SG178771A1 - Formulations of nonopioid and confined opioid analgesics - Google Patents

Formulations of nonopioid and confined opioid analgesics Download PDF

Info

Publication number
SG178771A1
SG178771A1 SG2012009270A SG2012009270A SG178771A1 SG 178771 A1 SG178771 A1 SG 178771A1 SG 2012009270 A SG2012009270 A SG 2012009270A SG 2012009270 A SG2012009270 A SG 2012009270A SG 178771 A1 SG178771 A1 SG 178771A1
Authority
SG
Singapore
Prior art keywords
composition
hours
acetaminophen
hydrocodone
released
Prior art date
Application number
SG2012009270A
Inventor
Joerg Rosenberg
Gerd Woehrle
Thomas Y Kessler
Joerg Breitenbach
Salih Durak
Friedrich W Richter
Wei Liu
Sandeep Dutta
Original Assignee
Abbott Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Gmbh & Co Kg filed Critical Abbott Gmbh & Co Kg
Priority to SG2012009270A priority Critical patent/SG178771A1/en
Publication of SG178771A1 publication Critical patent/SG178771A1/en

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The preferred exemplary embodiments in the present application provide formulations and methods for the delivery of drugs, particularly drugs of abuse, having an abuse-relevant drug substantially confined in the core and a non-abuse relevant drug in a non-core region. These formulations have reduced potential for abuse. In the formulation, preferably the abuse relevant drug is an opioid and the non-abuse relevant drug is acetaminophen or ibuprofen. More preferably, the opioid is hydrocodone, and the non-abuse relevant analgesic is acetaminophen. In certain preferred embodiments, the dosage forms are characterized by resistance to solvent extraction; tampering, crushing or grinding. Certain embodiments of the inventions provide dosage forms that provide an initial burst of release of drug followed by a prolonged period of controllable drug release.No suitable figure

Description

FORMULATIONS OF NONOPIOID AND CONFINED OPIOID ANALGESICS
TECHNICAL FIELD OF INVENTION
The present invention relates to compositions for oral administration, Preferably the invention teaches at least one abuse-resistant composition for delivering a drug having an abuse potential, related methods of preparing these dosage forms, and methods of treating a patient in need thereof comprising administering the inventive compositions to the patient. More preferably, these compositions include at feast one non-opioid analgesic and at least one confined opioid analgesic.
BACKGROUND OF THE INVENTION .
Abuse of prescription drugs has become a public health problem in many communities. Opioids are one common class of drugs that is subject to abuse. Opioids are the major class of analgesics used in the management of moderate to severe pain in the United States of America because of their effectiveness, ease of titration, and favorable risk-to-bencfit ratio.
One of the effects of opioid administration is the ability of such drugs in some individuals to alter mood and feeling in a manner so as to provide a desirable sense of "well-being" dissociated from therapeutic ameliorative effects. Repeated illicit abuse further results in certain users being addicted to opioids. Similar to the opioids, many other classes of drugs are also subject to abuse, although the patterns and effects of the abuse vary.
Accordingly, in the art various methods and formulations have been described to diminish or eliminate various patterns of abuse, such as related to accidental or intentional dose dumping in atcohol, crushing and snorting, etc.
U.S. Patent Application 11/625,705 and PCT Application PCT/US07/60864 filed on January 22, 2007, which are incorporated herein by reference in their entirety for all purposes, describe various methods and compositions of abuse resistant formulations having drugs of abuse. In these patent applications, an extensive formulation screening program was used to identify suitable extrudate formulations exhibiting biphasic in vitro drug dissolution (> 30% after 1 h, > 80% after 8 h) for the narcotic drug hydrocodone bitartrate 2.5-hydrate. It was found, however, that the drug dissolution of the second agent did not meet the above criterion for biphasic drug dissolution (with > 30% after 1 h, > 80% after & h) with respect to acetaminophen, a.k.a,
paracetamol or APAP. Although both drugs, hydrocodone-bitartrate 2.5-hydrate and acetaminophen, were extruded and calendered from a homogeneously blended mixture of solids, all the studies on the resulting dosage forms showed that the two active ingredients were released at different rates. These in vitro data were also confirmed in experimental animal studies (minipig) and in a clinical study performed with these dosage forms. The clinical study also showed that although the desired kinetics were achieved for the hydrocodone bitartrate 2.5- hydrate, this was not the case for the acetaminophen. New formulation concepts therefore had to be found to achieve the required biphasic drug dissolution profile for the acetaminophen as well.
Further, if was also found that in most cases the calendered extrudate tablets manufactured in accordance with U.S.11/625,705 and PCT/US07/60864 patent applications had rough surfaces and therefore based of their appearance did not in all cases meet the criteria for marketable tablets. A need for improvement was thus also perceived in this respect.
While numerous compositions, formulations and methodologies exist to address abuse of drugs, all compositions, formulations and methods have limitations to a greater or lesser extent.
Accordingly, there is a need for providing new and/or improved formulations, compositions and methods of preventing abuse of drugs having abuse potential. More specifically, there is a need to develop oral formulations that would meet the biphasic drug dissolution profile and also have attributes that include drug deterrence and desirable appearance to meet the criteria for a marketable tablet.
This background information is provided for the purpose of making known sone information believed by the applicant to be of possible relevance to the present invention. No admission is intended, nor should be construed, that any of the preceding information constitutes prior art to the present invention.
SUMMARY OF THE INVENTION
Certain preferred embodiments of the present invention provide dosage forms and methods for the delivery of drugs, particularly drugs of abuse, characterized by resistance to solvent extraction; tampering, crushing or grinding, and providing an initial burst of release of drug followed by a prolonged period of controllable drug release. Preferably, the dosage form includes at least one non-opioid analgesic and at feast one confined opioid analgesic.
In one preferred embodiment, the present invention provides a pharmaceutical composition having a core and a non-core layer, comprising: (a) hydrocodone, a pharmaceutically acceptable salt or a hydrate thereof, and (b) acetaminophen or ibuprofen. In this embodiment, at least 75% all of the hydrocodone, pharmaceutically acceptable salt or hydrate thereof is in the core, and the acetaminophen or the ibuprofen is the non-core layer. Further, this composition 15 adapted 50 as to be useful for oral administration to a human 3, 2, or | times daily. Preferably, greater than 90% of the hydrocodone, pharmaceutically acceptable salt or hydrate thereof is in the core. More preferably, substantially all of the hydrocodone, pharmaceutically acceptable sait or hydrate thereof is in the core. In another embodiment, the core further comprises acetaminophen or ibuprofen. More preferably, the core further comprises acetaminophen.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 my of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma profile characterized by a
Cmax for hydrocodone from about 0.6 ng/mL/mg to about 1.4 ng/mL/mg and a Cmax for acetaminophen from about 2.8 ng/mL/mg and 7.9 ng/mL/mg after a single dose. In another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/mL/mg and a Cmax for acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/mL/mg after a single dose. In yet another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of from about 0.6 ng/mL/mg to about 1.0 ng/mL/mg and a Cmax for acetaminophen of from about 3.0 ng/mL/mg to about 5.2 ng/mL/mg after a single dose. Other embodiments of the dosage form include about 5-20 mg of hydrocodone bitartrate pentahemihydrate and about 400-600 mg of acetaminophen. Yet another embodiment of the dosage form includes 10-15 mg of hydrocodone bitartrate pentahemibydrate and about 500-600 mg of acetaminophen. in certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. When administered to the human patient, the dosage form produces an AUC for hydrocodone of about 9.1 ng*hr/mL/mg to about 19.9 ng*hr/mL/mg and an AUC for acetaminophen of about 28.6 ng*hr/mL/mg to about
59.1 ng*he/mi/mg. In another embodiment, the dosage form produces an AUC for hydrocodone of about 7.0 ng*hr/mL/mg to about 26.2 ng*hr/ml/mg and an AUC for acetaminophen of about 18.4 ng*hr/ml/mg to about 79.9 ng*hr/mL/mg. In yet another embodiment, the dosage form produces an AUC for hydrocodone of about 11.3 ng*h/mbL/mg to about 18.7 ng*br/mL/mg and an AUC for acetaminophen of about 28.7 ng¥hr/mL/mg to about 53.5 ng*hr/mL/mg. Preferably in this embodiment, the in vitro rate of release of the pharmaceutical composition has a biphasic release profile, and wherein for cach phase of the in vitro rate of release is zero order or first order for acetaminophen and zero order or first order for hydrocodone bitartrate pentahemihydrate,
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. The dosage form produces a plasma concentration at 1 hour (C1) for hydrocodone of about 0.18 ng/mL/mg to about 1.51 ng/mb./myg, and a plasma concentration at ! hour C1 for acetaminophen of about 2.34 ng/mli/mg to about 7.24 ng/mL/mg. In preferred embodiments such as Formulation 15, the dosage form produces a Cl for hydrocodone of about 0.32 ng/mU/mg to about 1.51 ng/mL/mg and a C1 for acetaminophen of about 2.34 ng/mbL/mg to about 5.50 ng/mL/mg.
In certain other embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemibydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. The dosage form produces a plasma concentration at 1 hour (C1) for hydrocodone from about 0.30 ng/mL/myg to about 1.06 ng/mL/mg, and a C1 for acetaminophen from about 2.75 ng/mL/mg fo about 5.57 ng/mL/mg. In preferred embodiments, the dosage from produces a Cl for hydrocodone from about 0.45 ng/mL/mg to about 1.06 ng/mb/mg and a C1 for acetaminophen from about 2.73 ng/mL/mg to about 4.43 ng/mi/mg.
In other embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen from about 1.18 ng/mL to about 3.63 pg/mL, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen, on fasting. In preferred embodiments, the dosage from produces a combined C1 for hydrocodone and acetaminophen from about 1.18 ug/ml to about 2.76 ng/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen.
In certain embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen from about 1.38 pg/mL to about 2.79 pg/mL, after a single dose of 15 mg hydrocone bitartrate pentahemihydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined Cl for hydrocodone and acetaminophen from about 1.38 ug/ml to about 2.23 ug/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen.
In preferred embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen of 1.80 £ 0.42 ug/ml with the 95% confidence interval for the mean value failing between about 1.61 ug/ml to about 2.00 pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. The 95% confidence interval of combined C1 for hydrocodone and acetaminophen for the preferred embodiments and the Control overlapped. The 95% confidence interval for the mean value of combined C1 for hydrocodone and acetaminophen for the Control ranged from about 1.46 to 1.96 pg/ml, after administered as a single dose of 15 mg hydrocodone and 500 mg of acetaminophen to the human patient. The Control provides sufficient plasma levels of opioid and nonopioid analgesic to provide a reduction in pain intensity within about 1 hour after administration,
When administered to a population of healthy North Americans or Western Europeans, particularly when the formulation is adapted to be suitable for, or intended for, administration to a human every 12 hours as needed, about 20-45% of the hydrocodone 1s released in vitro from the pharmaceutical compositions in about hour and about 20-45% of the acetaminophen is released in vitro from the pharmaceutical compositions in about thour in 0.01 N HCI at 50 rpm at 37 °C. In another embodiment, about 25-35% of the hydrocodone is released in vitro from the pharmaceutical compositions in about Thour and about 25-35% of the acetaminophen is released in vitro from the pharmaceutical compositions in about hour in ¢.01 N HCI at 50 rpm at 37 °C.
