SG63839A1 - Antiparallel pinned spin valve with read signal symmetry - Google Patents

Antiparallel pinned spin valve with read signal symmetry

Info

Publication number
SG63839A1
SG63839A1 SG1998000791A SG1998000791A SG63839A1 SG 63839 A1 SG63839 A1 SG 63839A1 SG 1998000791 A SG1998000791 A SG 1998000791A SG 1998000791 A SG1998000791 A SG 1998000791A SG 63839 A1 SG63839 A1 SG 63839A1
Authority
SG
Singapore
Prior art keywords
read signal
spin valve
pinned spin
signal symmetry
antiparallel pinned
Prior art date
Application number
SG1998000791A
Inventor
Hardayal Singh Gill
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of SG63839A1 publication Critical patent/SG63839A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6082Design of the air bearing surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/002Antiferromagnetic thin films, i.e. films exhibiting a Néel transition temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • G11B2005/0016Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers
    • G11B2005/0018Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers by current biasing control or regulation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
SG1998000791A 1997-04-29 1998-04-27 Antiparallel pinned spin valve with read signal symmetry SG63839A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/841,182 US5828529A (en) 1997-04-29 1997-04-29 Antiparallel pinned spin valve with read signal symmetry

Publications (1)

Publication Number Publication Date
SG63839A1 true SG63839A1 (en) 1999-03-30

Family

ID=25284243

Family Applications (1)

Application Number Title Priority Date Filing Date
SG1998000791A SG63839A1 (en) 1997-04-29 1998-04-27 Antiparallel pinned spin valve with read signal symmetry

Country Status (4)

Country Link
US (1) US5828529A (en)
JP (1) JPH117614A (en)
KR (1) KR100291274B1 (en)
SG (1) SG63839A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909345A (en) * 1996-02-22 1999-06-01 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device and magnetoresistive head
EP0905802B1 (en) * 1997-09-29 2004-11-24 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, magnetoresistance head and method for producing magnetoresistance effect device
US5903415A (en) * 1997-12-11 1999-05-11 International Business Machines Corporation AP pinned spin valve sensor with pinning layer reset and ESD protection
JPH11296823A (en) * 1998-04-09 1999-10-29 Nec Corp Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system
US6191926B1 (en) * 1998-05-07 2001-02-20 Seagate Technology Llc Spin valve magnetoresistive sensor using permanent magnet biased artificial antiferromagnet layer
JP2000003501A (en) * 1998-06-12 2000-01-07 Sony Corp Device and method for reproducing magnetic signal
JP3234814B2 (en) * 1998-06-30 2001-12-04 株式会社東芝 Magnetoresistive element, magnetic head, magnetic head assembly, and magnetic recording device
DE19934009B4 (en) 1998-07-21 2006-11-23 Alps Electric Co., Ltd. Magnetoresistive thin-film element of rotary valve type
US6052263A (en) * 1998-08-21 2000-04-18 International Business Machines Corporation Low moment/high coercivity pinned layer for magnetic tunnel junction sensors
US6185079B1 (en) * 1998-11-09 2001-02-06 International Business Machines Corporation Disk drive with thermal asperity reduction circuitry using a magnetic tunnel junction sensor
JP3212567B2 (en) * 1999-01-27 2001-09-25 アルプス電気株式会社 Thin film magnetic head having magnetoresistive thin film magnetic element and method of manufacturing the same
US6351355B1 (en) * 1999-02-09 2002-02-26 Read-Rite Corporation Spin valve device with improved thermal stability
JP2000285413A (en) * 1999-03-26 2000-10-13 Fujitsu Ltd Spin valved magnetoresistive element and its manufacture, and magnetic head using the element
JP3286263B2 (en) 1999-05-11 2002-05-27 アルプス電気株式会社 Thin film magnetic head
US6208492B1 (en) * 1999-05-13 2001-03-27 International Business Machines Corporation Seed layer structure for spin valve sensor
US6226159B1 (en) 1999-06-25 2001-05-01 International Business Machines Corporation Multilayered pinned layer of cobalt based films separated by a nickel base film for improved coupling field and GMR for spin valve sensors
US6219209B1 (en) 1999-07-29 2001-04-17 International Business Machines Corporation Spin valve head with multiple antiparallel coupling layers
JP3363410B2 (en) 1999-08-12 2003-01-08 ティーディーケイ株式会社 Magnetic transducer and thin film magnetic head
WO2001024170A1 (en) 1999-09-29 2001-04-05 Fujitsu Limited Magnetoresistance effect head and information reproducing device
US6456465B1 (en) 1999-11-09 2002-09-24 Read-Rite Corporation Vertical giant magnetoresistance sensor using a recessed shield
US6519117B1 (en) 1999-12-06 2003-02-11 International Business Machines Corporation Dual AP pinned GMR head with offset layer
US6411477B1 (en) 2000-02-08 2002-06-25 International Business Machines Corporation Antiparallel pinned spin valve read head with improved magnetoresistance and biasing
US6396669B1 (en) 2000-02-08 2002-05-28 International Business Machines Corporation AP pinned PtMn spin valve read head biased for playback symmetry and magnetic stability
US6594123B1 (en) 2000-02-08 2003-07-15 International Business Machines Corporation AP pinned spin valve read head with a negative ferromagnetic field biased for zero asymmetry
US6515838B1 (en) 2000-06-06 2003-02-04 International Business Machines Corporation Biasing correction for simple GMR head
US6560078B1 (en) 2000-07-13 2003-05-06 International Business Machines Corporation Bilayer seed layer for spin valves
JP3971551B2 (en) 2000-07-19 2007-09-05 Tdk株式会社 Magnetic transducer and thin film magnetic head
US6714389B1 (en) * 2000-11-01 2004-03-30 Seagate Technology Llc Digital magnetoresistive sensor with bias
US6738237B2 (en) 2001-01-04 2004-05-18 Hitachi Global Storage Technologies Netherlands B.V. AP-pinned spin valve design using very thin Pt-Mn AFM layer
US6674616B2 (en) 2001-04-09 2004-01-06 Hitachi Global Storage Technologies Netherlands B.V. Spin valve sensor with a biasing layer ecerting a demagnetizing field on a free layer structure
US6735060B2 (en) * 2001-06-20 2004-05-11 International Business Machines Corporation Spin valve sensor with a metal and metal oxide cap layer structure
JP4573736B2 (en) * 2005-08-31 2010-11-04 三菱電機株式会社 Magnetic field detector
JP4296180B2 (en) * 2006-02-17 2009-07-15 株式会社東芝 Magnetoresistive element, magnetic head, magnetic reproducing device, and method of manufacturing magnetoresistive element
JP2008243920A (en) * 2007-03-26 2008-10-09 Toshiba Corp Magnetoresistance-effect reproducing element, magnetic head and magnetic reproducing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549978A (en) * 1992-10-30 1996-08-27 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5408377A (en) * 1993-10-15 1995-04-18 International Business Machines Corporation Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
US5465185A (en) * 1993-10-15 1995-11-07 International Business Machines Corporation Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor
US5666248A (en) * 1996-09-13 1997-09-09 International Business Machines Corporation Magnetizations of pinned and free layers of a spin valve sensor set by sense current fields

