SG182823A1 - Therapeutic methods using an ti-cd200 antibodies - Google Patents
Therapeutic methods using an ti-cd200 antibodies Download PDFInfo
- Publication number
- SG182823A1 SG182823A1 SG2012056784A SG2012056784A SG182823A1 SG 182823 A1 SG182823 A1 SG 182823A1 SG 2012056784 A SG2012056784 A SG 2012056784A SG 2012056784 A SG2012056784 A SG 2012056784A SG 182823 A1 SG182823 A1 SG 182823A1
- Authority
- SG
- Singapore
- Prior art keywords
- antibody
- human
- seq
- cells
- amino acid
- Prior art date
Links
- 238000002560 therapeutic procedure Methods 0.000 title claims description 30
- 238000000034 method Methods 0.000 claims abstract description 222
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 216
- 201000011510 cancer Diseases 0.000 claims abstract description 152
- 238000011282 treatment Methods 0.000 claims abstract description 110
- 208000023275 Autoimmune disease Diseases 0.000 claims abstract description 82
- 239000003814 drug Substances 0.000 claims abstract description 76
- 229940124597 therapeutic agent Drugs 0.000 claims abstract description 69
- 210000004027 cell Anatomy 0.000 claims description 271
- 101001098352 Homo sapiens OX-2 membrane glycoprotein Proteins 0.000 claims description 267
- 102100037589 OX-2 membrane glycoprotein Human genes 0.000 claims description 267
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 138
- 239000012634 fragment Substances 0.000 claims description 76
- 230000027455 binding Effects 0.000 claims description 68
- 210000002798 bone marrow cell Anatomy 0.000 claims description 68
- 239000007788 liquid Substances 0.000 claims description 63
- 108091007433 antigens Proteins 0.000 claims description 60
- 102000036639 antigens Human genes 0.000 claims description 60
- 239000000427 antigen Substances 0.000 claims description 58
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 55
- 239000003795 chemical substances by application Substances 0.000 claims description 44
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 44
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 38
- 101100135226 Homo sapiens CD200 gene Proteins 0.000 claims description 38
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 38
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 claims description 35
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 claims description 35
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 34
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 34
- 229920001184 polypeptide Polymers 0.000 claims description 33
- 230000009467 reduction Effects 0.000 claims description 31
- 230000002829 reductive effect Effects 0.000 claims description 29
- 230000001363 autoimmune Effects 0.000 claims description 25
- 101100495232 Homo sapiens MS4A1 gene Proteins 0.000 claims description 24
- 230000002949 hemolytic effect Effects 0.000 claims description 23
- 210000000265 leukocyte Anatomy 0.000 claims description 22
- 229960004641 rituximab Drugs 0.000 claims description 20
- 210000004881 tumor cell Anatomy 0.000 claims description 20
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 claims description 16
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 claims description 16
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 claims description 16
- 208000035475 disorder Diseases 0.000 claims description 16
- 102100021396 Cell surface glycoprotein CD200 receptor 1 Human genes 0.000 claims description 15
- 102100030886 Complement receptor type 1 Human genes 0.000 claims description 15
- 101000969553 Homo sapiens Cell surface glycoprotein CD200 receptor 1 Proteins 0.000 claims description 15
- 101000727061 Homo sapiens Complement receptor type 1 Proteins 0.000 claims description 15
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 15
- 210000001185 bone marrow Anatomy 0.000 claims description 15
- 239000013598 vector Substances 0.000 claims description 15
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 claims description 14
- 230000002285 radioactive effect Effects 0.000 claims description 14
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 12
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 claims description 12
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 12
- 108060003951 Immunoglobulin Proteins 0.000 claims description 12
- 102000018358 immunoglobulin Human genes 0.000 claims description 12
- 231100000331 toxic Toxicity 0.000 claims description 12
- 230000002588 toxic effect Effects 0.000 claims description 12
- 230000001965 increasing effect Effects 0.000 claims description 11
- 108020004707 nucleic acids Proteins 0.000 claims description 11
- 102000039446 nucleic acids Human genes 0.000 claims description 11
- 150000007523 nucleic acids Chemical class 0.000 claims description 11
- 239000003053 toxin Substances 0.000 claims description 11
- 231100000765 toxin Toxicity 0.000 claims description 11
- 108700012359 toxins Proteins 0.000 claims description 11
- 241001529936 Murinae Species 0.000 claims description 9
- 210000002540 macrophage Anatomy 0.000 claims description 9
- 208000034578 Multiple myelomas Diseases 0.000 claims description 8
- 208000000733 Paroxysmal Hemoglobinuria Diseases 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 8
- 206010028417 myasthenia gravis Diseases 0.000 claims description 8
- 208000017262 paroxysmal cold hemoglobinuria Diseases 0.000 claims description 8
- 206010049567 Miller Fisher syndrome Diseases 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims description 7
- 101100383179 Arabidopsis thaliana CDS5 gene Proteins 0.000 claims description 6
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 6
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 6
- 108020001507 fusion proteins Proteins 0.000 claims description 6
- 102000037865 fusion proteins Human genes 0.000 claims description 6
- 229950005751 ocrelizumab Drugs 0.000 claims description 6
- 229960002450 ofatumumab Drugs 0.000 claims description 6
- 230000004962 physiological condition Effects 0.000 claims description 6
- 229950000106 samalizumab Drugs 0.000 claims description 6
- 229950000815 veltuzumab Drugs 0.000 claims description 6
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 claims description 5
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 claims description 5
- 108700042805 TRU-015 Proteins 0.000 claims description 5
- 210000000130 stem cell Anatomy 0.000 claims description 5
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 claims description 4
- 208000035895 Guillain-Barré syndrome Diseases 0.000 claims description 4
- 239000013604 expression vector Substances 0.000 claims description 4
- 229960001001 ibritumomab tiuxetan Drugs 0.000 claims description 4
- 229940127121 immunoconjugate Drugs 0.000 claims description 4
- 210000005259 peripheral blood Anatomy 0.000 claims description 4
- 239000011886 peripheral blood Substances 0.000 claims description 4
- 230000002685 pulmonary effect Effects 0.000 claims description 4
- 229960005267 tositumomab Drugs 0.000 claims description 4
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 claims description 3
- 206010004659 Biliary cirrhosis Diseases 0.000 claims description 3
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 3
- 208000024869 Goodpasture syndrome Diseases 0.000 claims description 3
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 claims description 3
- 208000003807 Graves Disease Diseases 0.000 claims description 3
- 208000015023 Graves' disease Diseases 0.000 claims description 3
- 208000001204 Hashimoto Disease Diseases 0.000 claims description 3
- 208000030836 Hashimoto thyroiditis Diseases 0.000 claims description 3
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 claims description 3
- 208000010159 IgA glomerulonephritis Diseases 0.000 claims description 3
- 206010021263 IgA nephropathy Diseases 0.000 claims description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 3
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 claims description 3
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 claims description 3
- 201000011152 Pemphigus Diseases 0.000 claims description 3
- 206010039710 Scleroderma Diseases 0.000 claims description 3
- 208000021386 Sjogren Syndrome Diseases 0.000 claims description 3
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 claims description 3
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 claims description 3
- 206010012601 diabetes mellitus Diseases 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims description 3
- 201000001976 pemphigus vulgaris Diseases 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 208000011038 Cold agglutinin disease Diseases 0.000 claims description 2
- 206010009868 Cold type haemolytic anaemia Diseases 0.000 claims description 2
- 229940126586 small molecule drug Drugs 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 229910052702 rhenium Inorganic materials 0.000 claims 1
- 239000000090 biomarker Substances 0.000 abstract description 11
- 238000011277 treatment modality Methods 0.000 abstract description 2
- 241000699670 Mus sp. Species 0.000 description 263
- 210000003743 erythrocyte Anatomy 0.000 description 107
- 210000004988 splenocyte Anatomy 0.000 description 67
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 66
- 108010036949 Cyclosporine Proteins 0.000 description 65
- 229960001265 ciclosporin Drugs 0.000 description 64
- 229930182912 cyclosporin Natural products 0.000 description 64
- 230000006870 function Effects 0.000 description 52
- 108090000623 proteins and genes Proteins 0.000 description 52
- 238000004519 manufacturing process Methods 0.000 description 51
- 241000699666 Mus <mouse, genus> Species 0.000 description 48
- 239000012636 effector Substances 0.000 description 48
- 230000014509 gene expression Effects 0.000 description 47
- 201000010099 disease Diseases 0.000 description 39
- 102000004169 proteins and genes Human genes 0.000 description 39
- 235000018102 proteins Nutrition 0.000 description 38
- 239000003981 vehicle Substances 0.000 description 38
- 238000000684 flow cytometry Methods 0.000 description 34
- 241001465754 Metazoa Species 0.000 description 32
- 239000000203 mixture Substances 0.000 description 30
- 230000001225 therapeutic effect Effects 0.000 description 29
- 239000012472 biological sample Substances 0.000 description 25
- 210000000952 spleen Anatomy 0.000 description 23
- 108020004414 DNA Proteins 0.000 description 22
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 21
- 210000004369 blood Anatomy 0.000 description 21
- 239000008280 blood Substances 0.000 description 21
- 229940024606 amino acid Drugs 0.000 description 20
- 150000001413 amino acids Chemical class 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 18
- 239000000523 sample Substances 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 17
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 16
- 210000001744 T-lymphocyte Anatomy 0.000 description 16
- 230000008859 change Effects 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 14
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 14
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 14
- 230000004927 fusion Effects 0.000 description 14
- 238000010172 mouse model Methods 0.000 description 14
- -1 or an F(ab’) Substances 0.000 description 14
- 239000002953 phosphate buffered saline Substances 0.000 description 14
- 102000007079 Peptide Fragments Human genes 0.000 description 13
- 108010033276 Peptide Fragments Proteins 0.000 description 13
- 230000000890 antigenic effect Effects 0.000 description 13
- 238000013461 design Methods 0.000 description 13
- 210000002966 serum Anatomy 0.000 description 13
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 12
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 12
- 238000004113 cell culture Methods 0.000 description 11
- 210000004408 hybridoma Anatomy 0.000 description 11
- 238000007912 intraperitoneal administration Methods 0.000 description 11
- 238000012544 monitoring process Methods 0.000 description 11
- 239000008194 pharmaceutical composition Substances 0.000 description 11
- 125000000539 amino acid group Chemical group 0.000 description 10
- 210000003719 b-lymphocyte Anatomy 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 208000024891 symptom Diseases 0.000 description 10
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 9
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 108010092160 Dactinomycin Proteins 0.000 description 8
- 241000282412 Homo Species 0.000 description 8
- 241000124008 Mammalia Species 0.000 description 8
- 239000002246 antineoplastic agent Substances 0.000 description 8
- 229960004397 cyclophosphamide Drugs 0.000 description 8
- 230000002519 immonomodulatory effect Effects 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 108020004511 Recombinant DNA Proteins 0.000 description 7
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 229960000640 dactinomycin Drugs 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 210000000207 lymphocyte subset Anatomy 0.000 description 7
- 201000000050 myeloid neoplasm Diseases 0.000 description 7
- 102000005962 receptors Human genes 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 241000894007 species Species 0.000 description 7
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 6
- 238000011740 C57BL/6 mouse Methods 0.000 description 6
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 6
- 206010027476 Metastases Diseases 0.000 description 6
- 229930012538 Paclitaxel Natural products 0.000 description 6
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229960004630 chlorambucil Drugs 0.000 description 6
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229960000975 daunorubicin Drugs 0.000 description 6
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 6
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 230000003053 immunization Effects 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 230000010534 mechanism of action Effects 0.000 description 6
- 229960000485 methotrexate Drugs 0.000 description 6
- 229960001592 paclitaxel Drugs 0.000 description 6
- 210000004989 spleen cell Anatomy 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 6
- 229960004528 vincristine Drugs 0.000 description 6
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 6
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 108010006654 Bleomycin Proteins 0.000 description 5
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 5
- 229930192392 Mitomycin Natural products 0.000 description 5
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 208000002193 Pain Diseases 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 5
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 5
- 210000000988 bone and bone Anatomy 0.000 description 5
- 229940127093 camptothecin Drugs 0.000 description 5
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 5
- 229960004562 carboplatin Drugs 0.000 description 5
- 229960004316 cisplatin Drugs 0.000 description 5
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 5
- 229960004679 doxorubicin Drugs 0.000 description 5
- 229960005420 etoposide Drugs 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229960004961 mechlorethamine Drugs 0.000 description 5
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 5
- 229960001924 melphalan Drugs 0.000 description 5
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 5
- 229960004857 mitomycin Drugs 0.000 description 5
- 210000002997 osteoclast Anatomy 0.000 description 5
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 5
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 5
- 229960000624 procarbazine Drugs 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229960003048 vinblastine Drugs 0.000 description 5
- 230000003442 weekly effect Effects 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 206010005949 Bone cancer Diseases 0.000 description 4
- 208000018084 Bone neoplasm Diseases 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 239000004971 Cross linker Substances 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 4
- 206010037660 Pyrexia Diseases 0.000 description 4
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 4
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229960001561 bleomycin Drugs 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 4
- 231100000433 cytotoxic Toxicity 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 229960002949 fluorouracil Drugs 0.000 description 4
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 4
- 229960001101 ifosfamide Drugs 0.000 description 4
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 4
- 229960001156 mitoxantrone Drugs 0.000 description 4
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229960003171 plicamycin Drugs 0.000 description 4
- 230000003248 secreting effect Effects 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 238000012384 transportation and delivery Methods 0.000 description 4
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 4
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 3
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 3
- 206010000060 Abdominal distension Diseases 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 3
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 3
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- 206010011224 Cough Diseases 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 239000012623 DNA damaging agent Substances 0.000 description 3
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 3
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 3
- 101710154606 Hemagglutinin Proteins 0.000 description 3
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 3
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 3
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 101710176177 Protein A56 Proteins 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 3
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229940009456 adriamycin Drugs 0.000 description 3
- 229960001220 amsacrine Drugs 0.000 description 3
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 3
- 208000007502 anemia Diseases 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000001028 anti-proliverative effect Effects 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 229960002092 busulfan Drugs 0.000 description 3
- 239000013522 chelant Substances 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 239000003246 corticosteroid Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 229960001904 epirubicin Drugs 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229960005277 gemcitabine Drugs 0.000 description 3
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 239000000185 hemagglutinin Substances 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 229960000908 idarubicin Drugs 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 238000003364 immunohistochemistry Methods 0.000 description 3
- 239000003018 immunosuppressive agent Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 229940043355 kinase inhibitor Drugs 0.000 description 3
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 229960003330 pentetic acid Drugs 0.000 description 3
- 238000002823 phage display Methods 0.000 description 3
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229960004618 prednisone Drugs 0.000 description 3
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000000861 pro-apoptotic effect Effects 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- VYXXMAGSIYIYGD-NWAYQTQBSA-N propan-2-yl 2-[[[(2R)-1-(6-aminopurin-9-yl)propan-2-yl]oxymethyl-(pyrimidine-4-carbonylamino)phosphoryl]amino]-2-methylpropanoate Chemical compound CC(C)OC(=O)C(C)(C)NP(=O)(CO[C@H](C)Cn1cnc2c(N)ncnc12)NC(=O)c1ccncn1 VYXXMAGSIYIYGD-NWAYQTQBSA-N 0.000 description 3
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 3
- 238000010188 recombinant method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229960002930 sirolimus Drugs 0.000 description 3
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 230000003393 splenic effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229960001603 tamoxifen Drugs 0.000 description 3
- 229960001278 teniposide Drugs 0.000 description 3
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229940104230 thymidine Drugs 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 238000011830 transgenic mouse model Methods 0.000 description 3
- 229960000575 trastuzumab Drugs 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- MWWSFMDVAYGXBV-MYPASOLCSA-N (7r,9s)-7-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.O([C@@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-MYPASOLCSA-N 0.000 description 2
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 2
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 125000006305 3-iodophenyl group Chemical group [H]C1=C([H])C(I)=C([H])C(*)=C1[H] 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 108010024976 Asparaginase Proteins 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000017309 Autoimmune hemolytic anemia, warm type Diseases 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 2
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 2
- 208000029713 Catastrophic antiphospholipid syndrome Diseases 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 2
- 108010009685 Cholinergic Receptors Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 229940123907 Disease modifying antirheumatic drug Drugs 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 2
- 102000005720 Glutathione transferase Human genes 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- BLCLNMBMMGCOAS-URPVMXJPSA-N Goserelin Chemical compound C([C@@H](C(=O)N[C@H](COC(C)(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(=O)NNC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 BLCLNMBMMGCOAS-URPVMXJPSA-N 0.000 description 2
- 108010069236 Goserelin Proteins 0.000 description 2
- 206010018910 Haemolysis Diseases 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 101000980823 Homo sapiens Leukocyte surface antigen CD53 Proteins 0.000 description 2
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 2
- 206010023126 Jaundice Diseases 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- 102100024221 Leukocyte surface antigen CD53 Human genes 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 206010027452 Metastases to bone Diseases 0.000 description 2
- 206010027457 Metastases to liver Diseases 0.000 description 2
- 206010027458 Metastases to lung Diseases 0.000 description 2
- FQISKWAFAHGMGT-SGJOWKDISA-M Methylprednisolone sodium succinate Chemical compound [Na+].C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)COC(=O)CCC([O-])=O)CC[C@H]21 FQISKWAFAHGMGT-SGJOWKDISA-M 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 101100440286 Mus musculus Cntrl gene Proteins 0.000 description 2
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 238000010240 RT-PCR analysis Methods 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010039491 Ricin Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 108010084592 Saporins Proteins 0.000 description 2
- 208000037549 Shiga toxin-associated hemolytic uremic syndrome Diseases 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 102000034337 acetylcholine receptors Human genes 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 238000012382 advanced drug delivery Methods 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 2
- 229960003437 aminoglutethimide Drugs 0.000 description 2
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229960002932 anastrozole Drugs 0.000 description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 2
- 229940045799 anthracyclines and related substance Drugs 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000340 anti-metabolite Effects 0.000 description 2
- 230000002927 anti-mitotic effect Effects 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- 229940100197 antimetabolite Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- 230000004596 appetite loss Effects 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 210000003567 ascitic fluid Anatomy 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960002170 azathioprine Drugs 0.000 description 2
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229960000997 bicalutamide Drugs 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 229960004117 capecitabine Drugs 0.000 description 2
- 231100000315 carcinogenic Toxicity 0.000 description 2
- 229960005243 carmustine Drugs 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 229960002436 cladribine Drugs 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 229960000684 cytarabine Drugs 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- 239000002988 disease modifying antirheumatic drug Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 208000002173 dizziness Diseases 0.000 description 2
- 229960003668 docetaxel Drugs 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 2
- 230000008029 eradication Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 229940045109 genistein Drugs 0.000 description 2
- TZBJGXHYKVUXJN-UHFFFAOYSA-N genistein Natural products C1=CC(O)=CC=C1C1=COC2=CC(O)=CC(O)=C2C1=O TZBJGXHYKVUXJN-UHFFFAOYSA-N 0.000 description 2
- 235000006539 genistein Nutrition 0.000 description 2
- ZCOLJUOHXJRHDI-CMWLGVBASA-N genistein 7-O-beta-D-glucoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=C2C(=O)C(C=3C=CC(O)=CC=3)=COC2=C1 ZCOLJUOHXJRHDI-CMWLGVBASA-N 0.000 description 2
- 231100000024 genotoxic Toxicity 0.000 description 2
- 230000001738 genotoxic effect Effects 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 229960002913 goserelin Drugs 0.000 description 2
- 230000008588 hemolysis Effects 0.000 description 2
- 208000007475 hemolytic anemia Diseases 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 210000004754 hybrid cell Anatomy 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000008629 immune suppression Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 229960003444 immunosuppressant agent Drugs 0.000 description 2
- 229940125721 immunosuppressive agent Drugs 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000004968 inflammatory condition Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229960004768 irinotecan Drugs 0.000 description 2
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 238000000370 laser capture micro-dissection Methods 0.000 description 2
- 238000001001 laser micro-dissection Methods 0.000 description 2
- 229960003881 letrozole Drugs 0.000 description 2
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 208000019017 loss of appetite Diseases 0.000 description 2
- 235000021266 loss of appetite Nutrition 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 229960004584 methylprednisolone Drugs 0.000 description 2
- 229960000350 mitotane Drugs 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 229960004866 mycophenolate mofetil Drugs 0.000 description 2
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 229960002653 nilutamide Drugs 0.000 description 2
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 2
- 229950006344 nocodazole Drugs 0.000 description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 229960002340 pentostatin Drugs 0.000 description 2
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229960001237 podophyllotoxin Drugs 0.000 description 2
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 2
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 2
- 108700028325 pokeweed antiviral Proteins 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 229960001052 streptozocin Drugs 0.000 description 2
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 229940063683 taxotere Drugs 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 229960003433 thalidomide Drugs 0.000 description 2
- 231100001274 therapeutic index Toxicity 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229960001196 thiotepa Drugs 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 210000002303 tibia Anatomy 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 229960000303 topotecan Drugs 0.000 description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- 208000017271 typical hemolytic-uremic syndrome Diseases 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 206010046885 vaginal cancer Diseases 0.000 description 2
- 208000013139 vaginal neoplasm Diseases 0.000 description 2
- GBABOYUKABKIAF-IELIFDKJSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IELIFDKJSA-N 0.000 description 2
- 229960002066 vinorelbine Drugs 0.000 description 2
- 208000035603 warm type autoimmune hemolytic anemia Diseases 0.000 description 2
- LLXVXPPXELIDGQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)benzoate Chemical compound C=1C=CC(N2C(C=CC2=O)=O)=CC=1C(=O)ON1C(=O)CCC1=O LLXVXPPXELIDGQ-UHFFFAOYSA-N 0.000 description 1
- FUOJEDZPVVDXHI-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 5-azido-2-nitrobenzoate Chemical compound [O-][N+](=O)C1=CC=C(N=[N+]=[N-])C=C1C(=O)ON1C(=O)CCC1=O FUOJEDZPVVDXHI-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- WOWDZACBATWTAU-FEFUEGSOSA-N (2s)-2-[[(2s)-2-(dimethylamino)-3-methylbutanoyl]amino]-n-[(3r,4s,5s)-1-[(2s)-2-[(1r,2r)-3-[[(1s,2r)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-n,3-dimethylbutanamide Chemical compound CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)C1=CC=CC=C1 WOWDZACBATWTAU-FEFUEGSOSA-N 0.000 description 1
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 description 1
- WXXSHAKLDCERGU-UHFFFAOYSA-N 1-[4-(2,5-dioxopyrrol-1-yl)butyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1CCCCN1C(=O)C=CC1=O WXXSHAKLDCERGU-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- CBYYPIYKJZCKGK-UHFFFAOYSA-N 2-(4-azidophenyl)-2-oxoacetaldehyde;hydrate Chemical compound O.[N-]=[N+]=NC1=CC=C(C(=O)C=O)C=C1 CBYYPIYKJZCKGK-UHFFFAOYSA-N 0.000 description 1
- YRJADZYFKNSORZ-UHFFFAOYSA-N 2-[(2-methylphenyl)disulfanyl]pyridine Chemical compound CC1=CC=CC=C1SSC1=CC=CC=N1 YRJADZYFKNSORZ-UHFFFAOYSA-N 0.000 description 1
- LLIQBCDJYBBGRB-UHFFFAOYSA-N 2-[1,4,10-tris(carboxymethyl)-1,2,3,4-tetrazacyclododec-7-yl]acetic acid Chemical compound OC(=O)CC1CCC(CC(O)=O)CCN(CC(O)=O)NNN(CC(O)=O)CC1 LLIQBCDJYBBGRB-UHFFFAOYSA-N 0.000 description 1
- CTRPRMNBTVRDFH-UHFFFAOYSA-N 2-n-methyl-1,3,5-triazine-2,4,6-triamine Chemical class CNC1=NC(N)=NC(N)=N1 CTRPRMNBTVRDFH-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- 102100033400 4F2 cell-surface antigen heavy chain Human genes 0.000 description 1
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102100022987 Angiogenin Human genes 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- 208000035913 Atypical hemolytic uremic syndrome Diseases 0.000 description 1
- 208000025288 Autoimmune hemolytic anemia, cold type Diseases 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 239000005552 B01AC04 - Clopidogrel Substances 0.000 description 1
- 239000005528 B01AC05 - Ticlopidine Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 206010065687 Bone loss Diseases 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 206010006272 Breast mass Diseases 0.000 description 1
- 108010037003 Buserelin Proteins 0.000 description 1
- 102100036846 C-C motif chemokine 21 Human genes 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 1
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 1
- 102100025279 C-X-C motif chemokine 11 Human genes 0.000 description 1
- 101710098272 C-X-C motif chemokine 11 Proteins 0.000 description 1
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 1
- 101710085500 C-X-C motif chemokine 9 Proteins 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 229940123587 Cell cycle inhibitor Drugs 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- GUBGYTABKSRVRQ-WFVLMXAXSA-N DEAE-cellulose Chemical compound OC1C(O)C(O)C(CO)O[C@H]1O[C@@H]1C(CO)OC(O)C(O)C1O GUBGYTABKSRVRQ-WFVLMXAXSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 101000694320 Drosophila melanogaster RuvB-like helicase 2 Proteins 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 102000015212 Fas Ligand Protein Human genes 0.000 description 1
- 108010039471 Fas Ligand Protein Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 108010029961 Filgrastim Proteins 0.000 description 1
- 229940123414 Folate antagonist Drugs 0.000 description 1
- 102000002702 GPI-Linked Proteins Human genes 0.000 description 1
- 108010043685 GPI-Linked Proteins Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 108010072051 Glatiramer Acetate Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical group NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 208000034507 Haematemesis Diseases 0.000 description 1
- 206010018901 Haemoglobinaemia Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 208000032759 Hemolytic-Uremic Syndrome Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 101000800023 Homo sapiens 4F2 cell-surface antigen heavy chain Proteins 0.000 description 1
- 101000713085 Homo sapiens C-C motif chemokine 21 Proteins 0.000 description 1
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 208000008454 Hyperhidrosis Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 241001662043 Icterus Species 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 108090000171 Interleukin-18 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 206010023232 Joint swelling Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- 102000007330 LDL Lipoproteins Human genes 0.000 description 1
- 108010007622 LDL Lipoproteins Proteins 0.000 description 1
- 206010023804 Large intestine perforation Diseases 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- XOGTZOOQQBDUSI-UHFFFAOYSA-M Mesna Chemical compound [Na+].[O-]S(=O)(=O)CCS XOGTZOOQQBDUSI-UHFFFAOYSA-M 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 208000001572 Mycoplasma Pneumonia Diseases 0.000 description 1
- 201000008235 Mycoplasma pneumoniae pneumonia Diseases 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 208000008457 Neurologic Manifestations Diseases 0.000 description 1
- 206010060860 Neurological symptom Diseases 0.000 description 1
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 1
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical class O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- MSHZHSPISPJWHW-UHFFFAOYSA-N O-(chloroacetylcarbamoyl)fumagillol Chemical compound O1C(CC=C(C)C)C1(C)C1C(OC)C(OC(=O)NC(=O)CCl)CCC21CO2 MSHZHSPISPJWHW-UHFFFAOYSA-N 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 231100000742 Plant toxin Toxicity 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- HZEBHPIOVYHPMT-OUBTZVSYSA-N Polonium-210 Chemical compound [210Po] HZEBHPIOVYHPMT-OUBTZVSYSA-N 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102000014128 RANK Ligand Human genes 0.000 description 1
- 108010025832 RANK Ligand Proteins 0.000 description 1
- 108091008103 RNA aptamers Proteins 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000702263 Reovirus sp. Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108010079723 Shiga Toxin Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 108091027076 Spiegelmer Proteins 0.000 description 1
- 241000269319 Squalius cephalus Species 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 101710167005 Thiol:disulfide interchange protein DsbD Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Natural products O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- IVTVGDXNLFLDRM-HNNXBMFYSA-N Tomudex Chemical compound C=1C=C2NC(C)=NC(=O)C2=CC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)S1 IVTVGDXNLFLDRM-HNNXBMFYSA-N 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 206010046788 Uterine haemorrhage Diseases 0.000 description 1
- 206010046910 Vaginal haemorrhage Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 229960000446 abciximab Drugs 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- FHEAIOHRHQGZPC-KIWGSFCNSA-N acetic acid;(2s)-2-amino-3-(4-hydroxyphenyl)propanoic acid;(2s)-2-aminopentanedioic acid;(2s)-2-aminopropanoic acid;(2s)-2,6-diaminohexanoic acid Chemical compound CC(O)=O.C[C@H](N)C(O)=O.NCCCC[C@H](N)C(O)=O.OC(=O)[C@@H](N)CCC(O)=O.OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 FHEAIOHRHQGZPC-KIWGSFCNSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 238000003277 amino acid sequence analysis Methods 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 108010072788 angiogenin Proteins 0.000 description 1
- 229940125364 angiotensin receptor blocker Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000001772 anti-angiogenic effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000078 anti-malarial effect Effects 0.000 description 1
- 230000002095 anti-migrative effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 229940127079 antineoplastic immunimodulatory agent Drugs 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000003886 aromatase inhibitor Substances 0.000 description 1
- 229940046844 aromatase inhibitors Drugs 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- FIVPIPIDMRVLAY-UHFFFAOYSA-N aspergillin Natural products C1C2=CC=CC(O)C2N2C1(SS1)C(=O)N(C)C1(CO)C2=O FIVPIPIDMRVLAY-UHFFFAOYSA-N 0.000 description 1
- 208000032013 atypical susceptibility to 1 hemolytic uremic syndrome Diseases 0.000 description 1
- 108010044540 auristatin Proteins 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 208000024330 bloating Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 108010049223 bryodin Proteins 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 229960002719 buserelin Drugs 0.000 description 1
- CUWODFFVMXJOKD-UVLQAERKSA-N buserelin Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](COC(C)(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 CUWODFFVMXJOKD-UVLQAERKSA-N 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229930195731 calicheamicin Natural products 0.000 description 1
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 1
- 230000005880 cancer cell killing Effects 0.000 description 1
- 125000001314 canonical amino-acid group Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 208000013116 chronic cough Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229960002286 clodronic acid Drugs 0.000 description 1
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 1
- 229960003009 clopidogrel Drugs 0.000 description 1
- GKTWGGQPFAXNFI-HNNXBMFYSA-N clopidogrel Chemical compound C1([C@H](N2CC=3C=CSC=3CC2)C(=O)OC)=CC=CC=C1Cl GKTWGGQPFAXNFI-HNNXBMFYSA-N 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 208000034310 cold type autoimmune hemolytic anemia Diseases 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000007748 combinatorial effect Effects 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 239000000562 conjugate Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- MKNXBRLZBFVUPV-UHFFFAOYSA-L cyclopenta-1,3-diene;dichlorotitanium Chemical compound Cl[Ti]Cl.C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 MKNXBRLZBFVUPV-UHFFFAOYSA-L 0.000 description 1
- 229960003843 cyproterone Drugs 0.000 description 1
- DUSHUSLJJMDGTE-ZJPMUUANSA-N cyproterone Chemical compound C1=C(Cl)C2=CC(=O)[C@@H]3C[C@@H]3[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2 DUSHUSLJJMDGTE-ZJPMUUANSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229960003839 dienestrol Drugs 0.000 description 1
- NFDFQCUYFHCNBW-SCGPFSFSSA-N dienestrol Chemical compound C=1C=C(O)C=CC=1\C(=C/C)\C(=C\C)\C1=CC=C(O)C=C1 NFDFQCUYFHCNBW-SCGPFSFSSA-N 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229960002768 dipyridamole Drugs 0.000 description 1
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940112141 dry powder inhaler Drugs 0.000 description 1
- 230000007937 eating Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 230000012953 feeding on blood of other organism Effects 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 229960004177 filgrastim Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 235000008191 folinic acid Nutrition 0.000 description 1
- 239000011672 folinic acid Substances 0.000 description 1
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 229960003776 glatiramer acetate Drugs 0.000 description 1
- FIVPIPIDMRVLAY-RBJBARPLSA-N gliotoxin Chemical compound C1C2=CC=C[C@H](O)[C@H]2N2[C@]1(SS1)C(=O)N(C)[C@@]1(CO)C2=O FIVPIPIDMRVLAY-RBJBARPLSA-N 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 208000035861 hematochezia Diseases 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 201000001505 hemoglobinuria Diseases 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000003668 hormone analog Substances 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 229960003685 imatinib mesylate Drugs 0.000 description 1
- YLMAHDNUQAMNNX-UHFFFAOYSA-N imatinib methanesulfonate Chemical compound CS(O)(=O)=O.C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 YLMAHDNUQAMNNX-UHFFFAOYSA-N 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000002998 immunogenetic effect Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000005722 itchiness Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000008407 joint function Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229960004942 lenalidomide Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229960001691 leucovorin Drugs 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 150000002669 lysines Chemical class 0.000 description 1
- 229940124302 mTOR inhibitor Drugs 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229960004616 medroxyprogesterone Drugs 0.000 description 1
- FRQMUZJSZHZSGN-HBNHAYAOSA-N medroxyprogesterone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FRQMUZJSZHZSGN-HBNHAYAOSA-N 0.000 description 1
- 229960001786 megestrol Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960004635 mesna Drugs 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000001531 micro-dissection Methods 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000004065 mitochondrial dysfunction Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000000897 modulatory effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 239000002636 mycotoxin Substances 0.000 description 1
- RQUGVTLRYOAFLV-UHFFFAOYSA-N n-(4-aminobutyl)-4-azido-2-hydroxybenzamide Chemical compound NCCCCNC(=O)C1=CC=C(N=[N+]=[N-])C=C1O RQUGVTLRYOAFLV-UHFFFAOYSA-N 0.000 description 1
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 210000000715 neuromuscular junction Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000002840 nitric oxide donor Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- OSTGTTZJOCZWJG-UHFFFAOYSA-N nitrosourea Chemical compound NC(=O)N=NO OSTGTTZJOCZWJG-UHFFFAOYSA-N 0.000 description 1
- 229960002700 octreotide Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229940127084 other anti-cancer agent Drugs 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- WRUUGTRCQOWXEG-UHFFFAOYSA-N pamidronate Chemical compound NCCC(O)(P(O)(O)=O)P(O)(O)=O WRUUGTRCQOWXEG-UHFFFAOYSA-N 0.000 description 1
- 229940046231 pamidronate Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 238000009595 pap smear Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229960005547 pelareorep Drugs 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 206010034674 peritonitis Diseases 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000003123 plant toxin Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229960000688 pomalidomide Drugs 0.000 description 1
- UVSMNLNDYGZFPF-UHFFFAOYSA-N pomalidomide Chemical compound O=C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O UVSMNLNDYGZFPF-UHFFFAOYSA-N 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 229960004432 raltitrexed Drugs 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229940120975 revlimid Drugs 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 239000008299 semisolid dosage form Substances 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 206010041232 sneezing Diseases 0.000 description 1
- VUFNRPJNRFOTGK-UHFFFAOYSA-M sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 VUFNRPJNRFOTGK-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 201000003570 spinocerebellar ataxia type 17 Diseases 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000002731 stomach secretion inhibitor Substances 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 229960002812 sunitinib malate Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 229960005001 ticlopidine Drugs 0.000 description 1
- PHWBOXQYWZNQIN-UHFFFAOYSA-N ticlopidine Chemical compound ClC1=CC=CC=C1CN1CC(C=CS2)=C2CC1 PHWBOXQYWZNQIN-UHFFFAOYSA-N 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 239000002451 tumor necrosis factor inhibitor Substances 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 230000002568 urticarial effect Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39541—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/54—F(ab')2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/626—Diabody or triabody
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present disclosure relates to anti-CD200 antibodies and to use of the antibodies in methods for treating autoimmune disorders and cancer. Also featured are biomarkers for use in selecting or prescribing a treatment modality for a patient with an autoimmune disorder and/or cancer. In addition, the disclosure features methods of treatment using an anti-CD200 antibody in combination with one or more additional therapeutic agents such as an anti-CD20 therapeutic agent.