Further, in another embodiment, at least 30% of the hydrocodone is released from the pharmaceutical composition in about § hours to about 12 hours and at least 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours to about 8.5 hours. In another embodiment, at east 90% of the hydrocodone 1s released from the pharmaceutical composition in about § hours fo about 11 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 8 hours fo about 11 hours. In another embodiment, at least 95% of the hydrocodone is released from the > pharmaceutical composition in about 9 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 9 hours to about 12 hours. Yet in another embodiment, at least 95% 1s of the hydrocodone is released from the pharmaceutical composition in about 10 hours to about 12 hours and at least 95% of the acctaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours. In another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about 11hours to about 12 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours. In yet another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 13 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 13 hours. .
However, when the a slow-release version of the formulation is adapted to be suitable for, or intended for administration to a human, twice daily, as needed, then at least 90% of the hydrocodone is released from the pharmaceutical composition in about 18 hours to about 23 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 18 hours to about 23 hours. In another embodiment of the slow release formulation, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 20 hours to about 25 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours. In another embodiment of the slow release formulation, at least 953% is of the hydrocodone is released from the pharmaceutical composition in about 21 hours to about 22 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours to about 22 hours. In another embodiment of this slow release embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 22 hours to about 26 hours. In yet another embodiment of the slow release formulation, at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 27 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in fess than about 27 hours.
In a preferred embodiment, the present invention provides a composition where the core layer comprises an excipient or a mixture of excipients capable of controlling the drug release and the non-core layer comprises an excipient capable of instantly releasing the drug. Further, ina preferred embodiment, the core layer is manufactured by melt-extrusion followed by direct shaping of the drug-containing melt and the non-core layer is spray coated over the core layer.
Most preferably, the composition comprises about 500mg of acetaminophen and about 15 mg of hydrocodone bitartrate pentahemihydrate.
In another exemplary embodiment, the present invention provides a pharmaceutical composition having a core and a non-core layer, comprising: (a) an abuse-refevant drug, a pharmaceutically acceptable salt or a hydrate thereof and a non-abuse-relevant drug or a pharmaceutically acceptable salt thereof in the core layer, and (b) a non-abuse-relevant drug, a pharmaceutically acceptable salt or a hydrate thereof in the non-core layer. Preferably, this composition is characterized by at least one of the following features: i) the amount of abuse-relevant drug that is extracted from the composition by 40% aqueous ethanol within one hour at 37 °C in vitro is less than or equal 1.5 times the amount of the abuse- relevant drug that is extracted by 0.01 N hydrochloric acid in vitro within one hour at 37 °C, ii} the composition does not break under a force of 150 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably 500 newtons as measured by “Pharma Test PTB 5017 hardness tester, iii) the composition relcases at least 20% of the abuse-relevant drug and not more than 45% of the abuse-relevant drug during the first hour of in vitro dissolution testing and preferably also during the first hour of in vivo testing, iv) the composition releases a therapeutically effective dose of the non-abuse relevant drug within 1 to 2 hours after a single dose, vv) the composition releases a therapeutically effective dose of the non-abuse relevant drug and/or the abuse—relevant drug at | hour and at 12 hours after a single dose, vi) in the composition, release of the abusc-relevant drug upon grinding increases by less than 2- to 3-fold, as compared to an intact tablet, when the composition 1s ground for | minute by a coffee-grinder at 20,0600 - 50,000 rpm, in 40% aqueous ethanol for 1 hour at 37°C, vii) the composition when ground comprises a particulate size of about 2 cm to about 355 micrometer for about 20% of the fraction, greater than about 63 microns and less than about 355 microns for about 66% of the fraction and less than about 63 microns for about 14% of the fraction, as measured by a sieving test, or viii) the composition is substantially smooth, wherein the Centre Line Average {CLA) 15 from about 0.1 to about 0.6, preferably from about 8.1 to about 0.4, and most preferably from about 3 0.1toabout 0.2.
In this composition, the amount of the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethano) within one hour at 37 °C is about 70% to about 130% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C. In another embodiment, the amount of the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethanol within one hour at 37 °C is about 70% to about 90% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C. in yet another embodiment, the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethanol within one hour at 37 °C is about 75% to about 90% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C,
Another embodiment of the present invention provides a pharmaceutical composition having a core layer and a non-core fayer, In this composition the core layer comprises a mixture of: (a) at lcast one opioid; and (b) at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof, The non-core layer comprises at least one non-opioid analgesic. Further, these compositions are adapted so as to be useful for oral administration to a human 3,2, or | times daily. Preferably, the core layer further comprises at least one non-opioid analgesic. In a preferred embodiment, the composition is characterized by at least one of the following features: i) the amount of abuse-relevant drug that is extracted from the composition by 40% aqueous ethanol within one hour at 37 °C in vitro is less than or equal 1.5 times the amount of the abuse- relevant drug that is extracted by 0.01 N hydrochloric acid in vitro within one hour at 37 °C, if) the composition does not break under a force of 150 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably 500 newtons as measured by “Pharma Test PTB 501” hardness tester, iii) the composition releases at least 20% of the abuse-relevant drug and not more than 45% of the abuse-relevant drug during the first hour of in vitro dissolution testing and preferably also during the first hour of in vivo testing,
1v) the composition releases a therapeutically effective dose of the non-abuse relevant drug within 1 to 2 hours after a single dose, v) the composition releases a therapeutically effective dose of the non-abuse relevant drug and/or the abuse~relevant drug at | hour and at 12 hours after a single dose, vi) mn the composition, release of the abuse-relevant drug upon grinding increases by less than 2- to 3-fold, as compared to an intact tablet, when the composition is ground for | minute by a coffee-grinder at 20,000 - 50,000 rpm, in 40% aqueous ethanol for | hour at 37°C, vii) the composition when ground comprises a particulate size of about 2 cm to about 355 micrometer for about 20% of the fraction, greater than about 63 microns and less than about 355 microns for about 66% of the fraction and less than about 63 microns for about 14% of the fraction, as measured by a sieving test, or viil) the composition is substantially smooth, wherein the Centre Line Average (CLA) is from about 0.1 to about 0.6, preferably from about 0.1 to about 0.4, and most preferably from about 0.1 to about 0.2,
In one embodiment, the opioid is selected from the group consisting of alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomomphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxado!, dimepheptanol, dimethyithiambutene, dioxaphety! butyrate, dipipanone, eptazocine, cthoheptazine, ethylmethylthiambutene, ethylmorphing, ctonitazene, fentanyl, heroin, hydrocodone, hydromorphone, hydroxy pethidine, isomethadone, ketobemidone, levallorphan, levophenacylmorphan, levorphanol, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbulphine, narceine, nicomorphine, norpipanone, opium, oxycodone, oxymorphone, papvretum, pentazocine, phenadoxone, phenazocine, phenomorphan, phenoperidine, piminodine, propiram, propoxyphene, sufentanil, tilidine, and tramadol, and salts, hydrates and mixtures thereof.
Further, the non-opioid analgesic is selected from the group consisting of acetaminophen, aspirin, fentaynl, ibuprofen, indomethacin, ketorolac, naproxen, phenacetin, piroxicam, sufentanyl, sunlindac, interferon alpha, and salts, hydrates and mixtures thereof. Preferably, the opioid is hydrocodone and the non-opioid analgesic is acetaminophen or ibuprofen. More preferably, the opioid is hydrocodone and the non-opioid analgesic is acetaminophen,
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma profile characterized by a
Cmax for hydrocodone from about 0.6 ng/mL/mg to about 1.4 ng/mL/mg and a Cmax for acetaminophen from about 2.8 ng/mL/myg and 7.9 ng/mi./mg after a single dose. In another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/mL/mg and a Cmax for acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/mL/mg after a single dose. In yet another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of from about 0.6 ng/mL/mg to about 1.0 ng/ml/mg and a Cmax for acetaminophen of from about 3.0 ng/mb/mg to about 5.2 ng/mL/mg after a single dose.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 my of acetaminophen, admunistered to the patient, when fasting. When administered to the human patient, the dosage form produces an AUC for hydrocodone of about 9.1 ng*hr/mL/mg to about 19.9 ng*hr/mL/mg and an AUC for acetaminophen of about 28.6 ng*hr/mL/mg to about 59.1 ng*hr/mL/mg. In another embodiment, the dosage form produces an AUC for hydrocodone of about 7.0 ng*hr/mL/mg to about 26.2 ng*hr/mL/mg and an AUC for acetaminophen of about 18.4 ng¥hr/mL/mg to about 79.9 ng*hr/ml/mg. In yet another embodiment, the dosage form produces an AUC for hydrocodone of about 11.3 ng*hr/mL/mg to about 18,7 ng*hr/mL/mg and an AUC for acetaminophen of about 28.7 ng*hr/mL/mg to about 53.5 ng*hr/mlL/mg. Preferably in this embodiment, the in vitro rate of release of the pharmaceutical cornposition has a biphasic release profile, and wherein for each phase of the in vitro rate of release is zero order or first order for acetaminophen and zero order or first order for hydrocodone bitartrate pentahemihydrate.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at | hour (C1) for hydrocodone of about 0.18 ng/mL/mg to about 1.51 ng/mL/mg, and a plasma concentration at I hour C1 for acetaminophen of about 2.34 ng/mL/mg to about 7.24 ng/mL/mg,
In preferred embodiments such as Formulation 15, the dosage form produces a Cl for hydrocodone of about 0.32 ng/mL/mg to about 1.51 ng/mL/mg and a C1 for acetaminophen of about 2.34 ng/mL/mg to about 5.50 ng/mL/mg.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour (C1) for hydrocodone from about 0.30 ng/mL/mg to about 1.06 ng/mL/mg, and a Ci for acetaminophen from about 2.75 ng/mL/mg to about 5.57 ng/mL/mg. In preferred embodiments, the dosage from produces a Ci for hydrocodone from about 0.45 ng/mL/mg to about 1.06 ng/mL/myg and a Cl for acetaminophen from about 2.75 ng/mL/mg to about 4.43 ng/mL/mmg.
In certain embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen from about 1.18 pg/mL to about 3.63 pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined C1 for hydrocodone and acetaminophen from about 1.18 pg/ml to about 2.76 ug/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemibydrate and 500 mg of acetaminophen. in certain embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen from about 1.38 pg/ml to about 2.79 pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemibydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined Cl for hydrocodone and acetaminophen from about 1.38 pg/mL to about 2.23 pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 504 mg of acetaminophen.
In preferred embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen of 1.80 + 0.42 ng/mL with the 95% confidence interval for the mean value falling between about 1.61 pg/mb to about 2.00 pg/mL, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. The 95% confidence interval of combined C1 for hydrocodone and acetaminophen for the preferred embodiments and the Control overlapped. The 95% confidence interval for the mean value of combined C1 for hydrocodone and acetaminophen for the Control ranged from about 1.46 to 1.96 ng/mL, after administered as a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen to the human patient. The Control provides sufficient plasma levels of opioid and nonopioid analgesic to provide a reduction in pain intensity within about 1 hour after administration.
