opposite phase relative to the transverse oscillation. The resulting thickness mode vibration of the transducer is the basis for the generation of sound waves in the gas. The top surface 31 of the transducer is used for ultrasound delivery. Due to the large difference in acoustic impedances, that is, the product of sound velocity and density in gas and ceramics, an efficient impedance adaptation layer 5 is required for efficient energy transfer from the upper surface 31 of the converter to the gas and vice versa. The resonant frequency of the ultrasonic transducer is inversely proportional to the corresponding piezoelectric dimension. tile 11. In the case of planar oscillation, this is the width or length of tile 11, and in the case of thickness oscillation, it is the thickness of the tile Π. In the ultrasonic transducer of the invention, a planar oscillation method is used due to the acceptable dimensions of the plate 11 in the transverse direction (about 5 mm) at an ultrasound frequency of several hundred kHz. In the case of thickness fluctuations with the same frequency, the thickness of the piezoceramic tile 11 should be about 5 mm, which means that the mass of the piezoelectric material is greater with the same surface of the radiation surface. This also means a higher material cost and less homogeneity of ceramics.
Za dober izkoristek energije pretvornika pa je potrebna še akustična prilagoditev na plin oziroma zrak. Doslej znane rešitve uporabljajo plast 5 debeline dm = λ/4, katere specifična akustična impedanca Uzmnožek gostote plasti in hitrosti zvoka v tej plasti), je blizu geometrijske sredine akustičnih impedanc piezoelektrične keramike in plina. V primeru piezoelektrične keramike in zraka kot medija, z akustičnima impedancama 34 Mrayl oziroma 410 Rayl pri monokromatskem delovanju, je teoretično zahtevana impedanca prilagoditvene plasti 5 0,12 MRayl. To je mogoče doseči z zmanjšanjem gostote plasti 5 in zmanjšanjem hitrosti zvoka v plasti 5, pri tem pa se absorpcija valovanja v plasti 5 ne sme bistveno povečati. Pri dosedanjih rešitvah (npr. DE 25 37 788) je ta plast narejena kot zmes votlihHowever, acoustic adaptation to gas or air is also required for good inverter energy efficiency. The known solutions so far use layer 5 with thickness dm = λ / 4, whose specific acoustic impedance is the product of the density of the layer and the velocity of sound in that layer) is close to the geometric mean of the acoustic impedances of the piezoelectric ceramic and gas. In the case of piezoelectric ceramics and air as a medium, with acoustic impedances of 34 Mrayl or 410 Rayl in monochromatic operation, the impedance of the adaptation layer 5 0.12 MRayl is theoretically required. This can be achieved by reducing the density of layer 5 and reducing the speed of sound in layer 5, while the wave absorption in layer 5 should not be significantly increased. In the present solutions (eg DE 25 37 788) this layer is made as a mixture of hollows
-4· steklenih ali kremenčevih (S1O2) kroglic in viskoelastične smole (npr. epoksidna smola ali polistirol). V primeru polistirola in steklenih kroglic gostote 0,3 g/cm3 je bila dosežena specifična akustična impedanca 0,36 MRayl, z uporabo kvarčnih kroglic gostote 0,18 g/cm3 pa okoli 0,26 Mrayl. Z uporabo benzola kot redčila, se je ta impedanca zmanjšala na okoli 0,21 MRayl, pri gostoti plasti 5 okoli 0,16 g/cm3. Zaradi občutljivosti polistirola na nekatera organska topila, ki so lahko prisotna v zemeljskem plinu, je tovrstna zmes neprimerna za delovanje v takšnem mediju. Tedaj je bolj primerna zmes votlih steklenih kroglic in o-4 · Glass or silica (S1O2) beads and viscoelastic resins (eg epoxy resin or polystyrene). In the case of polystyrene and glass beads with a density of 0.3 g / cm 3 , a specific acoustic impedance of 0.36 MRayl was achieved, and using quartz beads with a density of 0.18 g / cm 3 about 0.26 Mrayl. Using benzene as the diluent, this impedance was reduced to about 0.21 MRayl, at a layer 5 density of about 0.16 g / cm 3 . Due to the sensitivity of polystyrene to certain organic solvents that may be present in natural gas, this mixture is unsuitable for operation in such a medium. A mixture of hollow glass beads and o