Description
THERAPEUTIC METHODS USING AN TI-CD200 ANTIBODIES
This application claims priority to and the benefit of U.S. provisional patent application serial nos.: 61/337,962 filed on February 11, 2010, the disclosure of which is incorporated herein by reference in its entirety.
The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on February 9, 2011, is named ALXN1520.txt, and is 19,592 bytes bytes in size.
The field of the invention is medicine, immunology, molecular biology, and protein chemistry.
Human CD200 protein is a type 1a transmembrane glycoprotein that is normally expressed on thymocytes (e.g., T cells and B cells), neurons, and endothelial cells. Through engagement with its cognate receptor, CD200R, CD200 protein transduces an immunoregulatory signal that can suppress T-cell-mediated immune responses. CD200 knockout animal studies as well as experiments using antagonist anti-CD200 antibodies and recombinant CD200-Fc fusion proteins have demonstrated that CD200 protein is an immunosuppressive agent in autoimmune disorder and during transplantation. See, ¢.g., Hoek et al. (2000) Science 290:1768-1771 and
Gorczynski et al. (1999) J Immunol 163:1654-1660. The interaction between CD200 and CD200R results in altered cytokine profiles and promotes a Ty2 T cell response over aTyl response. (See, e.g., Kretz-Rommel (2007) J Immunol 178:5595-5605.)
The present disclosure is based, at least in part, on the discovery by the inventors that administration of an anti-CD200 antibody to an animal model of an autoimmune disease (autoimmune hemolytic disease) resulted in a marked decrease in production by the animal of disease-associated autoantibodies. Administration of the anti-CD200 antibody also resulted in a marked delay in onset of production of autoantibodies in the mice. Because production of autoantibodies by a host is causative or associated with a number of autoimmune disorders (e.g., myasthenia gravis and Guillain-Barré syndrome), the inventors believe that an anti-CD200 antibody will be useful for treating patients suffering from any one of a variety of autoimmune disorders.
Accordingly, in one aspect, the disclosure features a method for treating an autoimmune disorder in a human. The method includes administering to a human having an autoimmune disorder an amount of an anti-CD200 antibody that is sufficient to reduce in the human the concentration of an autoantibody (or the production or expression of an autoantibody) associated with the autoimmune disorder to thereby treat the autoimmune disorder.
In some embodiments, administration of the anti-CD200 antibody can reduce the autoantibody concentration in the blood of the human by at least 10%, 20%, 50%, 75%, or more than 75%. In some embodiments, administration of the anti-CD200 antibody to the human can completely eliminate detectable autoantibody in the human.
The disclosure also features a methods for preventing an autoimmune disorder or delaying the onset of the autoimmune disorder, which method includes administering to a human having an autoimmune disorder an amount of an anti-
CD200 antibody that is sufficient to: (i) prevent the generation, production, or expression by the human of an autoantibody associated with the autoimmune disorder or (ii) delay the generation of, or the onset of production or expression by the human of, the autoantibody associated with the autoimmune disorder, to thereby prevent or delay the onset of the autoimmune disorder.
In yet another aspect, the disclosure features a method for treating an autoimmune disorder in a human, which method includes chronically administering to a human having an autoimmune disorder an anti-CD200 antibody in an amount and with a frequency sufficient to maintain in the human a reduced concentration of an autoantibody associated with the autoimmune disorder to thereby treat the autoimmune disorder.
In some embodiments, the anti-CD200 antibody can be administered to the human in an amount and with a frequency to maintain a greater than 10%, 20%, 50%, 75%, or greater than 75% reduction in the concentration of the autoimmune antibody as compared to the concentration of the antibody prior to administration of the anti-
CD200 antibody.
The inventors also discovered several biomarkers evidencing the occurrence in a human of an immunomodulatory effect by an anti-CD200 antibody administered to animals with an autoimmune disorder. For example, the inventors have observed that following administration of an anti-CD200 antibody to an animal, the concentration of several leukocyte and bone marrow cell subsets is reduced in the animals. The inventors have also discovered that the concentration of, e.g., F4/80" lymphocytes in spleen are increased following administration of the anti-CD200 antibody to the animal. While the disclosure is not bound by any particular theory or mechanism of action, the inventors believe that monitoring a patient treated with an anti-CD200 antibody for the occurrence of one or more of these biomarkers is useful for, at bottom, determining whether the anti-CD200 antibody is capable of producing an immunomodulatory effect in the human to which the antibody is administered.
Moreover, one or more of the biomarkers are also useful for identifying a dose — a threshold dose — of an anti-CD200 antibody, such as samalizumab (ALXN6000), that by virtue of its immunomodulatory effect in the human is sufficient to achieve a clinically-meaningful effect on the disease (i.c., sufficient to treat a disease such as cancer or an autoimmune disorder). To wit, as described in the working examples an anti-CD200 antibody was capable of reducing the expression of autoimmune antibodies in a mouse model of autoimmune disease.
Accordingly, the disclosure also features a method for treating a disorder in a human, the method comprising administering to a human in need thereof an anti-
CD200 antibody in an amount and with a frequency sufficient to treat the disorder by maintaining one or more of the following physiological conditions in the human: (i) a decreased (reduced) concentration of at least one CD200" leukocyte subset as compared to a control concentration; (ii) an increased concentration of F4/80" cells as compared to a control concentration; and (iii) a decreased (reduced) concentration of at least one bone marrow stem cell subset as compared to a control concentration.
The disorder can be any disorder that a medical practitioner reasonably believes can be treated by a therapeutic anti-CD200 antibody. Such diseases include, ¢.g., a cancer or an autoimmune disease.
In some embodiments, the at least one CD200" leukocyte subset can be one selected from the group consisting of CD3'/CD200" cells, CD45R'/CD200" cells,
CD5'/CD200" cells, CD19'/CD200" cells, CD138"/CD200" cells, and
CD200R/CD200" cells. In some embodiments, the at least one bone marrow stem cell subset can be one selected from the group consisting of CD200" bone marrow cells, Igk /CD200" bone marrow cells, CD138/CD200" bone marrow cells, c- kit /CD200" bone marrow cells, and c-kit" /CD200"/Lin"*" bone marrow cells. In some embodiments, the F4/80" cells can be F4/80" macrophages.
In some embodiments, at least one CD200" leukocyte subset or the F4/80" cells can be present in the peripheral blood of the human. In some embodiments, the leukocytes or cells are resident in the spleen.
In some embodiments, the antibody can be administered to the human in an amount and with a frequency to maintain at least two, or all three, of the physiological conditions in the human.
In some embodiments, the autoimmune disorder can be a hemolytic disorder or an autoimmune hemolytic anemia (AIHA) such as any of the AIHA known in the art of medicine (see below). In some embodiments, the autoimmune disorder can be one selected from the group consisting of chronic obstructive pulmonary disease, diabetes mellitus type 1, Goodpasture’s syndrome, Grave’s disease, Guillain-Barré syndrome, IgA nephropathy, scleroderma, Sjogren’s syndrome, Wegener's granulomatosis, pemphigus vulgaris, rheumatoid arthritis, cold agglutinin disease, anti-phospholipid syndrome, warm autoimmune hemolytic anemia, paroxysmal cold hemoglobinuria, Hashimoto’s disease, idiopathic thrombocytopenic purpura, myasthenia gravis, pulmonary biliary cirrhosis, and Miller Fisher syndrome.
In some embodiments, the autoimmune disorder can be the result of, or can be associated with, a cancer in the human. The cancer can be a liquid tumor such as, but not limited to, chronic lymphocytic leukemia (e.g., B cell chronic lymphocytic leukemia) or multiple myeloma.
In some embodiments, the methods described herein can include administering to the human at least one additional therapeutic agent for treating an autoimmune disorder or a cancer.
The inventors have discovered that administration of an anti-CD200 antibody to an animal resulted in a marked reduction in the concentration of CD35" cells (e.g.
CD5" leukocytes) in the spleen of the animal. CDS5 is a 67 kDa transmembrane glycoprotein that is expressed by T cells and a subset of B cells referred to as “Bl cells.” See, e.g., Holodick et al. (2009) Eur J Immunol 39(9):2383-2394. B1 cells are integrally involved in host defense against infections and CD5" B1 cells spontaneously and constitutively express immunoglobulin. Id. CD35 expression by
CLL cells has also been detected. In 1992, Almasri et al. reported that CD5" CLL cells express lower levels of CD20 as determined by flow cytometry. Am J Hematol 40:259, 261. See also Marti et al. (1992) “CD20 and CDS5 expression in B-chronic lymphocytic leukemia” Ann N.Y. Acad Sci 651:480-483.
Rituximab is a chimeric, monoclonal anti-CD20 antibody clinically-approved for the treatment of, among other things, chronic lymphocytic leukemia (CLL). See, e.g., Christian and Lin (2008) Semin Hematol 45(2):95-103. Rituximab has been effective for treating CLL both as a single agent and in combination, e.g., with the
CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone). /d.
However, Ennishi et al. reported a correlation between CDS expression by CLL cells and poor outcome in CLL patients treated with a combined RCHOP regimen (rituximab and CHOP regimen). (2008) Annals of Oncology 19:1921, 1924 (Fig. 1).
The report suggests that there exists a population of patients who receive less benefit from rituximab therapy and may require alternative therapies.
While the disclosure is not bound by any particular theory or mechanism of action, it is likely that CD5" CLL cells may be refractory to rituximab therapy at least in part because of a reduced expression of CD20. The inventors have shown that a therapeutic composition containing an anti-CD200 antibody is useful for reducing
CDS5" cell populations in an animal and thus believe that the composition is particularly useful for treating a subset of CLL patients that are refractory to treatment with anti-CD20 therapy (e.g., rituximab-resistant).
Accordingly, the disclosure also features a method for treating a human afflicted with a cancer or an autoimmune disorder, the method comprising administering to a human afflicted with a cancer or an autoimmune disorder an anti-
CD200 antibody in an amount that is sufficient to treat the cancer or the autoimmune disorder, wherein the cancer or autoimmune disorder is resistant, or is suspected of being resistant, or is likely to become resistant, to therapy with an anti-CD20 therapeutic agent.
In another aspect, the disclosure features a method for treating a human afflicted with a cancer, the method comprising administering to a human afflicted with a cancer an anti-CD200 antibody in an amount that is sufficient to treat the cancer, wherein the cancer is resistant, is suspected of being resistant, or is likely to become resistant, to therapy with an anti-CD20 therapeutic agent.
In another aspect, the disclosure features another method for treating a human afflicted with a cancer, the method comprising: identifying a human as having a cancer that is resistant, or is suspected to be resistant, to treatment with an anti-CD20 therapeutic agent; and administering to the human an anti-CD200 antibody in an amount that is effective to treat the cancer.
In some embodiments, the cancer can comprise or consist of cancer cells that express CDS.
In some embodiments, more than one dose (e.g., at least two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 or more doses) of the anti-CD200 antibody is administered to the human. In some embodiments, more than 10 (e.g., more than 15, 20, 25, 30, or 35 or more) doses of the anti-CD200 antibody are administered to the human.
In some embodiments, the cancer is a solid tumor. Solid tumors include, ¢.g., lung cancer, breast cancer, colon cancer, pancreatic cancer, renal cancer, stomach cancer, liver cancer, bone cancer, neural tissue cancer (e.g., neuroblastoma), melanoma, thyroid cancer, ovarian cancer, testicular cancer, prostate cancer, cervical cancer, vaginal cancer, and bladder cancer. In some embodiments, the cancer is a liquid tumor. Liquid tumors include, e.g., leukemias (e.g., chronic lymphocytic leukemia such as B cell or T cell type chronic lymphocytic leukemia) and multiple myeloma. Bone cancers include, without limitation, osteosarcoma and osteocarcinomas.
In yet another aspect, the disclosure features a method for treating a human afflicted with a liquid tumor. The method includes administering to a human afflicted with a liquid tumor an anti-CD200 antibody in an amount that is sufficient to treat the liquid tumor, wherein at least a portion of the liquid tumor cells express CD5. The method can include determining whether the portion of liquid tumor cells express
CDs.
In another aspect, the disclosure features a method for treating a human afflicted with a liquid tumor, which method includes: identifying a human as having a liquid tumor comprising cells that express CDS; and administering to the human an anti-CD200 antibody in an amount that is sufficient to reduce the concentration of the
CD5-expressing liquid tumor cells in the human to thereby treat the liquid tumor.
In another aspect, the disclosure features a method for treating a human afflicted with a liquid tumor, the method comprising administering to a human afflicted with a liquid tumor an anti-CD200 antibody and an anti-CD20 therapeutic agent to thereby treat the liquid tumor, wherein at least a portion of the liquid tumor cells express CDS prior to administering the antibody and agent.
In another aspect, the disclosure features a method for treating a human afflicted with a liquid tumor, wherein the method includes: identifying a human as being afflicted with a liquid tumor comprising tumor cells that express CDS; and administering to the human an anti-CD200 antibody and an anti-CD20 therapeutic agent to thereby treat the liquid tumor.
In some embodiments, the anti-CD20 therapeutic agent can be administered prior to administration of the anti-CD200 antibody. In some embodiments, the anti-
CD200 antibody is administered prior to administration of the anti-CD20 therapeutic agent. The anti-CD200 antibody and the anti-CD20 therapeutic agent can be administered at the same time. The antibody can be administered using the same administration route (e.g., intravenous administration) or different route.
In some embodiments, the anti-CD200 antibody and anti-CD20 therapeutic agent can be administered to the human concurrently as a bispecific antibody that binds to human CD200 and to human CD20. That is, the therapeutic agent administered to the human has both the properties of an anti-CD200 antibody and the anti-CD20 therapeutic agent. In some embodiments, the bispecific anti-CD200 antibody/anti-CD20 antibody is a DVD-Ig antibody.
In some embodiments, at least 1%, 5%, 10%, 20%, 30%, 40%, 50%, or 60% or more of the liquid tumor cells express CDS.
The liquid tumor can be, e.g., a chronic lymphocytic leukemia or multiple myeloma. The liquid tumor can be, e.g., a B cell chronic lymphocytic leukemia.
In some embodiments, the anti-CD20 therapeutic agent is an anti-CD20 antibody such as, but not limited to, rituximab, ofatumumab, TRU-015, veltuzumab, ocrelizumab, or AME-133v.
In some embodiments, the anti-CD20 therapeutic agent is conjugated to a toxin. For example, in some embodiments, the anti-CD20 therapeutic agent is a toxin-antibody conjugate. The toxin can be, e.g., a small molecule drug or a toxic polypeptide (e.g., ricin or saporin). In some embodiments, the toxin can be a bacterial toxin, a fungal toxin, or a plant toxin. In some embodiments, the toxin can be a radioactive agent such as, but not limited to, Py, 18Re, "Re, “Cu, “Cu, *'*Pb, *'Bi, 213; 123] 125] 131 Alp 21a 32p 177) 47g 10SRp 109pg 155g on 199A Tn some embodiments, the toxin-antibody conjugate is °*Y -ibritumomab tiuxetan or "*'I- tositumomab.
In some embodiments, the anti-CD200 antibody inhibits the interaction between CD200 and CD200R.
In some embodiments of any of the methods described herein, the anti-CD200 antibody can contains the following paired set of CDRs: a heavy chain CDR1 (HCDR1) comprising the amino acid sequence: GFTFSGFAMS (SEQ ID NO:4); a heavy chain CDR2 (HCDR2) comprising the amino acid sequence:
SISSGGTTYYLDSVKG (SEQ ID NO:5); a heavy chain CDR3 (HCDR3) comprising the amino acid sequence: GNYYSGTSYDY (SEQ ID NO:6); a light chain CDR1 (LCDRI1) comprising the amino acid sequence: RASESVDSYGNSFMH (SEQ ID
NO:7); a light chain CDR2 (LCDR2) comprising the amino acid sequence:
RASNLES (SEQ ID NO:8); and a light chain CDR3 (LCDR3) comprising the amino acid sequence: QQSNEDPRT (SEQ ID NO:9).
In some embodiments of any of the methods described herein, the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: GFNIKDYYMH (SEQ ID NO:10); a HCDR2 comprising the amino acid sequence: WIDPENGDTKYAPKFQG (SEQ ID NO:11); a HCDR3 comprising the amino acid sequence: KNYYVSNYNFFDV (SEQ ID NO:12); a LCDR1 comprising the amino acid sequence: SASSSVRYMY (SEQ ID NO:13); a LCDR2 comprising the amino acid sequence: DTSKLAS (SEQ ID NO:14); and a LCDR3 comprising the amino acid sequence: FQGSGYPLT (SEQ ID NO:15).
In some embodiments of any of the methods described herein, the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: GFNIKDYYIH (SEQ ID NO:16); a HCDR2 comprising the amino acid sequence: WIDPEIGATKY VPKFQG (SEQ ID NO:17); a HCDR3 comprising the amino acid sequence: LYGNYDRYYAMDY (SEQ ID NO:18); a LCDRI1 comprising the amino acid sequence: KASQNVRTAVA (SEQ ID NO:19); a LCDR2 comprising the amino acid sequence: LASNRHT (SEQ ID NO:20); and a LCDR3 comprising the amino acid sequence: LQHWNYPLT (SEQ ID NO:21).
In some embodiments of any of the methods described herein, the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: GYSFTDYIIL (SEQ ID NO:22); a HCDR2 comprising the amino acid sequence: HIDPYYGSSNYNLKFKG (SEQ ID NO:23); a HCDR3 comprising the amino acid sequence: SKRDYFDY (SEQ ID NO:24); a LCDRI1 comprising the amino acid sequence: KASQDINSYLS (SEQ ID NO:25); a LCDR2 comprising the amino acid sequence: RANRLVD (SEQ ID NO:26); and a LCDR3 comprising the amino acid sequence: LQYDEFPYT (SEQ ID NO:27).
In some embodiments of any of the methods described herein, the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: GYTFTEYTMH (SEQ ID NO:28); a HCDR2 comprising the amino acid sequence: GVNPNNGGALYNQKFKG (SEQ ID NO:29); a HCDR3 comprising the amino acid sequence: RSNYRYDDAMDY (SEQ ID NO:30); a LCDR1 comprising the amino acid sequence: KSSQSLLDIDEKTYLN (SEQ ID NO:31); a
LCDR2 comprising the amino acid sequence: LVSKLDS (SEQ ID NO:32); and a
LCDR3 comprising the amino acid sequence: WQGTHFPQT (SEQ ID NO:33).
In some embodiments of any of the methods described herein, the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: AFNIKDHYMH (SEQ ID NO:34); a HCDR2 comprising the amino acid sequence: WIDPESGDTEYAPKFQG (SEQ ID NO:35); a HCDR3 comprising the amino acid sequence: FNGYQALDQ (SEQ ID NO:36); a LCDR1 comprising the amino acid sequence: TASSSVSSSYLH (SEQ ID NO:37); a LCDR2 comprising the amino acid sequence: STSNLAS (SEQ ID NO:38); and a LCDR3 comprising the amino acid sequence: RQYHRSPPIFT (SEQ ID NO:39).
In some embodiments, the anti-CD200 antibody and/or the anti-CD20 antibody is an IgGl, IgG2, 1gG2a, 1gG3, 1gG4, IgM, IgA, IgA2, IgA, IgD, or IgE antibody. In some embodiments, the anti-CD200 antibody and/or the anti-CD20 antibody is a murine antibody, a chimeric antibody, a humanized antibody, a single chain antibody, or a human antibody. In some embodiments, the anti-CD200 antibody or the anti-CD20 antibody is an antigen-binding antibody fragment selected from the group consisting of a Fab fragment, a F(ab’), fragment, a Fab’ fragment, an scFv fragment, a minibody, a diabody, or a triabody
In yet another aspect, the disclosure features a method for selecting a therapy for a patient afflicted with a liquid tumor, the method comprising: identifying a patient as having a liquid tumor comprising tumor cells that express CDS; and selecting for the patient an anti-CD200 antibody for use in treating the liquid tumor.
In another aspect, the disclosure features a method for prescribing a therapy for a patient afflicted with a liquid tumor, the method comprising: identifying a patient as having a liquid tumor comprising tumor cells that express CDS; and prescribing for the patient an anti-CD200 antibody for use in treating the liquid tumor.
The anti-CD200 antibody can be a bispecific antibody such as one that comprises a first antigen-combining site and a second antigen-combining site, wherein the first antigen-combining site binds to CD200 and the second antigen-combining site binds to CD20.
In yet another aspect, the disclosure features a bispecific antibody that comprises a first antigen-combining site and a second antigen-combining site, wherein the first antigen-combining site binds to CD200 and the second antigen- combining site binds to CD20. The bispecific antibody can be, e.g., an IgG1, 1gG2, 1gG2a, 1gG3, IgG4, IgM, IgAl, IgA2, IgA, IgD, or IgE antibody. In some embodiments, the bispecific anti-CD200/anti-CD20 antibody is a murine antibody, a chimeric antibody, a humanized antibody, a single chain antibody, or a human antibody. In some embodiments, the bispecific antibody can be used in any of the methods described herein (e.g., treating cancer or an autoimmune disease).
In yet another aspect, the disclosure features: (i) a nucleic acid encoding the bispecific antibody; (ii) a vector (e.g., an expression vector) comprising the nucleic acid; and (ii) a cell comprising the vector. In another aspect, the disclosure features a method for producing the antibody, the method comprising culturing the cell for a time and under conditions sufficient to allow for production of the antibody in the cell. The method can also include the step of isolating the bispecific antibody from the cell or from the media in which the cell is cultured.
In some embodiments, the bispecific antibody is a single chain diabody, a tandem single chain Fv fragment, a tandem single chain diabody, or a fusion protein comprising a single chain diabody and at least a portion of an immunoglobulin heavy chain constant region. In some embodiments, the bispecific antibody is a dual variable domain immunoglobulin.
In some embodiments, the first antigen combining site binds to a human
CD200 protein, e.g., a human CD200 protein comprising the amino acid sequence depicted in any one of SEQ ID NOs:1 to 3. In some embodiments, the second antigen combining site binds to a human CD20 protein, e.g., a human CD20 protein comprising the amino acid sequence depicted in any one of SEQ ID NOs: 40 to 42. In some embodiments, the second antigen combining site binds to a human CD20 protein at an epitope that comprises at least part (e.g., at least 4 amino acids) of the amino acid sequence depicted in SEQ ID NO:41 and at least part (e.g., at least 4 amino acids) of the amino acid sequence depicted in SEQ ID NO:42.
In some embodiments, the first antigen combining site is obtained from samalizumab. In some embodiments, the second antigen combining site is obtained from rituximab, ofatumumab, TRU-015, veltuzumab, ocrelizumab, or AME-133v.
The bispecific antibody can be conjugated to, or contain, a heterologous moiety such as a detectable label or a toxin. “Polypeptide,” “peptide,” and “protein” are used interchangeably and mean any peptide-linked chain of amino acids, regardless of length or post-translational modification. The CD200 proteins described herein can contain or be wild-type proteins or can be variants that have not more than 50 (e.g., not more than one, two, three, four, five, six, seven, eight, nine, ten, 12, 15, 20, 25, 30, 35, 40, or 50) conservative amino acid substitutions. Conservative substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine, and leucine; aspartic acid and glutamic acid; asparagine, glutamine, serine and threonine; lysine, histidine and arginine; and phenylalanine and tyrosine.
The CD200 proteins and CD20 proteins described herein also include “antigenic peptide fragments” of the proteins, which are shorter than full-length proteins, but retain at least 10% (e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 50%, at least 55%, at least 60%, atleast 70%, at least 80%, at least 90%, at least 95%, at least 98%, at least 99%, at least 99.5%, or 100% or more) of the ability of the full-length protein to induce an antigenic response in a mammal (see below under “Methods for Producing an
Antibody”). Antigenic peptide fragments of a CD200 protein or a CD20 protein include terminal as well internal deletion variants of the protein. Deletion variants can lack one, two, three, four, five, six, seven, eight, nine, ten, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid segments (of two or more amino acids) or non- contiguous single amino acids. Antigenic peptide fragments can be at least 6 (e.g., at least 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65,70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 or more) amino acid residues in length (e.g., at least 6 contiguous amino acid residues in any one of SEQ ID NOs:1 to 3). In some embodiments, an antigenic peptide fragment of a human CD200 protein is less than 225 (e.g., less than 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 95, 90, 85, 80, 75, 60, 50, 49, 48, 47, 46, 45, 44,43,42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21,20,19, 18,17, 16, 15, 14, 13,12, 11, 10, 9, 8, or 7) amino acid residues in length (e.g., less than 225 contiguous amino acid residues in any one of SEQ ID NOs:1 to 3).
In some embodiments, an antigenic peptide fragment of a full-length CD200 protein is at least 6, but less than 225, amino acid residues in length.
In some embodiments, the human CD200 protein can have an amino acid sequence that is, or is greater than, 70 (e.g., 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100) % identical to the human CD200 protein having the amino acid sequence depicted in
SEQ ID NO:1 or SEQ ID NO:2 (see below). In some embodiments, a human CD20 protein can have an amino acid sequence that is, or is greater than, 70 (e.g., 71, 72, 73, 74,75,76,77, 78,79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100) % identical to the human CD200 protein having the amino acid sequence depicted in SEQ ID NO:40.
Percent (%) amino acid sequence identity is defined as the percentage of amino acids in a candidate sequence that are identical to the amino acids in a reference sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as
BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software.
Appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared can be determined by known methods.
Amino acid sequences for exemplary human CD200 proteins and human
CD20 proteins, as well as antigenic peptide fragments thereof are known in the art and are set forth below.