When administered to a population of healthy North Americans or Western Europeans, particularly when the formulation is adapted to be suitable for, or intended for, administration to a human every 12 hours as needed, about 20-45% of the hydrocodone is released in vitro from the pharmaceutical compositions in about hour and about 20-45% of the acetaminophen i$ released in vitro from the pharmaceutical compositions in about Thour in 0.01 N HCI at 50 rpm at 37°C. In another embodiment, about 25-35% of the hydrocodone is relcased in vitro from the pharmaceutical compositions in about thour and about 25-35% of the acetaminophen is released in vitro from the pharmaceutical compositions in about hour in 0.01 N HCI at 50 rpm at 37 °C.
Further, in another embodiment, at least 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 12 hours and at least 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours to about 8.5 hours. In another embodiment, at least 90% of the hydrocodone is released from the pharmaceutical composition in about 8 ours to about 11 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 8 hours to about 11 hours. In another embodiment, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 9 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 9 hours to about 12 hours. Yet in another embodiment, at least 95% is of the hydrocodone is released from the pharmaceutical composition in about 10 hours to about 12 hours and at least 93% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours. In another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about } hours to about 12 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours. In yet another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 13 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 13 hours.
However, when the a slow-release version of the formulation is adapted to be suitable for, or intended for administration to a human, twice daily, as nceded, then at least 90% of the hydrocodone is released from the pharmaceutical composition in about 18 hours to about 23 hours and at least 90% of the acetaminophen is released m vitro from the pharmaceutical compositions in about 18 hours to about 23 hours. In another embodiment of the slow release formulation, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 20 hours to about 25 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours. In another embodiment of the slow release formulation, at least 95% is of the hydrocodone is released from the pharmaceutical composition in about 21 hours to about 22 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours to about 22 hours. In another embodiment of this slow release embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 22 hours to about 26 hours. In yet another embodiment of the slow release formulation, at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 27 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 27 hours.
In a preferred embodiment, the present invention provides a composition where the core layer comprises an excipient capable of controlling the drug release and the non-core layer comprises an excipient capable of instantly releasing the drug. Further, in a preferred embodiment, the core layer is manufactured by melt-extrusion followed by direct shaping of the drug-containing melt and the non-core layer is spray coated over the core layer. Most preferably, the composition comprises about 500mg of acetaminophen and about 15 mg of hydrocodone bitartrate pentahemihydrate.
In another embodiment, the present invention provides a pharmaceutical composition having a core layer and a non-core layer. In this composition, the core layer comprises a mixture of (a) at least one opioid and at least one first non-opioid analgesic; (b) at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof. The non-core layer comprises at least one second non-opicid analgesic. Further, the composition 1s adapted so as to be useful for oral administration to a human 3, 2, or 1 times daily. In this embodiment,
preferably, the opioid comprises hydrocodone and the first and the second non-opioid analgesic comprises acetaminophen or ibuprofen, More preferably, the opioid comprises hydrocodone and the first and the second non-opioid analgesic comprises acetaminophen. Further, in this embodiment, the non-core layer comprises: (a) acetaminophen; and (b) at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof. Preferably, the polymer or copolymer is selected from the group consisting of: hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl cellulose; polymethacrylate, polyvinyl alcohol, polyethylene oxide, and combinations thereof, More preferably, the polymer or copolymer is selected from the group consisting of: hydroxypropyl methylcellulose, and polyvinyl alcohol, or combinations thereof. Yet more preferably, the polymer or copolymer is selected from the group consisting of: polyvinyl alcohol and polyethylene oxide graft copolymers. Further, in this embodiment, the ratio of acetaminophen to the rate controlling polymer or copolymer or combination thereof is about 1:1 to about 18:1. More preferably, the ratio of acetaminophen fo the rate controlling polymer or copolymer or combination thereof is about 3:1 to about 3:1. As provided in the present invention, in one preferred embodiment, the non-core layer has at least one of the following characteristics: (a) substantially does not crack after 3 months at 40°C, 75% relative humidity in induction- sealed HDPE bottles; {b) substantially dry (not sticky); provides fast dissolution in 0.01N HCI at 37°C to expose the core layer releases at least 80% of the acetaminophen in the non-core layer within 20 minutes of administration to a human patient; or {c) provides a white pigmentation to the formulation without additional pigments.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemibydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma profile characterized by a
Cmax for hydrocodone from about 0.6 ng/mL/mg to about 1.4 ng/mbL/mg and a Cmax for acetaminophen from about 2.8 ng/mL/mg and 7.9 ng/mL/mg after a single dose. In another embodiment, the pharmaceutical composition produces a plasma profite characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/mL./mg and a Cinax for acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/mL/mg after a single dose. In yet another embodiment, the pharmaceutical composition produces & plasma profile characterized by a Cmax for hydrocodone of from about 0.6 ng/mL/mg to about 1.0 ng/mL/mg and a Cmax for acetaminophen of from about 3.0 ng/mi/mg to about 5.2 ng/mL/mg after a single dose. in certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. When administered to the human patient, the dosage form produces an AUC for hydrocodone of about 9.1 ng*ht/mL/mg to about 19.9 ng*hr/mL/mg and an AUC for acetaminophen of about 28.6 ng*hi/mL/mg to about 59.1 ng*hr/mL/mg. In another embodiment, the dosage form produces an AUC for hydrocodone of about 7.0 ng*hr/mL/mg to about 26.2 ng*hr/mL/mg and an AUC for acetaminophen of about 18.4 ng*hr/mL/mg to about 79.9 ng*hy/mL/mg. In yet another embodiment, the dosage form produces an AUC for hydrocodone of about 11.3 ng*hr/ml/mg to about 18.7 ng*hr/mL/mg and an AUC for acetaminophen of about 28.7 ng*hr/mL/mg to about 53.5 ng*hr/mL/mg. Preferably in this embodiment, the in vitro rate of release of the pharmaceutical composition has a biphasic release profile, and wherein for each phase of the in vitro rate of release is zero order or first order for acetaminophen and zero order or first order for hydrocodone bitartrate pentahemihydrate,
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour (C1) for hydrocodone of about 0.18 ng/ml/mg to about 1.51 ng/mi/mg, and a plasma concentration at 1 hour C1 for acetaminophen of about 2.34 ng/mL/mg to about 7.24 ng/mL/mg.
In preferred embodiments such as Formulation 15, the dosage form produces a C1 for hydrocodone of about 0.32 ng/mL/mg to about 1.51 ng/ml./mg and a C1 for acetaminophen of about 2.34 ng/ml./mg to about 5.50 ng/mL/mg.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour (C1) for hydrocodone from about 0.30 ng/mL/mg to about 1.06 ng/mE/mg, and a C1 for acetaminophen from about 2.75 ng/mL/mg to about 5.57 ng/mL/mg. In preferred embodiments, the dosage from produces a C1 for hydrocodone from about 0.45 ng/mL/mg to about 1.06 ng/mL/mgand a Cl for acetaminophen from about 2.75 ng/mL/mg to about 4.43 ng/mL/mg,
In certain embodiments, the dosage form produces a combined Cl for hydrocodone and acetaminophen from about 1.18 pg/ml to about 3.63 pg/ml., after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined Cl for hydrocodone and acetaminophen from about 1.18 pg/mL io about 2.76 ug/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen.
In certain embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen from about 1.38 pg/mL to about 2.79 ug/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined C1 for hydrocodone and acetaminophen from about 1.38 ng/mL to about 2.23 pg/mL, after a single dose of 15 mg hydrocodone bitartrate pentabemihydrate and 500 mg of acetaminophen.
In preferred embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen of 1.80 £0.42 pg/mL with the 95% confidence interval for the mean value falling between about 1.61 pg/mL to about 2,00 pg/mL, after a single dose of 13 mg hydrocodone bitartrate pentahemihydrate and S00 mg of acetaminophen. The 95% confidence interval of combined C1 for hydrocodone and acetaminophen for the preferred embodiments and the Control overlapped. The 95% confidence interval for the mean value of combined Cl for hydrocodone and acetaminophen for the Control ranged from about 1.40 to 1.96 ng/mL, after administered as a single dose of 15 mg hydrocodone and 500 mg of acetaminophen fo the human patient. The Control provides sufficient plasma levels of opioid and nonopioid analgesic to provide a reduction in pain tensity within about I hour after administration,
When administered to a population of healthy North Americans or Western Europeans, particularly when the formulation is adapted to be suitable for, or intended for, administration to a human every 12 hours as needed, about 20-45% of the hydrocodone is released in vitro from the pharmaceutical compositions in about Thour and about 20-45% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 1hour in 0.01 N HCl at 50 rpm at 37 °C. In another embodiment, about 25-35% of the hydrocodone is released in vitro from the pharmaceutical compositions in about thour and about 25-35% of the acetaminophen is released in vitro from the pharmaceutical compositions in about Thour in 0.01 N HCI at 50 rpm at 37 °C.
Further, in another embodiment, at feast 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 12 hours and at least 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours to about 8.5 hours. In another embodiment, at least 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 11 hours and at icast 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 8 hours to about 11 hours. In another embodiment, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 9 hours to about 12 hours and at least 95% of the acetaminophen 1s released in vitro from the pharmaceutical compositions in about 9 hours to about 12 hours. Yet in another embodiment, at least 95% 1s of the hydrocodone is released from the pharmaceutical composition in about 10 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours, in another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about I thours to about 12 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours. In yet another embodiment, at least 99% of the hydrocodone 1s released from the pharmaceutical composition in less than about 13 hours and at least 99% of the acetaminophen 1s released in vitro from the pharmaceutical compositions in less than about 13 hours.
However, when the a slow-release version of the formulation 1s adapted to be suitable for, or intended for administration to a human, twice daily, as needed, then at feast 90% of the hydrocodone is released from the pharmaceutical composition in about 18 hours to about 23 hours and at tcast 30% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 18 hours to about 23 hours. In another embodiment of the slow release formulation, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 20 hours to about 25 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours. In another embodiment of the slow release formulation, at least 95% is of the hydrocodone is released from the pharmaceutical composition im about 21 hours to about 22 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours to about 22 hours. In another embodiment of this slow release embadiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 22 hours to about 26 hours. In yet another embodiment of the slow release formulation, at least 99% of the hydrocodone is released from the pharmaceutical composition in fess than about 27 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in tess than about 27 hours.
In a preferred embodiment, the present invention provides a composition where the core layer comprises an excipient capable of controlling the drug release and the non-core layer comprises an excipient capable of instantly releasing the drug. Further, in a preferred embodiment, the core layer is manufactured by melt-extrusion followed by direct shaping of the drug-containing melt and the non-core layer is spray coated over the core layer. Most preferably, the composition comprises about 500mg of acetaminophen and about 15 mg of hydrocodone bitartrate pentahemihydrate.
These and other objects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the methods of the invention and compositions used therein as more fully described below,
BRIEF DESCRIPTION OF FIGURES:
Figure 1 depicts that coating the extrudated tablets resulted in significant smoothing of the tablet surface.
Figure 2 depicts schematics for calculation of Surface Roughness using Centre Line Average (CL.A) approach.