epoksidne smole. S to zmesjo je dosegljiva gostota okoli 0,5 - 0,6 g/cm in hitrost zvoka okoli 2200 - 2400 m/s, kar pomeni, daje specifična akustična impedanca okoli 1-1,4 Mrayl. Prilagoditveno plast 5 za pline, ki vsebujejo organska topila, lahko izboljšamo v smislu zmanjšanja impedance z uporabo votlih plastičnih kroglic in nizkoviskozne epoksidne smole.Z uporabo impregnacijske epoksidne smole LY5138 in votlih kroglic iz akrilonitrila proizvajalca Expancel so bile dosežene gostote 0,34 g/cm3 in zvočne hitrosti 1470 m/s, kar pomeni, da je impedanca okoli 0,5 Mrayl, pri čemer so imele votle kroglice srednji premerepoxy resins. With this mixture, a density of about 0.5 - 0.6 g / cm and a sound speed of about 2200 - 2400 m / s are available, which means that the specific acoustic impedance is about 1-1.4 Mrayl. Adaptation layer 5 for gases containing organic solvents can be improved in terms of impedance reduction using hollow plastic beads and low-viscosity epoxy resin. Densities of 0.34 g / cm were obtained using the LY5138 impregnation epoxy resin and acrylonitrile hollow beads 3 and an audio speed of 1470 m / s, which means that the impedance is about 0.5 Mrayl, with the hollow balls having a medium diameter
A v e okoli 60 μπι m gostoto okoli 0,03 g/cm . Zal pa je absorpcija zvoka približno štirikrat večja kot pri plasti s steklenimi votlimi kroglicami. Pri debelejših plasteh je to moteče zaradi večjega slabljenja koristnega signala, vendar pa so pri prehodu na višjo frekvenco delovanja f in pri zmesi z manjšo hitrostjo zvoka Cm potrebne tanjše prlagoditvene plasti dm — λ/4 = Cm/fHowever, at a density of about 0.03 g / cm, in v e about 60 μπι m. Unfortunately, the sound absorption is about four times higher than that of glass hollow beads. For thicker layers, this is annoying because of the greater attenuation of the useful signal, however, when switching to a higher frequency of operation f and a mixture with a lower speed of sound Cm, thinner adaptation layers dm are required - λ / 4 = Cm / f
V tem primeru je slabljenje manjše.In this case, the attenuation is smaller.
Pri ultrazvočnem pretvorniku s sevalno ploskvijo kvadratne oblike s stranico a = 4,55 mm je frekvenca delovanja f = 350 kHz, kar pri doseženi zvočni hitrosti Cm = 1470 m/s v prilagodilni plasti 5 pomeni debelino dm približno 1 mm (slika 1). To je približno četrtina debeline plasti 5 kot jo imajo ultrazvočni pretvorniki, ki delajo na frekvencah 150 - 200 kHz in uporabljajo prilagodilno plast 5 iz epoksidne smole in votlih steklenih ali kvarčnih kroglic. Zaradi štirikrat večjih izgub zaradi absorpcije v plasti 5, ki vsebuje votle plastične kroglice, je ta zmes uporabna zgolj pri ultrazvočnih pretvornikih, ki delujejo s frekvencami nad 300 kHz. V tem primeru niso izgube zaradi absorpcije nič večje kot pri zmesi, ki vsebuje steklene votle kroglice, pri pretvornikih delujočih s frekvencami pod 200 kHz. V pogledu akustične prilagojenosti na plin, pa je zmes s plastičnimi votlimi kroglicami ugodnejša zaradi manjše akustične impedance. Teoretično oceno za prehod energije iz piezokeramike v plin za enodimenzionalni in monokromatski primer je možno podati s pomočjo teorije transmisijskih linijFor a square-shaped ultrasonic transducer with a = 4.55 mm side, the operating frequency is f = 350 kHz, which at an attained acoustic velocity of Cm = 1470 m / s in adaptation layer 5 means a dm thickness of approximately 1 mm (Figure 1). This is about a quarter of the thickness of layer 5 as in the case of ultrasonic transducers operating at frequencies of 150 - 200 kHz and using an adaptive layer 5 of epoxy resin and hollow glass or quartz beads. Due to four times the absorption losses in layer 5 containing hollow plastic beads, this mixture is only applicable to ultrasonic transducers operating at frequencies above 300 kHz. In this case, the absorption losses are no greater than for the mixture containing glass hollow beads for transducers operating at frequencies below 200 kHz. In terms of acoustic adaptation to gas, however, the mixture with plastic hollow beads is more favorable because of the lower acoustic impedance. A theoretical estimate for the transition of energy from piezoceramics to gas for the one-dimensional and monochromatic case can be made using transmission line theory