As used herein, the term “antibody” refers to a whole or intact antibody molecule (e.g., IgM, IgG (including IgGl, IgG2, 1gG3, and 1gG4), IgA, IgD, or IgE) or any antigen-binding fragment thereof. The term antibody includes, ¢.g., a chimerized or chimeric antibody, a humanized antibody, a deimmunized antibody, and a fully human antibody. Antigen-binding fragments of an antibody include, e.g., a single chain antibody, a single chain Fv fragment (scFv), an Fd fragment, an Fab fragment, an Fab’ fragment, or an F(ab’), fragment. An scFv fragment is a single polypeptide chain that includes both the heavy and light chain variable regions of the antibody from which the scFv is derived. In addition, intrabodies, minibodies, triabodies, and diabodies (see, e.g., Todorovska et al. (2001) J Immunol Methods 248(1):47-66; Hudson and Kortt (1999) J Immunol Methods 231(1):177-189; Poljak (1994) Structure 2(12):1121-1123; Rondon and Marasco (1997) Annual Review of
Microbiology 51:257-283, the disclosures of each of which are incorporated herein by reference in their entirety) are also included in the definition of antibody and are compatible for use in the methods described herein. Bispecific antibodies (including
DVD-Ig antibodies; see below) are also embraced by the term “antibody.” Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In case of conflict, the present document, including definitions, will control. Preferred methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the presently disclosed methods and compositions. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.
Other features and advantages of the present disclosure, ¢.g., methods for treating a rituximab-resistant cancer (e.g., chronic lymphocytic leukemia), will be apparent from the following description, the examples, and from the claims.
Fig. 1 is a line graph depicting the delay in anti-mouse RBC autoantibody production in mice with autoimmune hemolytic disease treated with an anti-CD200 antibody. The Y-axis represents the incidence (%) of autoantibody production in the mice in each group. The X-axis represents the time in which the presence of autoantibodies in each mouse was detected. The seven groups of mice evaluated included: mice that were immunized with rat RBCs, but not treated with an antibody (No Rx); mice that were immunized with rat RBCs and treated with a control antibody (Cntrl Ab); mice that were immunized with rat RBCs and treated with an anti-CD200 antibody (Antibody 1); mice that were immunized with rat RBCs and treated with cyclosporine (CsA); mice that were immunized with rat RBCs and treated with the control antibody and cyclosporine A (Cntrl Ab + CsA); mice that were immunized with rat RBCs and treated with an anti-CD200 antibody and cyclosporine
A (Antibody 1 + CsA); and mice that were neither immunized with rat RBCs nor treated with antibody or cyclosporine (No-imm No Rx).
Fig. 2 is a line graph depicting the effect of an anti-CD200 antibody on anti-
RBC antibody titer in a mouse model of autoimmune hemolytic disease. C57BL/6 mice were administered 2 x 10° rat RBCs intraperitoneally (i.p.) once on study day 0 and then once per week thereafter for the remainder of the study. The rat RBC- immunized mice were then treated with an anti-CD200 antibody that possessed effector function (Antibody 1; Ab 1) at 5 mg/kg or 1 mg/kg; an anti-CD200 antibody that did not possess effector function (Antibody 2; Ab 2) at 5 mg/kg; or a control antibody (Cntl) at 5 mg/kg. A group of mice was also treated with vehicle only. A final group of mice received no immunization or antibody treatment (NC). The Y- axis depicts the relative fluorescence intensity reflected as the OD405 x serum dilution factor and the X-axis represents the number of days following the start of the study.
Fig. 3 is a bar graph depicting the reduction in antigen-induced proliferation of splenocytes isolated from mice treated with an anti-CD200 antibody. The Y-axis represents the mean counts per minute of *H-thymidine radioactivity in nucleic acid isolated from each cell population. The X-axis represents individual mice, three (3) depicted in each group. For each mouse, the four measurements are for proliferation of splenocytes induced by medium alone, mouse red blood cells (mRBC), rat red blood cells (rRBC), or bovine serum albumin (BSA). The mice of Group 1 were treated with an anti-CD200 antibody with effector function (Antibody 1) at a dose of 5 mg/kg. The mice of Group 2 were treated with Antibody 1 at a dose of 1 mg/kg.
The mice of Group 3 were treated with a control antibody that does not bind to CD200 and the mice of Group 4 were not treated with an antibody or immunized with the rat red blood cells.
Fig. 4 is a bar graph depicting the reduction in CD200" splenocytes in mice treated with an anti-CD200 antibody. C57BL/6 mice were administered 2 x 10° rat
RBCs intraperitoneally (i.p.) once on study day 0 and then once per week thereafter for the remainder of the study. The rat RBC-immunized mice were then treated with an anti-CD200 antibody that possessed effector function (Antibody 1; Ab 1) at 5 mg/kg or 1 mg/kg; an anti-CD200 antibody that did not possess effector function (Antibody 2; Ab 2) at 5 mg/kg; or a control antibody (Cntl) at 5 mg/kg. A group of mice was also treated with vehicle only. A final group of mice received no immunization or antibody treatment (Un-imm, No-Ab). The Y-axis represents the percentage of CD200" cells in the total population of viable splenocytes. The X-axis represents individual mice, three (3) depicted in each group.
The present disclosure relates to anti-CD200 antibodies and to use of the antibodies in methods for treating autoimmune disorders or cancer. Also featured are biomarkers for use in selecting or prescribing a treatment modality for a patient with an autoimmune disorder and/or cancer. In addition, the disclosure features methods of treatment using an anti-CD200 antibody in combination with one or more additional therapeutic agents such as an anti-CD20 therapeutic agent. While in no way intended to be limiting, exemplary anti-CD200 antibodies and CD200-binding fragments thereof, conjugates, pharmaceutical compositions and formulations, biomarkers, and methods employing any of the foregoing are elaborated on below and are exemplified in the working Examples.
Anti-CD200 Antibodies
The disclosure features antibodies that bind to a human CD200 polypeptide (sometimes the antibodies are referred to herein as “anti-CD200 antibodies”). Also featured are antigen-binding (CD200-binding) fragments of the antibodies. In some embodiments, an anti-CD200 antibody described herein binds to an epitope in the human CD200 protein. For example, the anti-CD200 antibody can bind to an epitope in the human CD200 protein comprising, or consisting of, the following amino acid sequence:
MERLVIRMPFSHLSTYSLVWVMAAVVLCTAQVQVVTQDEREQLYTPASLKC
SLONAQEALIVTWQKKKAVSPENMVTFSENHGVVIQPAYKDKINITQLGLQN
STITFWNITLEDEGCYMCLFNTFGFGKISGTACLTVY VQPIVSLHYKFSEDHLN
ITCSATARPAPMVFWKVPRSGIENSTVTLSHPNGTTSVTSILHIKDPKNQVGKE
VICQVLHLGTVTDFKQTVNKGYWFSVPLLLSIVSLVILLVLISILLY WKRHRNQ
DREP (SEQ ID NO:1; Genbank Accession No. NP_005935.2). SEQ ID NO:1 depicts the amino acid sequence for a full-length, precursor human CD200 isoform A protein. In some embodiments, an anti-CD200 antibody described herein binds to an epitope in the human CD200 protein comprising, or consisting of, the following amino acid sequence:
MERLTLTRTIGGPLLTATLLGKTTINDYQVIRMPFSHLSTYSLVWVMAAVVLC
TAQVQVVTQDEREQLYTPASLKCSLQNAQEALIVITWQKKKAVSPENMVTFS
ENHGVVIQPAYKDKINITQLGLQNSTITFWNITLEDEGCYMCLFNTFGFGKISG
TACLTVYVQPIVSLHYKFSEDHLNITCSATARPAPMVFWKVPRSGIENSTVTL
SHPNGTTSVTSILHIKDPKNQVGKEVICQVLHLGTVTDFKQTVNKGYWFSVPL
LLSIVSLVILLVLISILLY WKRHRNQDREP (SEQ ID NO:2; Genbank Accession
No. NP _001004196.2). SEQ ID NO:2 depicts the amino acid sequence of a full- length CD200 isoform B protein. In some embodiments, the anti-CD200 antibody binds to an epitope present in a human CD200 protein having the following amino acid sequence:
VIRMPFSHLSTYSLVWVMAAVVLCTAQVQVVTQDEREQLYTTASLKCSLQN
AQEALIVTWQKKKAVSPENMVTFSENHGVVIQPAYKDKINITQLGLQNSTITF
WNITLEDEGCYMCLFNTFGFGKISGTACLTVYVQPIVSLHYKFSEDHLNITCS
ATARPAPMVFWKVPRSGIENSTVTLSHPNGTTSVTSILHIKDPKNQVGKEVIC
QVLHLGTVTDFKQTVNKGYWFSVPLLLSIVSLVILLVLISILLYWKRHRNQDR
GELSQGVQKMT
(SEQ ID NO:3; Genbank Accession No. CAA28943.1; Figure 3 of McCaughan et al. (1987) Immunogenetics 25:329-335). SEQ ID NO:3 is an exemplary sequence for a full-length human CD200 protein.
In some embodiments, an anti-CD200 antibody described herein binds to an epitope within the extracellular portion of a CD200 protein. For example, in some embodiments, the anti-CD200 antibody can bind to CD200 protein at an epitope within or overlapping with: (i) amino acids 1 to 233 of the amino acid sequence depicted in SEQ ID NO:1; (ii) amino acids 1 to 258 of the amino acid sequence depicted in SEQ ID NO:2; or amino acids 1 to 229 of the amino acid sequence depicted in SEQ ID NO:3.
In some embodiments, the anti-CD200 antibody binds to an epitope in the human CD200 protein lacking the leader sequence. For example, an anti-CD200 antibody described herein can bind to a CD200 protein at an epitope within or overlapping with amino acids 31 to 233 of the amino acid sequence depicted in SEQ
ID NO:1, which corresponds to the extracellular portion of the mature form of human
CD200 isoform A less the amino terminal leader sequence. In some embodiments, an anti-CD200 antibody described herein can bind to a CD200 protein at an epitope within or overlapping with amino acids 56 to 258 of the amino acid sequence depicted in SEQ ID NO:2, which corresponds to the extracellular portion of the mature form of human CD200 isoform B less the amino terminal leader sequence. In some embodiments, an anti-CD200 antibody described herein can bind to a CD200 protein at an epitope within or overlapping with amino acids 27 to 229 of the amino acid sequence depicted in SEQ ID NO:3, which corresponds to the extracellular portion of the mature form of human CD200 less the amino terminal leader sequence.
An “epitope” refers to the site on a protein (e.g., a human CD200 protein) that is bound by an antibody. “Overlapping epitopes” include at least one (e.g., two, three, four, five, or six) common amino acid residue(s).
In some embodiments, the anti-CD200 antibody specifically binds to a human CD200 protein (e.g., the human CD200 protein having the amino acid sequence depicted in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, or the extracellular domains of the mature forms of the CD200 proteins). The terms “specific binding” or “specifically binds” refer to two molecules forming a complex (e.g., a complex between an anti-CD200 antibody and a CD200 protein) that is relatively stable under physiologic conditions. Typically, binding is considered specific when the association constant (K,) is higher than 10° M"'. Thus, an anti-CD200 antibody can specifically bind to a CD200 protein with a K, of at least (or greater than) 10° (e.g., at least or greater than 107, 10%, 10%, 10", 10" 10", 10", 10", or 10" or higher) ML
Examples of antibodies that specifically bind to a human CD200 protein are described in, e.g., U.S. Patent Nos.: 7,408,041; 7,427,665; 7,435,412; and 7,598,353, the disclosures of each of which are incorporated herein by reference in their entirety.
The amino acid sequences for several exemplary anti-CD200 antibodies are described in, e.g., U.S. Patent No. 7,408,041. For example, the anti-CD200 antibody can comprise the amino acid sequence of the heavy and light chain variable regions of one of the Fab antibodies — d1B10, d1A5, d1BS5, c2aB7, c1A10, or c2aA10 — depicted in Fig. 23 of U.S. Patent No. 7,408,041, the sequences depicted in Fig. 23 being incorporated herein by reference in their entirety. In some embodiments, an anti-
CD200 antibody described herein contains a paired set of heavy chain CDRs and light chain CDRs of one of the Fab antibodies depicted in Fig. 23 of U.S. Patent No. 7,408,041. For example, an anti-CD200 antibody described herein contains the paired set of CDRs from the d1B10 Fab antibody: a heavy chain CDR1 (HCDR1) comprising the following sequence: GFTFSGFAMS (SEQ ID NO:4); a heavy chain
CDR2 (HCDR?2) comprising the following sequence: SISSGGTTYYLDSVKG (SEQ
ID NO:5); a heavy chain CDR3 (HCDR3) comprising the following sequence: GNYYSGTSYDY (SEQ ID NO:6); a light chain CDR1 (LCDR1) comprising the following sequence: RASESVDSYGNSFMH (SEQ ID NO:7); a light chain CDR2 (LCDR2) comprising the following sequence: RASNLES (SEQ ID NO:8); and a light chain CDR3 (LCDR3) comprising the following sequence: QQSNEDPRT (SEQ ID
NO:9).
In another example, an anti-CD200 antibody described herein can contain the paired set of CDRs from the d1AS Fab antibody: (i) a HCDR1 comprising the following sequence: GFNIKDYYMH (SEQ ID NO:10); a HCDR2 comprising the following sequence: WIDPENGDTKY APKFQG (SEQ ID NO:11); a HCDR3 comprising the following sequence: KNYYVSNYNFFDV (SEQ ID NO:12); a
LCDRI comprising the following sequence: SASSSVRYMY (SEQ ID NO:13); a
LCDR2 comprising the following sequence: DTSKLAS (SEQ ID NO:14); and a
LCDR3 comprising the following sequence: FQGSGYPLT (SEQ ID NO:15).
In another example, an anti-CD200 antibody described herein can comprise the paired set of CDRs from the d1B5 Fab antibody: a HCDR1 comprising the following amino acid sequence: GFNIKDYYIH (SEQ ID NO:16); a HCDR2 comprising the following amino acid sequence: WIDPEIGATKY VPKFQG (SEQ ID
NO:17); a HCDR3 comprising the following amino acid sequence:
LYGNYDRYYAMDY (SEQ ID NO:18); a LCDR1 comprising the following amino acid sequence: KASQNVRTAVA (SEQ ID NO:19); a LCDR2 comprising the following amino acid sequence: LASNRHT (SEQ ID NO:20); and a LCDR3 comprising the following amino acid sequence: LQHWNYPLT (SEQ ID NO:21).
In another example, an anti-CD200 antibody described herein can contain the paired set of CDRs from the c2aB7 Fab antibody: a HCDR1 comprising the amino acid sequence: GYSFTDYIIL (SEQ ID NO:22); a HCDR2 comprising the amino acid sequence: HIDPYYGSSNYNLKFKG (SEQ ID NO:23); a HCDR3 comprising the amino acid sequence: SKRDYFDY (SEQ ID NO:24); a LCDRI1 comprising the amino acid sequence: KASQDINSYLS (SEQ ID NO:25); a LCDR2 comprising the amino acid sequence: RANRLVD (SEQ ID NO:26); and a LCDR3 comprising the amino acid sequence: LQYDEFPYT (SEQ ID NO:27). Samalizumab (ALXN6000) contains the aforementioned paired CDR set of the c2aB7 Fab antibody originally set forth in Fig. 23 of U.S. Patent No. 7,408,041.
In yet another example, an anti-CD200 antibody described herein can contain a paired set of CDRs from the c1A10 Fab antibody: a HCDR1 comprising the amino acid sequence: GYTFTEYTMH (SEQ ID NO:28); a HCDR2 comprising the amino acid sequence: GVNPNNGGALYNQKFKG (SEQ ID NO:29); a HCDR3 comprising the amino acid sequence: RSNYRYDDAMDY (SEQ ID NO:30); a LCDR1 comprising the amino acid sequence: KSSQSLLDIDEKTYLN (SEQ ID NO:31); a
LCDR2 comprising the amino acid sequence: LVSKLDS (SEQ ID NO:32); and a
LCDR3 comprising the amino acid sequence: WQGTHFPQT (SEQ ID NO:33).
And in yet another example, an anti-CD200 antibody described herein can contain a paired set of CDRs from the c2aA10 Fab antibody: a HCDR1 comprising the amino acid sequence: AFNIKDHYMH (SEQ ID NO:34); a HCDR2 comprising the amino acid sequence: WIDPESGDTEYAPKFQG (SEQ ID NO:35); a HCDR3 comprising the amino acid sequence: FNGYQALDQ (SEQ ID NO:36); a LCDR1 comprising the amino acid sequence: TASSSVSSSYLH (SEQ ID NO:37); a LCDR2 comprising the amino acid sequence: STSNLAS (SEQ ID NO:38); and a LCDR3 comprising the amino acid sequence: RQYHRSPPIFT (SEQ ID NO:39).
Additional exemplary sets of CDRs of anti-CD200 antibodies are described in, e.g., U.S. Patent No. 7,427,665. In some embodiments, the anti-CD200 antibody is samalizumab (ALXN6000).
Methods for determining whether an antibody binds to a protein antigen and/or the affinity for an antibody to a protein antigen are known in the art. For example, the binding of an antibody to a protein antigen can be detected and/or quantified using a variety of techniques such as, but not limited to, Western blot, dot blot, surface plasmon resonance method (e.g., BIAcore system; Pharmacia Biosensor
AB, Uppsala, Sweden and Piscataway, N.J.), or enzyme-linked immunosorbent assay (ELISA). See, ¢.g., Harlow and Lane (1988) “Antibodies: A Laboratory Manual”
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y .; Benny K. C. Lo (2004) “Antibody Engineering: Methods and Protocols,” Humana Press (ISBN: 1588290921); Borreback (1992) “Antibody Engineering, A Practical Guide,” W.H.
Freeman and Co., NY; Borreback (1995) “Antibody Engineering,” 2" Edition,
Oxford University Press, NY, Oxford; Johne et al. (1993) J Immunol Meth 160:191- 198; Jonsson et al. (1993) Ann Biol Clin 51:19-26; and Jonsson et al. (1991)
Biotechniques 11:620-627.
In some embodiments, the anti-CD200 antibody can crossblock binding of another antibody that binds to an epitope within, or overlapping with, a human CD200 protein. In some embodiments, the anti-CD200 antibody can crossblock binding of an antibody that binds to an epitope within, or overlapping with, a peptide fragment of a human CD200 protein. The peptide fragment can be a fragment of a human CD200 protein having the amino acid sequence depicted in, e.g., any one of SEQ ID NOs:1 to 3. As used herein, the term “crossblocking antibody” refers to an antibody that lowers the amount of binding of anti-CD200 antibody to an epitope on a CD200 protein relative to the amount of binding of the anti-CD200 antibody to the epitope in the absence of the antibody. Suitable methods for determining whether a first antibody crossblocks binding of a second antibody to an epitope are known in the art.
Methods for identifying the epitope to which a particular antibody (e.g., an anti-CD200 antibody) binds are also known in the art. For example, the binding epitope of an anti-CD200 antibody can be identified by measuring the binding of the antibody to several (e.g., three, four, five, six, seven, eight, nine, 10, 15, 20, or 30 or more) overlapping peptide fragments of a CD200 protein (e.g., several overlapping fragments of a protein having the amino acid sequence depicted in, e.g., any one of
SEQ ID NOs:1 to 3). Each of the different overlapping peptides is then bound to a unique address on a solid support, ¢.g., separate wells of a multi-well assay plate.
Next, the anti-CD200 antibody is interrogated by contacting it to each of the peptides in the assay plate for an amount of time and under conditions that allow for the antibody to bind to its epitope. Unbound anti-CD200 antibody is removed by washing each of the wells. Next, a detectably-labeled secondary antibody that binds to the anti-CD200 antibody, if present in a well of the plate, is contacted to each of the wells, and unbound secondary antibody is removed by washing steps. The presence or amount of the detectable signal produced by the detectably-labeled secondary antibody in a well is an indication that the anti-CD200 antibody binds to the particular peptide fragment associated with the well. See, ¢.g., Harlow and Lane (supra), Benny
K.C. Lo (supra), and U.S. Patent Application Publication No. 20060153836, the disclosure of which is incorporated by reference in its entirety. A particular epitope to which an antibody binds can also be identified using BIAcore chromatographic techniques (see, ¢.g., Pharmacia BIAtechnology Handbook, “Epitope Mapping,”
Section 6.3.2, (May 1994); and Johne et al. (1993) J Immunol Methods 160:20191-8).
In some embodiments, an anti-CD200 antibody, or a CD200-binding fragment thereof, described herein binds to a human CD200 polypeptide expressed on the surface of a cell. Methods for determining whether an antibody binds to a protein expressed on the surface of a cell are known in the art and described in, e.g.,
Petermann et al. (2007) J Clin Invest 117(12):3922-9; Rijkers et al. (2008) Mol
Immunol 45(4):1126-35; and Kretz-Rommel (2007) J Immunol 178(9):5595-605.
In some embodiments, an anti-CD200 antibody or CD200-binding fragment thereof described herein inhibits the interaction between CD200 protein and the
CD200 receptor. Methods for determining whether an agent (such as an antibody) inhibits the interaction between CD200 and CD200R are known in the art and described in, e.g., Hatherly and Barclay (2004) Eur J Immunol 34(6):1688-94.
In some embodiments, the anti-CD200 antibody or CD200-binding fragment thereof inhibits the formation of osteoclasts in vitro and/or in vivo. Suitable methods for determining whether an antibody inhibits the formation of osteoclasts are known in the art and described in, ¢.g., PCT Publication No. WO 2008/089022 and Cui et al. (2007) Proc Natl Acad Sci USA 104(36):14436-14441. For example, murine bone marrow cells can be cultured in the presence of, ¢.g., RANKL and M-CSF in the presence or absence of an anti-CD200 antibody. A decrease in the percentage of osteoclasts formed from the bone marrow cells in the presence of the antibody as compared to the percentage of osteoclasts formed in the absence of the antibody indicates that the antibody inhibits osteoclast formation in vitro.
Since CD200 is expressed on normal cells such as endothelial cells, albeit at lower levels than on cancer cells, it could be in some embodiments advantageous to administer a variant anti-CD200 antibody (or CD200-binding fragment thereof) with a constant region modified so that it does not mediate, or has decreased ability to mediate, antibody-dependent cell-mediated cytotoxicity (ADCC), whereby antibodies bind Fc receptors on natural killer (NK) cells or macrophages leading to cell death, or complement-dependent cytotoxicity (CDC), which is cell death induced via activation of the complement cascade (reviewed in Daeron (1997) Annu Rev Immunol 15:203- 234; Ward and Ghetie (1995) Therapeutic Immunol 2:77-94; and Ravetch and Kinet (1991) Annu Rev Immunol. 9:457-492). Such a modification would be useful to limit damage to normal cells. CD200 expression is also upregulated on some activated normal cells (e.g., activated T cells), rendering such cells vulnerable to killing by an anti-CD200 antibody with effector function. It may be advantageous to use an anti-
CD200 antibody lacking effector function to avoid killing of these cells by ADCC or
CDC. The effector function of an anti-CD200 antibody can be eliminated by replacing an immunoglobulin constant region that has effector function (e.g., the IgG1 constant domain) for a constant region that does not have effector function (e.g., an 1gG2/1gG4 fusion constant region). See, ¢.g., Burton et al. (1992) Adv Immun 51:1- 18; Canfield et al. (1991) J Exp Med 173:1483-1491; and Mueller et al. (1997) Mo!
Immunol 34(6):441-452). For example (and in accordance with Kabat numbering), the IgGl and IgG4 constant regions contain G249Gzso residues whereas the IgG2 constant region does not contain residue 249, but does contain Gyso. In a G2/G4 hybrid constant region, where the 249-250 region comes from the G2 sequence, the constant region can be further modified to introduce a glycine residue at position 249 to produce a G2/G4 fusion having G240/Gas0. Additional methods for eliminating effector function are described below.
It is understood that any of the above-described anti-CD200 antibodies can be incorporated into the bispecific anti-CD200/anti-CD20 antibodies described herein.
Anti-CD20 Therapeutic Agents
The disclosure also features therapeutic agents that specifically target cells (e.g., cancer cells) that express CD20 protein by specifically binding to CD20 on the surface of the cells. The anti-CD20 therapeutic can be, ¢.g., a small molecule compound that binds to CD20, a protein (e.g., a natural or synthetic ligand for CD20) or fragment thereof, an RNA aptamer, an L-RNA aptamer, or a spiegelmer.
In some embodiments, the anti-CD20 therapeutic agents are antibodies that bind to CD20 polypeptides (sometimes the antibodies are referred to herein as “anti-
CD20 antibodies”). Also featured are antigen-binding (CD20-binding) fragments of the antibodies. In some embodiments, an anti-CD20 antibody described herein binds to an epitope in the human CD20 protein. For example, the anti-CD20 antibody can bind to an epitope in the human CD20 protein comprising, or consisting of, the following amino acid sequence:
MTTPRNSVNGTFPAEPMKGPIAMQSGPKPLFRRMSSLVGPTQSFFMRESKTLG
AVQIMNGLFHIALGGLLMIPAGIYAPICVTVWYPLWGGIMYIISGSLLAATEK
NSRKCLVKGKMIMNSLSLFAAISGMILSIMDILNIKISHFLKMESLNFIRAHTPY
INIYNCEPANPSEKNSPSTQYCYSIQSLFLGILSVMLIFAFFQELVIAGIVENEWK
RTCSRPKSNIVLLSAEEKKEQTIEIKEEVVGLTETSSQPKNEEDIEIIPIQEEEEEE
TETNFPEPPQDQESSPIENDSSP (SEQ ID NO:40; Genbank Accession No.
NP _068769.2). SEQ ID NO:40 depicts the amino acid sequence for a full-length,
precursor human CD20 isoform A protein. The amino acid sequence for a full-length human CD20 polypeptide is also described in, e.g., Tedder et al. (1988) Proc Natl
Acad Sci USA 85(1):208-212.
An anti-CD20 antibody described herein binds to an epitope within the extracellular portion of a CD20 protein. For example, in some embodiments, the anti-
CD20 antibody can bind to CD20 protein at an epitope within or overlapping with: (i) amino acids 72 to 80 of the amino acid sequence depicted in SEQ ID NO:40; or (ii) amino acids 140 to 186 of the amino acid sequence depicted in SEQ ID NO:40. See, e.g., Teeling et al. (2006) J Immunol 177:362-367. That is, an anti-CD20 antibody described herein can bind to an epitope of human CD20 within or overlapping with the amino acid sequence IPAGIYAPI (SEQ ID NO:41) or
NIKISHFLKMESLNFIRAHTPYINIYNCEPANPSEKNSPSTQYCYSI (SEQ ID
NO:42).
In some embodiments, the anti-CD20 antibody specifically binds to a human
CD20 protein (e.g., the human CD20 protein having the amino acid sequence depicted in SEQ ID NO:40 or one or more of the extracellular loops of the human CD20 protein). Examples of antibodies that specifically bind to a human CD20 protein are described in, e.g., Teeling et al. (2006) at 363, supra; Levene et al. (2005) J R Soc
Med 98:146-152; and U.S. patent nos. 7,435,803; 5,595,721; and 7,422,739, the disclosures of each of which are incorporated herein by reference in their entirety.
Exemplary therapeutic anti-CD20 antibodies, which are approved for clinical use or are in clinical development, that can be used in the methods described herein include, without limitation, rituximab (Biogen Idec), **Y-ibritumomab tiuxetan (Biogen Idec), "*'I-tositumomab (GlaxoSmithKline), ofatumumab (Genmab), TRU- 015 (Trubion), veltuzumab (IMMU-106; Immunomedics), ocrelizumab (Roche), and
AME-133v (Applied Molecular Evolution). See, e.g., Levene et al. (2005), supra;
Burge et al. (2008) Clin Ther 30(10):1806-1816; Kausar et al. (2009) Expert Opin
Biol Ther 9(7):889-895; Morschhauser et al. (2009) J Clin Oncol 27(20):3346-3353; and Milani and Castillo (2009) Curr Opin Mol Ther 11(2):200-207.
Methods for determining whether an antibody binds to CD20 and/or the affinity of an antibody for CD20 are known in the art. In some embodiments, the anti-CD20 antibody can crossblock binding of another antibody that binds to an epitope within, or overlapping with, a human CD20 protein. In some embodiments,
the anti-CD20 antibody can crossblock binding of an antibody that binds to an epitope within, or overlapping with, a peptide fragment of a human CD20 protein. The peptide fragment can be a fragment of a human CD200 protein having the amino acid sequence depicted in, ¢.g., any one of SEQ ID NO:41 or SEQ ID NO:42.
It is understood that any of the above-described anti-CD200 antibodies can be incorporated into the bispecific anti-CD200/anti-CD20 antibodies described herein.
Pharmaceutical compositions and formulations
The compositions containing an anti-CD200 antibody, an anti-CD20 therapeutic agent such as an anti-CD20 antibody, or both, can be formulated as a pharmaceutical composition, ¢.g., for administration to a human to treat cancer or an autoimmune disorder. The pharmaceutical compositions will generally include a pharmaceutically acceptable carrier. As used herein, a “pharmaceutically acceptable carrier” refers to, and includes, any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The compositions can include a pharmaceutically acceptable salt, e.g., an acid addition salt or a base addition salt.
See, e.g., Berge et al. (1977) J Pharm Sci 66:1-19.
The compositions can be formulated according to standard methods.
Pharmaceutical formulation is a well-established art, and is further described in, e.g.,
Gennaro (2000) “Remington: The Science and Practice of Pharmacy,” 20" Edition,
Lippincott, Williams & Wilkins (ISBN: 0683306472); Ansel et al. (1999) “Pharmaceutical Dosage Forms and Drug Delivery Systems,” 7" Edition, Lippincott
Williams & Wilkins Publishers (ISBN: 0683305727); and Kibbe (2000) “Handbook of Pharmaceutical Excipients American Pharmaceutical Association,” 3" Edition (ISBN: 091733096X). In some embodiments, a composition can be formulated, for example, as a buffered solution at a suitable concentration and suitable for storage at 2-8°C. In some embodiments, a composition can be formulated for storage at a temperature below 0°C (e.g., -20°C or -80°C).
The pharmaceutical compositions can be in a variety of forms. These forms include, e.g., liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, tablets, pills, powders, liposomes and suppositories. The preferred form depends, in part, on the intended mode of administration and therapeutic application. For example, compositions containing an anti-CD200 antibody or an anti-CD20 antibody, intended for systemic or local delivery can be in the form of injectable or infusible solutions. Accordingly, the compositions can be formulated for administration by a parenteral mode (e.g., intravenous, subcutaneous, intraperitoneal, or intramuscular injection). “Parenteral administration,” “administered parenterally,” and other grammatically equivalent phrases, as used herein, refer to modes of administration other than enteral and topical administration, usually by injection, and include, without limitation, intravenous, intranasal, intraocular, pulmonary, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intrapulmonary, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural, intracerebral, intracranial, intracarotid and intrasternal injection and infusion (see below).
The compositions can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable for stable storage at high concentration.
Sterile injectable solutions can be prepared by incorporating an antibody described herein in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
Generally, dispersions are prepared by incorporating an anti-CD200 antibody (and/or an anti-CD20 therapeutic agent such as an anti-CD20 antibody) described herein into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods for preparation include vacuum drying and freeze-drying that yield a powder of the antibody described herein plus any additional desired ingredient from a previously sterile-filtered solution thereof.
The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including in the composition a reagent that delays absorption, for example, monostearate salts and gelatin.