Figure 3 depicts Centre Line Average {C1.A) for an uncoated formulation. For uncoated formulation CLA = 36.1, when (N= 69).
Figure 4 depicts Centre Line Average (CLA) for an uncoated formulation, For a coated formulation CLA = 10.4, when (N = 69),
Figure 5 depicts preliminary mean hydrocodone concentration-time profiles for Formulations 15, and 16 and Control 1 for (a} 48 hours and (b) 12 hours,
Figure 6 depicts preliminary mean acetaminphen concentration-time profiles for Formulations 15, and 16 and Control 1 for (a) 4% hours and (b) 12 hours.
Figure 7 depicts in vitro drug release profiles for hydrocodone and acetaminphen for
Formulations 17, and 18, Control 2 and uncoated Formulation VM-1 for 480 minutes,
DETAILED DESCRIPTION OF THE INVENTION
The invention is not limited to the particular methodology, protocols, animal studies, and reagents described, which can vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which will be limited only by the appended claims.
It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a compound” includes a plurality of such compounds and equivalents thereof known to those skilled in the art, and so forth, As well, the terms "a" {or "an"}, "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising", "including", and "having" can be used interchangeably.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs.
Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the chemicals, animals, instruments, statistical analysis and methodologies which are reported in the publications which might be used in connection with the mvention. Nothing herein is to be construed as an admission that the invention 1s not entitled fo antedate such disclosure by virtue of prior invention.
Trademarks are used in this description as a convenient abbreviation for well known materials,
As one of ordinary skill would appreciate, the following brand names indicate the substances indicated;
EUDRAGIT®: Polymers derived from esters of acrylic and methacrylic acid; i9
METHOCEL®:; Methyl or methoxyl Cellulose
KOLLICOAT IR®: Polyvinyl alcohol-polyethylene glycol-graft copolymers
PLASDONE®; Polyvinylpyrrolidone polymer or -copolymer
LAUROGLYCOL®: Propylene glycol laurate ester SPAN®; Sorbitan fatty acid esters
CREMOPHOR®: Polyethoxylated Castor ofl
POLOXAMER®: Polyoxyethylene polyoxypropylene block copolymers or polyoxyethylene polypropyleneglycol
TWEEN®: Poiyethoxylated Sorbitan esters
KLUCEL®: Hydroxypropyicellulose
KOLLIDON®: Polyviniypyrrolidone homo- or copolymers
XYLITOL®: (2,3,4,5)tetrahydroxy-pentanol
ISOMALT®: An cquimolar composition of 6-0-a-D-glucopyranosido-D-sorbitol (1,6-GPS) and
L-0-g-D-glucopyranosido-D-mannitol-dihydrate (1,1-GPM-dihydrate). POLYOX®: Water-Soluble Resins based on polyethylencoxide
XYLIT®: (2,3,4,5)tetrahydroxy-pentanol
PLUROL OLEIQUE®: Oleic esters of polyglycerol
LUTROL®: Polyoxyethylene polyoxypropylene block copolymers or polyoxyethylene polypropyleneglycol
ETHOCEL®; Ethylceliulose
PRIMOJEL®: Sodium starch glycolate
The present invention provides an improved solid or solid solution, oral dosage formulation that provides for the in vivo sustained-release of pharmaceutically active compounds (“drugs”) that have properties that make them likely to be abused or have been shown to be frequently abused, as well as salts, esters, prodrugs and other pharmaceutically-acceptable equivalents thereof.
The term “AUC” refers to the arca under the concentration time curve, calculated using the trapezoidal mie and Clast/k, where Clast 1s the last observed concentration and k 1s the calculated elimination rate constant.
The term “AUCH” refers to the area under the concentration time curve fo last observed concentration calculated using the trapezoidal rule.
The term “Cmax” refers to the plasma concentration of the referent abuse relevant drug at Tmax, expressed as ng/mb and pg/mL, respectively, produced by the oral ingestion of a composition of the invention. Unless specifically dicated, Cmax refers to the overall maximum observed concentration.
The term “Cin” refers to the minimum observed concentration within the intended dosing interval, e.g., a twelve hour dosing interval for a formulation labelled as suitable for dosing every 12 hours or as needed, of a dosage form of the invention administered for 5 doses contiguous dosing intervals.
The term “ng*hr/mL/mg” refers to the amount of the substance measured in nanograms times the number of hours per milliliter of blood divided by the milligrams of the abuse relevant drug administered to the animal or human.
As used herein, the phrase “ascending release rate” refers to a dissolution rate that generally increases over time, such that the drug dissolves in the fluid at the environment of use at arate that generally increases with time, rather than remaining constant or decreasing, until the dosage form is depicted of about 80% of the drug.
When used in the above or other treatments, a therapeutically effective dose of one of the compounds of the present invention can be employed in pure form or, where such forms exist, in pharmaceutically acceptable salt, ester or prodrug form. The phrase "therapeutically effective dose" of the compound includes of the invention means a sufficient amount of the compound to treat disorders, at a reasonable benefit/risk ratio applicable to any medical treatment. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment, The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used m combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
In one preferred embodiment, the invention provides dosage forms that inhibit the extraction of the drug by common solvents, e.g., without limitation, distilled aqueous ethanol, from the a formulation. The formulation dissuades abuse by limiting the ability of persons to extract the opioid from the formulation (either intentionally or unintentionally), such that the opioid cannot casily be concentrated for parenteral administration. Also these abuse resistant formulations may not be easily broken down isto smaller particulates or powder-form that are easily abused by nasal snorting. Such an abusc-resistant formulation does not require incorporation of an opioid antagonist {albeit, an opioid antagonist may be added to the preparation to further dissuade abuse). While not desiring to be bound by any particular theory, it is believed that incorporation of alkylceliuloses, such as (without limitation) hydroxymethylceliuloses, and preferably hydroxypropyimethyleeliuloses contribute to the formulations resistance to extraction in alcohol, particularly in 20% or 40% aqueous ethanol. The alkyiceliulose preferably has at least 12% substitution with an alkyisubstituent, more preferably at least 16% substitution with an alkyl substituent, and most preferably at least 19% substitution with an alkyl substituent. Alkyl substitutions of the cellulose below about 40%, and more preferably below about 30%, are preferred in the context of the invention. Additionally, the alkyl substituent is preferably C,-Cq, more preferably C;, Cz or C4, and most preferably Cs, and can be straight-chained or branched when the alkyl substituent contains 3 or more carbon atoms.
In another preferred embodiment, the dosage forms optionally resists cutting, grinding, pulverization and the like. A convenient measure for this aspect of the invention is “breaking strength,” as measured by “Pharma Test PTB 501” hardness tester. The inventive formulation preferably has a breaking strength of at least 150 newtons (150 N). More preferably, the inventive formulation has breaking strength of at least 300 WN, yet more preferably of at least 450
N, and yet more preferably of at least 500 N.
Breaking strength according to the present invention can be determined with a tablet 10 mm in diameter and 5 mum in width according to the method for determining the breaking strength of tablets published in the European Pharmacopoeia 1997, page 143, 144, method no. 2.9.8. A preferred apparatus used to measure breaking strength is a "Zwick Z 2.5" materials tester, Fax =2.5 kN, draw max. 1150 mm with the set up comprising a column and a spindle, clearance behind of 160 mm, and a test speed of 0.1800 mm/min. Measurement can be performed using a pressure piston with screw-in inserts and a cylinder (10 mm diameter), a force transducer, (Fmax. 1 kN, diameter = 8 mm, class 0.5 from 10 N, class 1 from 2 N to ISO 7500-1, Zwick gross force Fimax = 1.45 kN). The apparatus can optionally be obtained from Zwick GmbH &
Co. KG, Ulm, Germany.
Any suitable means can be used to produce the inventive composition. In a preferred embodiment, the formulation is preferably melt-processed, and more preferably melt-extruded, and then in either case directly shaped without milling or grinding the formulation.
Notwithstanding the foregoing, it is contemplated that the directly shaped tablicts of the formulation can be optionally coated with a swallowing aid, such as without limitation, a gelatin coat. While not desiring to be bound by any particular theory, it is believed that direct shaping fo prevent undesirable sharp features from forming on the formulation without an intermediate grinding step contributes to the superior breaking strength of the formulation. Additionally, embodiments of the inventive formulation optionally gain additional breaking strength by employing at least two melt-processed polymers. While not ascribing to any particular theory, it is believed that the second melt-processed polymer preferentially interacts with the first melt- processed polymer so as to advantageously adjust the transition glass temperature of the composition as a whole during the formation of the tablet.
Inn one embodiment, the formulation may use a polymer, or a copolymer, or a combination thereof to create the melt-processed, and more preferably melt-extruded, directly shaped formulation. Polymers that are pharmacologically inactive and provide enteric coatings or sustained release profile for the formulation can also be used. In one embodiment, suitable polymers/copolymers include poly(meth)acrylate like c.g. Eudragit L- or S-type, which are pharmacologically inactive.
EUDRAGIT® ig a tradename for some preferred polymers that are suitable for use in the mmvention and are derived from esters of acrylic and methacrylic acid. The properties of the
EUDRAGIT polymers are principally determined by functional groups incorporated into the monomers of the EUDRAGIT polymers, The individual EUDRAGIT® grades differ in their proportion of neutral, alkaline or acid groups and thus in terms of physicochemical properties.
Ammonioalklyl methacrylate copolymers or methacrylate copolymers may be used having the following formula:
Tr {H) re ~ SNe
Alkyl-00C R
The Eudragit polymers fulfil the specifications/requirements set in the USP. According to 2007
US Pharmacopoeia, Eudragit is defined as USP 30 / NF 25. Methacrylic acid copolymer, type A NF = Eudragit L-100
Methacrylic acid copolymer, type B NF = Eudragit 5-100
Methacrylic acid copolymer, type C NF = Eudragit L-100-55 (contains a small detergent amount)
Ammeonio Methacrylate Copolymer, type A NF = Eudragit RL-100 (granules) Ammonio Methacrylate Copolymer, type A NF = Eudragit RL-PO (powder)
Ammonio Methacrylate Copolymer, type B NF = Eudragit RS-100 (granules)
Ammonio Methacrylate Copolymer, type B NF = Eudragit RS-PO (powder)
Polyacrylate Dispersion 30 Percent Ph. Eur. = Eudragit NE30D (= 30% aqueous dispersion)
Basic butylated methacrylate copolymer Ph. Eur. = Eudragit E-100 wherein the functional group has a quaternary ammonium (trimethylammonioethyl methacryiate) moiety or R = COOCH,CH,N(CH3)3CI [commercially available as EUDRAGIT® (RL or RS)] or the functional group is a carboxylic acid, or R = COOH [commercially available as
EUDRAGIT® (L)]. When the functional group is a carboxylic acid moicty, the EUDRAGIT® (L) polymer is gastroresistant and enterosoluble. Thus formulations using EUDRAGIT® (L) will be resistant to gastric fluid and will release the active agent in the colon. When the functional group is a trimethylammoniocthyl methacrylate moiety, the EUDRAGIT® (RL or RS) polymers are insoluble, permeable, dispersible and pH-independent. These EUDRAGIT® (RL or RS) polymers may therefore be used for delayed drug release for sustained release formulations. EUDRAGIT® is sold in various forms such as in solid form (EUDRAGIT® L100/8100/ L-100-55, EUDRAGIT® E PO, EUDRAGIT® RL PO, Eudragit RS PO), granules (EUDRAGIT® E100, EUDRAGIT®RL 100/RS 100), dispersions (L 30 D-55/FS 30D 30%,
EUDRAGIT® NE 30 D/40 D 30%/40% polymer content, EUDRAGIT®RL 30 D RS 30 D 30%)
and organic solutions (EUDRAGIT® L 12.5, EUDRAGIT® E12.5, EUDRAGIT® RL 12.5/RS 12.5 - 12.5% organic solution).