Te = _*-Zk-Zp_ {ζ, + zjf *cos2 k.d. + (z„ -sin2 k„d kjer je Te koeficient prenosa energije med piezoelektrično keramiko in plinom, Zk in ZP specifična akustična impedanca piezoelektrične keramike oziroma plina, km valovni vektor v prilagodilni plasti, dm debelina te plasti in Zm njena specifična akustična impedanca. V primeru, da je dm = λ/4 jeT e = _ * - Z k -Z p _ {ζ, + zjf * cos 2 kd + (z "-sin 2 k" d where Te is the energy transfer coefficient between piezoelectric ceramics and gas, Zk and Z P is the specific acoustic impedance piezoelectric ceramics or gas, km wave vector in the adaptation layer, dm the thickness of this layer and Zm its specific acoustic impedance. In case dm = λ / 4 is
Pri akustični impedanci keramike Zk = 34 Mrayl in plina ZP = 300 Rayl je pri prilagodilni plasti 5 s plastičnimi votlimi kroglicami z impedanco Zm = 0,5 Mravl prenos energije -8 dB, pri prilagodilni plasti 5 iz votlih steklenih kroglic z impedanco Zm = 1,4 Mrayl pa -17 dB. To pomeni, da so pri pretvorniku s frekvenco 350 kHz in plastičnimi kroglicami v prilagodilni plasti 5 amplitude signalov za 18 dB višje kot pri pretvorniku s frekvenco 170 kHz in votlimi steklenimi kroglicami v prilagodilni plasti 5.For acoustic impedance of ceramics Zk = 34 Mrayl and gas Z P = 300 Rayl, for the adaptation layer 5 with plastic hollow beads with impedance Zm = 0,5 Mravl the energy transfer is -8 dB, for the adaptation layer 5 of hollow glass beads with impedance Zm = 1.4 Mrayl pa -17 dB. This means that for the 350 kHz converter and the plastic beads in the adaptation layer 5, the signal amplitudes are 18 dB higher than for the 170 kHz inverter and the hollow glass beads in the adaptation layer 5.
V primeru pretvornikov s serijsko resonančno frekvenco fs približno 350 kHz in paralelno frekvenco fP približno 390 kHz, je osnovna stranica a pretvornika 4,55 mm, debelina piezokeramične plošče 2 mm, globina kanalov 0,8 mm, širina zarezanih kanalov 0,4 mm, globina kontaktnega dela stranice pretvornika 0,1 mm m debelina prilagodilne plasti 5 dm = 0,95 mm. Maksimum prenosne funkcije para pretvornikov je približno pri fs, pasovna Širina pri - 3 dB pa 40 kHz. Tako narejen pretvornik ima čas vnihavanja τ = 20 ps, kar pomeni porast signala pri vnihavanju od 10% do 90% maksimalne vrednosti v 7 periodah. Dodatno mehansko dušenje tega pretvornika ni potrebno, zato je vpetje elastično in narejeno z zalivanjem v mehko poliuretansko zalivko, katera nudi zadostno akustično izolacijo pred mehanskimi valovanji, ki bi se lahko delno širila po okrovu. Zaradi majhne mase pretvornika nudi takšna zalivka tudi zadostno oporo pri zagotavljanju pozicije..In the case of transducers with a series resonance frequency fs of approximately 350 kHz and a parallel frequency f P of approximately 390 kHz, the base side a of the converter is 4,55 mm, piezoceramic plate thickness 2 mm, channel depth 0,8 mm, notched channel width 0,4 mm , depth of contact side of transducer side 0.1 mm m adaptive layer thickness 5 dm = 0.95 mm. The maximum transfer function of the inverter pair is about f s and the bandwidth at - 3 dB is 40 kHz. The converter made in this way has an ignition time τ = 20 ps, which means an increase in the ignition signal from 10% to 90% of the maximum value in 7 periods. No additional mechanical damping of this converter is necessary, so the mounting is elastic and made by pouring into a soft polyurethane seal, which offers sufficient acoustic insulation against mechanical waves that could partially extend through the housing. Due to the small mass of the converter, such a seal also provides sufficient support for positioning.