In certain embodiments, the anti-CD200 antibody (and/or the anti-CD20 therapeutic agent such as an anti-CD20 antibody) can be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants and microencapsulated delivery systems.
Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid.
Many methods for the preparation of such formulations are known in the art. (See, e.g, JR. Robinson (1978) “Sustained and Controlled Release Drug Delivery
Systems,” Marcel Dekker, Inc., New York.)
In some embodiments, an antibody described herein can be formulated in a composition suitable for intrapulmonary administration (e.g., for administration via nebulizer) to a mammal such as a human. Methods for preparing such compositions are well known in the art and described in, e.g., U.S. Patent Application Publication
No. 20080202513; U.S. Patent Nos. 7,112,341 and 6,019,968; and PCT Publication
Nos. WO 00/061178 and WO 06/122257, the disclosures of each of which are incorporated herein by reference in their entirety. Dry powder inhaler formulations and suitable systems for administration of the formulations are described in, ¢.g., U.S.
Patent Application Publication No. 20070235029, PCT Publication No. WO 00/69887; and U.S. Patent No. 5,997,848.
In some embodiments, an anti-CD200 antibody (and/or an anti-CD20 therapeutic agent such as an anti-CD20 antibody) described herein can be modified, e.g., with a moiety that improves its stabilization and/or retention in circulation, e.g., in blood, serum, or other tissues. The stabilization moiety can improve the stability, or retention of, the antibody by at least 1.5 (e.g., at least 2, 5, 10, 15, 20, 25, 30, 40, or 50 or more) fold.
In some embodiments, an anti-CD200 antibody described herein can be formulated with one or more additional active agents useful for treating cancer or ameliorating a symptom thereof. For example, an anti-CD200 antibody can be formulated with an anti-CD20 therapeutic agent (e.g., an anti-CD20 antibody such as any of the anti-CD20 antibodies described herein), a genotoxic agent or a chemotherapeutic agent, or one or more kinase inhibitors. The genotoxic or chemotherapeutic agent can be, but is not limited to: carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide, podophyllotoxin, taxol, satraplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, ara-C, taxotere, gemcitabine,
cisplatin (CDDP), adriamycin (ADR), or an analog of any of the aforementioned.
Kinase inhibitors include, e.g., one or more of: trastuzumab, gefitinib, erlotinib, imatinib mesylate, or sunitinib malate. Additional agents are known in the art and described herein.
When the anti-CD200 antibody is to be used in combination with a second active agent, or when two or more different anti-CD200 antibodies are to be used, the agents can be formulated separately or together. For example, the respective pharmaceutical compositions can be mixed, e.g., just prior to administration, and administered together or can be administered separately, e.g., at the same or different times (see below).
As described above, a composition can be formulated such that it includes a therapeutically effective amount of an anti-CD200 antibody or the composition can be formulated to include a sub-therapeutic amount of the antibody and a sub-therapeutic amount of one or more additional active agents such that the components in total are therapeutically effective for treating a cancer or an autoimmune disorder. In some embodiments, a composition can be formulated to include two or more anti-CD200 antibodies, each at sub-therapeutic doses, such that the antibodies in combination are at a concentration that is therapeutically effective for treating a cancer or an autoimmune disorder in a human. Methods for determining a therapeutically effective dose of an anti-CD200 antibody are known in the art and described herein.
Methods for Producing an Anti-CD200 or an Anti-CD20 Antibody
Suitable methods for producing an antibody (e.g., an anti-CD200 antibody or an anti-CD20 antibody) or antigen-binding fragments thereof, in accordance with the disclosure are known in the art (see, e.g., U.S. Patent Nos. 7,427,665; 7,435,412; and 7,408,041, the disclosures of each of which are incorporated herein by reference in their entirety) and described herein. For example, monoclonal anti-CD200 antibodies may be generated using human CD200-expressing cells, a human CD200 polypeptide, or an antigenic fragment of a human CD200 polypeptide as an immunogen, thus raising an immune response in animals from which antibody-producing cells and in turn monoclonal antibodies may be isolated. Similarly, a monoclonal anti-CD20 antibody can be generated using human CD20-expressing cells, a human CD20 polypeptide, or an antigenic fragment of the human CD20 polypeptide as an immunogen in an animal. The sequence of such antibodies may be determined and the antibodies or variants thereof produced by recombinant techniques. Recombinant techniques may be used to produce chimeric, CDR-grafted, humanized and fully human antibodies based on the sequence of the monoclonal antibodies as well as polypeptides capable of binding to the antigen of interest (e.g., CD200 or CD20).
Moreover, anti-CD200 antibodies derived from recombinant libraries (“phage antibodies’) may be selected using CD200-expressing cells, or polypeptides derived therefrom, as bait to isolate the antibodies or polypeptides on the basis of target specificity. The production and isolation of non-human and chimeric anti-CD200 antibodies are well within the purview of the skilled artisan. It is understood that anti-
CD20 antibodies can be selected using merely routine adaptations of the methods described above.
Recombinant DNA technology can be used to modify one or more characteristics of the antibodies produced in non-human cells. Thus, chimeric antibodies can be constructed in order to decrease the immunogenicity thereof in diagnostic or therapeutic applications. Moreover, immunogenicity can be minimized by humanizing the antibodies by CDR grafting and, optionally, framework modification. See, U.S. Patent Nos. 5,225,539 and 7,393,648, the contents of each of which are incorporated herein by reference.
Antibodies can be obtained from animal serum or, in the case of monoclonal antibodies or fragments thereof, produced in cell culture. Recombinant DNA technology can be used to produce the antibodies according to established procedure, including procedures in bacterial or preferably mammalian cell culture. The selected cell culture system preferably secretes the antibody product.
In another embodiment, a process for the production of an antibody disclosed herein includes culturing a host, e.g. E. coli or a mammalian cell, which has been transformed with a hybrid vector. The vector includes one or more expression cassettes containing a promoter operably linked to a first DNA sequence encoding a signal peptide linked in the proper reading frame to a second DNA sequence encoding the antibody protein. The antibody protein is then collected and isolated. Optionally, the expression cassette may include a promoter operably linked to a polycistronic (e.g., bicistronic) DNA sequence encoding antibody proteins each individually operably linked to a signal peptide in the proper reading frame.
Multiplication of hybridoma cells or mammalian host cells in vitro is carried out in suitable culture media, which include the customary standard culture media (such as, for example Dulbecco’s Modified Eagle Medium (DMEM) or RPMI 1640 medium), optionally replenished by a mammalian serum (e.g. fetal calf serum), or trace elements and growth sustaining supplements (e.g. feeder cells such as normal mouse peritoneal exudate cells, spleen cells, bone marrow macrophages, 2- aminoethanol, insulin, transferrin, low density lipoprotein, oleic acid, or the like).
Multiplication of host cells which are bacterial cells or yeast cells is likewise carried out in suitable culture media known in the art. For example, for bacteria suitable culture media include medium LE, NZCYM, NZYM, NZM, Terrific Broth, SOB,
SOC, 2 xYT, or M9 Minimal Medium. For yeast, suitable culture media include medium YPD, YEPD, Minimal Medium, or Complete Minimal Dropout Medium.
In vitro production provides relatively pure antibody preparations and allows scale-up production to give large amounts of the desired antibodies. Techniques for bacterial cell, yeast, plant, or mammalian cell cultivation are known in the art and include homogeneous suspension culture (e.g. in an airlift reactor or in a continuous stirrer reactor), and immobilized or entrapped cell culture (e.g. in hollow fibers, microcapsules, on agarose microbeads or ceramic cartridges).
Large quantities of the desired antibodies can also be obtained by multiplying mammalian cells in vivo. For this purpose, hybridoma cells producing the desired antibodies are injected into histocompatible mammals to cause growth of antibody- producing tumors. Optionally, the animals are primed with a hydrocarbon, especially mineral oils such as pristane (tetramethyl-pentadecane), prior to the injection. After one to three weeks, the antibodies are isolated from the body fluids of those mammals. For example, hybridoma cells obtained by fusion of suitable myeloma cells with antibody-producing spleen cells from Balb/c mice, or transfected cells derived from hybridoma cell line Sp2/0 that produce the desired antibodies are injected intraperitoneally into Balb/c mice optionally pre-treated with pristane. After one to two weeks, ascitic fluid is taken from the animals.
The foregoing, and other, techniques are discussed in, for example, Kohler and
Milstein, (1975) Nature 256:495-497; U.S. Patent No. 4,376,110; Harlow and Lane,
Antibodies: a Laboratory Manual, (1988) Cold Spring Harbor, the disclosures of which are all incorporated herein by reference. Techniques for the preparation of recombinant antibody molecules are described in the above references and also in, ¢.2.:W097/08320; U.S. Patent No. 5,427,908; U.S. Patent No. 5,508,717; Smith (1985) Science 225:1315-1317; Parmley and Smith (1988) Gene 73:305-318; De La
Cruz et al. (1988) Journal of Biological Chemistry 263:4318-4322; U.S. Patent No. 5,403,484; U.S. Patent No. 5,223,409; WO88/06630; W(092/15679; U.S. Patent No. 5,780,279; U.S. Patent No. 5,571,698; U.S. Patent No. 6,040,136; Davis et al. (1999)
Cancer Metastasis Rev. 18(4):421-5; and Taylor et al. (1992) Nucleic Acids Research 20: 6287-6295; Tomizuka et al. (2000) Proc. Natl. Acad. Sci. USA 97(2): 722-727, the contents of each of which are incorporated herein by reference in their entirety.
The cell culture supernatants are screened for the desired antibodies, preferentially by immunofluorescent staining of CD200-expressing cells, by immunoblotting, by an enzyme immunoassay, ¢.g. a sandwich assay or a dot-assay, or a radioimmunoassay.
For isolation of the antibodies, the immunoglobulins in the culture supernatants or in the ascitic fluid may be concentrated, e.g., by precipitation with ammonium sulfate, dialysis against hygroscopic material such as polyethylene glycol, filtration through selective membranes, or the like. If necessary and/or desired, the antibodies are purified by the customary chromatography methods, for example gel filtration, ion-exchange chromatography, chromatography over DEAE-cellulose and/or (immuno-) affinity chromatography, ¢.g., affinity chromatography with one or more surface polypeptides derived from a CD200-expressing cell line or synthetic
CD200 fragment peptides, or with Protein-A or -G.
Another embodiment provides a process for the preparation of a bacterial cell line secreting antibodies directed against a human CD200 protein or a human CD20 (depending on the antibody being generated) in a suitable mammal. For example a rabbit is immunized with pooled samples from CD200-expressing tissue or cells or
CD200 polypeptide or fragments thereof. A phage display library produced from the immunized rabbit is constructed and panned for the desired antibodies in accordance with methods well known in the art (such as, e.g., the methods disclosed in the various references incorporated herein by reference).
Hybridoma cells secreting the monoclonal antibodies are also disclosed. The preferred hybridoma cells are genetically stable, secrete monoclonal antibodies described herein of the desired specificity, and can be expanded from deep-frozen cultures by thawing and propagation in vitro or as ascites in vivo.
In another embodiment, a process is provided for the preparation of a hybridoma cell line secreting monoclonal antibodies against a human CD200 protein.
In that process, a suitable mammal, for example a Balb/c mouse, is immunized with one or more polypeptides or antigenic fragments of CD200 or with one or more polypeptides or antigenic fragments derived from a CD200-expressing cell, the
CD200-expressing cell itself, or an antigenic carrier containing a purified polypeptide as described. Antibody-producing cells of the immunized mammal are grown briefly in culture or fused with cells of a suitable myeloma cell line. The hybrid cells obtained in the fusion are cloned, and cell clones secreting the desired antibodies are selected. For example, spleen cells of Balb/c mice immunized with a protein fragment of human CD200 are fused with cells of the myeloma cell line PAI or the myeloma cell line Sp2/0-Ag 14. The obtained hybrid cells are then screened for secretion of the desired antibodies and positive hybridoma cells are cloned.
Methods for preparing a hybridoma cell line include immunizing Balb/c mice by injecting subcutaneously and/or intraperitoneally a peptide fragment of human
CD200 several times, e.g., four to six times, over several months, e.g., between two and four months. Spleen cells from the immunized mice are taken two to four days after the last injection and fused with cells of the myeloma cell line PAI in the presence of a fusion promoter, preferably polyethylene glycol. Preferably, the myeloma cells are fused with a three- to twenty-fold excess of spleen cells from the immunized mice in a solution containing about 30% to about 50% polyethylene glycol of a molecular weight around 4000. After the fusion, the cells are expanded in suitable culture media as described supra, supplemented with a selection medium, for example HAT medium, at regular intervals in order to prevent normal myeloma cells from overgrowing the desired hybridoma cells.
The antibodies and fragments thereof can be “chimeric.” Chimeric antibodies and antigen-binding fragments thereof comprise portions from two or more different species (e.g., mouse and human). Chimeric antibodies can be produced with mouse variable regions of desired specificity spliced into human constant domain gene segments (for example, U.S. Patent No. 4,816,567). In this manner, non-human antibodies can be modified to make them more suitable for human clinical application (e.g., methods for treating or preventing a cancer in a human subject).
The monoclonal antibodies of the present disclosure include “humanized” forms of the non-human (e.g., mouse) antibodies. Humanized or CDR-grafted mAbs are particularly useful as therapeutic agents for humans because they are not cleared from the circulation as rapidly as mouse antibodies and do not typically provoke an adverse immune reaction. Generally, a humanized antibody has one or more amino acid residues introduced into it from a non-human source. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Methods of preparing humanized antibodies are generally well known in the art. For example, humanization can be essentially performed following the method of Winter and co-workers (see, e.g., Jones et al. (1986) Nature 321:522-525; Riechmann et al. (1988) Nature 332:323-327; and
Verhoeyen et al. (1988) Science 239:1534-1536), by substituting rodent CDRs or
CDR sequences for the corresponding sequences of a human antibody. Also see, ¢.g.,
Staclens et al. (2006) Mol Immunol 43:1243-1257. In some embodiments, humanized forms of non-human (e.g., mouse) antibodies are human antibodies (recipient antibody) in which hypervariable (CDR) region residues of the recipient antibody are replaced by hypervariable region residues from a non-human species (donor antibody) such as a mouse, rat, rabbit, or non-human primate having the desired specificity, affinity, and binding capacity. In some instances, framework region residues of the human immunoglobulin are also replaced by corresponding non-human residues (so called “back mutations”). In addition, phage display libraries can be used to vary amino acids at chosen positions within the antibody sequence. The properties of a humanized antibody are also affected by the choice of the human framework.
Furthermore, humanized and chimerized antibodies can be modified to comprise residues that are not found in the recipient antibody or in the donor antibody in order to further improve antibody properties, such as, for example, affinity or effector function.
Fully human antibodies are also provided in the disclosure. The term “human antibody” includes antibodies having variable and constant regions (if present) derived from human germline immunoglobulin sequences. Human antibodies can include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation ix vivo). However, the term “human antibody” does not include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences (i.c., humanized antibodies). Fully human or human antibodies may be derived from transgenic mice carrying human antibody genes (carrying the variable (V), diversity (D), joining (J), and constant (C) exons) or from human cells. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. See, ¢.g., Jakobovits et al. (1993)
Proc Natl Acad Sci USA 90:2551; Jakobovits et al. (1993) Nature 362:255-258;
Bruggemann et al. (1993) Year in Immunol 7:33; and Duchosal et al. (1992) Nature 355:258. Transgenic mouse strains can be engineered to contain gene sequences from unrearranged human immunoglobulin genes. The human sequences may code for both the heavy and light chains of human antibodies and would function correctly in the mice, undergoing rearrangement to provide a wide antibody repertoire similar to that in humans. The transgenic mice can be immunized with the target protein (e.g., a human CD200 protein, fragments thereof, or cells expressing CD200 protein; or a human CD20 protein, fragments thereof, or cells expressing CD20 protein) to create a diverse array of specific antibodies and their encoding RNA. Nucleic acids encoding the antibody chain components of such antibodies may then be cloned from the animal into a display vector. Typically, separate populations of nucleic acids encoding heavy and light chain sequences are cloned, and the separate populations then recombined on insertion into the vector, such that any given copy of the vector receives a random combination of a heavy and a light chain. The vector is designed to express antibody chains so that they can be assembled and displayed on the outer surface of a display package containing the vector. For example, antibody chains can be expressed as fusion proteins with a phage coat protein from the outer surface of the phage. Thereafter, display packages can be screened for display of antibodies binding to a target.
In addition, human antibodies can be derived from phage-display libraries (Hoogenboom et al. (1991) J Mol Biol 227:381; Marks et al. (1991) J Mol Biol 222:581-597; and Vaughan et al. (1996) Nature Biotech 14:309 (1996)). Synthetic phage libraries can be created which use randomized combinations of synthetic human antibody V-regions. By selection on antigen fully human antibodies can be made in which the V-regions are very human-like in nature. See, e.g., U.S. Patent
Nos. 6,794,132, 6,680,209, 4,634,666, and Ostberg et al. (1983) Hybridoma 2:361- 367, the contents of each of which are incorporated herein by reference in their entirety.
For the generation of human antibodies, also see Mendez et al. (1998) Nature
Genetics 15:146-156, Green and Jakobovits (1998) J Exp Med 188:483-495, the disclosures of which are hereby incorporated by reference in their entirety. Human antibodies are further discussed and delineated in U.S. Patent Nos.: 5,939,598; 6,673,986; 6,114,598; 6,075,181; 6,162,963; 6,150,584; 6,713,610; and 6,657,103 as well as U.S. Patent Publication Nos. 20030229905 Al, 20040010810 Al, US 20040093622 Al, 20060040363 A1, 20050054055 Al, 20050076395 Al, 20050287630 Al. See also International Publication Nos. WO 94/02602, WO 96/34096, and WO 98/24893, and European Patent No. EP 0 463 151 B1. The disclosures of each of the above-cited patents, applications, and references are hereby incorporated by reference in their entirety.
In an alternative approach, others, including GenPharm International, Inc., have utilized a “minilocus” approach. In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus. Thus, one or more Vy genes, one or more Dy genes, one or more Jy genes, a mu constant region, and a second constant region (preferably a gamma constant region) are formed into a construct for insertion into an animal. This approach is described in, e.g., U.S. Patent Nos.: 5,545,807; 5,545,806; 5,625,825; 5,625,126; 5,633,425; 5,661,016; 5,770,429; 5,789,650; and 5,814,318; 5,591,669; 5,612,205; 5,721,367; 5,789,215; 5,643,763; 5,569,825; 5,877,397; 6,300,129; 5,874,299; 6,255,458; and 7,041,871, the disclosures of which are hereby incorporated by reference. See also European Patent No. 0 546 073 B1, International Patent
Publication Nos. WO 92/03918, WO 92/22645, WO 92/22647, WO 92/22670, WO 93/12227, WO 94/00569, WO 94/25585, WO 96/14436, WO 97/13852, and WO 98/24884, the disclosures of each of which are hereby incorporated by reference in their entirety. See further Taylor et al. (1992) Nucleic Acids Res 20: 6287; Chen et al. (1993) Int Immunol 5: 647; Tuaillon et al. (1993) Proc Natl Acad Sci USA 90: 3720-4;
Choi et al. (1993) Nature Genetics 4: 117; Lonberg et al. (1994) Nature 368: 856-859;
Taylor et al. (1994) International Immunology 6: 579-591; Tuaillon et al. (1995) J.
Immunol. 154: 6453-65; Fishwild et al. (1996) Nature Biotechnology 14: 845; and
Tuaillon et al. (2000) Eur J Immunol 10: 2998-3005, the disclosures of each of which are hereby incorporated by reference in their entirety.
In certain embodiments, de-immunized anti-CD200 antibodies or antigen- binding fragments thereof are provided. De-immunized antibodies or antigen-binding fragments thereof are those modified so as to render the antibody or antigen-binding fragment thereof non-immunogenic, or less immunogenic, to a given species. De- immunization can be achieved by modifying the antibody or antigen-binding fragment thereof utilizing any of a variety of techniques known to those skilled in the art (see, e.g., PCT Publication Nos. WO 04/108158 and WO 00/34317). For example, an antibody or antigen-binding fragment thereof may be de-immunized by identifying potential T cell epitopes and/or B cell epitopes within the amino acid sequence of the antibody or antigen-binding fragment thereof and removing one or more of the potential T cell epitopes and/or B cell epitopes from the antibody or antigen-binding fragment thereof, for example, using recombinant techniques. The modified antibody or antigen-binding fragment thereof may then optionally be produced and tested to identify antibodies or antigen-binding fragments thereof that have retained one or more desired biological activities, such as, for example, binding affinity, but have reduced immunogenicity. Methods for identifying potential T cell epitopes and/or B cell epitopes may be carried out using techniques known in the art, such as, for example, computational methods (see e.g., PCT Publication No. WO 02/069232), in vitro or in silico techniques, and biological assays or physical methods (such as, for example, determination of the binding of peptides to MHC molecules, determination of the binding of peptide:MHC complexes to the T cell receptors from the species to receive the antibody or antigen-binding fragment thereof, testing of the protein or peptide parts thereof using transgenic animals with the MHC molecules of the species to receive the antibody or antigen-binding fragment thereof, or testing with transgenic animals reconstituted with immune system cells from the species to receive the antibody or antigen-binding fragment thereof, etc.). In various embodiments, the de- immunized antibodies (¢.g., deimmunized anti-CD200 antibodies or deimmunized anti-CD20 antibodies) described herein include de-immunized antigen-binding fragments, Fab, Fv, scFv, Fab’ and F(ab’), monoclonal antibodies, murine antibodies, engineered antibodies (such as, for example, chimeric, single chain, CDR-grafted, humanized, fully human antibodies, and artificially selected antibodies), synthetic antibodies and semi-synthetic antibodies.
In some embodiments, a recombinant DNA comprising an insert coding for a heavy chain variable domain and/or for a light chain variable domain of an anti-
CD200 antibody or a CD200 protein-expressing cell line is produced. The term DNA includes coding single stranded DNAs, double stranded DNAs consisting of said coding DNAs and of complementary DNAs thereto, or these complementary (single stranded) DNAs themselves.
Furthermore, a DNA encoding a heavy chain variable domain and/or a light chain variable domain of anti-CD200 antibodies, or the CD200-expressing cell line, can be enzymatically or chemically synthesized to contain the authentic DNA sequence coding for a heavy chain variable domain and/or for the light chain variable domain, or a mutant thereof. A mutant of the authentic DNA is a DNA encoding a heavy chain variable domain and/or a light chain variable domain of the above- mentioned antibodies in which one or more amino acids are deleted, inserted, or exchanged with one or more other amino acids. Preferably said modification(s) are outside the CDRs of the heavy chain variable domain and/or of the light chain variable domain of the antibody in humanization and expression optimization applications. The term mutant DNA also embraces silent mutants wherein one or more nucleotides are replaced by other nucleotides with the new codons coding for the same amino acid(s). The term mutant sequence also includes a degenerate sequence. Degenerate sequences are degenerate within the meaning of the genetic code in that an unlimited number of nucleotides are replaced by other nucleotides without resulting in a change of the amino acid sequence originally encoded. Such degenerate sequences may be useful due to their different restriction sites and/or frequency of particular codons which are preferred by the specific host, particularly E. coli, to obtain an optimal expression of the heavy chain murine variable domain and/or a light chain murine variable domain.
The term mutant is intended to include a DNA mutant obtained by in vitro mutagenesis of the authentic DNA according to methods known in the art.
For the assembly of complete tetrameric immunoglobulin molecules and the expression of chimeric antibodies, the recombinant DNA inserts coding for heavy and light chain variable domains are fused with the corresponding DNAs coding for heavy and light chain constant domains, then transferred into appropriate host cells, for example after incorporation into hybrid vectors.
Recombinant DNAs including an insert coding for a heavy chain murine variable domain of an anti-CD200 antibody or a CD200-expressing cell line fused to a human constant domain IgG, for example v1, v2, y3 or v4, in particular embodiments v1 or y4, may be used. Recombinant DNAs including an insert coding for a light chain murine variable domain of an antibody fused to a human constant domain « or
A, preferably k, are also provided.
Another embodiment pertains to recombinant DNAs coding for a recombinant polypeptide wherein the heavy chain variable domain and the light chain variable domain are linked by way of a spacer group, optionally comprising a signal sequence facilitating the processing of the antibody in the host cell and/or a DNA sequence encoding a peptide facilitating the purification of the antibody and/or a cleavage site and/or a peptide spacer and/or an agent. The DNA coding for an agent is intended to be a DNA coding for the agent useful in diagnostic or therapeutic applications. Thus, agent molecules which are toxins or enzymes, especially enzymes capable of catalyzing the activation of prodrugs, are particularly indicated. The DNA encoding such an agent has the sequence of a naturally occurring enzyme or toxin encoding
DNA, or a mutant thereof, and can be prepared by methods well known in the art.
Accordingly, the monoclonal antibodies or antigen-binding fragments of the disclosure can be naked antibodies or antigen-binding fragments that are not conjugated to other agents, for example, a therapeutic agent or detectable label.
Alternatively, the monoclonal antibody or antigen-binding fragment can be conjugated to an agent such as, for example, a cytotoxic agent, a small molecule, a hormone, an enzyme, a growth factor, a cytokine, a ribozyme, a peptidomimetic, a chemical, a prodrug, a nucleic acid molecule including coding sequences (such as antisense, RNAI, gene-targeting constructs, etc.), or a detectable label (e.g., an NMR or X-ray contrasting agent, fluorescent molecule, etc.). In certain embodiments, an anti-CD200 antibody or antigen-binding fragment (e.g., Fab, Fv, single-chain scFv,
Fab’, and F(ab’),) is linked to a molecule that increases the half-life of the antibody or antigen-binding fragment (see above).
Several possible vector systems are available for the expression of cloned heavy chain and light chain genes in mammalian cells. One class of vectors relies upon the integration of the desired gene sequences into the host cell genome. Cells which have stably integrated DNA can be selected by simultaneously introducing drug resistance genes such as E. coli gpt (Mulligan and Berg (1981) Proc Natl Acad
Sci USA, 78:2072) or Tn5 neo (Southern and Berg (1982) Mol Appl Genet 1:327).
The selectable marker gene can be either linked to the DNA gene sequences to be expressed, or introduced into the same cell by co-transfection (Wigler et al. (1979)
Cell 16:77). A second class of vectors utilizes DNA elements which confer autonomously replicating capabilities to an extrachromosomal plasmid. These vectors can be derived from animal viruses, such as bovine papillomavirus (Sarver et al. (1982) Proc Natl Acad Sci USA, 79:7147), polyoma virus (Deans et al. (1984) Proc
Natl Acad Sci USA 81:1292), or SV40 virus (Lusky and Botchan (1981) Nature 293:79).
Since an immunoglobulin cDNA is comprised only of sequences representing the mature mRNA encoding an antibody protein, additional gene expression elements regulating transcription of the gene and processing of the RNA are required for the synthesis of immunoglobulin mRNA. These elements may include splice signals, transcription promoters, including inducible promoters, enhancers, and termination signals. cDNA expression vectors incorporating such elements include those described by Okayama and Berg (1983) Mol Cell Biol 3:280; Cepko et al. (1984) Cell 37:1053; and Kaufman (1985) Proc Natl Acad Sci USA 82:689.
As is evident from the disclosure, the anti-CD200 antibodies and/or anti-CD20 antibodies can be used in therapies (e.g., therapies for treating a cancer), including combination therapies, as well as in the monitoring of disease progression.
In the therapeutic embodiments of the present disclosure, bispecific antibodies are contemplated. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the CD200 antigen on a cell (such as, e.g., an immune cell), the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit. In some embodiments, the bispecific antibody is one that binds to human CD200 and human
CD20.
Methods for making bispecific antibodies are within the purview of those skilled in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello (1983)
Nature 305:537-539). Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy- chain constant domain, including at least part of the hinge, Cy2, and Cy3 regions.
DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co- transfected into a suitable host organism. For further details of illustrative currently known methods for generating bispecific antibodies see, e.g., Suresh et al. (1986)
Methods in Enzymology 121:210; PCT Publication No. WO 96/27011; Brennan et al. (1985) Science 229:81; Shalaby et al. J Exp Med (1992) 175:217-225; Kostelny et al. (1992) J Immunol 148(5):1547-1553; Hollinger et al. (1993) Proc. Natl. Acad. Sci.
USA 90:6444-6448; Gruber et al. (1994) J Immunol 152:5368; and Tutt et al. (1991) J
Immunol 147:60. Bispecific antibodies also include cross-linked or heteroconjugate antibodies. Heteroconjugate antibodies may be made using any convenient cross- linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques.
Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. See, ¢.g., Kostelny et al. (1992) J Immunol 148(5):1547-1553. The leucine zipper peptides from the Fos and Jun proteins may be linked to the Fab’ portions of two different antibodies by gene fusion. The antibody homodimers may be reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al. (1993) Proc Natl Acad Sci USA 90:6444- 6448 has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (scFv) dimers has also been reported. See, ¢.g., Gruber et al. (1994) J Immunol 152:5368. Alternatively, the antibodies can be “linear antibodies” as described in, ¢.g., Zapata et al. (1995)
Protein Eng 8(10):1057-1062. Briefly, these antibodies comprise a pair of tandem Fd segments (Vy-Cy1-Vi-Cyl) which form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific.
The disclosure also embraces variant forms of bispecific antibodies such as the tetravalent dual variable domain immunoglobulin (DVD-Ig) molecules described in
Wu et al. (2007) Nat Biotechnol 25(11):1290-1297. The DVD-Ig molecules are designed such that two different light chain variable domains (VL) from two different parent antibodies are linked in tandem directly or via a short linker by recombinant
DNA techniques, followed by the light chain constant domain. Methods for generating DVD-Ig molecules from two parent antibodies are further described in, e.g., PCT Publication Nos. WO 08/024188 and WO 07/024715, the disclosures of each of which are incorporated herein by reference in their entirety.
In some embodiments, anti-CD200 antibodies and/or anti-CD20 antibodies can be modified, e.g., with a moiety that improves the stabilization and/or retention of the antibodies themselves in circulation, ¢.g., in blood, serum, or other tissues. For example, an anti-CD200 antibody described herein can be PEGylated as described in, e.g., Lee et al. (1999) Bioconjug Chem 10(6): 973-8; Kinstler et al. (2002) Advanced
Drug Deliveries Reviews 54:477-485; and Roberts et al. (2002) Advanced Drug
Delivery Reviews 54:459-476. The stabilization moiety can improve the stability, or retention of, the antibody in a subject’s body (e.g., blood or tissue) by at least 1.5 (e.g., at least 2, 5, 10, 15, 20, 25, 30, 40, or 50 or more) fold.
Modification of the Antibodies or Antigen-Binding Fragments Thereof
The anti-CD200 antibodies or anti-CD20 antibodies, or antigen-binding fragments thereof, can be modified following their expression and purification. The modifications can be covalent or non-covalent modifications. Such modifications can be introduced into the antibodies or fragments by, e.g., reacting targeted amino acid residues of the polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues. Suitable sites for modification can be chosen using any of a variety of criteria including, e.g., structural analysis or amino acid sequence analysis of the antibodies or fragments.