Also Published As

Publication number Publication date
KR100291274B1 (en) 2001-06-01
JPH117614A (en) 1999-01-12
KR19980079613A (en) 1998-11-25
US5828529A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
SG63839A1 (en) Antiparallel pinned spin valve with read signal symmetry
SG50880A1 (en) Spin valve sensor with enhanced magnetoresistance
SG44674A1 (en) Magnetoresistive sensor with flux keepered spin valve configuration
SG46731A1 (en) Spin valve magnetoresistive sensor with antiparallel pinned layer and improved exchange bias layer and magnetic recording system using the senor
DE69704536D1 (en) Spin valve GMR sensor with exchange stabilization
SG43377A1 (en) Spin valve sensor with antiparallel magnetization of pinned layers
SG60098A1 (en) Differential spin valve sensor structure
SG79217A1 (en) Highly sensitive orthogonal spin valve read head
SG47223A1 (en) Magnetoresistance effect element
SG71855A1 (en) Improved antiparallel-pinned spin valve sensor
EP0694788A3 (en) Spin valve magnetoresistive sensor, process for making the sensor, and magnetic recording system using the sensor
SG45540A1 (en) Magnetoresistance effect element
EP0944642A4 (en) Dioxetane labeled probes and detection assays employing the same
SG76599A1 (en) Tunneling magnetoresistance element and magnetic sensor magnetic head and magnetic memory using the element
DE19580095T1 (en) Sensor with magnetoresistive elements
EP0498640A3 (en) Magnetoresistive sensor based on oscillations in the magnetoresistance
EP0687917A3 (en) Spin valve magnetoresistive sensor with self-pinned laminated layer and magnetic recording system using the sensor
EP0783112A3 (en) Tunneling ferrimagnetic magnetoresistive sensor
NO954747L (en) Spin Cell
DE19882055T1 (en) MRAM with aligned magnetic vectors
SG53025A1 (en) Magnetizations of pinned and free layers of a spin valve sensor set by sense current fields
SG98004A1 (en) Magneto-resistance effect head and magnetic storage device employing the head
HK1004822A1 (en) Magneto-impedance sensor
GB2349735B (en) Antiparallel (AP) pinned read head with improved GMR
SG85191A1 (en) Mutilayered pinned layer structure for improved coupling field and gmr for spin valve sensors