When at least two melt-processed polymers are employed, one is preferably a cellulose derivative, more preferably a hydroxyalkylcellulose derivative, and optionally hydroxypropylmethylcellulose, and independently, the other polymer is preferably a (methacrylate polymer (such as, any suitable Eudragit polymer). Among the (meth)acrylate polymer polymers preferred in the context of the invention are Eudragit L and Eudragit RS. One more preferred polymer in the context of the invention is Eudragit RL. The Eudragit polymers can be used In combinations, with mixtures of Eudragit RS and RL being preferred.
Persons that (albeit inadvisedly) drink substantial quantities of alcoholic beverages when taking physician prescribed medications can substantially alter the composition of the gastric juices contained in the stomach, and in extreme cases these gastric juices can comprise up to 40% alcohol. Advantageously, embodiments of the inventive abuse-deterrent formulation optionally comprises a melt-processed mixture of at least one abuse-relevant drug, at least one cellulose ether or cellulose ester, and at least one (meth)acrylic polymer, wherein the amount of the drug that is extracted from the formulation by 20% aqueous ethanol, or 40% aqueous ethanol, or both, within one hour at 37 °C is less than or equal 1.5 times the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C, or at 25 °C or both. The resistance to extraction by 40% ethanol is advantageous in those situations in which an individual purposefully attempts fo extract an abuse relevant drug from a medicine containing an abuse relevant drug,
The protocols for extraction by 20% or 40% aqueous ethanol or 0.01 N hydrochloric acid, respectively, are given in the experimental section that follows. In more preferred embodiments, the amount of the drug that is extracted from the formulation by 20% or 40% aqueous cthanol is less than or equal 1.5 times the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour. In a yet more preferred embodiments, the amount of the drug that is extracted from the formulation by 20% or 40% aqueous ethanol is less than or equal the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour, In a yet more preferred embodiments, the amount of the drug that is extracted from the formulation by 20% or 40% aqueous ethanol is less than or equal 0.9 times the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour.
The present invention also provides a sustained release formulation of at least one abuse relevant drug that hampers the extraction of the drug from the formulation when extraction is by solvent extraction with commonly available household extraction solvents such as isopropyl alcohol, distilled alcohols exemplified by vodka, white vinegar, water and aqueous ethanol (e.g., 20% cthanol). Whereas the formulation is largely resistant to solvent-extraction, it still provides adequate drug release in aqueous solutions such as gastric fluids. This formulation when crushed or ground also provides adequate drug release in aqueous solutions such as gastric fluids.
Fortunately, in certain preferred embodiments of the invention, the amount of the abuse relevant drug released from the time of placing in 3 oz. of one, or two, or three, or more than three, of the household solvents listed above (i.., 0 hours} to 1 hour is expected to be not more than 13% greater than the amount refeased over the same time as when swallowed by an ordinary human, or the more than 1 hour to about 4 hours is not more than 15% greater than the amount released over the same time as when swallowed by an ordinary human, or both.
Exemplary preferred compositions of the invention comprise cellulose ethers and cellulose esters, which can be used alone or in combination in the invention have a preferable molecular weight in the range of 50,000 to 1,250,000 daltons. Cellulose cthers are preferably selected from alkyicelluloses, hydroxalkylceliuloses, hydroxyalkyl atkylceliuloses or mixtures therefrom, such as ethylcellulose, methylcellulose, hydroxypropyl cellulose (NF), hydroxyethyl cellulose (NF), and hydroxpropyl methylcellulose (USP), or combinations thereof. Useful cellulose esters are, without limitation, cellulose acctate (NF), cellulose acetate butyrate, cellulose acetate propionate, hydroxypropylmethy! cellulose phthalate, hydroxypropylmethy! cellulose acetate phthalate, and mixtures thereof. Most preferably, non-ionic polymers, such as hydroxypropyimethyl cellulose may be used,
The amount of substituent groups on the anhydroglucose units of cellulose can be designated by the average number of substituent groups attached to the ring, a concept known to cellulose chemists as “degree of substitution” (D. S.). If all three available positions on cach unit are substituted, the D. S. is designated as 3, if an average of two on each ring are reacted, the D. S. 1s designated as 2, etc.
In preferred embodiments, the cellulose ether has an alkyl degree of substitution of 1.3 to 2.0 and hydroxyalkyl molar substitution of up to 0.85.
In preferred embodiments, the alkyl substitution is methyl. Further, the preferred hydroxyalkyl substitution is hydroxpropyl. These types of polymers with different substitution degrees of methoxy- and hydroxypropoxy-substitutions are summarized listed in pharmacopoeas, e.g. USP under the name “Hypromeliosc”. Methylcellulose is available under the brand name METHOCEL A. METHOCEL A has a methyl {or methoxy!) D. S. of 1.64 to 1.92. These types of polymers are listed in pharmacopoeas, e.g. USP under the name “Methylcellulose™.
A particularly preferred cellulose ether is hydroxpropyl methylcellulose. Hydroxpropyl methylcellulose is available under the brand name METHOCEL E (methyl D. S. about 1.9, hydroxypropyl molar substitution about 0.23), METHOCEL F (methyl D. S. about 1.8, hydroxypropyl molar substitution about 0.13), and METHOCEL K (methyl D. S. about 1.4, hydroxypropyl molar substitution about 0.21). METHOCEL F and METHOCEL K are preferred hydroxpropyl methylcelluloses for use in the present vention,
The acrylic polymer suitably includes homopolymers and copolymers (which term includes polymers having more than two different repeat units) comprising monomers of acrylic acid and/or alkacrylic acid and/or an alkyl (alk)acrylate. As used herein, the term "alkyl (alk)acrylate” refers to either the corresponding acrylate or alkacrylate ester, which are usually formed from the corresponding acrylic or alkacrylic acids, respectively. in other words, the term "alkyl {alkacrytate” refers to either an alkyl alkacrylate or an alkyl acrylate.
Preferably, the alkyl (alk)acrylate is a (Ci-Cr)alkyl {(Ci-Co)alk)acrylate. Examples of Ci-Cyp alkyl groups of the alkyl (alk)acrylates include methyl, ethyl, n-propyl, n-butyl, iso-butyl, tert- butyl, iso-propyl, pentyl, hexyl, cyclohexyl, 2-ethyl hexyl, heptyl, octyl, nonyl, decyl, isodecyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, behenyl, and isomers thereof. The alkyl group may be straight or branched chain.
Preferably, the (C;-Cy)alkyl group represents a (C1-Ce)alkyl group as defined above, more preferably a (Ci-Cy)alkyl group as defined above. Examples of Ci-y5 alk groups of the alkyl {alk)acrylate include methyl, ethyl, n-propyl, iso-propyl, n-butyl, 1so-butyl, tert-butyl, pentyl, hexyl, cyclohexyl, 2-cthyl hexyl, heptyl, octyl, nonyl, decyl and isomers thereof. The alk groups may be straight or branched chain. Preferably, the (C-Cig)alk group represents a {C,-Cgalk group as defined above, more preferably a (C-Cy) alk group as defined above.
Preferably, the alkyl (alk)acrylate is a (C;-Ca)alkyl ((C1-Cy) alk)acrylate, most preferably a (Cy-
Calalkyl (meth)acrylate. It will be appreciated that the term (C,-Cy)atkyl (meth)acrylate refers to either (C;-Colalkyl acrylate or (C;-Cyalkyl methacrylate. Examples of (C-Cylalkyl {meth)acrylate clude methyl methacrylate (MMA), ethyl methacrylate (EMA), n-propyl methacrylate (PMA), isopropyl methacrylate (IPMA), n-butyl methacrylate (BMA), isobutyl methacrylate (IBMA), tert-butyl methacrylate (TBMA): methyl acrylate (MA), ethyl acrylate (EA), n-propyl acrylate (PA), n-butyl acrylate (BA), isopropyl acrylate (IPA), isobutyl acrylate (IBA), and combinations thereof.
Preferably, the alkacrylic acid monomer is a (C-Cjo)alkacrylic acid. Examples of (C-
Cjplalkacrylic acids include methacrylic acid, ethacrylic acid, n-propacrylic acid, iso-propacrylic acid, n-butacrylic acid, iso-butacrylic acid, tert-butacrylic acid, pentacrylic acid, hexacrylic acid, heptacrylic acid and isomers thereof, Preferably the (C,-Cig)alkacrylic acid is a (C1-Cq)alkacrylic acid, most preferably methacrylic acid.
In certain embodiments, the alkyl groups may be substituted by aryl groups. As used herein "alkyl" group refers to a straight chain, branched or cyclic, saturated or unsaturated aliphatic hydrocarbons. The alkyl group has 1-16 carbons, and may be unsubstituted or substituted by one or more groups selected from halogen, hydroxy, alkoxy carbonyl, amide, alkylamido, dialkytamido, nitro, amino, alkylamino, dialkylamino, carboxyl, thio and thioatkyl. A "hydroxy" group refers to an OH group. An "alkoxy" group refers to an --O-alkyl group wherein alkyl is as defined above. A "thio" group refers to an --SH group. A "thioalkyl” group refers to an --SR group wherein R is alkyl as defined above, An "amino" group refers to an ~-NH; group. An "afkylamino” group refers to an ~-NHR group wherein R 1s alkyl 1s as defined above. A "dialkylamino” group refers to an --NRR' group wherein R and R' are all as defined above. An "amido" group refers to an --CONH;. An "alkylamido” group refers to an --CONHR group wherein Ris alkyl is as defined above. A "dialkylamido” group refers to an --CONRR' group wherein: R and R' are alkyl as defined above. A "nitro" group refers to an NO; group. A "carboxyl" group refers to a COOH group.
In certain embodiments, the alkyl groups may be substituted by aryl groups. As used herein, "aryl" includes both carbocyclic and heterocyclic aromatic rings, both monocyclic and fused polycyclic, where the aromatic rings can be 5- or 6-membered rings. Representative monocyclic aryl groups include, but are not limited to, phenyl, furanyl, pyrrolyl, thienyl, pyridinyl,
pyrimidinyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl and the like,
Fused polycyclic aryl groups are those aromatic groups that include a 5- or 6-membered aromatic or heteroaromatic ring as one or more rings in a fused ring system. Representative fused polycyclic aryl groups include naphthalene, anthracene, indolizine, indole, isoindole, benzofuran, benzothiophene, indazole, benzimidazole, benzthiazole, purine, quinoline, isoquinoline, cinnoline, phihalazine, quinazoline, quinoxaline, 1,8-naphthyridine, pteridine, carbazole, acridine, phenazine, phenothiazine, phenoxazine, and azulene. Also as used herein, aryl group also includes an arylalkyl group. Further, as used herein "arylalkyl" refers to moieties, such as benzyl, wherein an aromatic is linked to an alkyl group.