In some embodiments, the antibodies or antigen-binding fragments thereof can be conjugated to a heterologous moiety. The heterologous moiety can be, ¢.g., a heterologous polypeptide, a therapeutic agent (e.g., a toxin or a drug), or a detectable label such as, but not limited to, a radioactive label, an enzymatic label, a fluorescent label, or a luminescent label. Suitable heterologous polypeptides include, ¢.g., an antigenic tag (e.g., FLAG, polyhistidine, hemagglutinin (HA), glutathione-S- transferase (GST), or maltose-binding protein (MBP)) for use in purifying the antibodies or fragments. Heterologous polypeptides also include polypeptides that are useful as diagnostic or detectable markers, for example, luciferase, green fluorescent protein (GFP), or chloramphenicol acetyl transferase (CAT). Suitable radioactive labels include, e.g., 3p 3p Me 1257 Bl 35g and *H. Suitable fluorescent labels include, without limitation, fluorescein, fluorescein isothiocyanate (FITC), green fluorescence protein (GFP), DyLight 488, phycoerythrin (PE), propidium iodide (PI),
PerCP, PE-Alexa Fluor® 700, CyS5, allophycocyanin, and Cy7. Luminescent labels include, e.g., any of a variety of luminescent lanthanide (e.g., europium or terbium) chelates. For example, suitable europium chelates include the europium chelate of diethylene triamine pentaacetic acid (DTPA) or tetraazacyclododecane-1,4,7,10- tetraacetic acid (DOTA). Enzymatic labels include, e.g., alkaline phosphatase, CAT, luciferase, and horseradish peroxidase. Heterologous polypeptides can be incorporated into the anti-CD200 antibodies as fusion proteins. Methods for generating nucleic acids encoding an antibody-heterologous polypeptide fusion protein are well known in the art of antibody engineering and described in, e.g.,
Dakappagari et al. (2006) J Immunol 176:426-440.
In some embodiments, the heterologous polypeptide is one that is toxic to a cell. For example, the toxic polypeptide can be selected from the group consisting of
Pseudomonas exotoxin (PE), bryodin, gelonin, aspergillin, restrictocin, angiogenin, saporin, abrin, a prokaryotic ribonuclease, a eukaryotic ribonuclease, ricin, pokeweed antiviral protein (PAP), a pro-apoptotic polypeptide, a ribosomal inhibitory protein, or a biologically active fragment of any of the foregoing. Pro-apoptotic polypeptides include, e.g., Bax, Bad, Bak, Bim, Bik, Bok, Hrk, FasL, TRAIL, and TNF-q., and pro- apoptotic, biologically-active fragments thereof.
In some embodiments, an anti-CD200 antibody, an anti-CD20 antibody, or antigen-binding fragments thereof can be conjugated to a small molecule or radioactive agent that is toxic to a cell. For example, an anti-CD200 antibody or anti-
CD20 antibody can be conjugated to a toxic small molecule selected from the group consisting of cisplatin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, calicheamicin, camptothecin, adriamycin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, platinum, plicomycin, monomethyl auristatin, auristatin E, mitomycin, etoposide, verampil, podophyllotoxin, tamoxifen, taxol, transplatinum, 5-flurouracil, vincristine, vinblastine, methotrexate, or an analog of any of the aforementioned. The antibody or fragment can be conjugated to a radioactive agent that is toxic to a cell.
Such radioactive agents include, ¢.g., Ny, 18Re, 88Re, Cy, “Cu, *1*Pb, *'*Bi, *"B, 123] 125) 131 Alp 2010p 32p 177 47g 10Spp 109pg 153g and 199A
Two proteins (e.g., an anti-CD200 antibody or an anti-CD20 antibody and a heterologous moiety) can be cross-linked using any of a number of known chemical cross linkers. Examples of such cross linkers are those which link two amino acid residues via a linkage that includes a “hindered” disulfide bond. In these linkages, a disulfide bond within the cross-linking unit is protected (by hindering groups on either side of the disulfide bond) from reduction by the action, for example, of reduced glutathione or the enzyme disulfide reductase. One suitable reagent, 4- succinimidyloxycarbonyl-o-methyl-o (2-pyridyldithio) toluene (SMPT), forms such a linkage between two proteins utilizing a terminal lysine on one of the proteins and a terminal cysteine on the other. Heterobifunctional reagents that cross-link by a different coupling moiety on each protein can also be used. Other useful cross-linkers include, without limitation, reagents which link two amino groups (e.g., N-5-azido-2- nitrobenzoyloxysuccinimide), two sulthydryl groups (e.g., 1,4-bis-maleimidobutane), an amino group and a sulfhydryl group (e.g., m-maleimidobenzoyl-N- hydroxysuccinimide ester), an amino group and a carboxyl group (e.g., 4-[p- azidosalicylamido]butylamine), and an amino group and a guanidinium group that is present in the side chain of arginine (e.g., p-azidophenyl glyoxal monohydrate).
In some embodiments, a radioactive label can be directly conjugated to the amino acid backbone of the antibody. Alternatively, the radioactive label can be included as part of a larger molecule (e.g., ‘>I in meta-['*’I]iodophenyl-N- hydroxysuccinimide (['*’IJmIPNHS) which binds to free amino groups to form meta- iodophenyl (mIP) derivatives of relevant proteins (see, ¢.g., Rogers et al. (1997) J
Nucl Med 38:1221-1229) or chelate (e.g., to DOTA or DTPA) which is in turn bound to the protein backbone. Methods of conjugating the radioactive labels or larger molecules/chelates containing them to the anti-CD200 antibodies or anti-CD20 antibodies described herein are known in the art. Such methods involve incubating the proteins with the radioactive label under conditions (e.g., pH, salt concentration, and/or temperature) that facilitate binding of the radioactive label or chelate to the protein (see, ¢.g., U.S. Patent No. 6,001,329).
Methods for conjugating a fluorescent label (sometimes referred to as a “fluorophore”) to a protein (e.g., an anti-CD200 antibody, an anti-CD20 antibody or antigen-binding fragments of any of the foregoing) are known in the art of protein chemistry. For example, fluorophores can be conjugated to free amino groups (e.g., of lysines) or sulfhydryl groups (e.g., cysteines) of proteins using succinimidyl (NHS) ester or tetrafluorophenyl (TFP) ester moieties attached to the fluorophores. In some embodiments, the fluorophores can be conjugated to a heterobifunctional cross-linker moiety such as sulfo-SMCC. Suitable conjugation methods involve incubating an antibody protein, or fragment thereof, with the fluorophore under conditions that facilitate binding of the fluorophore to the protein. See, ¢.g., Welch and Redvanly (2003) “Handbook of Radiopharmaceuticals: Radiochemistry and Applications,” John
Wiley and Sons (ISBN 0471495603).
In some embodiments, the anti-CD200 antibodies or anti-CD20 antibodies can be modified, e.g., with a moiety that improves the stabilization and/or retention of the antibodies in circulation, ¢.g., in blood, serum, or other tissues. For example, the antibody or fragment can be PEGylated as described in, e.g., Lee et al. (1999)
Bioconjug Chem 10(6): 973-8; Kinstler et al. (2002) Advanced Drug Deliveries
Reviews 54:477-485; and Roberts et al. (2002) Advanced Drug Delivery Reviews 54:459-476. The stabilization moiety can improve the stability, or retention of, the antibody (or fragment) by at least 1.5 (e.g., at least 2, 5, 10, 15, 20, 25, 30, 40, or 50 or more) fold.
In some embodiments, the anti-CD200 antibodies, or antigen-binding fragments thereof, described herein can be glycosylated. In some embodiments, an antibody or antigen-binding fragment thereof described herein can be subjected to enzymatic or chemical treatment, or produced from a cell, such that the antibody or fragment has reduced or absent glycosylation. Methods for producing antibodies with reduced glycosylation are known in the art and described in, e.g., U.S. patent no. 6,933,368; Wright et al. (1991) EMBO J 10(10):2717-2723; and Co et al. (1993) Mol
Immunol 30:1361.
Biological Samples and Sample Collection
Suitable biological samples for use in the methods described herein include any biological fluid, population of cells, or tissue or fraction thereof, which includes one or more white blood cells and/or one or more red blood cells. A biological sample can be, for example, a specimen obtained from a subject (e.g., a mammal such as a human) or can be derived from such a subject. For example, a sample can be a tissue section obtained by biopsy, or cells that are placed in or adapted to tissue culture. A biological sample can also be a biological fluid such as urine, whole blood or a fraction thereof (e.g., plasma), saliva, semen, sputum, cerebral spinal fluid, tears, or mucus. A biological sample can be further fractionated, if desired, to a fraction containing particular cell types. For example, a whole blood sample can be fractionated into serum or into fractions containing particular types of blood cells such as red blood cells or white blood cells (leukocytes). If desired, a biological sample can be a combination of different biological samples from a subject such as a combination of a tissue and fluid sample.
The biological samples can be obtained from a subject, ¢.g., a subject having, suspected of having, or at risk of developing, a cancer (e.g., a cancer that expresses one or both of CD200 and CD20), e.g., a B-CLL. Any suitable methods for obtaining the biological samples can be employed, although exemplary methods include, e.g., phlebotomy, swab (e.g., buccal swab), lavage, or fine needle aspirate biopsy procedure. Non-limiting examples of tissues susceptible to fine needle aspiration include lymph node, lung, thyroid, breast, and liver. Biological samples can also be obtained from bone marrow. Samples can also be collected, ¢.g., by microdissection
(e.g., laser capture microdissection (LCM) or laser microdissection (LMD)), bladder wash, smear (PAP smear), or ductal lavage.
Methods for obtaining and/or storing samples that preserve the activity or integrity of cells in the biological sample are well known to those skilled in the art.
For example, a biological sample can be further contacted with one or more additional agents such as appropriate buffers and/or inhibitors, including protease inhibitors, the agents meant to preserve or minimize changes in the cells (e.g., changes in osmolarity or pH) or denaturation of cell surface proteins (e.g., GPI-linked proteins) or GPI moieties on the surface of the cells. Such inhibitors include, for example, chelators such as ethylenediamine tetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA), protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF), aprotinin, and leupeptin. Appropriate buffers and conditions for storing or otherwise manipulating whole cells are described in, e.g., Pollard and Walker (1997), “Basic
Cell Culture Protocols,” volume 75 of Methods in molecular biology, Humana Press;
Masters (2000) “Animal cell culture: a practical approach,” volume 232 of Practical approach series, Oxford University Press; and Jones (1996) “Human cell culture protocols,” volume 2 of Methods in molecular medicine, Humana Press.
A sample also can be processed to eliminate or minimize the presence of interfering substances. For example, a biological sample can be fractionated or purified to remove one or more materials (e.g., cells) that are not of interest. Methods of fractionating or purifying a biological sample include, but are not limited to, flow cytometry, fluorescence activated cell sorting, and sedimentation.
Applications » The compositions described herein can be used in a number of therapeutic and diagnostic applications, e.g., the anti-CD200 antibodies described herein can be used in methods for treating or diagnosing cancer or autoimmune disorders. For example, after it is determined that a patient is afflicted with a cancer that is resistant to treatment with an anti-CD20 therapeutic agent (e.g., an anti-CD20 antibody such as rituximab), a medical practitioner may elect to administer to the human the anti-
CD200 antibody in an amount and with a frequency sufficient to treat the patient’s cancer. In some embodiments, a medical practitioner may administer to a patient afflicted with a cancer (e.g., a liquid tumor) an anti-CD200 antibody and an anti-
CD20 therapeutic agent to treat the cancer, after it has been determined that the patient’s cancer comprises cancer cells expressing CDS. Methods for therapeutically administering an anti-CD200 antibody to a human are well known in the art and described in, e.g., U.S. 7,408,041.
Methods for treating autoimmune disorders
The disclosure also provides therapeutic and diagnostic applications for treating autoimmune disorders, ¢.g., by reducing the concentration of autoimmune discasc-associated autoantibodies in a subject afflicted with the disorder. For example, a medical practitioner may elect to administer to a human with an autoimmune disorder (e.g., autoimmune hemolytic disease) an anti-CD200 antibody in an amount and with a frequency sufficient to reduce the expression (or production) of the disorder-associated autoantibody, or to reduce the concentration of the autoantibody in the blood of the patient, to thereby treat the patient’s autoimmune disorder. Methods for therapeutically administering an anti-CD200 antibody to a human are well known in the art and described in, e.g., U.S. 7,408,041.
An “autoimmune disorder,” as used herein, refers to a disease state in which, via the action of white blood cells (e.g., B cells, T cells, macrophages, monocytes, or dendritic cells), a pathological immune response (e.g., pathological in duration and/or magnitude) has been generated in a host organism against a substance or a tissue that is normally present within the host organism. Types of autoimmune diseases include, but are not limited to, chronic obstructive pulmonary disease, diabetes mellitus type 1,
Goodpasture’s syndrome, Grave’s disease, Guillain-Barré syndrome, IgA nephropathy, scleroderma, Sjogren’s syndrome, Wegener’s granulomatosis, pemphigus vulgaris, rheumatoid arthritis, Crohn’s disease, Hashimoto’s disease, idiopathic thrombocytopenic purpura, myasthenia gravis (MG), pulmonary biliary cirrhosis, and Miller Fisher syndrome. Autoimmune disorders also include certain autoimmune hemolytic disorders such as antiphospholipid syndrome (APS), catastrophic anti-phospholipid syndrome (CAPS), typical or atypical hemolytic uremic syndrome (HUS), and autoimmune hemolytic anemia (AIHA). AIHA refers to a family of related diseases that are characterized by production of autoantibodies to host red blood cells. AIHA includes, e.g., warm AIHA (WAIHA), cold AIHA
(CAD), paroxysmal cold hemoglobinuria (PCH), and drug-induced hemolytic anemias (DIHA).
A human “at risk of developing an autoimmune disorder” refers to a human with a family history of autoimmune disorders (e.g., a genetic predisposition to one or more inflammatory disorders) or one exposed to one or more autoimmune disorder/autoantibody-inducing conditions. For example, a human exposed to a shiga toxin is at risk for developing typical HUS. Humans with certain cancers (e.g., liquid tumors such as multiple myeloma or chronic lymphocytic leukemia) can pre-dispose patients to developing certain autoimmune hemolytic diseases. For example, PCH can follow a variety of infections (e.g., syphilis) or neoplasms such as non-Hodgkin’s lymphoma. In another example, CAD can be associated with HIV infection,
Mycoplasma pneumonia infection, non-Hodgkin’s lymphoma, or Waldenstrom’s macroglobulinemia. In yet another example, autoimmune hemolytic anemia is a well- known complication of human chronic lymphocytic leukemia, approximately 11% of
CLL patients with advanced disease will develop AIHA. As many as 30% of CLL may be at risk for developing AIHA. See, ¢.g., Diehl et al. (1998) Semin Oncol 25(1):80-97 and Gupta et al. (2002) Leukemia 16(10):2092-2095. From the above it will be clear that humans “at risk of developing an autoimmune disorder” are not all the humans within a species of interest.
A human “suspected of having an autoimmune disorder” is one who presents with one or more symptoms of an autoimmune disorder. Symptoms of autoimmune disorders can vary in severity and type with the particular autoimmune disorder and include, but are not limited to, redness, swelling (e.g., swollen joints), joints that are warm to the touch, joint pain, stiffness, loss of joint function, fever, chills, fatigue, loss of energy, pain, fever, pallor, icterus, urticarial dermal eruption, hemoglobinuria, hemoglobinemia, and anemia (e.g., severe anemia), headaches, loss of appetite, muscle stiffness, insomnia, itchiness, stuffy nose, sneezing, coughing, one or more neurologic symptoms such as dizziness, seizures, or pain. From the above it will be clear that not all humans are “suspected of having an autoimmune disorder.”
In some embodiments, the medical practitioner can administer an anti-CD200 antibody to a human in an amount effective to reduce the expression or production of an autoimmune disorder-associated autoantibody in the human. For example, PCH most commonly results from the production by a subject of an autoantibody (known as the “Donath-Landsteiner antibody”) that binds to the P antigen of red blood cells in cold temperatures. Once bound to the red blood cells, the antibody facilitates complement-mediated hemolysis of the cells at warmer temperatures. As many as 40% of immune hemolytic anemias in children are associated with the Donath-
Landsteiner antibody. See, ¢.g., Sokol et al. (1982) Acta Haematol 68(4):268-77.
Thus, e.g., an anti-CD200 antibody can be administered to a PCH patient in an amount sufficient to reduce the production or expression of the Donath-Landsteiner antibody in the human to thereby treat the human’s PCH.
Similarly, CAD (or cold hemagglutinin disease or CHD/CHAD) is an autoimmune disorder characterized by autoantibodies that bind to the I antigen on red blood cells at colder temperatures. Once bound, the antibodies facilitate hemagglutination, and complement-mediated hemolysis, of the cells. Thus, a medical practitioner can administer an anti-CD200 antibody in an amount sufficient to reduce the production or expression of the anti-I antigen antibodies in the human to thereby treat the human’s CAD.
In another example, a large number of patients with MG express antibodies that bind to and inhibit the activity of the nicotinic acetylcholine receptor (AChR).
The antibodies cause loss of acetylcholine receptors and diminished receptor function at the muscle end-plate of the mature neuromuscular junction. Some patients who are lacking in detectable anti-AChR antibodies instead express auto-antibodies directed to a muscle-specific receptor tyrosine kinase (MuSK). See, ¢.g., Hoch et al. (2001)
Nature Med. 7(3):365-368). Thus, a medical practitioner can administer an anti-
CD200 antibody in an amount sufficient to reduce the production or expression of the anti-AChR or anti-MuSK antibodies in the human to thereby treat the human’s MG.
Methods for detecting the presence or amount of an autoimmune disorder- associated autoantibody in a human are well known in the art and are described in, e.g., Burbelo et al. (2009) J Transl Med 7:83; Hanke et al. (2009) Arthritis Res Ther 11(1):R22; Hoch et al. (2001), supra; Vernino et al. (2008) J Neuroimmunol 197(1):63-69; Sokol et al. (1982), supra; and Littleton et al. (2009) Mol Cell
Proteomics 8(7):1688-1696.
In some embodiments, the anti-CD200 antibody is administered to a subject in an amount and with a frequency to maintain a reduced concentration (or a reduced expression or production) of the autoimmune disorder-associated autoantibody.
Methods for detecting expression or a change in concentration of autoantibodies are well known in the art (e.g., Western blot, immunohistochemistry, and flow cytometry techniques) and described herein. Through an iterative process, a medical practitioner can determine the appropriate dose amount, and frequency of administration of each dose, required to maintain a reduced concentration of the autoimmune disorder- associated autoantibodies in the patient. For example, a medical practitioner can administer to a patient with an autoimmune disorder such as AIHA one or more (e.g., one, two, three, four, five, six, seven, eight, nine, or 10 or more or, ¢.g., at least two, at least three, four, five, six, seven, or eight or more) times an anti-CD200 antibody in an amount that reduces (or is at least expected to reduce) the concentration of autoantibodies in the human. The at least two doses should be spaced apart in time by at least one (e.g., at least two, three, four, five, six, seven, eight, nine, 10, 11, 12, 13, or even 14) day(s). Biological samples (e.g., blood samples) containing the autoantibodies are obtained from the patient at various times, e.g., prior to the first anti-CD200 antibody administration, between the first dose and at least one additional dose, and at least one biological sample collection following the second dose. In some embodiments, biological samples may be collected at least two times between doses and/or at least one time after the final dose administered to the patient. The autoantibodies in each biological sample obtained are then interrogated for relative titer of the autoimmune-disease associated autoantibody to determine whether the amount and/or the frequency of administration of the anti-CD200 antibody are sufficient to maintain a reduced concentration of the autoantibody in the patient. The medical practitioner (and/or a computer) can determine an anti-CD200 antibody dosing schedule for the patient that is sufficient to maintain a reduced concentration of autoimmune disorder-associated autoantibodies in the patient over the course of the treatment.
In some embodiments, administration of the anti-CD200 antibody to the human reduces the autoantibody concentration by at least 5 (e.g., at least 6, 7, §, 9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or 85 or more) %.
In some embodiments, the anti-CD200 antibody can be chronically administered to the human. As used herein, “chronically administered,” “chronic treatment,” “treating chronically,” or similar grammatical variations thereof refer to a treatment regimen that is employed to maintain a certain threshold concentration of a therapeutic agent in the blood of a patient in order to maintain a particular state in the patient over a prolonged period of time. For example, an anti-CD200 antibody can be chronically administered a patient with MG to maintain a reduced concentration of anti-AChR antibodies in the blood of the patient for a prolonged period of time.
Accordingly, a patient chronically treated with a anti-CD200 antibody can be treated for a period of time that is greater than or equal to 2 weeks (e.g., 3,4, 5,6, 7, 8,9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, or 52 weeks; 1, 2, 3,4,5,6,7,8,9,10, 11, or 12 months; or 1, 1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7, 7.5,8,85,9,9.5, 10, 10.5, or 12 years or for the remainder of the patient’s life).
The inventors have identified and provided herein several biomarkers consistent with the production in a human of an immunomodulatory effect by an anti-
CD200 antibody administered to the human. That is, upon administration of the antibody to mice with an autoimmune disease (autoimmune hemolytic disease), the concentration of a number of splenocyte and bone marrow cell subsets changed in the mice. An “immunomodulatory effect” and grammatically similar terms, as used herein, refer to a measurable immunological effect in an animal (e.g., a human) attributable to the biological activity of an anti-CD200 antibody administered to an animal (e.g., a human). For example, the inventors have observed that following administration of an anti-CD200 antibody to a mouse, the concentration of the following CD200" leukocyte populations is reduced: CD3"/CD200" cells,
CD45R/CD200" cells, CD5'/CD200" cells, CD19'/CD200" cells, CD138/CD200" cells, CD45R/CD1387/CD200", and CD200R /CD200" cells. In some embodiments, the CD200" leukocytes are localized in the spleen. The reduction of the aforementioned CD200" cell subsets can also be observed in peripheral blood. Also observed was that upon administration of an anti-CD200 antibody to a mouse, the concentration of the following CD200" bone marrow cell subsets is reduced: CD200" bone marrow cells, Igk /CD200" bone marrow cells, CD45R /CD138"/CD200" bone marrow cells, CD138/CD200" bone marrow cells, c-kit /CD200" bone marrow cells, and c-kit'/CD200"/Lin” bone marrow cells. While not being bound by any particular theory or mechanism of action, the inventors believe that monitoring a patient treated with an anti-CD200 antibody for the occurrence of one or more of these biomarkers is useful for, at bottom, determining whether the anti-CD200 antibody is capable of producing a biological effect in the human to whom the antibody is administered.
Moreover, one or more of the biomarkers are also useful for identifying a dose — a threshold dose — of an anti-CD200 antibody, such as samalizumab (ALXN6000), that by virtue of its immunomodulatory effect in the human is sufficient to achieve a clinically-meaningful effect in the disease (i.e., sufficient to treat a disease such as an autoimmune disorder or a cancer). To wit, mice with autoimmune hemolytic disease treated with an anti-CD200 antibody exhibited a reduced concentration of the discase- associated autoantibody in the mice.
Thus, in accordance with the present disclosure, a medical practitioner can administer to a human in need thereof an anti-CD200 antibody in an amount and with a frequency sufficient to treat the autoimmune disorder by maintaining one or more of the following physiological conditions (immunological effects) in the human: (i) a decreased concentration of at least one CD200" leukocyte subset (e.g., at least one
CD200" splenocyte subset); (ii) an increased concentration of splenic or peripheral
F4/80" cells; and (iii) a decreased concentration of at least one bone marrow stem cell subset. The CD200" leukocyte subsets can be, e.g., CD3/CD200" cells,
CD45R'/CD200" cells, CD5'/CD200" cells, CD19'/CD200" cells, CD138"/CD200" cells, CD45R"/CD138'/CD200", and CD200R /CD200" cells. The CD200" bone marrow cell subsets can be, ¢.g., CD200" bone marrow cells, Igk /CD200" bone marrow cells, CD45R"/CD138'/CD200" bone marrow cells, CD138°/CD200" bone marrow cells, c-kit /CD200" bone marrow cells, and c-kit /CD200"/Lin” bone marrow cells. The splenic or peripheral F4/80" cells can be macrophages. In some cases, at least two of the physiological conditions are maintained. In some embodiments, all of the conditions are maintained in the human throughout the treatment period.
Methods for measuring the concentration of CD200" cells (e.g., any of the
CD200" leukocyte or bone marrow cell subsets) are well known in the art and include, among other methods, flow cytometry. See, e.g., Chen et al. (2009) Mol Immunol 46(10):1951-1963. A suitable method for detecting and/or measuring the concentration of CD200" bone marrow cell, splenocyte, or peripheral blood leukocyte subsets is also set forth in the working examples. In some embodiments, a practitioner can interrogate a biological sample obtained from a post-treatment patient (a patient to which an anti-CD200 antibody has been administered) for the concentration of cells of a particular subset of CD200" cells. For example, a practitioner can determine the concentration of CD45R"/CD200" leukocytes and/or the concentration of c-kit /CD200"/Lin” bone marrow cells present in a biological sample from a post-treatment patient.
In some embodiments, following administration of an anti-CD200 antibody to a human the concentration of a CD200" leukocyte (e.g., CD200" leukocyte population in spleen) or bone marrow cell subset that is at least 5% less than the concentration of the corresponding subset in the human prior to the treatment. In some embodiments, a post-treatment CD200" splenocyte or bone marrow cell subset concentration that is atleast 10 (e.g, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 55, 60, 65, 70, 75, 80, or more than 80) % less than the concentration of the corresponding subset prior to treatment with the antibody.
An anti-CD200 antibody described herein can be co-administered with one or more additional therapeutic agents useful for treating or preventing an inflammatory condition. The one or more agents include, e.g., a non-steroidal anti-inflammatory drug (NSAID), a disease-modifying anti-rheumatic drug (DMARD), a biological response modifier, or a corticosteroid. Biological response modifiers include, ¢.g., an anti-TNF agent (e.g., a soluble TNF receptor or an antibody specific for TNF such as adulimumab, infliximab, or etanercept). In some embodiments, the one or more additional therapeutic agents can be, ¢.g., steroids, anti-malarials, aspirin, non- steroidal anti-inflammatory drugs, immunosuppressants, cytotoxic drugs, corticosteroids (e.g., prednisone, dexamethasone, and prednisolone), methotrexate, methylprednisolone, macrolide immunosuppressants (e.g., sirolimus and tacrolimus), mitotic inhibitors (e.g., azathioprine, cyclophosphamide, and methotrexate), fungal metabolites that inhibit the activity of T lymphocytes (e.g., cyclosporine), mycophenolate mofetil, glatiramer acetate, and cytotoxic and DNA-damaging agents (e.g., chlorambucil or any other DNA-damaging agent described herein or known in the art).
Methods for treating cancers
The disclosure also provides therapeutic and diagnostic applications for treating cancers. For example, after it is determined that a human has a tumor that comprises tumor cells expressing CD200, a medical practitioner may elect to administer to the human the anti-CD200 antibody in an amount and with a frequency sufficient to treat the patient’s cancer. Methods for therapeutically administering an anti-CD200 antibody to a human are well known in the art and described in, e.g., U.S. 7,408,041.
Cancer is a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these to spread, either by direct growth into adjacent tissue through invasion, or by implantation into distant sites by metastasis (where cancer cells are transported through the bloodstream or lymphatic system).
Cancer can affect people at all ages, but risk tends to increase with age. Types of cancers can include, e.g., lung cancer, breast cancer, colon cancer, pancreatic cancer, renal cancer, stomach cancer, liver cancer, bone cancer, hematological cancer, neural tissue cancer (e.g., neuroblastoma), melanoma, thyroid cancer, ovarian cancer, a liquid tumor, testicular cancer, prostate cancer, cervical cancer, vaginal cancer, or bladder cancer. Liquid tumors include, ¢.g., leukemias (e.g., chronic lymphocytic leukemia such as B cell or T cell type chronic lymphocytic leukemia) and multiple myeloma. Bone cancers include, without limitation, osteosarcoma and osteocarcinomas.
As used herein, a human “at risk of developing a cancer” is a human that has a predisposition to develop a cancer, i.¢., a genetic predisposition to develop cancer such as a mutation in a tumor suppressor gene (e.g., mutation in BRCAL p53, RB, or
APC or other genetic rearrangements) or has been exposed to conditions that can result in cancer. Thus, a human can also be one “at risk of developing a cancer” when the human has been exposed to mutagenic or carcinogenic levels of certain compounds (e.g., carcinogenic compounds in cigarette smoke such as acrolein, arsenic, benzene, benz{a}anthracene, benzo {a} pyrene, polonium-210 (radon), urethane, or vinyl chloride). Moreover, the human can be “at risk of developing a cancer” when the human has been exposed to, e.g., large doses of ultraviolet light or
X-irradiation, or infected by a tumor-causing/associated virus such as a papillomavirus, Epstein-Barr virus, hepatitis B virus, or human T-cell leukemia- lymphoma virus. From the above it will be clear that not all humans are “at risk of developing a cancer.”
A human “suspected of having a cancer” is one having one or more symptoms ofacancer. Symptoms of cancer are well-known to those of skill in the art and include, without limitation, breast lumps, pain, weight loss, weakness, excessive fatigue, difficulty eating, loss of appetite, chronic cough, worsening breathlessness, coughing up blood, blood in the urine, blood in stool, nausea, vomiting, liver metastases, lung metastases, bone metastases, abdominal fullness, bloating, fluid in peritoneal cavity, vaginal bleeding, constipation, abdominal distension, perforation of colon, acute peritonitis (infection, fever, pain), pain, vomiting blood, heavy sweating, fever, high blood pressure, anemia, diarrhea, jaundice, dizziness, chills, muscle spasms, and difficulty swallowing. Symptoms of a primary cancer (e.g., a large primary cancer) can include, e.g., any one of colon metastases, lung metastases, bladder metastases, liver metastases, bone metastases, kidney metastases, and pancreas metastases.
The inventors have discovered that administration of an anti-CD200 antibody to an animal resulted in a marked reduction in the concentration of CD5" cells in the spleen of the animal. While the disclosure is not bound by any particular theory or mechanism of action, it is likely that CDS" CLL cells may be refractory to rituximab therapy at least in part because of a reduced expression by the cells of CD20. The inventors have shown that a therapeutic composition containing an anti-CD200 antibody is useful for reducing CD35" cell populations in an animal and thus believe that the composition is particularly useful for treating a subset of CLL patients that are refractory to treatment with anti-CD20 therapy (e.g., rituximab-resistant).