V primeru potrebe po ustvamjanju približka ravnega vala v delu prostora, ki je širši od dolžine stranice a pretvornika , v obravnavanem primeru je to več kot 5 mm, je možna uporaba več vzporedno nameščenih in enako orientiranih pretvornikov, ki so zaliti v skupno poliuretansko zalivko. Takšna zgradba je lahko eno- ali več-vrstična. Na ta način narejen skupek ultrazvočnih pretvornikov 1 niha podobno kot pretvornik z večjo prečno mero. Zaradi sofaznih in po površini bolj izenačenih amplitud nihanja zgornje sevalne ploskve 51In the case of the need to obtain a plane wave approximation in a part of the space wider than the side length a of the converter, in this case more than 5 mm, it is possible to use several inverted and equally oriented transducers which are sealed in a common polyurethane seal. Such a structure can be single or multi-row. In this way, the set of ultrasonic transducers 1 fluctuates much like a transducer with a larger transverse dimension. Due to the sophisticated and more uniform surface oscillation amplitudes of the upper radiation plane 51
-6posameznega pretvornika (slika 2) je tudi nihanje opisanega sestava bolj homogeno m sofazno kot pri enem večjem pretvorniku enakih lateralnih mer. Ta pa potem pomeni ustvarjanje bolj homogenega ravnega vala.-6of the individual transducer (Fig. 2), the oscillation of the described composition is also more homogeneous m sophisticated than with one larger transducer of the same lateral dimensions. This then means creating a more homogeneous flat wave.
Nadaljnja možnost je sestav skupine ultrazvočnih pretvornikov, katerih spodnje strani 32 (elektrode) kot je prikazano na sliki 5 so medsebojno povezane s tanko plastjo nerazrezane keramične plošče 1. Takšna povezava omogoča zagotovitev medsebojne lege in orientacije posameznih ultrazvočnih pretvornikov sestava, hkrati pa ne povzroča takšne sklopitve mehanskega nihanja med posameznimi pretvomiškimi enotami, ki bi bistveno vplivala na nihanje takšnega sestava.A further option is the assembly of a group of ultrasonic transducers, the undersides of 32 (electrodes) as shown in Figure 5 are interconnected by a thin layer of uncut ceramic plate 1. Such a connection allows the composition and orientation of the individual ultrasonic transducers to be provided without interfering the coupling of mechanical oscillations between the individual pre-pilot units, which would significantly affect the oscillation of such a composition.