Preferably, the acrylic polymer is an acrylic copolymer. Preferably, the acrylic copolymer comprises monomers derived from alkyl (alk)acrylate, and/or acrylic acid and/or alkacrylic acid as defined hereinbefore. Most preferably, the acrylic copolymer comprises monomers derived from alkyl (alk)acrylate, i.e. copolymerisable alkyl acrylate and alkyl alkacrylate monomers as defined hereinbefore. Especially preferred acrylic copolymers include a (C,-Cqjalkyl acrylate monomer and a copolymerisable (Ci-Cyalkyl (C;-Cyalkacrylate comonomer, particularly copolymers formed from methyl methacrylate and a copolymerisable comonomer of methyl acrylate and/or ethyl acrylate and/or n-butyl acrylate.
Preferably, the {meth)acrylic polymer is a ionic (meth)acrylic polymer, in particular a cationic (meth)acrylic polymer. Tonic (meth)acrylic polymer are manufactured by copolymerising (methacrylic monomers carrying ionic groups with neutral (imeth)acrylic monomers. The ionic groups preferably are quaternary ammonium groups.
The (methacrylic polymers are generally water-insoluble, but are swellable and permeable in aqueous solutions and digestive fluids. The molar ratio of cationic groups to the neutral (methacrylic esters allows for are control of the water-permeabilty of the formulation. In preferred embodiments the (meth)acrylic polymer is a copolymer or mixture of copolymers wherein the molar ratio of cationic groups to the neutral (meth)acrylic esters is in the range of about 1:20 to 1:35 on average, The ratio can by adjusted by selecting an appropriate commercially available cationic (meth)acrylic polymer or by blending a cationic (methacrylic polymer with a suitable amount of a neutral (imeth)acrylic polymer.
Suitable (methacrylic polymers are commercially available from Rohm Pharma under the
Tradename Eudragit, preferably Eudragit RL and Eudragit RS. Eudragit RI. and Budragit RS are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit RL and 1:40 in Eudragit RS. The mean molecular weight is about 150,000.
Besides the (methacrylic polymers, further pharmaceutically acceptable polymers may be incorporated in the inventive formulations in order to adjust the properties of the formulation and/or improve the ease of manufacture thereof. These polymers may be selected from the group comprising: homopolymers of N-vinyl lactams, especially polyvinylpyrrolidone (PVP), copolymers of a N-vinyl lactam and and one or more comonomers copelymerizable therewith, the comonomers being selected from nitrogen-containing monomers and oxygen-containing monomers; especially a copolymer of N-vinyl pyrrolidone and a vinyl carboxylate, preferred examples being a copolymer of N-viny! pyrrolidone and vinyl acetate or a copolymer of N-vinyl pyrrolidone and vinyl propionate; polyvinyl alcohol-polyethylene glycol-graft copolymers (available as, e.g., Kollicoat® IR from BASF AG, Ludwigshafen, Germany); high molecular polyalkylene oxides such as polyethylene oxide and polypropylene oxide and copolymers of cthylene oxide and propylene oxide; polyacrylamides; vinyl acetate polymers such as copolymers of vinyl acetate and crotonic acid, partially hydrolyzed polyvinyl acetate (also referred to as partially saponified "polyvinyl alcohol"); polyvinyl alcohol; poly(hydroxy acids) such as poly(lactic acid), poly{glycolic acid), poly(3-hydroxybutyrate) and poly(3- hydroxybutyrate-co-3-hydroxyvalerate); or mixtures of one or more thereof. PVP generates hydrocodone N-oxide during extrusion, therefore use of PVP-polymers and —copolymers 1s not always preferred. However, when a small amount (0.2 — 0.6 % w/w of the total formulation} of antioxidant is used, then PVP may be used preferably. “Abuse-relevant drug” is intended to mean any biologically effective ingredient the distribution of which is subject to regulatory restrictions. Drugs of abuse that can be usefully formulated in the context of the invention include without limitation pseudoephedrine, anti-depressants, strong stimulants, diet drugs, steroids, and non-steroidal anti-inflammatory agents. In the category of strong stimulants, methamphetamine is one drug that has recently received popular attention as a drug of abuse. There is also some concern at the present time about the abuse potential of atropine, hyoscyamine, phenobarbital, scopolamine, and the like. Another major class of abuse- relevant drugs are analgesics, especially the opioids.
By the term "opioid," it is meant a substance, whether agonist, antagonist, or mixed agonist- antagonist, which reacts with one or more receptor sites bound by endogenous opioid peptides such as the enkephalins, endorphins and the dynorphins. Opioids include, without limitation, alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodcine, dihydromorphine, dimenoxadol, dimepheptanol, dimethyithiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etopitazene, fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levallorphan, levophenacylmorphan, levorphanol, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbulphine, narceine, nicomorphine, norpipanone, opium, oxycodone, oxymorphone, papvretum, pentazocine, phenadoxone, phenazocine, phenomorphan, phenoperidine, piminodine, propiram, propoxyphene, sufentanil, tilidine, and tramadol, and salts and mixtures thereof,
In some preferred embodiments, the inventive formulation includes at least one additional therapeutic drug. In even more preferred embodiments, the additional therapeutic dug can be, without limitation, selected from the group consisting of non-steroidal, non-opioidal analgesics, and is optionally further selected from the group consisting of acetaminophen, aspirin, fentayni, ibuprofen, indomethacin, ketorolac, naproxen, phenacetin, piroxicam, sufentanyi, sunlindac, and interferon alpha. Particularly preferred arc those combinations of drug currently sold as fixed dose combinations to the public under the authority of a suitable national or regional regulatory agency, such as (by way of example) the U.S. Food and Drug Administration. Such drugs include without limitation a (fixed dose) combination of hydrocodone and acetaminophen, or a (fixed dose) combination of hydrocodone and ibuprofen,
The abuse-relevant drug(s) are preferably dispersed evenly throughout a matrix that is preferably formed by a cellulose ether or cellufose ester, and one acrylic or methacrylic polymer as well as other optional ingredients of the formulation. This description is intended fo also encompass systems having small particles, typicaily of less than 1 ym in diameter, of drug in the matrix phase. These systems preferably do not contain significant amounts of active opioid ingredients in their crystalline or microcrystalline state, as evidenced by thermal analysis (DSC) or X-ray diffraction analysis (WAXS). At feast 98% (by weight) of the total amount of drug is preferably present in an amorphous state. If additional non-abuse relevant drug actives like e.g. acetaminophen are additionally present in a formulation according to the present invention, this additional drug active(s) may be in a crystalline state embedded in the formulation.
When the dispersion of the components is such that the system is chemically and physically uniform or substantially homogenous throughout or consists of one thermodynamic phase, such a dispersion is called a "solid solution”. Solid solutions of abuse-relevant actives arc preferred.
The formulation can also comprise one or more additives selected from sugar alcohols or derivatives thereof, maltodextrines; pharmaceutically acceptable surfactants, flow regulators, disintegrants, bulking agents and lubricants. Useful sugar alcohols are exemplified by mannitol, sorbitol, xylitol; useful sugar alcohol derivatives include without limitation isomalt, hydrogenated condensed palatinose and others that are both similar and dissimilar,
Pharmaceutically acceptable surfactants are preferably pharmaceutically acceptable non-ionic surfactant. Incorporation of surfactants is especially preferred for matrices containing poorly water-soluble active ingredients and/or to improve the wettability of the formulation. The surfactant can effectuate an instantaneous emulsification of the active ingredient released from the dosage form and prevent precipitation of the active ingredient in the aqueous fluids of the gastrointestinal tract.
Some additives include polyoxyethylenc alkyl ethers, e.g. polyoxyethylene (3) lauryl ether, polyoxyethylene (5) cetyl ether, polyoxyethylene (2) stearyl cther, polyoxyethylene (3) stearyl ether; polyoxyethylene alkylaryl ethers, e.g. polyoxyethylene (2) nonyipheny! ether, polyoxyethylene (3) nonylpheny! ether, polyoxyethylene (4) nonylpheny! ether or polyoxyethylene (3) octylpheny! ether; polyethylene glycol fatty acid esters, e.g. PEG-200 monolaurate, PEG-200 dilaurate, PEG-300 dilaurate, PEG-400 dilaurate, PEG-300 distearate or
PEG-300 dioleate; alkylenc glycol fatty acid mono esters, e.g. propylene glycol mono- and dilaurate (Lauroglycol®);sucrose fatty acid esters, ¢.g. sucrose monostearate, sucrose distearate, sucrose monolaurate or sucrose dilaurate; sorbitan fatty acid mono- and dicsters such as sorbitan mono laurate (Span 20), sorbitan monooleate, sorbitan monopalmitate (Span® 40), or sorbitan stearate, polyoxyethylene castor oil derivates, e.g. polyoxyethyleneglycerol triricinoleate or polyoxyl 35 castor oil (Cremophor® EL; BASF Corp.) or polyoxyethyleneglycerol oxystearate such as polyethylenglycol 40 hydrogenated castor oil (Cremophor® RIT 40) or polyethylenglycol 60 hydrogenated castor oil (Cremophor® RH 60); or block copolymers of ethylene oxide and propylene oxide, also known as polyoxyethylene polyoxypropylene block copolymers or polyoxyethylene polypropyiencglycol such as Pluronic® F68, Pluronic® F127, Poloxamer® 124, Poloxamer® 188, Poloxamer® 237, Poloxamer® 388, or Poloxamer® 407 (BASF
Wyandotte Corp.); or mono fatty acid esters of polyoxyethylene (20) sorbitan, e.g. polyoxyethylene (20) sorbitan monooleate {Tween® 80), polyoxyethylene (20) sorbitan monostearate { Tween® 60), polyoxyethylene (20) sorbitan monepalmitate (Tween® 40), polyoxyethylene (20) sorbitan monolaurate {(Tween® 20), and the like as well as mixtures of two, three, four, five, or more thereof.
Various other additives may be included in the melt, for example flow regulators such as colloidal silica; lubricants, fillers, disintegrants, plasticizers, stabilizers such as antioxidants, light stabilizers, radical scavengers or stabilizers against microbial attack. Further, since the acetaminophen-containing overcoat layer has a bitter taste derived from acetaminophen itself, sweeteners and/or flavors etc. may be used as additives to reduce this bitter taste. One preferred way to reduce the bitter taste is a thin additional non-acetaminophen-containing overcoat.
The formulations of the invention can be obtained through any suitable melt process such as by the use of a heated press, and are preferably prepared by melt extrusion. In order to obtain a homogeneous distribution and a sufficient degree of dispersion of the drug, the drug-containing melt can be kept in the heated barrel of a melt extruder during a sufficient residence time.
Melting occurs at the transition into a liquid or rubbery state in which it is possible for one component to be homogeneously embedded in the other. Melting usually involves heating above the softening point of meltable excipients of the formulation, c.g. a cellulose ether/ester, sugar alcohol and/or (meth)acrylic polymer, The preparation of the melt can take place iy a variety of ways.