Accordingly, the disclosure features a variety of methods for treating cancers, particularly for selecting or identifying which cancers may most benefit from treatment with an anti-CD200 antibody. For example, the disclosure features a method for treating a human afflicted with cancer that is resistant, suspected to be resistant, or likely to be resistant, to treatment with an anti-CD20 therapeutic agent such as rituximab. “Resistance” to a therapy, “refractory” to therapy, and like grammatical phrases, as used herein, refer to a patient’s clinical state of being, in which there is a reduction in the effectiveness of a given treatment (e.g., treatment with an anti-CD20 therapeutic agent) in treating or curing a given disorder (e.g., a cancer) or a reduction in the effectiveness of the treatment in ameliorating one or more symptoms associated with the disorder. For example, the therapeutic benefits of an anti-CD20 therapy to a patient afflicted with a liquid tumor such as B cell chronic lymphocytic leukemia may diminish over time such that the cancer recurs, remains, or progresses even in the presence of the therapy. Resistance by cancers to therapeutic agents such as anti-CD20 therapeutic agents is well-documented in the art of medicine and is described in, e.g., Reddy et al. (2006) J Clin Oncol 24(18S):17509; Bello and
Sotomayor (2007) Hematology 1:233; Hernandez-Ilizaliturri et al. (2009) J Clin
Oncol 27(15s):8543; and Friedberg et al. (2005) Hematology 1:329.
In some embodiments, a patient can have a cancer that is suspected of being resistant or is likely to become resistant to an anti-CD20 therapy. One biomarker useful in assessing whether a cancer is likely to become resistant to an anti-CD20 therapeutic agent such as rituximab is the presence or concentration of CD5" cancer cells in the population. As described above, because the CD5" cells express reduced levels of CD20, the cells are less affected by the anti-CD20 therapy and thus can be selected for due to a growth advantage over cancer cells that express higher levels of
CD20. Methods for detecting the expression of CD5 are well known in the art of molecular biology and include, without limitation, Western blotting, dot blotting, and flow cytometry, which are useful for quantifying expression of CD35 protein, or reverse transcriptase polymerase chain reaction (RT-PCR) and Northern blotting analysis for quantifying expression of CD5 mRNA. See, ¢.g., Ennishi et al. (2008), supra; Holodick et al. (2009), supra; Garaud et al. (2009) J Immunol 182(9):5623- 5632; and McNab et al. (2009) Ann Clin Lab Sci 39(2):108-113. See generally
Sambrook et al. (1989) “Molecular Cloning: A Laboratory Manual, 2" Edition,” Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Ausubel et al. (1992) “Current Protocols in Molecular Biology,” Greene Publishing Associates. A suitable method for detecting and/or quantifying the expression of CD5 by cells, or for determining the percentages of CD5 expressing cells in a population, is flow cytometry and is exemplified in the working examples.
In some embodiments, a cancer that is likely to be resistant to an anti-CD20 therapeutic agent comprises at least a plurality or a portion (e.g., two or more; at least 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.5%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%,
10%, 12%, 15%, 17%, 20%, 25%, 30%, 35%, 40%, or 45% or more) of cancer cells (e.g., B cell chronic lymphocytic leukemia cells) expressing CDS. In some embodiments, greater than 45 (e.g., greater than 50, 55, 60, 65, 70, 75, or 80 or more) % of a patient’s cancer cells can express CDS. In some embodiments, the cancer comprises cells (e.g., a plurality or even a majority of cells) that express or overexpress CDS (e.g., CDS protein and/or CD5 mRNA). In some embodiments, at least (or greater than) 10 (e.g., 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95) % of the cancer cells of the human’s cancer overexpress CDS. In some embodiments, all assayed cancer cells overexpress CD53 relative to normal cells. In some embodiments, a cancer cell (e.g., a plurality of cancer cells, at least 10% of cancer cells, or all assayed cancer cells) can express CD35 protein at levels at least about 1.4 (e.g., at least about 1.5,1.6,1.7,1.8,19,2.0,2.2.,2.5,3.0,3.5,4.0,4.5,0r 5 or more) -fold higher than the expression levels found on normal cells of the same histological type or higher than the average expression of normal cells from one or more patients who do not have cancer.
In some embodiments, the methods described herein can include determining whether the human has a cancer. In some embodiments, the methods described herein can include the step of determining whether one or more cancer cells of a human’s cancer express CD200. In some embodiments, the methods can include determining whether one or more cancer cells of the human’s cancer overexpress CD200, relative to a control sample. In some embodiments, the control sample is obtained from the same human and comprises normal cells of the same tissue type as the human’s cancer. For example, a skilled artisan could measure the level of CD200 protein present on colon cancer cells from a patient as compared to normal colon cells from the patient. In some embodiments, the control sample can be the expression level (or average expression level) of cells obtained from one or more humans who do not have cancer. In some embodiments, the cancer comprises cells (e.g., a plurality or even a majority of cells) that express or overexpress CD200 (e.g., CD200 protein and/or
CD200 mRNA). In some embodiments, at least (or greater than) 10 (e.g., 15, 20, 25, 30, 35,40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95) % of the cancer cells of the human’s cancer overexpress CD200. In some embodiments, all assayed cancer cells overexpress CD200 relative to normal cells. In some embodiments, a cancer cell (e.g., a plurality of cancer cells, at least 10% of cancer cells, or all assayed cancer cells) can express CD200 protein at levels at least about 1.4 (e.g., at least about 1.5, 1.6,1.7,18,19,2.0,2.2.,2.5,3.0,3.5,4.0, 4.5, or 5 or more) -fold higher than the expression levels found on normal cells of the same histological type or higher than the average expression of normal cells from one or more patients who do not have cancer.
In some embodiments, an anti-CD200 antibody is only administered to a human if the human’s cancer expresses or overexpresses CD200. Methods for detecting expression of CD200 are well known in the art and include, e.g., Western blot, immunohistochemistry, and flow cytometry techniques. Suitable methods for detecting CD200 expression are described in detail in, e.g., Kretz-Rommel et al. (2007) J Immunol 178:5595-5605 and Kretz-Rommel et al. (2008) J Immunol 180:699-705. In some embodiments, an anti-CD200 antibody is only administered to a human if the human’s cancer expresses or overexpresses CD200 and CDS.
In some embodiments, an anti-CD200 antibody blocks immune suppression in cancer by targeting cancer cells that express CD200. Eradication, or inhibition, of these cancer cells can stimulate the immune system and allow further eradication of cancer cells.
In some embodiments, the combination of direct cancer cell killing and driving the immune response towards a Th1 profile provides enhanced efficacy in cancer treatment. Thus, in one embodiment, a cancer treatment is provided wherein an antibody or antibody fragment, which binds to CD200 and both a) blocks the interaction between CD200 and its receptor and b) directly kills the cancer cells expressing CD200, is administered to a cancer patient. The mechanisms by which the cancer cells are killed can include, but are not limited to, ADCC or CDC; fusion with a toxin; fusion with a toxic radioactive agent; fusion with a toxic polypeptide such as granzyme B or perforin; fusion with a cytotoxic virus (e.g., cytotoxic reovirus such as
Reolysin®); or fusion with a cytokine such as TNF-a or IFN-a. In an alternative embodiment, a cancer treatment involves administering an antibody that both a) blocks the interaction between CD200 and its receptor and b) enhances cytotoxic T cell or NK cell activity against the tumor. Such enhancement of the cytotoxic T cell or NK cell activity may, for example, be combined by fusing the antibody with cytokines such as, e.g., IL-2, IL-12, IL-18, IL-13, and IL-5. In addition, such enhancement may be achieved by administration of an anti-CD200 antibody in combination with inhibitors such as IMiDs, thalidomide, or thalidomide analogs.
In yet another embodiment, the cancer treatment involves administering an antibody that both a) blocks the interaction between CD200 and its receptor and b) attracts T cells to the tumor cells. T cell attraction can be achieved by fusing the Ab with chemokines such as MIG, IP-10, I-TAC, CCL21, CCL5 or LIGHT. Also, treatment with chemotherapeutics can result in the desired upregulation of LIGHT.
The combined action of blocking immune suppression and killing directly through antibody targeting of the tumor cells is a unique approach that provides increased efficacy.
The disclosure also provides a method of treating a cancer using a combination therapy of an anti-CD200 antibody and an anti-CD20 therapeutic agent.
While not being bound by any particular theory or mechanism of action, the inventors believe that administration of an anti-CD200 antibody will enhance the efficacy of an anti-CD20 therapeutic agent by reducing the proportion of cancer cells that are likely to be refractory, namely the CD35" cancer cells. The anti-CD20 therapeutic agent can be any of those described herein or known in the art such as, e.g., rituximab (Biogen
Idec), *°Y-ibritumomab tiuxetan (Biogen Idec), *'I-tositumomab (GlaxoSmithKline), ofatumumab (Genmab), TRU-015 (Trubion), veltuzumab (IMMU-106; Immunomedics), ocrelizumab (Roche), and AME-133v (Applied Molecular
Evolution).
In some embodiments, the anti-CD200 antibody and the anti-CD20 therapeutic agent are separate agents. Accordingly, the anti-CD200 antibody and the anti-CD20 therapeutic agent can be administered at the same time. In other embodiments, the anti-CD200 antibody is administered first in time and the anti-CD20 therapeutic agent is administered second in time. In some embodiments, the anti-CD20 therapy is administered first in time and the anti-CD200 antibody is administered second in time.
The anti-CD200 antibody can replace or augment a previously or currently administered therapy such as an anti-CD20 therapeutic agent. For example, upon treating with an anti-CD200 antibody or antigen-binding fragment thereof, administration of the anti-CD20 therapeutic agent can cease or diminish, e.g., be administered at lower levels. In some embodiments, administration of the anti-CD20 therapeutic agent can be maintained. In some embodiments, administration of the anti-CD20 therapeutic agent will be maintained until the level of the anti-CD200 antibody reaches a level sufficient to provide a therapeutic effect. The two therapies can be administered in combination as a single agent, e.g., a bispecific antibody that binds to both CD200 and CD20 (see above).
An anti-CD200 antibody described herein can also be co-administered to a human with cancer along with one or more additional therapeutic anti-cancer agents.
Likewise an anti-CD200 antibody described herein can be co-administered to a human with cancer along with an anti-CD20 therapeutic agent and one or more additional therapeutic anti-cancer agents. Anti-cancer agents include, e.g., chemotherapeutic agents, ionizing radiation, immunotherapy agents, or hyperthermotherapy agents. Chemotherapeutic agents include, but are not limited to, aminoglutethimide, amsacrine, anastrozole, asparaginase, beg, bicalutamide, bleomycin, buserelin, busulfan, camptothecin, capecitabine, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, clodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, dienestrol, diethylstilbestrol, docetaxel, doxorubicin, epirubicin, estradiol, estramustine, etoposide, exemestane, filgrastim, fludarabine, fludrocortisone, fluorouracil, fluoxymesterone, flutamide, gemcitabine, genistein, goserelin, hydroxyurea, idarubicin, ifosfamide, imatinib, interferon, irinotecan, letrozole, leucovorin, leuprolide, levamisole, lomustine, mechlorethamine, medroxyprogesterone, megestrol, melphalan, mercaptopurine, mesna, methotrexate, mitomycin, mitotane, mitoxantrone, nilutamide, nocodazole, octreotide, oxaliplatin, paclitaxel, pamidronate, pentostatin, plicamycin, porfimer, procarbazine, raltitrexed, rituximab, streptozocin, suramin, tamoxifen, taxol, temozolomide, teniposide, testosterone, thioguanine, thiotepa, titanocene dichloride, topotecan, trastuzumab, tretinoin, vinblastine, vincristine, vindesine, and vinorelbine. In some embodiments, a pharmaceutical composition comprising an anti-CD200 antibody or CD200-binding fragment thereof can be co-formulated with one or more of any of the foregoing agents or any other anti-cancer agent described herein.
These chemotherapeutic anti-tumor compounds may be categorized by their mechanism of action into groups, including, for example, the following: anti- metabolites/anti-cancer agents, such as pyrimidine analogs (5-fluorouracil,
floxuridine, capecitabine, gemcitabine and cytarabine) and purine analogs, folate antagonists and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2- chlorodeoxyadenosine (cladribine)); antiproliferative/antimitotic agents including natural products such as vinca alkaloids (vinblastine, vincristine, and vinorelbine), microtubule disruptors such as taxane (paclitaxel, docetaxel), vincristine, vinblastine, nocodazole, epothilones and navelbine, epidipodophyllotoxins (etoposide, teniposide),
DNA damaging agents (actinomycin, amsacrine, anthracyclines, bleomycin, busulfan, camptothecin, carboplatin, chlorambucil, cisplatin, cyclophosphamide, cytoxan, dactinomycin, daunorubicin, doxorubicin, epirubicin, hexamethylmelamineoxaliplatin, iphosphamide, melphalan, mechlorethamine, mitomycin, mitoxantrone, nitrosourea, plicamycin, procarbazine, taxol, taxotere, teniposide, triethylenethiophosphoramide and etoposide (VP16)); antibiotics such as dactinomycin (actinomycin D), daunorubicin, doxorubicin (adriamycin), idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin; enzymes (L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine); antiplatelet agents; antiproliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulfonates-busulfan, nitrosoureas (carmustine (BCNU) and analogs, streptozocin), trazenes - dacarbazinine (DTIC); antiproliferative/antimitotic antimetabolites such as folic acid analogs (methotrexate); platinum coordination complexes (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide; hormones, hormone analogs (estrogen, tamoxifen, goserelin, bicalutamide, nilutamide) and aromatase inhibitors (letrozole, anastrozole); anticoagulants (heparin, synthetic heparin salts and other inhibitors of thrombin); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, dipyridamole, ticlopidine, clopidogrel, abciximab; antimigratory agents; antisecretory agents (breveldin); immunosuppressives (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate mofetil); immunomodulatory agents (thalidomide and analogs thereof such as lenalidomide (Revlimid, CC-5013) and CC- 4047 (Actimid)), cyclophosphamide; anti-angiogenic compounds (TNP-470, genistein) and growth factor inhibitors (vascular endothelial growth factor (VEGF)
inhibitors, fibroblast growth factor (FGF) inhibitors); angiotensin receptor blocker; nitric oxide donors; anti-sense oligonucleotides; antibodies (trastuzumab); cell cycle inhibitors and differentiation inducers (tretinoin); mTOR inhibitors, topoisomerase inhibitors (doxorubicin (adriamycin), amsacrine, camptothecin, daunorubicin, dactinomycin, eniposide, epirubicin, etoposide, idarubicin and mitoxantrone, topotecan, irinotecan), corticosteroids (cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisone, and prednisolone); growth factor signal transduction kinase inhibitors; mitochondrial dysfunction inducers and caspase activators; and chromatin disruptors.
In some embodiments, the methods described herein can include, after administering the anti-CD200 antibody, monitoring the human for an improvement in the disorder and/or one or more symptoms thereof. Monitoring a human for an improvement in a disorder (e.g., a cancer, an inflammatory condition, or a disorder associated with bone loss), as defined herein, means evaluating the subject for a change in a disease parameter, ¢.g., an improvement in one or more symptoms of the disease. In some embodiments, the evaluation is performed at least 1 hour, e.g., at least 2, 4, 6, 8, 12, 24, or 48 hours, or at least 1 day, 2 days, 4 days, 10 days, 13 days, days or more, or at least 1 week, 2 weeks, 4 weeks, 10 weeks, 13 weeks, 20 weeks or more, after an administration. The human can be evaluated in one or more of the 20 following periods: prior to beginning of treatment; during the treatment; or after one or more elements of the treatment have been administered. Evaluating can include evaluating the need for further treatment, e.g., evaluating whether a dosage, frequency of administration, or duration of treatment should be altered. It can also include evaluating the need to add or drop a selected therapeutic modality, e.g., adding or dropping any of the treatments for a disorder described herein.
In some embodiments, monitoring the progress and/or effectiveness of a therapeutic treatment includes monitoring the level of CD200 expression by cancer cells before and after treatment. In some embodiments, monitoring the progress and/or effectiveness of a therapeutic treatment includes monitoring the level of CD35 expression by cancer cells before and after treatment. In some embodiments, monitoring the progress and/or effectiveness of a therapeutic treatment includes monitoring the level of CD200 and CDS expression by cancer cells before and after treatment. For example, pre-treatment levels of CD200 and/or CDS expression by cancer cells can be ascertained and, after at least one administration of the therapy, levels of CD200 and/or CD35 can again be determined. A decrease in CD200 and/or
CD35 expression by cancer cells can be indicative of an effective treatment (see below). Measurement of CD200 and/or CD5 expression levels by the cancer cells can be used by the practitioner as a guide for increasing dosage amount or frequency of the therapy. It should of course be understood that CD200 and/or CD35 levels can be directly monitored or, alternatively, any marker that correlates with CD200 and/or
CD5 can be monitored.
Because administration of an anti-CD200 antibody to an animal reduces the concentration of CD35" cells in the animal, it is believed to be beneficial to administer to the human an anti-CD200 antibody in an amount and with a frequency sufficient to sustain the reduced concentration of CD5" cells in a human particularly in the case of
CD5" chronic lymphocytic leukemia for the reasons described above. Methods for detecting expression or a change in expression of CD35 by cells (e.g., cancer cells such as B cell CLL cells) are well known in the art (e.g., Western blot, immunohistochemistry, and flow cytometry techniques) and described herein. For example, following the administration of an anti-CD200 antibody to a human, the concentration of CD5" cancer cells in the human can be determined by flow cytometry analysis of the cancer cells present in a biological sample obtained from a patient. The concentration of CD5" cancer cells post-treatment can be compared to a control concentration (e.g., the concentration of CD5" cancer cells in the human prior to treatment with the antibody), wherein a reduction in the concentration of CD5" cancer cells indicates that the anti-CD200 antibody has been administered to the human in an amount and with a frequency sufficient to reduce the concentration of CDS5' cells in the human and is thus therapeutically effective.
Through an iterative process, a medical practitioner can determine the appropriate dose amount, and frequency of administration of each dose, required to maintain a reduced concentration of CD35" cancer cells in the patient. For example, a medical practitioner can administer to a cancer patient one or more (e.g., one, two, three, four, five, six, seven, eight, nine, or 10 or more or, ¢.g., at least three, four, five,
Six, seven, or eight or more) times an anti-CD200 antibody in an amount that reduces (or is at least expected to reduce) the concentration of CDS’ cancer cells. The at least two doses should be spaced apart in time by at least one (e.g., at least two, three, four,
five, six, seven, eight, nine, 10, 11, 12, 13, or even 14) day(s). Biological samples (e.g., blood samples) containing cancer cells are obtained from the patient at various times, e.g., prior to the first anti-CD200 antibody administration, between the first dose and at least one additional dose, and at least one biological sample collection following the second dose. In some embodiments, biological samples may be collected at least two times between doses and/or at least one time after the final dose administered to the patient. The cancer cells in each biological sample obtained are then interrogated for relative percentage of CD53" cancer cells to determine whether the amount and/or the frequency of administration of the anti-CD200 antibody are sufficient to maintain a reduced concentration of CD5" cancer cells. Armed with information on CD35" cancer cell concentration in the patient over time and the effect on the concentration of CD5" cancer cells over time by administering the anti-CD200 antibody to the patient, a medical practitioner (and/or a computer) can determine an anti-CD200 antibody dosing schedule for the patient that is sufficient to maintain a reduced concentration of CD5" cancer cells in the patient over the course of the treatment. As described above, the treatment can be performed in conjunction with an anti-CD20 therapy such as rituximab.
An antibody described herein (e.g., an anti-CD20 antibody or an anti-CD200 antibody) can be administered as a fixed dose, or in a milligram per kilogram (mg/kg) dose. In some embodiments, the dose can also be chosen to reduce or avoid production of antibodies or other host immune responses against one or more of the active antibodies in the composition. While in no way intended to be limiting, exemplary dosages of an antibody include, e.g., 1-100 pg/kg, 0.5-50 pg/kg, 0.1-100 ng/kg, 0.5-25 ng/kg, 1-20 pg/kg, and 1-10 pg/kg, 1-100 mg/kg, 0.5-50 mg/kg, 0.1- 100 mg/kg, 0.5-25 mg/kg, 1-20 mg/kg, and 1-10 mg/kg. Exemplary dosages of an antibody described herein include, without limitation, 0.1 pg/kg, 0.5 ng/kg, 1.0 ng/kg, 2.0 ug/kg, 4 ng/kg, and 8 pg/kg, 0.1 mg/kg, 0.5 mg/kg, 1.0 mg/kg, 2.0 mg/kg, 4 mg/kg, and 8 mg/kg. Exemplary doses also include, ¢.g., greater than or equal to 50 mg/m? 75 mg/m’, 100 mg/m’, 150 mg/m’, 200 mg/m? 250 mg/m’, 300 mg/m’, 350 mg/m? 400 mg/m’, 450 mg/m”, 500 mg/m’, 550 mg/m’, and/or 600 mg/m>.
A pharmaceutical composition can include a therapeutically effective amount of an antibody described herein. Such effective amounts can be readily determined by one of ordinary skill in the art based, in part, on the effect of the administered antibody, or the combinatorial effect of the antibody and one or more additional active agents, if more than one agent is used. A therapeutically effective amount of an antibody described herein can also vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody (and one or more additional active agents) to elicit a desired response in the individual, e.g., amelioration of at least one condition parameter, ¢.g., amelioration of at least one symptom of the cancer and/or the presence of at least one of the immunomodulatory effect biomarkers described herein. A therapeutically effective amount is also one in which any toxic or detrimental effects of the composition are outweighed by the therapeutically beneficial effects.
Toxicity and therapeutic efficacy of such compositions can be determined by known pharmaceutical procedures in cell cultures or experimental animals (e.g., animal models of cancer or autoimmune disorders). These procedures can be used, e.g., for determining the LDsq (the dose lethal to 50% of the population) and the EDs (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LDso/EDsg. An anti-CD200 antibody and/or anti-CD20 therapeutic agent (e.g., an anti-CD20 antibody) that exhibits a high therapeutic index is preferred. While compositions that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue and to minimize potential damage to normal cells and, thereby, reduce side effects.
The following examples are intended to illustrate, not limit, the invention.
Example 1. Efficacy of an anti-CD200 antibody in a mouse model of autoimmune hemolytic disease
Study 0 (Prevention Model). Therapeutic anti-CD200 antibodies were tested for their ability to prevent, delay, or lessen the severity of, the production of autoantibodies associated with autoimmune hemolytic disease using a mouse model of the disease. See, ¢.g., Playfair and Marshall-Clarke (1973) Nat New Biol 243:213- 214; Naysmith et al. (1981) Immunol Rev 55:55-87.
To elicit in mice the production of autoantibodies that bind to mouse red blood cells (RBCs), 2 x 10° rat RBCs were administered intraperitoneally (i.p.) to female
C57BL/6 mice once on study day 0 and then once per week thereafter for the remainder of the study. Production of anti-rat RBC alloantibodies by the immunized mice was observed by the second week of the study and production by the mice of anti-mouse RBC autoantibodies was observed by week three.
The rat RBC-immunized mice were divided into six experimental groups designated: Group 1 (six mice), Group 2 (6 mice), Group 3 (8 mice), Group 4 (7 mice), Group 5 (9 mice), and Group 6 (9 mice). One additional group — Group 7 (6 mice) — was also evaluated as a control. The Group 7 mice were neither immunized with rat RBCs nor did they receive any of the additional treatments described below.
Starting at day 0 (that is the day of the first administration of the rat RBCs), the mice of each of Groups 2 to 6 were administered a therapeutic agent or vehicle under the following schedule: for each week of the study, five doses of agent or vehicle administered as one dose per day for five consecutive days. Group 1 mice were treated with only vehicle — phosphate-buffered saline (PBS). Group 2 mice were treated under the above treatment schedule using 5 mg/kg of a Control antibody that does not bind to CD200, but possesses effector function (IgG2a). Group 3 mice were treated under the aforementioned treatment schedule with Antibody 1 — an anti- CD200 antibody (IgG2a) having effector function — each dose being 5 mg/kg. Group 4 mice were treated with cyclosporine at a dose of 15 mg/kg. Group 5 mice were treated with the Control Antibody at 5 mg/kg and cyclosporine at 15 mg/kg. Group 6 mice were treated with Antibody 1 at a dose of 5 mg/kg and cyclosporine at a dose of 15 mg/kg. The antibody treatments were administered i.p. Cyclosporine was administered to the mice subcutaneously (s.c.). The Group design and treatment schedules for each group are summarized in Table 1.
Table 1. Group Design and Treatment Schedule for Study 0.
Gow Jo [ew wn
EE not bind to CD200 but possesses effector function [Group3 ~~ [8 [Antibody I (anti-CD200 antibody [Smgkg
[1gG2awith effector function 0 15 mg/kg
Group 5 Control antibody (IgG2a) that does | 5 mg/kg not bind to CD200 but possesses effector function; and
Cyclosporine 15 mg/kg
Group 6 Antibody 1 (anti-CD200 antibody | 5 mg/kg
IgG2a with effector function); and
Cyclosporine 15 mg/kg
Group 7 Non-immunized, non-treated N/A control group
N refers to the number of mice in each group.
N/A = not applicable.
On a weekly basis, blood was drawn from the mice of Groups 1 to 7 prior to, during, and after the above treatments to evaluate by flow cytometry whether treatment affected the titer of anti-mouse RBC autoantibodies and/or anti-rat RBC alloantibodies in the mice. To determine the relative concentration of anti-mouse autoantibodies produced in a subject mouse (e.g., a treated mouse from Group 3), whole blood obtained from the mouse was incubated with a preparation of fluorescently-labeled anti-mouse antibody to thereby detect the presence of anti- mouse RBC antibodies present on the surface of mouse RBC in the blood of the animals. The cells were washed with PBS and then subjected to flow cytometry to evaluate the relative amount of mouse anti-mouse RBCs bound to the mouse RBCs as a function of the mean fluorescence intensity. Between day 13 and 27, the concentration of anti-mouse RBC autoantibodies in the mice of Groups 1, 2, 4, 5, and 6 increased. In contrast, the concentration of anti-mouse RBC autoantibodies in the mice of Group 3 was markedly reduced as compared to the concentration of autoantibody in the other groups. In addition, the production of autoantibody by the mice in Group 3 was markedly delayed as compared to the mice in the other groups (Fig. 1). For example, 50% of mice in Groups 1, 2, 4, 5, and 6 developed autoantibodies between day 20 and 27 of the study. In contrast, autoantibody production in at least 50% of mice in Group 3 did not occur until between day 27 and day 34. These results indicate that Antibody 1, an anti-CD200 antibody, at 5 mg/kg was capable of not only reducing the concentration of anti-mouse RBC autoantibodies in a mice model of autoimmune hemolytic disease, but was also capable of delaying significantly the production of the autoantibodies in the mice.
To determine the relative concentration of alloantibodies produced in a subject mouse (e.g., a treated mouse from Group 3), serum obtained from the mouse was incubated with a sample of isolated rat RBCs for a time and under conditions sufficient for any rat RBC-specific alloantibodies present in the serum to bind to the rat RBCs. The cells were washed with PBS and then incubated with a fluorescently- labeled antibody that binds to mouse antibodies. Following an additional washing step, the cells were subjected to flow cytometry to evaluate the relative amount of mouse anti-rat RBCs bound to the rat RBCs as the mean fluorescence intensity. Sera obtained from mice of Groups 1, 2, 4, 5, and 6 contained an increasing concentration of anti-rat RBC alloantibodies over the course of the experiment. In contrast, sera obtained from the mice of Group 3 contained much less detectable anti-rat RBC autoantibodies as compared to the other Groups. These results further indicated that
Antibody 1, an anti-CD200 antibody, at 5 mg/kg was capable of reducing the titer of
RBC-specific alloantibodies, as well as anti-RBC autoantibodies, produced in a mouse model of autoimmune hemolytic disease.
Study 1 (Treatment Model). Therapeutic anti-CD200 antibodies were tested for their ability to reduce the production of autoantibodies associated with autoimmune hemolytic disease using a mouse model of the disease. To elicit in mice the production of autoantibodies that bind to mouse red blood cells (RBCs), 2 x 10° rat RBCs were administered intraperitoneally (i.p.) to female C57BL/6 mice once on study day 0 and then once per week thereafter for the remainder of the study.
Production of anti-rat RBC alloantibodies by the immunized mice was observed by the second week of the study and production by the mice of anti-mouse RBC autoantibodies was observed by week three.
The rat RBC-immunized mice were divided into five groups designated Group 1 (8 mice), Group 2 (8 mice), Group 3 (8 mice), Group 4 (7 mice), and Group 5 (8 mice). A sixth group of mice (designated Group 6; 6 mice) was also evaluated as a control. The Group 6 mice were neither immunized with rat RBCs nor did they receive any of the additional treatments described below.
Starting on day 112, the mice of each of Groups 1 to 5 received an additional treatment of 14 doses of a therapeutic agent or vehicle control administered under the following schedule: (i) five doses of agent or vehicle administered as one dose per day for five consecutive days; (ii) a two day break in treatment; (iii) an additional five doses of the agent or vehicle administered one dose per day for five consecutive days; another two day break in treatment; and (iv) four more doses of agent or vehicle administered one dose per day for four consecutive days. Group 1 mice were treated with only vehicle — phosphate-buffered saline (PBS). Group 2 mice were treated under the aforementioned treatment schedule with Antibody 1 — an anti-CD200 antibody (IgG2a) having effector function — each dose being 5 mg/kg. Group 3 mice were treated with Antibody 1 at a dose of 1 mg/kg. Group 4 mice were treated under the above treatment schedule with Antibody 2 — an anti-CD200 antibody that lacked effector function — each dose at 5 mg/kg. Group 5 mice were treated under the above treatment schedule using a dose of 5 mg/kg of a Control antibody that does not bind to CD200, but possesses effector function (IgG2a). The Group design and treatment schedules for each group are summarized in Table 2.
Table 2. Group Design and Treatment Schedule for Study 1.
Gow 7 fv ma
Group 2 Antibody 1 (anti-CD200 antibody | 5 mg/kg
IgG2a with effector function
Group 3 Antibody 1 (anti-CD200 antibody | 1 mg/kg
IgG2a with effector function
Group 4 7 Antibody 2 (anti-CD200 antibody | 5 mg/kg that does not possess effector function
Group 5 Control antibody (IgG2a) that does | 5 mg/kg not bind to CD200 but possesses effector function
Group 6 Non-immunized, non-treated N/A control group
N refers to the number of mice in each group.
N/A =not applicable.
On a weekly basis, blood was drawn from the mice of Groups 1 to 6 prior to, during, and after the above treatments to evaluate by flow cytometry whether treatment affected the titer of anti-mouse RBC autoantibodies and/or anti-rat RBC alloantibodies in the mice. Between day 133 and 137 of the study, the mice were sacrificed and their spleens harvested. To determine the relative concentration of alloantibodies produced in a subject mouse (e.g., a treated mouse from Group 2), serum obtained from the mouse (e.g., at day 133) was contacted to a sample of isolated rat RBCs for a time and under conditions sufficient for any rat RBC-specific alloantibodies present in the serum to bind to the rat RBCs. The cells were washed with PBS and then incubated with a fluorescently-labeled antibody that binds to mouse antibodies. Following an additional washing step, the cells were subjected to flow cytometry to evaluate the relative amount of mouse anti-rat RBCs bound to the rat RBCs as the mean fluorescence intensity. The inventors observed that the post- treatment sera obtained from mice of Groups 1, 3, 4, and 5 contained an increased concentration of anti-rat RBC alloantibodies as compared to the corresponding sera obtained from the mice prior to treatment. In contrast, sera obtained from the mice of
Group 2 post-treatment contained less detectable anti-rat RBC alloantibodies as compared to the corresponding sera obtained from the mice prior to treatment. These results indicated that Antibody 1, an anti-CD200 antibody, at 5 mg/kg was capable of reducing the production of RBC-specific antibodies in a mouse model of autoimmune hemolytic disease.