Za izdelavo preje opisanih ultrazvočnih pretvornikov s kar najmanjšimi stroški je bil razvit poseben postopek, ki izhaja iz obojestransko metalizirane piezoelektrične plošče 1 v katero najprej zarežemo paralelne kanale . Stranske stene kanalov nato metaliziramo in spravimo v električni kontakt z zgornjo elektrodo 31 s postopkom naprševanja spajkljive kovinske plasti 2 ali zapolnitvijo kanalov s prevodno epoksidno smolo 6 (slika 3). V primeru naprševanja opravimo delo v dveh korakih in sicer najprej napršimo plast Ni ali podobne kovine za zagotovitev oprijemljivosti na keramiko in nato še plast Au za dobro spajkljivost. V obeh primerih so debeline kovinskih plasti v submikrometerskem področju. Kanale nato zapolnimo z odtržno kritino 4. Zapolnitev opravimo s pomično brizgo, ki ima pomik vzdolž kanala sinhroniziran s pretokom laka. Odtržno kritino nato utrdimo v peči na temperaturi okoli 100 °C. Temu sledi nanašanje zmesi nizkoviskozne epoksidne smole in votlih plastičnih kroglic, ki jo s strgalom enakomerno razporedimo po vsej površini keramične plošče 1. Po utrditvi zmesi je možno to plast zbrusiti na predpisano debelino. Tako obdelano ploščo 1 je potrebno še prečno in vzdolžno razrezati na posamezne ploščice 11- ultrazvočne pretvornike. Podrobneje bo postopek opisan na izvedbenem primeru.In order to produce the ultrasonic transducers described above with the least cost, a special procedure has been developed, which originates from a two-sided metallized piezoelectric plate 1 into which parallel channels are first cut. The side walls of the ducts are then metallized and brought into electrical contact with the upper electrode 31 by the process of sputtering the solder metal layer 2 or filling the ducts with conductive epoxy resin 6 (Figure 3). In the case of sputtering, we perform two-step work, first spraying a layer of Ni or similar metal to provide adhesion to ceramics and then an Au layer for good soldering. In both cases, the thicknesses of the metal layers are in the submichrometer region. The fillings are then filled with a tear-off cover 4. The filling is done with a movable syringe which has a feed along the channel synchronized with the flow of varnish. The abrasive cover is then cured in an oven at about 100 ° C. This is followed by the application of a mixture of low-viscosity epoxy resin and hollow plastic beads, which is evenly distributed throughout the surface of the ceramic plate with a scraper. After curing the mixture, this layer can be sanded to the required thickness. The plate 1 thus treated must be further cut and transected longitudinally into individual tiles of 11 ultrasonic transducers. The procedure will be described in more detail in the embodiment.
Piezoelektrično ploščo 1 pritrdimo s termičnim lepilom na paleto, kar zagotavlja ponovljivo pozicijo vpetja v priprave v vseh obdelovalnih fazah. Zarezovanje opravimo z žago za zarezovanje keramičnih materialov, ki ima običajno pnevmatsko vodene pomike z natančnostjo 0,005 mm in visoke vrtljaje (15000 o/min). List žage je debel 0,35 mm in ima na rezalnem robu prilepljen diamantni prah, zato je širina reza okoli 0,4 mm. Med žaganjem mesto reza hladimo, da na ta način preprečimo depolarizacijo piezoelektričnega matertiala zaradi pregrevanja. Po opravljenem vrezovanju kanalov keramično ploščo dobro .očistimo ostankov hladiva in ostružkov. Stranske stene kanalov nato metaliziramo m spravimo v električni stik z elektrodo 31 s postopkom naprševanja spajkljive kovinske plasti 2 vThe piezoelectric plate 1 is fixed with thermal adhesive to the pallet, which ensures a repeatable position of the fixture in the devices in all the processing stages. The cutting is done with a saw for cutting ceramic materials, which usually has pneumatic guides with a precision of 0.005 mm and high speeds (15000 rpm). The saw blade is 0.35 mm thick and has diamond dust attached to the cutting edge, so the cutting width is about 0.4 mm. During sawing, the cutting site is cooled to prevent depolarization of the piezoelectric material due to overheating. After cutting the channels, the ceramic plate is well cleaned of refrigerant and chips. The lateral walls of the ducts are then metallized and electrically contacted with the electrode 31 by a sputtering process of the solder metal layer 2 in.