Usually, the melt temperature 18 in the range of 70 to 250 °C, preferably 80 to 180 °C, most preferably 100 to 140 °C.
When the melt process comprises melt extrusion, the melting and/or mixing can take place in an apparatus customarily used for this purpose. Particularly suitable are extruders or kneaders.
Suitable extruders include single screw extruders, intermeshing screw extruders, and multiscrew extruders, preferably twin screw extruders, which can be co-rotating or counterrotating and are optionally equipped with kneading disks. 1t will be appreciated that the working temperatures will also be determined by the kind of extruder or the kind of configuration within the extruder that is used. Part of the energy needed to melt, mix and dissolve the components in the extruder can be provided by heating elements. However, the friction and shearing of the material in the extruder may also provide the mixture with a substantial amount of energy and aid in the formation of a homogeneous melt of the components.
In another embodiment, the invention provides an oral, sustained release dosage form characterized in that it has at least two of the following features (2) the abuse relevant drug that is extracted from the formulation by ethanolic solvent, e.g. 40% or 20% aqueous ethanol or both within one hour at 37 °C, with or without agitation, is less than or equal 1.5 times the amount of the abuse relevant drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C, (b) the dosage form is resistant to tampering and does not break under a force of 150 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably 500 newtons as measured by “Pharma Test PTB 501” hardness tester, and (c) the dosage form releases at least 15%, more preferably 18%, and optionally 24% of the drug, but not more than 45%, more preferably 38% and optionally 34% of the drug during the 30 minutes, first hour, or first two hours in in vitro dissolution testing and optionally also in vivo (i.e., in the digestive tract of an animal or human), While not desiring to be bound by any particular theory, it is believed that high initial release rate of acetaminophen from the formulation is accomplished by providing a high drug load in the formulation, especially in the non-core region, Drug loading for a single active ingredient, such as acetaminophen in some embodiments of the inventive formulation can be greater than about 60%, 70%, 75%, 80%, 85%, by weight. The drug loading of acetaminophen can be Limited to 80%.
A preferred embodiment of this dosage form is a monolithic form or a solid solution. The term “monolithic” is derived from roots meaning “single” and “stone”. A monolithic form or a solid preferably has at Jcast onc dimension that is more than 5mm. In monolithic embodiments of the invention, the abuse relevant drug is preferably contained in a single solid, or a single solid solution, element. The monolithic solid or solid solution can optionally be overcoated or combined with other materials. These other materials preferably do not contain a substantial amount of the abuse relevant drug and these materials preferably do not substantially affect the rate of dissolution or dispersion of the abuse relevant drug in vivo or in vitro. The in vitro and/or in vivo release rates of the abuse relevant drug or abuse relevant drugs after about the first hour are preferably substantially constant for at least about 6, 8, 10, 12, or 16 hours. Thus,
embodiments of the invention provides a single phase drug formulation that can be adapted to provide a burst of the abuse relevant drug(s) to allow therapeutic levels of the drug to be quickly obtained in the blood of a patient or animal, and fo be maintained to provide therapeutic quantities for at least about 8, 12, or 24 hours. Additionally, the drug formulation is preferably suitable for repeated administration to a human or animal once, twice or three times a day.
Advantageously, preferred embodiments of the inventive dosage form release substantially the entire quantity of the abuse relevant drug incorporated into the dosage form. For example, the inventive dosage form can be adapted to deliver greater than 90%, and preferably 95%, of the drug in in vitro dissolution testing within about 16, and optionally 12 or 9 hours. The cumulative blood concentration, or AUC, cannot be directly known from the time at which 90% of the drug is released from the formulation, however, in general higher AUCs per mg of the abuse relevant drug can be achicved when the drug formulation releases substantially all, or all, of the abuse relevant drug in portions of the digestive tract capable of absorbing the drug into the patient’s (or animals) blood system.
In yet another preferred embodiment the invention provides a process tor the manufacture of an abuse-resistant drug dosage formulation comprising melt extruding a formulation comprising at icast one therapeutic drug further comprising directly shaping the extrudate into a dosage form without {an intermediate) milling step. The melt-extrudate preferably comprises a cellulose derivative, and preferably also comprises a Budragit polymer. Preferred Cudragit polymers include Eudragit L or Eudragit RS or both, and particularly preferred is Eudragit RL or a combination of Eudragit RL and Eudragit RS.
The melt can range from pasty to viscous. Before allowing the melt to solidify, the melt optionally can be shaped into virtually any desired shape. Conveniently, shaping of the extrudate optionally can be carried out by a calender, preferably with two counter-rotating rollers with mutually matching depressions on their surface. A broad range of tablet forms can be obtained by using rollers with different forms of depressions. Alternatively, the extrudate can be cut into pieces, either before (“hot-cut”) or after solidification (*‘cold-cut”) or used in a die injection process. Melt processes involving heated presses optionally can also be calendered.
The formed melt can be optionally overcoated with materials that do not contain substantial amount of the drug with abuse potential. For example, the monolithic dosage form containing the drug of abuse can be overcoated with a color coat, a swallowing aid, or another layer of pharmaceutically acceptable materials. The materials layered over the monolithic form preferably do not materially alter the rate of release of the active ingredient from the dosage form.
In order to facilitate the intake of such a dosage form by a mammal, it is advantageous to give the dosage form an appropriate shape. Large tablets that can be swallowed comfortably are therefore preferably elongated rather than round in shape.
A film coat on the dosage form further contributes to the case with which it can be swallowed. A film coat also improves taste and provides an clegant appearance. If desired, the film coat may be an enteric coat, The film coat usually includes a polymeric film-forming material such as hydroxypropyl methylcellulose, hydroxypropylceliulose, and acrylate or methacrylate copolymers. Besides a film-forming polymer, the film-coat may further comprise a plasticizer, e.g. polyethylene glycol, a surfactant, e.g. a Tween® type, and optionally a pigment, e.g., titanium dioxide, iron oxides and/or sweeteners or flavors, The film-coating may also comprise tale as an anti-adhesive. The film coat usually accounts for less than about 5% by weight of the dosage form.
EXEMPLARY EMBODIMENTS OF THE INVENTION:
Certain exemplary embodiments of the present invention provide monolithic dosage formulations having biphasic release profile for readily water-soluble drugs having a polymes- containing tablet produced by extrusion and calendering. The formulations preferably have combination of immediate release and controlled release formulations of hydrocodone and acetaminophen compositions. These monolithic dosage formulation, especially having narcotic drugs may have abuse deterrent profiles such that the drug dissolution of the dosage forms has reduced/minimal dose dumping in 40% aqueous ethanol solution. Yet more preferably, these formulations may provide reproducible manufacturing processes offering options for rapid transfer to production scale.
The desired biphasic drug dissolution of acetaminophen can be achieved while retaining a monolithic dosage form by embedding the active ingredient (acetaminophen) in two formulations with differing release rates which are then combined to produce a two-layer or muiti-layer tablet. Processes suitable for this purpose include coextrusion methods for the production of multilayer tablets as described in EP (857062 specifically for extrudate dosage forms. One disadvantage of this technique is that two extruders have to be operated simultaneously and their mass and volume flows have fo be coordinated with great exactness.
Especially when shaping the tablet in the calender, the two melts have to be combined with each other in a ratio that is maintained very exactly fo ensure compliance with the assay and content uniformity requirements of the tablets as specified in the pharmacopoeias (e.g. USP, Ph. Eur.)
This requires a high level of effort.
It is also possible to manufacture the rapid release acetaminophen portion in a separate tablet which is then incorporated in the stil} plastic melt of the slow-releasing drug portion during calendering. After cooling, a calendered extruded tablet is obtained which contains a separately embedded rapid release component. Dosage forms of this type are described in US 6,001,391 specifically for extruded dosage forms. One disadvantage of this approach is that the rapid release acetaminophen tablet has to be introduced very precisely into the individual calender cavities to prevent it being completely enveloped by the melt. Only if this rapid release acetaminophen component is located directly at the surface of the tablet can drug dissolution from this separate tablet portion start rapidly enough on contact with aqueous media.
It is also possible to obtain a rapid release acetaminophen component in the tablet by applying a film coating containing acetaminophen. The manufacture of film-coated extruded dosage forms is described in various patent applications. These patent applications do not however, describe a drug-containing fitm coating designed specifically to achieve biphasic drug dissolution.
The results of the clinical study with an extruded dosage form produced in accordance with the patent applications 11/625,705 and PCT/US07/60864 revealed that about 20% of the acetaminophen contained in the tablet have to be converted to a rapid release formulation to achieve the desired biphasic drug dissolution (for example, > about 30% after 1 I, > about 80% after 8 h). With a total acetaminophen content of about 500 mg per tablet, meant that about 100 mg of acetaminophen had to be rapidly relased. Applying about 100mg of an active ingredient in a rapid release form onto a tablets is difficult and only possible if certain requirements are fulfilled:
The drug content of the film-coating formulation must be very high so that the layers do not become too thick.
The drug-containing solution or dispersion used for film coating must have a high concentration to avoid long process times which would otherwise make the process uneconomical.
The film coating layer should also offer sufficient mechanical stability even with a large layer thickness, must not be tacky etc, and must be flexible enough that no cracking occurs even with thick layers. Good adhesion on the surface of the extruded cores must also be guaranteed.
The drug dissolution from the film-coating layer should also be rapid when using thick layers (about a maximum of 1 i in a preferred embodiment).
The organoleptic properties of the film-coating layer must also be largely unchanged with large layer thicknesses and during storage for extended periods of time at elevated temperature, high or very low relative humidity or a combination of such (i.e. no cracking, adhesion, chipping of the coating etc.}.
Surprisingly, it has now been found that the above requirements can be fulfilled if finely ground acetaminophen is used for the film coating layers, together with relatively small amounts of a suitable water soluble or water-swellable polymer. It was found that formulations of this type with high active ingredient contents could be achieved, and that the viscosity of the spray solutions was conspicuously low even with very high total solids contents of more than 30% by weight, and that even thick film-coating layers (200 micrometers and more) could be applied in a relatively short time, thereby making the process economical. Drug dissolution was also sufficiently rapid in layers containing above 100 mg acetaminophen.
It was therefore possible to control very precisely the amount of acetaminophen sprayed on and thus also the drug dissolution profile (i.e. release during the first hour) via the layer thickness of the film coating.
Another surprising discovery was that the film coating formulations according to the invention were capable of very effectively smoothing the rough surfaces of the extruded tablets, i.e. the film coating sealed the mdentations on the surface of the tablets very effectively. This was surprising considering that almost all commercially available film coatings and the polymers used to produce them actually do not possess and are not intended to possess this very property.
Known polymers and film-coating formulations arc designed to reproduce in detail the embossed elements (logos, ete.) and break lines in detail. In other words, "filling in" of the recesses present particularly in conventionally manufactured tablets is not desired and is to be absolutely avoided (sec WO 2006/002808; particular reference is made to this fact in all the samples, see Example 4, page 18: "The embossing was well reproduced, without smearing and bridging effects”).