The inventors subsequently observed that Antibody 2 had a significantly shorter half-life in the treated mice as compared to the half-life of Antibody 1. Thus the results observed with Antibody 2 in Study 1 and in other studies described herein may not fully reflect the true efficacy of the Antibody 2 in the autoimmune hemolytic disease model nor the immunodulatory effect of the antibody in animals.
Study 2 (Prevention model). Therapeutic anti-CD200 antibodies were tested for their ability to prevent, delay, or lessen the severity of, the production of autoantibodies associated with autoimmune hemolytic disease using the above- described mouse model of the disease.
To elicit in mice the production of autoantibodies that bind to mouse red blood cells (RBCs), rat RBCs were administered intraperitoneally (i.p.) to female BALB/c mice once on study day 0 and then once per week thereafter for the remainder of the study. As described above, production of anti-rat RBC alloantibodies by the immunized mice was observed by the second week of the study and production by the mice of anti-mouse RBC autoantibodies was observed by week three.
The rat RBC-immunized mice were divided into five groups designated Group 1 (8 mice), Group 2 (8 mice), Group 3 (8 mice), Group 4 (8 mice), and Group 5 (8 mice). A sixth group of mice (designated Group 6; 6 mice) was also evaluated as a control. The Group 6 mice were neither immunized with rat RBCs nor did they receive any of the additional treatments described below.
Starting at day 0 (that is the day of the first administration of the rat RBCs), the mice of each of Groups 1 to 5 were administered a therapeutic agent or vehicle under the following schedule: for each week of the study, five doses of agent or vehicle administered as one dose per day for five consecutive days. Group 1 mice were treated with only vehicle — phosphate-buffered saline (PBS). Group 2 mice were treated under the aforementioned treatment schedule with Antibody 1 — an anti-
CD200 antibody (IgG2a) having effector function — each dose being 5 mg/kg. Group 3 mice were treated with Antibody 1 at a dose of 1 mg/kg. Group 4 mice were treated under the above treatment schedule with Antibody 2 — an anti-CD200 antibody that lacked effector function — each dose at 5 mg/kg. Group 5 mice were treated under the above treatment schedule using 5 mg/kg of a Control antibody that does not bind to
CD200, but possesses effector function (IgG2a). The Group design and treatment schedules for each group are summarized in Table 3.
Table 3. Group Design and Treatment Schedule for Study 2.
Gown [ew fw or in dhortweson +
IgG2a with effector function ont ie dhortweson +
IgG2a with effector function
NR = El that does not possess effector function
Group 5 Control antibody (IgG2a) that does | 5 mg/kg
ES effector function a = control group
N refers to the number of mice in each group.
N/A = not applicable.
On a weekly basis, blood was drawn from the mice of Groups 1 to 6 prior to, during, and after the above treatments to evaluate by flow cytometry whether treatment affected the titer of anti-mouse RBC autoantibodies and/or anti-rat RBC alloantibodies in the mice. On day 64 or 65 of the study, the mice were sacrificed and their spleens harvested. (Four mice in each group were sacrificed on day 64 and the other four mice in each group were sacrificed on day 65.) To determine the relative concentration of alloantibodies produced in a subject mouse (e.g., a treated mouse from Group 3), serum obtained from the mouse was contacted to a sample of isolated rat RBCs for a time and under conditions sufficient for any rat RBC-specific alloantibodies present in the serum to bind to the rat RBCs. The cells were washed with PBS and then incubated with a fluorescently-labeled antibody that binds to mouse antibodies. Following an additional washing step, the cells were subjected to flow cytometry to evaluate the relative amount of mouse anti-rat RBCs bound to the rat RBCs as the mean fluorescence intensity. As shown in Fig. 2, sera obtained from mice of Groups 1, 3, 4, and 5 contained an increasing concentration of anti-rat RBC alloantibodies over the course of the experiment. In contrast, sera obtained from the mice of Group 2 post-treatment contained much less detectable anti-rat RBC alloantibodies as compared to the other Groups. These results further indicated that
Antibody 1, an anti-CD200 antibody, at 5 mg/kg was capable of reducing the titer of
RBC-specific alloantibodies produced in a mouse model of autoimmune hemolytic disease.
Study 3 (Treatment Model). Therapeutic anti-CD200 antibodies were tested for their ability to treat autoimmune hemolytic disease using a mouse model of the disease. To elicit in mice the production of autoantibodies that bind to mouse red blood cells (RBCs), rat RBCs were administered intraperitoneally (i.p.) to female
C57BL/6 mice once on study day 0 and then once per week thereafter for the remainder of the study. As described above, production of anti-rat RBC alloantibodies by the immunized mice was observed by the second week of the study and production by the mice of anti-mouse RBC autoantibodies was observed by week three. The rat RBC-immunized mice were divided into three groups designated
Group 1 (6 mice), Group 2 (3 mice), and Group 3 (5 mice).
Starting on day 86, the mice of each of Groups 1 to 3 received an additional treatment of 10 doses of a therapeutic agent or vehicle control administered under the following schedule: (i) five doses of agent or vehicle administered as one dose per day for five consecutive days; (ii) a two day break in treatment; and (iii) an additional five doses of the agent or vehicle administered one dose per day for five consecutive days.
Group 1 mice were treated under the aforementioned treatment schedule with
Antibody 1 — an anti-CD200 antibody (IgG2a) having effector function — each dose being 5 mg/kg. Group 2 mice were treated with Antibody 1 at a dose of 1 mg/kg.
Group 3 mice were treated under the above treatment schedule with Antibody 2 — an anti-CD200 antibody that lacked effector function — each dose at 5 mg/kg. The Group design and treatment schedules for each group are summarized in Table 4.
Table 4. Group Design and Treatment Schedule for Study 3. rt vin her meta
IgG2a with effector function
IgG2a with effector function control group
N refers to the number of mice in each group.
N/A = not applicable.
At the conclusion of the study, the mice were sacrificed and their spleens harvested. To determine whether administration of Antibody 1 to the mice affected activation of splenocytes by RBC, in addition to affecting the production of anti-RBC antibodies in the mice, splenocyte activation in the presence of RBCs was evaluated using an in vitro proliferation assay. Briefly, isolated splenocytes were cultured with one of three different antigens — mouse RBCs, rat RBCs, or bovine serum albumin (control) — or with media alone. Following contact of the splenocytes with the antigens, “H-thymidine was added to the splenocyte culture media for approximately 16 hours. The media was removed and the cells harvested. The relative activation of the splenocytes by the antigens was then measured as a function of the amount of “H- thymidine incorporated into the DNA of the splenocytes.
As shown in Fig. 3, splenocytes from Group 2 and 3 mice exhibited a robust proliferative response following contact with rat RBCs. In contrast, splenocytes from
Group 1 mice proliferated very little in the presence of rat RBCs indicating that administration of an anti-CD200 antibody at 5 mg/kg was capable of inhibiting the activation of splenocytes by rat RBCs in a mouse model of autoimmune hemolytic disease.
Study 4 (Treatment Model). As described above, to elicit in mice the production of autoantibodies that bind to mouse red blood cells (RBCs), rat RBCs were administered intraperitoneally (i.p.) to female C57BL/6 mice once on study day 0 and then once per week thereafter for the remainder of the study.
The rat RBC-immunized mice were divided into seven (7) groups designated
Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, and Group 7. An eighth group of mice (designated Group 8) was also evaluated as a control. The Group 8 mice were neither immunized with rat RBCs nor did they receive any of the additional treatments described below. Ten mice were in each group.
Starting on day 21, the mice of each of Groups 1 to 7 received an additional treatment of one or more therapeutic agents or vehicle control administered under the following schedule: for each week of the study, five doses of one or more agents or vehicle administered as one dose per day for five consecutive days. Group 1 mice were treated with only vehicle — phosphate-buffered saline (PBS). Group 2 mice were treated under the above treatment schedule using a dose of 5 mg/kg of a Control antibody that does not bind to CD200, but possesses effector function (IgG2a). Group 3 mice were treated under the aforementioned treatment schedule with Antibody 1 — an anti-CD200 antibody (IgG2a) having effector function — each dose being 5 mg/kg.
Group 4 mice were treated under the above schedule with 15 mg/kg cyclosporine.
Group 5 mice were treated under the above dosing schedule with both the Control antibody (at 5 mg/kg) and cyclosporine (at 15 mg/kg). Group 6 mice were treated under the above dosing schedule with both Antibody 1 (at 5 mg/kg) and cyclosporine
(at 15 mg/kg). Group 7 mice were treated under the above dosing schedule with both
Antibody 1 (at 1 mg/kg) and cyclosporine (at 15 mg/kg). The Group design and treatment schedules for each group are summarized in Table 5.
Table 5. Group Design and Treatment Schedule for Study 4.
Group 2 10 Control antibody (IgG2a) that does | 5 mg/kg not bind to CD200 but possesses effector function
Group 3 10 Antibody 1 (anti-CD200 antibody | 5 mg/kg
IgG2a with effector function 15 mg/kg
Group 5 10 Control antibody; and 5 mg/kg cyclosporine 15 mg/kg
Group 6 10 | Antibody 1; and 5 mg/kg cyclosporine 15 mg/kg
Group 7 10 | Antibody 1; and 1 mg/kg cyclosporine 15 mg/kg
Group 8 10 | Non-immunized, non-treated N/A control group
N refers to the number of mice in each group.
N/A = not applicable.
On a weekly basis, blood was drawn from the mice of Groups 1 to 8 prior to, during, and after the above treatments to evaluate by flow cytometry whether treatment affected the titer of anti-mouse RBC autoantibodies and/or anti-rat RBC alloantibodies in the mice. On day 37 of the study, the mice were sacrificed and their spleens harvested. Bone marrow cells were also obtained from the two mouse femur and tibia bones. The spleen and bone marrow cells were subjected to flow cytometry as described below (Example 2).
A reduced concentration of anti-rat RBC alloantibodies was present in post- treatment sera obtained from mice of Groups 3 and 4 as compared to the corresponding pre-treatment sera. The post-treatment reduction in anti-rat RBC alloantibodies was even greater in the mice of Groups 6 and 7, indicating that cyclosporine and Antibody 1 have a synergistic effect on reducing alloantibody production in the mice. These results even further indicated that an anti-CD200 antibody was capable of reducing the titer of RBC-specific antibodies produced in a mouse model of autoimmune hemolytic disease and that an anti-CD200 antibody is useful for treating the disease.
Example 2. Administration of an anti-CD200 antibody to mice affects the concentration of splenocyte and bone marrow cell populations in the mice
Splenocytes obtained from the mice of Study 1 were evaluated to determine the percentage of cells that express CD200. Cells were harvested from the spleens of the mice and incubated with a composition of biotin-labeled anti-CD200 antibodies (polyclonal) for an amount of time and under conditions sufficient to allow for binding of the antibodies to CD200, if present on the cells. The polyclonal antibody preparation was used to prevent or lessen any masking effect due to the presence of residual therapeutic anti-CD200 antibody (e.g., Antibody 1 or Antibody 2) on the cells. The cells were washed and incubated with a fluorescently-labeled streptavidin moiety. Following an additional washing step, the cells were then subjected to flow cytometry. As shown in Fig. 4, there was a marked reduction in the concentration of
CD200" splenocytes in mice treated with 14, 5 mg/kg doses of Antibody 1 as compared to the concentration of CD200" splenocytes in mice treated with vehicle, the Control antibody, or Antibody 2.
Splenocytes harvested from the spleens of the mice of Study 2 were also subjected to staining and flow cytometry analysis as described above. There was a marked reduction in the concentration of CD200" splenocytes in mice chronically treated with 5 mg/kg of Antibody 1, as compared to the concentration of CD200" splenocytes in mice treated with vehicle or the Control antibody. There was also no change in the concentration of CD200" splenocytes in the Group 3 mice treated with 1 mg/kg dose of Antibody 1 and Group 4 mice trated with 5 mg/kg Antibody 2.
Splenocytes harvested from the spleens of the mice of Study 4 were also subjected to staining and flow cytometry analysis as described above. There was a marked reduction in the concentration of CD200" splenocytes in mice treated with 5 mg/kg of Antibody 1 with or without cyclosporine, as compared to the concentration of CD200" splenocytes in mice treated with vehicle, the Control antibody,
cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no change in the concentration of CD200" splenocytes in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody 1. An analysis of the mean fluorescence intensity (MFT) of the CD200" splenocytes from each mouse (which is a measure of the relative expression level of CD200 by each CD200" splenocyte) was also performed. The MFI of CD200" splenocytes from
Groups 4 and 7 was markedly reduced as compared to the MFI of CD200" splenocytes in the remaining Groups (save Group 8). This indicated that not only does administration of Antibody 1 to the mice reduce the total number of CD200" splenocytes, but the remaining cells that do express CD200" in Antibody 1-treated mice express CD200 at much lower levels.
Taken together, these results confirm that administration of an anti-CD200 antibody to an animal reduces the concentration of CD200" splenocytes in the animal.
The results also indicate that the anti-CD200 antibody-mediated reduction in CD200" splenocytes is not positively or negatively affected by cyclosporine.
The inventors also further examined the effect of anti-CD200 antibodies on: (i) the concentration of particular CD200" lymphocyte subsets of splenocytes from the mice of Study 4 and (ii) the concentration of particular CD200" subsets of bone marrow-derived cells from the mice of Study 4.
Concentration of Splenic Lymphocyte Subsets in the Mice of Study 4
CD3"/CD200" Lymphocyte Subset. A sample of splenocytes from each of the mice of Study 4 was incubated with the polyclonal anti-CD200 antibody preparation and a detectably-labeled antibody that binds to CD3 to thereby identify the proportion of CD3'/CD200" cells in the spleens of mice from Groups 1 to 8. The CD3" population of cells includes T cells such as CD4" and CD8" T cells. The labeled cells were subjected to flow cytometry. There was a marked reduction in the concentration of CD3"/CD200" splenocytes in mice chronically treated with 5 mg/kg of Antibody 1 with or without cyclosporine, as compared to the concentration of CD3"/CD200" splenocytes in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no significant change in the concentration of CD3/CD200" splenocytes in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of
Antibody 1.
CDS5'/CD200" Lymphocyte Subset. A sample of splenocytes from each of the mice of Study 4 was incubated with the polyclonal anti-CD200 antibody preparation and a detectably-labeled antibody that binds to CDS to thereby identify the proportion of CD5'/CD200" cells in the spleens of mice from Groups 1 to 8. The CD5" population of cells includes T cells as well as B cells (the B1 cell population). The labeled cells were subjected to flow cytometry. There was a marked reduction in the concentration of CD5'/CD200" splenocytes in mice chronically treated with 5 mg/kg of Antibody 1 with or without cyclosporine, as compared to the concentration of
CD5'/CD200" splenocytes in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no significant change in the concentration of CD5'/CD200" splenocytes in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody 1.
CD19"/CD200" Lymphocyte Subset. A sample of splenocytes from each of the mice of Study 4 was incubated with the polyclonal anti-CD200 antibody preparation and a detectably-labeled antibody that binds to CD19 to thereby identify the proportion of CD19/CD200" cells in the spleens of mice from Groups 1 to 8. The
CD19" population of cells includes B cells. The labeled cells were subjected to flow cytometry. Like CD5'/CD200" cells and CD3/CD200" cells, there was also a marked reduction in the concentration of CD19'/CD200" splenocytes in mice chronically treated with 5 mg/kg of Antibody 1 with or without cyclosporine, as compared to the concentration of CD19"/CD200" splenocytes in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no significant change in the concentration of CD19'/CD200" splenocytes in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody 1.
CDI138"/CD200" Lymphocyte Subset. A sample of splenocytes from cach of the mice of Study 4 was incubated with the polyclonal anti-CD200 antibody preparation and a detectably-labeled antibody that binds to CD138 to thereby identify the proportion of CD1387/CD200" cells in the spleens of mice from Groups 1 to 8.
The CD138" population of cells includes plasma cells. The labeled cells were subjected to flow cytometry. There was a marked reduction in the concentration of
CDI1387/CD200" splenocytes in mice chronically treated with 5 mg/kg of Antibody 1 with or without cyclosporine, as compared to the concentration of CD138"/CD200" splenocytes in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no significant change in the concentration of CD138"/CD200" splenocytes in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of
Antibody 1.
F4/80" Lymphocyte Subset. F4/80 is 125 kDa transmembrane protein present on the cell-surface of mature mouse macrophages. To determine whether administration of an anti-CD200 antibody affects the concentration of resident macrophages in spleen, a sample of splenocytes from each mouse of Study 4 was incubated with a detectably-labeled antibody that binds to F4/80. The labeled cells were subjected to flow cytometry to thereby identify the proportion of F4/80" cells in the spleens of mice from Groups 1 to 8. The concentration of F4/80" splenocytes increased in mice treated with 5 mg/kg of Antibody 1 (10 doses) with or without cyclosporine, as compared to the concentration of F4/80" splenocytes in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the
Control antibody and cyclosporine. There was also no significant change in the concentration of F4/80" splenocytes in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody 1.
Taken together, these results indicate that administration of an anti-CD200 antibody reduces a variety of CD200" splenocyte subsets, but increases certain macrophage subsets, in the treated animals.
Concentration of Bone Marrow Cell Subsets in the Mice of Study 4
CD34" /CD200" Bone Marrow Cell Subset. A sample of bone marrow cells from each of the mice was incubated with the polyclonal anti-CD200 antibody preparation and a detectably-labeled antibody that binds to CD34 to thereby identify the proportion of CD34/CD200" cells in the bone marrow of mice from Groups 1 to 8. The CD34" cells include a population of hematopoietic stem cells (HSCs). The labeled cells were subjected to flow cytometry also selecting for those cells that are lineage low (Lin"™"). There was a marked reduction in the concentration of
CD34'/CD200" bone marrow cells in mice treated with 5 mg/kg of Antibody 1 (10 doses) with or without cyclosporine, as compared to the concentration of
CD34'/CD200" bone marrow cells in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no significant change in the concentration of CD34 /CD200" bone marrow cells in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody 1.
Sca-1"/CD200" Bone Marrow Cell Subsets. A sample of bone marrow cells from each of the mice was incubated with the polyclonal anti-CD200 antibody preparation and a detectably-labeled antibody that binds to Sca-1 to thereby identify the proportion of Sca-1"/CD200" cells in the bone marrow of mice from Groups 1 to 8. The Sca-1" cells include a population of HSCs and mesenchymal stem cells (MSCs). The labeled cells were subjected to flow cytometry also selecting for those cells that are lineage low (Lin"°"). There was a marked reduction in the concentration of Sca-1"/CD200" bone marrow cells in mice treated with 5 mg/kg of
Antibody 1 (10 doses) with or without cyclosporine, as compared to the concentration of Sca-1"/CD200" bone marrow cells in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no significant change in the concentration of Sca- 1'/CD200" bone marrow cells in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody 1.
Sca-1"/CD34" Bone Marrow Cell Subsets. A sample of bone marrow cells from each of the mice was incubated with a first detectably-labeled antibody that binds to CD34 and a second detectably-labeled antibody that binds to Sca-1 to thereby identify the proportion of Sca-1"/CD34" cells in the bone marrow of mice from
Groups 1 to 8. The labeled cells were subjected to flow cytometry also selecting for those cells that are lineage low (Lin). The Sca-1/CD34"/Lin- cells include a population of MSCs. There was a marked reduction in the concentration of Sca- 17/CD34" bone marrow cells in mice treated with 5 mg/kg of Antibody 1 (10 doses) with or without cyclosporine, as compared to the concentration of Sca-1"/CD34" bone marrow cells in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no significant change in the concentration of Sca-1"/CD34" bone marrow cells in the
Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody 1. c-kit /CD200" Bone Marrow Cell Subsets. A sample of bone marrow cells from each of the mice was incubated with the polyclonal anti-CD200 antibody preparation and a detectably-labeled antibody that binds to c-kit to thereby identify the proportion of c-kit /CD200" cells in the bone marrow of mice from Groups 1 to 8.
The c-kit" cells include a population of HSCs and MSCs. The labeled cells were subjected to flow cytometry also selecting for those cells that are lineage low (Lin
Lowy "There was a marked reduction in the concentration of c-kit'/CD200" bone marrow cells in mice chronically treated with 5 mg/kg of Antibody 1 with or without cyclosporine, as compared to the concentration of c-kit /CD200" bone marrow cells in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the Control antibody and cyclosporine. There was also no significant change in the concentration of c-kit /CD200" bone marrow cells in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody
I.
CD200"/CD200R" Bone Marrow Cell Subset. A sample of bone marrow cells from each of the mice was incubated with the polyclonal anti-CD200 antibody preparation and a detectably-labeled antibody that binds to CD200R to thereby identify the proportion of CD200'/CD200R" cells in the bone marrow of mice from
Groups I to 8. The labeled cells were subjected to flow cytometry. There was a marked reduction in the concentration of CD200 /CD200R “bone marrow cells in mice chronically treated with 5 mg/kg of Antibody 1 with or without cyclosporine, as compared to the concentration of CD200"/CD200R "bone marrow cells in mice treated with vehicle, the Control antibody, cyclosporine alone, or a combination of the
Control antibody and cyclosporine. There was also no significant change in the concentration of CD200'/CD200R * bone marrow cells in the Group 7 mice treated with a combination schedule of cyclosporine and a 1 mg/kg dose of Antibody 1.
Example 3. Recovery of bone marrow cell and CD200" splenocyte subsets after withdrawal of anti-CD200 therapy
Study 5 (Treatment Model). The therapeutic anti-CD200 antibodies were again tested for their ability modulate the concentration of specific subset populations of splenocytes and bone marrow cells. The antibodies were administered to the mice in the context of a mouse model of autoimmune hemolytic disease. As described above, to elicit in mice the production of autoantibodies that bind to mouse red blood cells (RBCs), 2 x 10° rat RBCs were administered intraperitoneally (i.p.) to female
BALB/c mice once on study day 0 and then once per week thereafter for the remainder of the study. Production of anti-rat RBC alloantibodies by the immunized mice was observed by the second week of the study and production by the mice of anti-mouse RBC autoantibodies was observed by week three.
The rat RBC-immunized mice were divided into five groups designated Group 2 (20 mice), Group 3 (20 mice), Group 4 (20 mice), Group 5 (15 mice), and Group 6 (15 mice). A sixth group of mice (designated Group 1; 20 mice) was also evaluated as a control. The Group 1 mice were neither immunized with rat RBCs nor did they receive any of the additional treatments described below.
Starting on day 21, the mice of each of Groups 2 to 6 received an additional treatment of 10 doses of a therapeutic agent or vehicle control administered under the following schedule: (i) five doses of agent or vehicle administered as one dose per day for five consecutive days; (ii) a two day break in treatment; and (iii) an additional five doses of the agent or vehicle administered one dose per day for five consecutive days.
Group 6 mice were treated with only vehicle — phosphate-buffered saline (PBS).
Group 2 mice were treated under the aforementioned treatment schedule with
Antibody 1 — an anti-CD200 antibody (IgG2a) having effector function — each dose being 5 mg/kg. Group 3 mice were treated under the above treatment schedule with
Antibody 2 — an anti-CD200 antibody that lacked effector function — each dose at 5 mg/kg. Group 4 mice were treated under the above treatment schedule using a dose of 5 mg/kg of a Control antibody that does not bind to CD200, but possesses effector function (IgG2a). Group 5 mice were treated under the above treatment schedule using a dose of 5 mg/kg of a Control antibody that does not bind to CD200 and does not possess effector function. The Group design and treatment schedules for each group are summarized in Table 6.
Table 6. Group Design and Treatment Schedule for Study 5.
Group 1 20 | Non-immunized, non-treated N/A control group
Group 2 20 Antibody 1 (anti-CD200 antibody | 5 mg/kg
IgG2a with effector function
Group 3 20 Antibody 2 (anti-CD200 antibody | 5 mg/kg that does not possess effector function
Group 4 20 Control antibody (IgG2a) that does | 5 mg/kg not bind to CD200 but possesses effector function
Group 5 15 Control antibody (IgG2a) that does | 5 mg/kg not bind to CD200 and does not possess effector function
N refers to the number of mice in each group.
N/A =not applicable.
On a weekly basis, blood was drawn from the mice of Groups 1 to 6 prior to, during, and after the above treatments to evaluate by flow cytometry whether treatment affected the titer of anti-mouse RBC autoantibodies and/or anti-rat RBC alloantibodies in the mice. On day 35 of the study, three of the mice in each group were sacrificed and their spleens harvested. Bone marrow was also isolated from the femurs and tibias of each mouse. As described above, the cells were labeled with detectably-labeled antibodies (e.g., the polyclonal anti-CD200 antibody preparation and an additional fluorescently-labeled antibody) and subjected to flow cytometry. A summary of the results are shown below in Table 7.
Table 7. Effect of Anti-CD200 Antibodies on Splenocyte and Bone Marrow Cell
Subsets at day 35
Tissue Cell Subset/Expression Reduction (R) or | Reduction (R) or
Type Profile Increase (I) in Increase (I) in
Group 2 Mice** Group 3 Mice **
CD200°
CD3'/CD200 rR -
CD5'/CD200" rR
CD19'/CD200° rR -
CD45R'/CD200 rR
Spleen CD1387/CD200" (Gated on R R
CD45R" cells
Spleen CD200" (Gated on R R*
CD45R" cells
Bone CD200" R
Marrow
Bone CDIgk /CD200" R
Marrow
Bone CD200" (Gated on R
Marrow CD45R" cells
Bone CD200" (Gated on R
Marrow CD138'/CD45R cells
Bone c-kit’ /CD200" (Gated on R R
Marrow Lin cells “*” indicates that the reduction in concentration of a particular cell subset in mice treated with Antibody 2 is not as profound as the reduction observed in the same cell subset in mice treated with Antibody 1. “*#” indicates that the reduction or increase in the concentration of a particular cell subset is relative the concentration of the particular subset in vehicle treated mice (Group 6) and the corresponding isotype control. Thus, the reduction of CD200" splenocytes observed in mice of Group 2 mice is relative to the concentration of
CD200" splenocytes in Group 6 mice and Group 4 mice. “-” indicates that no difference in the levels was observed between Antibody 2 and its corresponding Control antibody.
From day 35 to day 91, the remaining mice in each group received additional
RBC immunizations but no treatments with the antibodies, the purpose being to determine if the populations of splenocytes and bone marrow cells would recover over time. Three mice in each group were sacrificed at day 91 and their spleens and bone marrow harvested as described above. Flow cytometry analysis was performed on the isolated cells to determine whether particular population subsets of splenocytes and bone marrow cells, which were reduced at day 35, recovered by day 91. Each of the cell populations recovered fully by day 91, indicating that the modulatory effects of the anti-CD200 antibody on the concentration of bone marrow cell and splenocyte subsets is reversible upon withdrawal of the antibody.
While the present disclosure has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the disclosure. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the disclosure.
Claims (77)
1. A method for treating an autoimmune disorder in a human, the method comprising administering to a human having an autoimmune disorder an amount of an anti-CD200 antibody that is sufficient to reduce in the human the concentration of an autoantibody associated with the autoimmune disorder to thereby treat the autoimmune disorder.
2. The method of claim 1, wherein administration of the anti-CD200 antibody reduces the autoantibody concentration by at least 10%.
3. The method of claim 1 or 2, wherein administration of the anti-CD200 antibody reduces the autoantibody concentration by at least 20%.
4, The method of any one of claims 1 to 3, wherein administration of the anti- CD200 antibody reduces the autoantibody concentration by at least 50%.
5. A method for treating an autoimmune disorder in a human, the method comprising chronically administering to a human having an autoimmune disorder an anti- CD200 antibody in an amount and with a frequency sufficient to maintain in the human a reduced concentration of an autoantibody associated with the autoimmune disorder to thereby treat the autoimmune disorder.
6. The method of claim 5, wherein the anti-CD200 antibody is administered to the human in an amount and with a frequency to maintain a greater than 50% reduction in the concentration of the autoimmune antibody as compared to the concentration of the antibody prior to administration of the anti-CD200 antibody.
7. A method for treating an autoimmune disorder in a human, the method comprising administering to a human in need thereof an anti-CD200 antibody in an amount and with a frequency sufficient to treat the autoimmune disorder by maintaining one or more of the following physiological conditions in the human: (i) a decreased concentration of at least one CD200" leukocyte subset as compared to a control concentration; (ii) an increased concentration of F4/80" cells as compared to a control concentration; and (iii) a decreased concentration of at least one bone marrow stem cell subset as compared to a control concentration.
8. The method of claim 7, wherein the at least one CD200" leukocyte subset is selected from the group consisting of CD3/CD200" cells, CD45R/CD200" cells, CD5'/CD200" cells, CD19"/CD200" cells, CD138"/CD200" cells, and CD200R'/CD200" cells.
9. The method of claim 7, wherein the at least one bone marrow stem cell subset is selected from the group consisting of CD200" bone marrow cells, Igk /CD200" bone marrow cells, CD1387/CD200" bone marrow cells, c-kit” /CD200" bone marrow cells, and c-kit'/CD200"/Lin” bone marrow cells.
10. The method of claim 7, wherein the F4/80" cells are F4/80" macrophages.
11. The method of any one of claims 7 to 10, wherein the at least one CD200" leukocyte subset or the F4/80" cells are present in the peripheral blood of the human.
12. The method of any one of claims 7 to 11, wherein the antibody is administered to the human in an amount and with a frequency to maintain all three of the physiological conditions in the human.
13. The method of any one of claims 1 to 12, wherein the autoimmune disorder is a hemolytic disorder.
14. The method of claim 13, wherein the autoimmune disorder is an autoimmune hemolytic anemia.
15. The method of any one of claims 1 to 12, wherein the autoimmune disorder is selected from the group consisting of chronic obstructive pulmonary disease, diabetes mellitus type 1, Goodpasture’s syndrome, Grave’s disease, Guillain-Barré syndrome, IgA nephropathy, scleroderma, Sjogren’s syndrome, Wegener’s granulomatosis, pemphigus vulgaris, rheumatoid arthritis, cold agglutinin disease, anti-phospholipid syndrome, warm autoimmune hemolytic anemia, paroxysmal cold hemoglobinuria, Hashimoto’s disease, idiopathic thrombocytopenic purpura, myasthenia gravis, pulmonary biliary cirrhosis, and Miller Fisher syndrome.