-7 vakuumski naprševalni napravi (vacuum sputtering device). Lahko pa kanale tudi zapolnimo s prevodno epoksidno smolo 6 (slika 3). V primeru naprševanja ta postopek opravimo v dveh korakih in sicer najprej napršimo plast Ni ali podobne kovine za zagotovitev dobre oprijemljivosti na keramiko in nato Še plast Au za dobro spajkljivost. V obeh primerih so debeline plasti v submikrometerskem področju. Kanale nato zapolnimo z odtržno kritino 4 (zaščitni lak) s pomočjo pomične brizge, ki ima pomik vzdolž kanala sinhroniziran s tokom laka iz brizge. Utrjevanje odtržne kritine vršimo v peči na temperatzuri okoli 100 °C. Sledi nanašanje zmesi niskoviskozne epoksidne smole in votlih plastičnih kroglic, ki jo s strgalom enakomerno razporedimo po površini keramične plošče. Strgalo je del namenske naprave z vodili, katera omogočajo doseganje planparalelnosti nanosa ±0,01 mm. Ravnanje zmesi s pomočjo strgala poteka v večjih korakih preko nekaj desetink mm debele poliesterske (ali slične) folije, katera je premazana z ločilnim sredstvom in je s svojo spodnjo površino v stiku z zmesjo. Namen folije je preprečiti, da bi strgalni nož pri ravnanju vlekel zmes za seboj. Tak način nanosa je potreben predvsem zato, ker v zmesi ne smejo nastati notranji tlaki, ki pomenijo kompresijo plastičnih votlih kroglic. Zato je vpenjalni del priprave za nanos prilagodilne zmesi oblikovan tako, da ima odvečna zmes veliko prostora za iztis. Po utijevanju zmesi pobrusimo plast prilagodilne zmesi na zahtevano mero. Tako obdelano ploščo 1 še razrežemo z vzdolžnimi in prečnimi rezi na posamezne pretvornike (slika 4). Delo opravimo z žago s katero smo že zarezovali kanale . Po razrezu segrejemo paleto z razrezano ploščo 1 na temperaturo okoli 120 °C, da lepilo popusti. Spodnje elektrode 32 pretvornikov očistimo od ostankov lepila z organskim topilom (npr. s Solkanom). Vzdolžni rezi potekajo po zapolnjenih kanalih tako, da dobimo na stranski ploskvi 7 kanala področje metalizacije 2, ki je v električnem kontaktu z zgornjo elektrodo 31. V primeru napršitve (slika 2) je potrebno mehansko odstraniti odtržno kritino 4, nakar se na metalizirani del 7 stranice prispajka električni vodnik. Če so kanali zapolnjeni s prevodno epoksiodno smolo, opravimo kontaktiranje s prav takšno smolo. Glede na tehnologijo izdelave pretvornikov in način kontaktiranja, je priporočljiva debelina piezoelektrične 1 plošče okoli 2 mm. Pretanka plošča 1 povzroča težave pri kontaktiranju, predebela pa pomeni večji materialni strošek.-7 vacuum sputtering devices. Alternatively, the channels can be filled with conductive epoxy resin 6 (Figure 3). In the case of spraying, this process is performed in two steps, first spraying a layer of Ni or similar metal to ensure good adhesion to the ceramic and then an Au layer for good soldering. In both cases, the thicknesses of the layers are in the submichrometer range. The channels are then filled with a retaining cover 4 (protective lacquer) by means of a movable syringe having the displacement along the channel synchronized with the flow of the syringe varnish. Hardening of the tile roof is carried out in an oven at a temperature of about 100 ° C. This is followed by the application of a mixture of low-viscosity epoxy resin and hollow plastic beads, which is evenly distributed over the surface of the ceramic plate with a scraper. The scraper is a part of a dedicated device with guides that allow for a planar parallel of ± 0.01 mm. The treatment of the mixture by means of a scraper is carried out in large increments over several tens of mm thick polyester (or similar) foil, which is coated with a separating agent and in contact with the lower surface of the mixture. The purpose of the foil is to prevent the scraper knife from pulling the mixture behind when handling. This type of application is necessary mainly because the mixture must not have internal pressures that imply the compression of plastic hollow beads. Therefore, the clamping part of the preparation for the application of the admixture is designed so that the excess mixture has a large space for extrusion. After melting the mixture, wipe the adjustment mixture layer to the required size. The plate 1 thus treated is further cut with longitudinal and transverse cuts into individual inverters (Figure 4). Work is done with a saw with which we have already cut the channels. After cutting, the pallet with the cut plate 1 is heated to a temperature of about 120 ° C to allow the adhesive to loosen. The bottom electrodes of the 32 transducers are cleaned of adhesive residues with an organic solvent (eg Solkan). The longitudinal cuts are made through the filled channels so that on the lateral surface 7 of the channel the area of metallization 2 is in contact with the upper electrode 31. In the case of spraying (Figure 2), it is necessary to mechanically remove the tear-off cover 4 and then to the metallized part 7 pages pripajka electrical guide. If the channels are filled with conductive epoxy resin, then contact with such resin. Depending on the transducer technology and contact method, a piezoelectric thickness of 1 plate is recommended to be about 2 mm. Too thin panel 1 causes contact problems, and too thick means a greater material cost.