16. The method of any one of claims 1 to 15, wherein the autoimmune disorder is associated with a cancer in the human.
17. The method of claim 16, wherein the cancer is a liquid tumor.
18. The method of claim 17, wherein the liquid tumor is a chronic lymphocytic leukemia or multiple myeloma.
19. The method of claim 18, wherein the chronic lymphocytic leukemia is B cell chronic lymphocytic leukemia.
20. The method of any one of claims 1 to 19, further comprising administering to the human at least one additional therapeutic agent for treating an autoimmune disorder.
21. A method for treating a human afflicted with a cancer, the method comprising administering to a human afflicted with a cancer an anti-CD200 antibody in an amount that is sufficient to treat the cancer, wherein the cancer is resistant, or is suspected of being resistant, to therapy with an anti-CD20 therapeutic agent.
22. A method for treating a human afflicted with a cancer, the method comprising: identifying a human as having a cancer that is resistant, or is suspected to be resistant, to treatment with an anti-CD20 therapeutic agent; and administering to the human an anti-CD200 antibody in an amount that is effective to treat the cancer.
23. The method of claim 21 or 22, wherein the cancer comprises cancer cells that express CDS.
24. The method of any one of claims 21 to 23, wherein more than one dose of the anti-CD200 antibody is administered to the human.
25. The method of any one of claims 21 to 24, wherein more than ten doses of the anti-CD200 antibody arc administered to the human.
26. The method of any one of claims 21 to 25, wherein the cancer is a liquid tumor.
27. The method of claim 26, wherein the liquid tumor is a chronic lymphocytic leukemia or multiple myeloma.
28. The method of claim 27, wherein the chronic lymphocytic leukemia is a B cell chronic lymphocytic leukemia.
29. A method for treating a human afflicted with a liquid tumor, the method comprising administering to a human afflicted with a liquid tumor an anti-CD200 antibody in an amount that is sufficient to treat the liquid tumor, wherein at least a portion of the liquid tumor cells express CDS.
30. The method of claim 29, further comprising determining whether the portion of liquid tumor cells express CDS.
31. A method for treating a human afflicted with a liquid tumor, the method comprising: identifying a human as having a liquid tumor comprising cells that express CDS; and administering to the human an anti-CD200 antibody in an amount that is sufficient to reduce the concentration of the CD5-expressing liquid tumor cells in the human to thereby treat the liquid tumor.
32. A method for treating a human afflicted with a liquid tumor, the method comprising administering to a human afflicted with a liquid tumor an anti-CD200 antibody and an anti-CD20 therapeutic agent to thereby treat the liquid tumor, wherein at least a portion of the liquid tumor cells express CDS prior to administering the antibody and agent.
33. A method for treating a human afflicted with a liquid tumor, the method comprising: identifying a human as being afflicted with a liquid tumor comprising tumor cells that express CDS; and administering to the human an anti-CD200 antibody and an anti-CD20 therapeutic agent to thereby treat the liquid tumor.
34. The method of claim 32 or 33, wherein the anti-CD20 therapeutic agent is administered prior to administration of the anti-CD200 antibody.
35. The method of claim 34, wherein the anti-CD200 antibody is administered prior to administration of the anti-CD20 therapeutic agent.
36. The method of claim 32 or 33, wherein the anti-CD200 antibody and anti-CD20 therapeutic agent are administered by the same route.
37. The method of any one of claims 32 to 36, wherein the anti-CD200 antibody and anti-CD20 therapeutic agent as administered concurrently as a bispecific antibody that binds to human CD200 and to human CD20.
38. The method of any one of claims 29 to 37, wherein at least 1% of the liquid tumor cells express CDS.
39. The method of any one of claims 29 to 38, wherein at least 5% of the liquid tumor cells express CDS.
40. The method of any one of claims 29 to 39, wherein at least 10% of the liquid tumor express CDS.
41. The method of any one of claims 29 to 40, wherein the liquid tumor is a chronic lymphocytic leukemia or a multiple myeloma.
42. The method of claim 41, wherein the chronic lymphocytic leukemia is a B cell chronic lymphocytic leukemia.
43, The method of any one of claims 21 to 28 or 32 to 37, wherein the anti-CD20 therapeutic agent is an anti-CD20 antibody.
44. The method of claim 43, wherein the anti-CD20 antibody is rituximab.
45. The method of claim 43, wherein the anti-CD20 antibody is ofatumumab, TRU-015, veltuzumab, ocrelizumab, or AME-133v.
46. The method of claim 43, wherein the anti-CD20 antibody is a toxin-antibody conjugate.
47. The method of claim 46, wherein the toxin is a small molecule drug or a toxic polypeptide.
48. The method of claim 46, wherein the toxin is a radioactive agent.
49, The method of claim 48, wherein the radioactive agent is Ny 18Re, Re, Cu, §Tcu, 212pb, 212Bi, 213Bi, 121, 125, BL, Mn, 211A, 2P, 7Lu, VS, Rh, "Pd, Sm, or 19970
50. The method of claim 46, 48, or 49, wherein the toxin-antibody conjugate is **Y- ibritumomab tiuxetan or "*'I-tositumomab.
51. The method of any one of claims 1 to 50, wherein the anti-CD200 antibody inhibits the interaction between CD200 and CD200R.
52. The method of any one of claims 1 to 51, wherein the anti-CD200 antibody contains the following paired set of CDRs: a heavy chain CDR1 (HCDR1) comprising the amino acid sequence: GFTFSGFAMS (SEQ ID NO:4); a heavy chain CDR2 (HCDR2) comprising the amino acid sequence: SISSGGTTYYLDSVKG (SEQ ID NO:5); a heavy chain CDR3 (HCDR3) comprising the amino acid sequence: GNYYSGTSYDY (SEQ ID NO:6); a light chain CDR1 (LCDR1) comprising the amino acid sequence: RASESVDSYGNSFMH (SEQ ID NO:7); a light chain CDR2 (LCDR2) comprising the amino acid sequence: RASNLES (SEQ ID NO:8); and a light chain CDR3 (LCDR3) comprising the amino acid sequence: QQSNEDPRT (SEQ ID NO:9).
53. The method of any one of claims 1 to 51, wherein the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: GFNIKDYYMH (SEQ ID NO:10); a HCDR2 comprising the amino acid sequence: WIDPENGDTKYAPKFQG (SEQ ID NO:11); a HCDR3 comprising the amino acid sequence: KNYYVSNYNFFDYV (SEQ ID NO:12); a LCDRI1 comprising the amino acid sequence: SASSSVRYMY (SEQ ID NO:13); a LCDR2 comprising the amino acid sequence: DTSKLAS (SEQ ID NO: 14); and a LCDR3 comprising the amino acid sequence: FQGSGYPLT (SEQ ID NO:15).
54. The method of any one of claims 1 to 51, wherein the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: GFNIKDYYIH (SEQ ID NO:16); a HCDR2 comprising the amino acid sequence: WIDPEIGATKY VPKFQG (SEQ ID NO:17); a HCDR3 comprising the amino acid sequence: LYGNYDRYYAMDY (SEQ ID NO:18); a LCDRI1 comprising the amino acid sequence: KASQNVRTAVA (SEQ ID NO:19); a LCDR2 comprising the amino acid sequence: LASNRHT (SEQ ID NO:20); and a LCDR3 comprising the amino acid sequence: LQHWNYPLT (SEQ ID NO:21).
55. The method of any one of claims 1 to 51, wherein the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: GYSFTDYIIL (SEQ ID NO:22); a HCDR2 comprising the amino acid sequence: HIDPYYGSSNYNLKFKG (SEQ ID NO:23); a HCDR3 comprising the amino acid sequence: SKRDYFDY (SEQ ID NO:24); a LCDR1 comprising the amino acid sequence: KASQDINSYLS (SEQ ID NO:25); a LCDR2 comprising the amino acid sequence: RANRLVD (SEQ ID NO:26); and a LCDR3 comprising the amino acid sequence: LQYDEFPYT (SEQ ID NO:27).
56. The method of any one of claims 1 to 51, wherein the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: GYTFTEYTMH (SEQ ID NO:28); a HCDR2 comprising the amino acid sequence: GVNPNNGGALYNQKFKG (SEQ ID NO:29); a HCDR3 comprising the amino acid sequence: RSNYRYDDAMDY (SEQ ID NO:30); a LCDR1 comprising the amino acid sequence: KSSQSLLDIDEKTYLN (SEQ ID NO:31); a LCDR2 comprising the amino acid sequence: LVSKLDS (SEQ ID NO:32); and a LCDR3 comprising the amino acid sequence: WQGTHFPQT (SEQ ID NO:33).
57. The method of any one of claims 1 to 51, wherein the anti-CD200 antibody contains the following paired set of CDRs: a HCDR1 comprising the amino acid sequence: AFNIKDHYMH (SEQ ID NO:34); a HCDR2 comprising the amino acid sequence: WIDPESGDTEYAPKFQG (SEQ ID NO:35); a HCDR3 comprising the amino acid sequence: FNGYQALDQ (SEQ ID NO:36); a LCDR1 comprising the amino acid sequence: TASSSVSSSYLH (SEQ ID NO:37); a LCDR2 comprising the amino acid sequence: STSNLAS (SEQ ID NO:38); and a LCDR3 comprising the amino acid sequence: RQYHRSPPIFT (SEQ ID NO:39).
58. The method of any one of claims 1 to 57, wherein the anti-CD200 antibody is an IgGl, IgG2, 1gG2a, 1gG3, IgG4, IgM, IgA, IgA2, IgA, IgD, or IgE antibody.
59. The method of any one of claims 1 to 58, wherein the anti-CD200 antibody is a murine antibody, a chimeric antibody, a humanized antibody, a single chain antibody, or a human antibody.
60. The method of any one of claims 1 to 58, wherein the anti-CD200 antibody is a CD200-binding antibody fragment selected from the group consisting of a Fab fragment, a F(ab’), fragment, a Fab’ fragment, an scFv fragment, a minibody, a diabody, or a triabody
61. A method for selecting a therapy for a patient afflicted with a liquid tumor, the method comprising: identifying a patient as having a liquid tumor comprising tumor cells that express CDS5; and selecting for the patient an anti-CD200 antibody for use in treating the liquid tumor.
62. A method for prescribing a therapy for a patient afflicted with a liquid tumor, the method comprising:
identifying a patient as having a liquid tumor comprising tumor cells that express CD35; and prescribing for the patient an anti-CD200 antibody for use in treating the liquid tumor.
63. The method of claim 61 or 62, wherein the anti-CD200 antibody is a bispecific antibody.
64. The method of claim 61 or 62, wherein the bispecific antibody comprises a first antigen-combining site and a second antigen-combining site, wherein the first antigen- combining site binds to CD200 and the second antigen-combining site binds to CD20.
65. A bispecific antibody that comprising a first antigen combining site that binds to a CD200 protein and a second antigen combining site that binds to a CD20 protein.
66. The bispecific antibody of claim 65, wherein the antibody is a single chain diabody, a tandem single chain Fv fragment, a tandem single chain diabody, or a fusion protein comprising a single chain diabody and at least a portion of an immunoglobulin heavy chain constant region.
67. The bispecific antibody of claim 65, wherein the antibody is a dual variable domain immunoglobulin.
68. The bispecific antibody of any one of claims 65 to 67, wherein the first antigen combining site binds to a human CD200 protein.
69. The bispecific antibody of claim 68, wherein the human CD200 protein comprising the amino acid sequence depicted in any one of SEQ ID NOs:1 to 3.
70. The bispecific antibody of any one of claims 65 to 69, wherein the second antigen combining site binds to a human CD20 protein.
71. The bispecific antibody of claim 70, wherein the human CD20 protein comprising the amino acid sequence depicted in any one of SEQ ID NOs:40 to 42.
72. The bispecific antibody of claim 70 or 71, wherein the second antigen combining site binds to a human CD20 protein at an epitope that comprises at least part of the amino acid sequence depicted in SEQ ID NO: 41 and at least part of the amino acid sequence depicted in SEQ ID NO:42.
73. The bispecific antibody of any one of claims 65 to 72, wherein the first antigen combining site is obtained from samalizumab.
74. The bispecific antibody of any one of claims 65 to 72, wherein the second antigen combining site is obtained from rituximab, ofatumumab, TRU-015, veltuzumab, ocrelizumab, or AME-133v.
75. A nucleic acid encoding the bispecific antibody of any one of claims 65 to 74.
76. A expression vector comprising the nucleic acid of claim 75.
77. A cell comprising the vector of claim 76.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33796210P | 2010-02-11 | 2010-02-11 | |
PCT/US2011/024511 WO2011100538A1 (en) | 2010-02-11 | 2011-02-11 | Therapeutic methods using an ti-cd200 antibodies |
Publications (1)
Publication Number | Publication Date |
---|---|
SG182823A1 true SG182823A1 (en) | 2012-09-27 |
Family
ID=44368146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG2012056784A SG182823A1 (en) | 2010-02-11 | 2011-02-11 | Therapeutic methods using an ti-cd200 antibodies |
Country Status (14)
Country | Link |
---|---|
US (2) | US9085623B2 (en) |
EP (1) | EP2534178A4 (en) |
JP (1) | JP2013519682A (en) |
KR (1) | KR20130036192A (en) |
CN (1) | CN102918062A (en) |
AU (1) | AU2011215750A1 (en) |
BR (1) | BR112012020101A2 (en) |
CA (1) | CA2789623A1 (en) |
IL (1) | IL221288A0 (en) |
MX (1) | MX2012009321A (en) |
NZ (1) | NZ601580A (en) |
RU (1) | RU2012138703A (en) |
SG (1) | SG182823A1 (en) |
WO (1) | WO2011100538A1 (en) |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7612181B2 (en) | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
US7960139B2 (en) | 2007-03-23 | 2011-06-14 | Academia Sinica | Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells |
US8680020B2 (en) | 2008-07-15 | 2014-03-25 | Academia Sinica | Glycan arrays on PTFE-like aluminum coated glass slides and related methods |
US11377485B2 (en) | 2009-12-02 | 2022-07-05 | Academia Sinica | Methods for modifying human antibodies by glycan engineering |
US10087236B2 (en) | 2009-12-02 | 2018-10-02 | Academia Sinica | Methods for modifying human antibodies by glycan engineering |
MX2012008108A (en) * | 2010-01-11 | 2012-10-03 | Alexion Pharma Inc | Biomarkers of immunomodulatory effects in humans treated with anti-cd200 antibodies. |
SG182823A1 (en) | 2010-02-11 | 2012-09-27 | Alexion Pharma Inc | Therapeutic methods using an ti-cd200 antibodies |
WO2011130332A1 (en) | 2010-04-12 | 2011-10-20 | Academia Sinica | Glycan arrays for high throughput screening of viruses |
PT2663579T (en) | 2011-01-14 | 2017-07-28 | Univ California | Therapeutic antibodies against ror-1 protein and methods for use of same |
JP6150734B2 (en) | 2011-02-03 | 2017-06-21 | アレクシオン ファーマシューティカルズ, インコーポレイテッド | Use of anti-CD200 antibodies to prolong allograft survival |
EP3626739A1 (en) | 2011-06-24 | 2020-03-25 | Stephen D. Gillies | Light chain immunoglobulin fusion proteins and methods of use thereof |
US10130714B2 (en) | 2012-04-14 | 2018-11-20 | Academia Sinica | Enhanced anti-influenza agents conjugated with anti-inflammatory activity |
CN102698266A (en) * | 2012-05-15 | 2012-10-03 | 中国医学科学院北京协和医院 | Application of CD200 for preparing systemic lupus erythematosus psychotherapeutic drugs |
WO2014031498A1 (en) | 2012-08-18 | 2014-02-27 | Academia Sinica | Cell-permeable probes for identification and imaging of sialidases |
US9447193B2 (en) * | 2013-03-24 | 2016-09-20 | Development Center For Biotechnology | Methods for suppressing cancer by inhibition of TMCC3 |
WO2014210397A1 (en) | 2013-06-26 | 2014-12-31 | Academia Sinica | Rm2 antigens and use thereof |
US9981030B2 (en) | 2013-06-27 | 2018-05-29 | Academia Sinica | Glycan conjugates and use thereof |
CA2923579C (en) | 2013-09-06 | 2023-09-05 | Academia Sinica | Human inkt cell activation using glycolipids with altered glycosyl groups |
JP2017507118A (en) | 2014-01-16 | 2017-03-16 | アカデミア シニカAcademia Sinica | Compositions and methods for the treatment and detection of cancer |
US10150818B2 (en) | 2014-01-16 | 2018-12-11 | Academia Sinica | Compositions and methods for treatment and detection of cancers |
CN106415244B (en) | 2014-03-27 | 2020-04-24 | 中央研究院 | Reactive marker compounds and uses thereof |
KR20230155600A (en) | 2014-04-03 | 2023-11-10 | 아이쥐엠 바이오사이언스 인코포레이티드 | Modified j-chain |
WO2015184004A1 (en) | 2014-05-27 | 2015-12-03 | Academia Sinica | Anti-cd20 glycoantibodies and uses thereof |
JP7062361B2 (en) | 2014-05-27 | 2022-05-06 | アカデミア シニカ | Anti-HER2 sugar-manipulated antibody group and its use |
US10118969B2 (en) | 2014-05-27 | 2018-11-06 | Academia Sinica | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
EP3149045B1 (en) | 2014-05-27 | 2023-01-18 | Academia Sinica | Compositions and methods relating to universal glycoforms for enhanced antibody efficacy |
CA2950433A1 (en) | 2014-05-28 | 2015-12-03 | Academia Sinica | Anti-tnf-alpha glycoantibodies and uses thereof |
EP3191500A4 (en) | 2014-09-08 | 2018-04-11 | Academia Sinica | HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS |
US9975965B2 (en) | 2015-01-16 | 2018-05-22 | Academia Sinica | Compositions and methods for treatment and detection of cancers |
US10495645B2 (en) | 2015-01-16 | 2019-12-03 | Academia Sinica | Cancer markers and methods of use thereof |
EP3248005B1 (en) | 2015-01-24 | 2020-12-09 | Academia Sinica | Novel glycan conjugates and methods of use thereof |
DK3250590T3 (en) * | 2015-01-30 | 2021-10-18 | Academia Sinica | Compositions and Methods relating to universal glycoforms for enhanced anti-SSEA4 antibody efficacy |
ES2874558T3 (en) | 2015-03-04 | 2021-11-05 | Igm Biosciences Inc | CD20-binding molecules and their uses |
WO2017059387A1 (en) * | 2015-09-30 | 2017-04-06 | Igm Biosciences, Inc. | Binding molecules with modified j-chain |
AU2016329197B2 (en) | 2015-09-30 | 2021-01-21 | Igm Biosciences, Inc. | Binding molecules with modified J-chain |
CN107102141A (en) * | 2016-02-23 | 2017-08-29 | 中国科学院生物物理研究所 | Molecular marked compound CD71 and Endometrial Carcinomas diagnosis, the application by stages and in prognosis |
CA3016170A1 (en) | 2016-03-08 | 2017-09-14 | Academia Sinica | Methods for modular synthesis of n-glycans and arrays thereof |
WO2017220990A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Anti-pd-l1 antibodies |
AU2017297603A1 (en) | 2016-07-14 | 2019-02-14 | Fred Hutchinson Cancer Research Center | Multiple bi-specific binding domain constructs with different epitope binding to treat cancer |
KR102588027B1 (en) * | 2016-08-22 | 2023-10-12 | 초 파마 인크. | Antibodies, binding fragments and methods of use |
WO2018075408A1 (en) | 2016-10-17 | 2018-04-26 | Alexion Pharmaceuticals, Inc. | Methods of treating acute myeloid leukemia (aml) with combinations of anti-cd200 antibodies, cytarabine, and daunorubicin |
WO2018102594A1 (en) | 2016-12-01 | 2018-06-07 | Alexion Pharmaceuticals, Inc. | Methods of treating solid tumors with anti-cd200 antibodies |
WO2019067499A1 (en) | 2017-09-27 | 2019-04-04 | Alexion Pharmaceuticals, Inc. | Biomarker signature for predicting tumor response to anti-cd200 therapy |
US20210087267A1 (en) * | 2017-12-20 | 2021-03-25 | Alexion Pharmaceuticals, Inc. | Liquid formulations of anti-cd200 antibodies |
WO2019126536A1 (en) | 2017-12-20 | 2019-06-27 | Alexion Pharmaceuticals Inc. | Humanized anti-cd200 antibodies and uses thereof |
TW201945026A (en) * | 2018-01-29 | 2019-12-01 | 美商希拉諾斯醫療公司 | Antibodies binding ERFE and methods of use |
SG11202101780WA (en) | 2018-08-30 | 2021-03-30 | Hcw Biologics Inc | Single-chain chimeric polypeptides and uses thereof |
CA3109139A1 (en) | 2018-08-30 | 2020-03-05 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
AU2019328290B2 (en) | 2018-08-30 | 2024-10-10 | Immunitybio, Inc. | Multi-chain chimeric polypeptides and uses thereof |
AR116668A1 (en) * | 2018-09-14 | 2021-06-02 | Lilly Co Eli | AGONIST ANTIBODIES AGAINST CD200R AND ITS USES |
KR20200112102A (en) | 2019-03-20 | 2020-10-05 | 주식회사 썬닷컴 | Method for cuitivating peanut sprout and system for the same |
CN114269903A (en) | 2019-06-21 | 2022-04-01 | Hcw生物科技公司 | Multi-chain chimeric polypeptides and uses thereof |
CA3169625A1 (en) | 2020-02-11 | 2021-08-19 | HCW Biologics, Inc. | Chromatography resin and uses thereof |
CN115380045A (en) | 2020-02-11 | 2022-11-22 | Hcw生物科技公司 | Method for activating regulatory T cells |
WO2021163369A2 (en) | 2020-02-11 | 2021-08-19 | HCW Biologics, Inc. | Methods of treating age-related and inflammatory diseases |
US20230174666A1 (en) | 2020-04-29 | 2023-06-08 | HCW Biologics, Inc. | Anti-cd26 proteins and uses thereof |
WO2021247003A1 (en) | 2020-06-01 | 2021-12-09 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
KR20230031280A (en) | 2020-06-01 | 2023-03-07 | 에이치씨더블유 바이올로직스, 인크. | Methods of treating age-related disorders |
US12024545B2 (en) | 2020-06-01 | 2024-07-02 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
CN115873902A (en) * | 2021-11-30 | 2023-03-31 | 百奥赛图(北京)医药科技股份有限公司 | Non-human animal humanized by CD200 and/or CD200R gene and construction method and application thereof |
WO2023168363A1 (en) | 2022-03-02 | 2023-09-07 | HCW Biologics, Inc. | Method of treating pancreatic cancer |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0170697B1 (en) | 1984-02-08 | 1991-10-23 | Cetus Oncology Corporation | Toxin conjugates |
JPH0246297A (en) | 1988-08-08 | 1990-02-15 | Takeda Chem Ind Ltd | Production of monoclonal antibody, antibody-producing hybridoma and antibody |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
ATE196606T1 (en) | 1992-11-13 | 2000-10-15 | Idec Pharma Corp | THERAPEUTIC USE OF CHIMERIC AND LABELED ANTIBODIES DIRECTED AGAINST A DIFFERENTIATION ANTIGEN WHICH EXPRESSION IS RESTRICTED TO HUMAN B LYMPHOCYTES, FOR THE TREATMENT OF B-CELL LYMPHOMA |
US5885573A (en) | 1993-06-01 | 1999-03-23 | Arch Development Corporation | Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies |
US5595721A (en) | 1993-09-16 | 1997-01-21 | Coulter Pharmaceutical, Inc. | Radioimmunotherapy of lymphoma using anti-CD20 |
WO1997021450A1 (en) | 1995-12-08 | 1997-06-19 | Brigham And Women's Hospital, Inc. | Ox-2 costimulatory molecule |
DE69833779T2 (en) | 1997-11-07 | 2006-11-30 | Trillium Therapeutics Inc., Toronto | METHOD AND COMPOSITIONS FOR IMMUNOMODULATION |
US6955811B2 (en) | 1997-11-07 | 2005-10-18 | Trillium Therapeutics Inc. | Methods of inhibiting immune response suppression by administering antibodies to OX-2 |
US7223729B2 (en) | 1997-11-07 | 2007-05-29 | Trillium Therapeutics Inc. | Methods of treating allergy by administering a CD200 protein |
US20020192215A1 (en) | 1999-04-13 | 2002-12-19 | Schering Corporation, A New Jersey Corporation | Novel uses of mammalian OX2 protein and related reagents |
AU2001242159B2 (en) | 2000-03-17 | 2006-04-27 | Trillium Therapeutics Inc. | Methods and compositions for immunoregulation |
US7306801B2 (en) | 2000-05-15 | 2007-12-11 | Health Research, Inc. | Methods of therapy for cancers characterized by overexpression of the HER2 receptor protein |
WO2002011762A2 (en) | 2000-08-03 | 2002-02-14 | Gorczynski Reginald M | Methods and compositions for modulating tumor growth |
JP2004513660A (en) | 2000-11-22 | 2004-05-13 | トリリウム セラピューティクス インコーポレーティッド | Cutting type CD200 |
US7408041B2 (en) * | 2000-12-08 | 2008-08-05 | Alexion Pharmaceuticals, Inc. | Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof |
US7427665B2 (en) | 2000-12-08 | 2008-09-23 | Alexion Pharmaceuticals, Inc. | Chronic lymphocytic leukemia cell line |
US20060057651A1 (en) | 2000-12-08 | 2006-03-16 | Bowdish Katherine S | Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof |
US20040198661A1 (en) | 2000-12-08 | 2004-10-07 | Bowdish Katherine S. | Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof |
US9249229B2 (en) * | 2000-12-08 | 2016-02-02 | Alexion Pharmaceuticals, Inc. | Polypeptides and antibodies derived from chronic lymphocytic leukemia cells and uses thereof |
US7368535B2 (en) | 2001-05-24 | 2008-05-06 | Trillium Therapeutics Inc. | CD200 receptors |
AU2003208415B2 (en) | 2002-02-14 | 2009-05-28 | Immunomedics, Inc. | Anti-CD20 antibodies and fusion proteins thereof and methods of use |
WO2004060295A2 (en) | 2002-12-27 | 2004-07-22 | Schering Corporation | Methods of inducing and maintaining immune tolerance |
WO2005074985A2 (en) | 2004-02-02 | 2005-08-18 | Schering Corporation | Methods of modulating cd200 and cd200r |
CA2614766A1 (en) | 2005-07-11 | 2007-01-18 | Macrogenics, Inc. | Methods of treating autoimmune disease using humanized anti-cd16a antibodies |
US7612181B2 (en) * | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
CN101379090A (en) * | 2006-01-12 | 2009-03-04 | 阿莱克申药物公司 | Antibodies to OX-2/CD200 and uses thereof |
NZ599035A (en) * | 2006-01-12 | 2013-12-20 | Alexion Pharma Inc | Antibodies to ox-2/cd200 and uses thereof |
EP2121015A4 (en) | 2007-01-11 | 2010-03-24 | Boehringer Ingelheim Int | Cd200 and its receptor, cd200r, modulate bone mass via the differentiation of osteoclasts |
JP6071165B2 (en) * | 2007-05-31 | 2017-02-01 | ゲンマブ エー/エス | Stable IgG4 antibody |
KR20100041849A (en) | 2007-07-25 | 2010-04-22 | 알렉시온 파마슈티칼스, 인코포레이티드 | Antibodies to cd200 and uses thereof in inhibiting immune responses |
KR20100036362A (en) | 2007-07-25 | 2010-04-07 | 알렉시온 파마슈티칼스, 인코포레이티드 | Methods and compositions for treating autoimmune disease |
MX2012008108A (en) | 2010-01-11 | 2012-10-03 | Alexion Pharma Inc | Biomarkers of immunomodulatory effects in humans treated with anti-cd200 antibodies. |
SG182823A1 (en) | 2010-02-11 | 2012-09-27 | Alexion Pharma Inc | Therapeutic methods using an ti-cd200 antibodies |
JP6150734B2 (en) | 2011-02-03 | 2017-06-21 | アレクシオン ファーマシューティカルズ, インコーポレイテッド | Use of anti-CD200 antibodies to prolong allograft survival |
-
2011
- 2011-02-11 SG SG2012056784A patent/SG182823A1/en unknown
- 2011-02-11 MX MX2012009321A patent/MX2012009321A/en not_active Application Discontinuation
- 2011-02-11 CA CA2789623A patent/CA2789623A1/en not_active Abandoned
- 2011-02-11 JP JP2012553027A patent/JP2013519682A/en active Pending
- 2011-02-11 US US13/578,367 patent/US9085623B2/en active Active
- 2011-02-11 RU RU2012138703/10A patent/RU2012138703A/en not_active Application Discontinuation
- 2011-02-11 KR KR1020127023557A patent/KR20130036192A/en not_active Application Discontinuation
- 2011-02-11 NZ NZ601580A patent/NZ601580A/en not_active IP Right Cessation
- 2011-02-11 EP EP11742858.1A patent/EP2534178A4/en not_active Withdrawn
- 2011-02-11 CN CN2011800183882A patent/CN102918062A/en active Pending
- 2011-02-11 AU AU2011215750A patent/AU2011215750A1/en not_active Abandoned
- 2011-02-11 BR BR112012020101A patent/BR112012020101A2/en not_active IP Right Cessation
- 2011-02-11 WO PCT/US2011/024511 patent/WO2011100538A1/en active Application Filing
-
2012
- 2012-08-02 IL IL221288A patent/IL221288A0/en unknown
-
2015
- 2015-06-15 US US14/739,862 patent/US9862767B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2011100538A1 (en) | 2011-08-18 |
CA2789623A1 (en) | 2011-08-18 |
EP2534178A1 (en) | 2012-12-19 |
KR20130036192A (en) | 2013-04-11 |
JP2013519682A (en) | 2013-05-30 |
BR112012020101A2 (en) | 2018-09-25 |
RU2012138703A (en) | 2014-03-20 |
MX2012009321A (en) | 2012-11-21 |
US9085623B2 (en) | 2015-07-21 |
US9862767B2 (en) | 2018-01-09 |
AU2011215750A1 (en) | 2012-08-23 |
US20130189258A1 (en) | 2013-07-25 |
NZ601580A (en) | 2014-11-28 |
IL221288A0 (en) | 2012-10-31 |
EP2534178A4 (en) | 2013-08-07 |
US20160009803A1 (en) | 2016-01-14 |
CN102918062A (en) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9862767B2 (en) | Therapeutic methods using anti-CD200 antibodies | |
JP6012473B2 (en) | Biomarker of immunomodulatory effect in human treatment with anti-CD200 antibody | |
JP5911391B2 (en) | Antibody to OX-2 / CD200 and use thereof | |
KR102338832B1 (en) | Antibodies against ccr9 and applications thereof | |
TW201815823A (en) | Anti-PD-1 antibodies | |
JP2016147910A (en) | Use of anti-cd200 antibody for prolonging survival of allografts | |
WO2018023111A1 (en) | Gamma delta t cells as a target for treatment of solid tumors |