Uporabni frekvenčni pas za meritve pretoka plina s preletom ultrazvočnega signala skozi plin sega do približno 500 kHz. Predlagana oblika pretvornika je prizma, pri kateri določa prečno mero piezokeramične plošče zahtevana frekvenca delovanja. Za območje frekvenc 200 do 500 Hz je prečna mera pretvornika v območju 3-8 mm. Najugodneje je, da je osnovna ploskev prizme kvadrat s stranico a « λ/2, ker na ta način obe prečni nihanji enakoThe usable frequency band for measuring gas flow by passing the ultrasonic signal through the gas reaches up to about 500 kHz. The proposed converter design is a prism in which the transverse dimension of the piezoceramic plate determines the required operating frequency. For the frequency range of 200 to 500 Hz, the transverse dimension of the transducer is in the range of 3-8 mm. It is most advantageous that the basic plane of the prism is a square with side a «λ / 2, because in this way both transverse oscillations are equal
-8in sofazno prispevata k nihanju zgornje, oddajne ploskve pretvornika. Kar zadeva velikost osnovne piezoelektrične plošče 1 je ugodno uporabiti ploščo čim večjih mer. Po drugi strani pa večje stranske mere piezoelektričnih plošč 1 pomenijo slabšo homogenost piezoelektričnega materiala pri enakih tehnoloških stroških izdelave, oziroma porast teh stroškov pri zagotovitvi enake homogenosti. Smiselne maksimalne mere plošč 1 so zato od 50 x 50 mm do 110 x 110 mm, pač glede na tehnološke zmogljivosti dobavitelja. V našem primeru so bili pretvorniki s stranico kvadrata a = 4,55 mm narezani iz plošče 1 mer 60 x 60 mm in je bilo iz ene plošče 1 izdelanih 144 pretvornikov. To je omogočilo znižanje proizvodnih stroškov za faktor 20, glede na dosedanjo tehnologijo. Vsi pretvorniki narejeni iz iste plošče 1 imajo primerljive akustične in električne lastnosti, kar povečuje stopnjo recipročnosti pretvomiških parov in omogoča sestavljanje pretvorniških skupin. Takšne skupine so primerne za oblikovanje valovnih front z željeno obliko oziroma za hkratno oddajo in sprejem ultrazvoka.-8and they contribute to the oscillation of the upper, transmitter surface of the converter. With regard to the size of the basic piezoelectric plate 1, it is advantageous to use the largest dimension plate. On the other hand, the larger lateral dimensions of the piezoelectric plates 1 imply the poorer homogeneity of the piezoelectric material at the same technological manufacturing costs, or an increase in these costs while ensuring the same homogeneity. Meaningful maximum dimensions of panels 1 are therefore 50 x 50 mm to 110 x 110 mm, depending on the technological capabilities of the supplier. In our case, the transducers with the side of the square a = 4,55 mm were cut from a panel 1 measuring 60 x 60 mm and 144 converters were made from a single panel 1. This has allowed the production cost to be reduced by a factor of 20, according to current technology. All transducers made from the same panel 1 have comparable acoustic and electrical properties, which increases the reciprocity of the preconception pairs and allows the assembly of transducer groups. Such groups are suitable for forming wave fronts of the desired shape or for simultaneously transmitting and receiving ultrasound.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI9800203A SI20046A (en) | 1998-07-16 | 1998-07-16 | Ultrasonic transducer and procedure for its manufacture |
EP99113647A EP0973150A3 (en) | 1998-07-16 | 1999-07-14 | Ultrasonic transducer and method for its manufacturing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI9800203A SI20046A (en) | 1998-07-16 | 1998-07-16 | Ultrasonic transducer and procedure for its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
SI20046A true SI20046A (en) | 2000-02-29 |
Family
ID=20432306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI9800203A SI20046A (en) | 1998-07-16 | 1998-07-16 | Ultrasonic transducer and procedure for its manufacture |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0973150A3 (en) |
SI (1) | SI20046A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003259491A (en) * | 2002-03-04 | 2003-09-12 | Nisshinbo Ind Inc | Composition for acoustic matching layer, method for manufacturing molded product of acoustic matching layer, and ultrasonic sensor using the same |
US6904798B2 (en) * | 2002-08-08 | 2005-06-14 | Airmar Technology Corporation | Multi-functional marine sensing instrument |
DE102007010500A1 (en) * | 2007-03-05 | 2008-09-11 | Robert Bosch Gmbh | Ultrasonic transducer with directly embedded piezo |
EP2072150B1 (en) * | 2007-12-19 | 2023-09-27 | Ueda Japan Radio Co., Ltd. | Ultrasonic transducer |
DE102011082615A1 (en) * | 2011-09-13 | 2013-03-14 | Endress + Hauser Flowtec Ag | Ultrasonic transducer of an ultrasonic flowmeter |
RU2701179C1 (en) * | 2019-03-26 | 2019-09-25 | Общество с ограниченной ответственностью Завод "Саратовгазавтоматика" | Ultrasonic sensor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4385255A (en) * | 1979-11-02 | 1983-05-24 | Yokogawa Electric Works, Ltd. | Linear array ultrasonic transducer |
US4523122A (en) * | 1983-03-17 | 1985-06-11 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric ultrasonic transducers having acoustic impedance-matching layers |
US5274296A (en) * | 1988-01-13 | 1993-12-28 | Kabushiki Kaisha Toshiba | Ultrasonic probe device |
JPH01246998A (en) * | 1988-03-29 | 1989-10-02 | Fuji Electric Co Ltd | Ultrasonic transducer |
DE4142372A1 (en) * | 1991-12-20 | 1993-06-24 | Siemens Ag | Ultrasound transducer array of elementary transducers arranged in a row e.g. for medical research - has elementary transducers connected to front and back terminals and connected to neighbouring transducers by piezo-ceramic connectors. |
US5423220A (en) * | 1993-01-29 | 1995-06-13 | Parallel Design | Ultrasonic transducer array and manufacturing method thereof |
-
1998
- 1998-07-16 SI SI9800203A patent/SI20046A/en not_active IP Right Cessation
-
1999
- 1999-07-14 EP EP99113647A patent/EP0973150A3/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
EP0973150A3 (en) | 2002-11-20 |
EP0973150A2 (en) | 2000-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100299277B1 (en) | Ultrasonic Converter Array and Manufacturing Method | |
US4952832A (en) | Surface acoustic wave device | |
CN112491379B (en) | Surface acoustic wave resonator with phonon crystal reflector | |
Benetti et al. | Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices | |
Kino et al. | Design of slotted transducer arrays with matched backings | |
US10270420B2 (en) | Surface elastic wave device comprising a single-crystal piezoelectric film and a crystalline substrate with low visoelastic coefficients | |
EP4028486A1 (en) | 5g system containing a polymer composition | |
WO2006114930A1 (en) | Boundary acoustic wave device | |
CN101569100A (en) | Elastic boundary-wave device | |
CN102089970A (en) | Plate wave element and electronic equipment using same | |
KR20190070274A (en) | Electronic component module | |
US7951272B2 (en) | Thin film producing method | |
RU2004116689A (en) | RADIAL ACOUSTIC TRANSMITTER OF THE MCH RANGE | |
KR0150389B1 (en) | Saw | |
KR20200078347A (en) | Acoustic wave device and electronic component module | |
US3665225A (en) | Hybrid surface-wave transducer | |
EP2940864B1 (en) | Piezoelectric component | |
SI20046A (en) | Ultrasonic transducer and procedure for its manufacture | |
KR970004619B1 (en) | Surface acoustic wave device | |
Osugi et al. | Single crystal FBAR with LiNbO3 and LiTaO3 piezoelectric substance layers | |
EP0810725A2 (en) | Wafer and surface acoustic wave device | |
WO1995010882A3 (en) | Surface acoustic wave devices for controlling high frequency signals using modified crystalline materials | |
Wang et al. | Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal | |
EP1496553B1 (en) | Composite piezoelectric body | |
Pappalardo | Hybrid linear and matrix acoustic arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
IF | Valid on the prs date | ||
KO00 | Lapse of patent |
Effective date: 20060410 |