Suitable polymers for the manufacture of the film-coating formulations are water soluble and water-swellable pharmaceutically accepted polymers which have already been used to date for the preparation of film coatings. The basic requirement is that sprayable, preferably purely aqueous solutions or suspensions are produced which have a total solids content (= sum of all the dissolved or suspended constituents including active ingredient) of at least 20% by weight (preferably 25%, particularly preferably 30% or more). The total solids content of the solution or dispersion must also have an active ingredient content of at least 50% (preferably 60%, particularly preferably 70% or higher). Non-agueous solutions or suspensions are also possible if non-toxic, pharmaceutically accepted solvents such as ethanol are used. Mixtures of these organic solvents with water are also possible, In general, however, purely aqueous solutions or suspensions are preferred.
Particularly preferred are polymers which form comparatively low viscosity solutions in aqueous solution even at high concentrations in order to maintain the viscosity of the spray solution within the range in which an acceptable spray behavior of the solution or the suspension is still assured even when using the high total solids contents mentioned above. Suitable polymers include: non-ionic cellulose polymers such as hydroxypropy! cellulose, hydroxypropyl methylcellulose, hydroxyethyl cellulose; cationic polymethacrylates such as Eudragit® E,
Eudragit® NE3OD, Eudragit® RL, Eudragit® RS ; polyvinyl alcohol; polyethylene oxide (high molecular polyethylene glycols with a molecular weight (MW) > 160,000); polyvinyl alcohol/polyethylene oxide graft copolymers (Kotlicoat® IR). Preferably, suitable polymers are selected from hydroxypropyl methylcellulose, Eudragit® NE30D and polyvinyl alcohol, or combinations thereof. More preferably, suitable polymers are polyvinyl alcohol/polyethylene oxide graft copolymers {e.g Kollicoat® IR, BASF).
The active ingredient (preferred: acetaminophen) must cither be soluble in the aforementioned high concentrations in the aqueous or aqueous / organic or purely organic solvents, If (as with acetaminophen) the aqueous solubility is not sufficient, preferably drug suspensions or dispersions can also be used. In this case, however, the decisive factor is that the particle size distribution of the active ingredient should be sufficiently fine since otherwise undesired, i.e. too rapid sedimentation of the suspended active ingredient in the spray solution occurs and/or the spray nozzles of the film coater become blocked. Preferred particle sizes are: not more than 10% of the particles above 0.25 mm (particularly preferred: not more than 5%), not more than 20% {particularly preferred not more than 10%) of the particles above 0.1 mm, and not more than 35% (particularly preferred not more than 20%) of the particles above 0.063 mm. To achieve this finer particle size, the drugs may be comminuted in grinding processes (dry and wet grinding are suitable).
Surprisingly, it was found that the film coating layers according to the invention not only adhere extremely well to the tabiets but also do not become brittle or tacky and show no cracking even during storage at elevated temperatures of up to 60 °C. There was also no detachment of the coating layer from the tablet core.
Various exemplary embodiments are depicted below. These Examples are being provided for illustrative purposes and they should not be deemed to narrow the scope of the invention.
Example I: Manufacture of the tablets for film coating
A homogeneous powder mixture consisting of 61.8% by weight acetaminophen, 12.6% by weight Eudragit® RL, 12.6% by weight xylitol, 6% by weight hydroxypropyl methylcellulose (Methocel® K 100), 6% by weight hydroxypropyl methylcellulose (Methocel® K 100M) and 1.0% by weight Acrosil® 200 was metered at a rate of 20 kg/h into a co-rotating twin screw extruder (ZSK-40) and extruded at a temperature of about 140 °C to produce a homogeneous, white melt ribbon. While still in the plastic state, this melt ribbon was introduced into the roll slit of a counter-rotating forming roller calender, the rollers of which had recesses on their surface from which tablets could be formed directly from the melt ribbon. The resulting tablets had a mean weight of 720 mg after cooling and deburring. The surface of the tablets was rough and uneven in places.
Example 2:
Acetaminophen with a particle size of 13 % greater than 0.25 mm and 68% greater than 0.063 mm was suspended in water by stirring, The active ingredient settled very rapidly after switching off the stirrer, This suspension was comminuted and homogenized by passing through a colloidal mill. After milling, a solid, powdered polymer (Kollicoat® IR, BASF) was added to this suspension (mass ratio acetaminophen/Kollicoat® IR = 75:25) to produce a total solids concentration of 30% by weight. Even after adding the polymer the acetaminophen still showed a marked tendency to sedimentation. While continuously stirring this suspension was then sprayed onto the tablets described in example 1 (6 kg) in a film coater (Driam). Samples of tablets were taken after 30, 50, 70 and 90 mg acetaminophen had been applied over the film coat.
In all cases the coating was observed to adhere very well to the tablets, although the surface of the pure white film-coated tablets was still slightly rough due to the still relatively large acetaminophen particles. The loss on drying of the tablets was 1% by weight before and after film coating for all forms,
Film coating process parameters: 6 kg tablet cores
Drums speed: 12 rpm
Inlet air: 1200 mh
Inlet amr temperature: 65 °C
Spraying rate: 40 — 45 g/min
Spraying pressure: 4,5 bar
Example 3;
Acetaminophen with a particle size of 19% greater than 0.25 mm, 5% greater than 0.1 mm and 16% greater than 0.063 mm was suspended in water by stirring. The active ingredient showed a decreased tendency to settle after switching off the stirrer compared to the material which was used in example 2. Solid, powdered polymer (Kollicoat® IR, BASF) was then added to this suspension (mass ratio acetaminophen/Kollicoat IR® = 75:25) to produce a total solids concentration of 30% by weight. After adding the polymer, the acetaminophen showed hardly any tendency to settle. This suspension was then sprayed onto tablets {6 kg) which had been produced as described in Example 1 but with a slightly modified tablet geometry, in a film coater {Driam) (process parameters as in Example 2). The tablets were sampled after 30, 50, 70, 90 and 120 mg of acetaminophen had been applied to the film coat. Very good adhesion of the coating on the tablets was observed in all cases. The surface of the pure white film-coated tablets was smooth and uniform,
Example 4: Drug dissolution of the tablets
The drug dissolution of the tablets according to Example 1 was determined in an apparatus as per
US Pharmacopoeia (USP Dissolution Apparatus 11 (Paddle), USP XXV; 37 °C, 0.01 M HCI, 50 rpm). The amount of active ingredient released from the tablets into the aqueous HCI medium was determined by HPLC at different intervals.
Tablets without film coat application
Drug dissolution measured after 30 minutes: 7%
Drug dissolution measured after 60 minutes: 11%
Drug dissolution measured after 120 minutes: 17%
Drug dissolution measured after 240 minutes: 27%
Example 5: Drug dissolution of the film-coated tablets
The drug dissolution of the tablets according to Example 2 was determined in an apparatus as per
US Pharmacopoeia (USP Dissolution Apparatus 11 (Paddle), USP XXV; 37 °C, 0.01 M HCI, 50 rpm). The amount of active ingredient released from the tablets into the aqueous HCl medium was determined by HPLC at different intervals.
Film-coated tablet with 90 mg acetaminophen in the film coat:
Drug dissolution measured after 30 minutes: 16%
Drug dissolution measured after 60 minutes: 20%
Drug dissolution measured afier 120 mimutes: 27%
Drug dissolution measured after 240 minutes: 36%
The drug dissolution rates increased by about 10% at cach test interval due to the initially rapid release of the active ingredient present in the film coat.
Example 6: Drug dissolution of the film-coated tablets
The drug dissolution of the tablets according to Example 3 was determined in an apparatus as per
US Pharmacopoeia apparatus {paddle method, USP XXV; 37 °C, 0.01 M HCI, 50 rpm). The amount of active ingredient released from the tablets into the aqueous HCl medium was determined by HPLC at different intervals,
Tablet without film coat application:
Drug dissolution measured after 30 minutes: 7%
Drug dissolution measured after 60 minutes: 12%
Drug dissolution measured after 120 minutes: 19%
Drug dissolution measured after 240 minutes: 29%
Drug dissclution measured after 360 minutes: 37%
Drug dissolution measured after 480 minutes: 43%
Film-coated tablet with 120 mg acetaminophen in the film coat;
Drug dissolution measured after 30 minutes: 28%
Drug dissolution measured after 60 minutes: 35%
Drug dissolution measured after 120 minutes: 43%
Drug dissolution measured after 240 minutes: 53%
Drug dissolution measured after 360 minutes: 62%
Drug dissolution measured after 480 minutes: 69%
The drug dissolution rates increased by about 25% at each test interval due to the rapid initial release of the active ingredient present in the film coat.
Example 7:
The test was performed as for Example 3, but instead of Kollicoat® IR a solid trituration based on hydroxypropyl methylcellulose was used which contained a small portion of fron oxide color pigments. Because of the markedly higher viscosity of the aqueous suspension the total solid concentration could only be adjusted to 20% by weight, as a result of which the spraying times increased while the other process parameters remained unchanged. Very good adhesion of the coating on the tablets was observed. The surface of the reddish/brownish film-coated tablets was smooth and uniform.
Example &;
The test was performed as for Example 3, but instead of Kollicoat® IR a solid trituration based on polyvinyl alcoho! was used which contained a small portion of titanium dioxide pigments.
Because of the slightly higher viscosity of the aqueous suspension the total solid concentration could only be adjusted to 25% by weight, as a result of which the spraying times increased while the other process parameters remained unchanged. Very good adhesion of the coating on the tablets was observed. The surface of the pure white film-coated tablets was smooth and uniform.
Example 9:
Film tablets manufactured in accordance with Examples 3, 7 and 8 were stored in closed glass bottles at temperatures of 40 °C and 60 °C. After 1 month no cracks were visible on the tablets and no tackiness was observed. Drug dissolution measured by the method described for Example 4 revealed no changes compared fo the values recorded at the beginning of storage.
Example 10:
A film-coated tablet manufactured in accordance with Example 3 (90 mg acetaminophen in the film coating layer) was sampled and a thin section was taken in the transverse direction of the tablet with the aid of a microtome and examined under a microscope. The film coating fayer was easily distinguishable from the tablet core in the images. The film coating layer was determined as being about 300 micrometers in the images. The smoothing effect of the coating suspension on the rough tablet surfaces was particularly evident, as also seen in Figures 1, 3 and 4.
Example 11: Dissolution in HC} and Aqueous Ethanol
Following is a description of exemplary methodology for studying rate of dissolution of certain compositions in HCl and 20% aqueous ethanol. Similar methodology may be used for studying rate of dissolution in 40% aqueous ethanol.
Following apparatus and procedures were use for dissolution in 0.01N hydrochloric acid and 20/40 % aqueous ethanol: (I Dissolution in 0.01 N HCI
Apparatus: USP Dissolution Apparatus If (Paddle)
Rotation speed: 50 rpm
Media: 0.01 N HCI
Media volume: 900 mL
Temperature: 37 °C
Sampling time for 30 h release testing: 30/ 60/120 / 180 / 240/366 / 420/480 / 600/720 / 840/1080/ 1320/1560 / 1800 minutes
Sample volume: 10 mL {no volume replacement)
Sample preparation: used as is
Analytical finish: UV detection, wavelength 280 nm (1D) Dissolution in 20 or 40% Aqueous Ethanol
Apparatus: USP Dissolution Apparatus II (Paddle)
Rotation speed: 50 rpm
Media; 20 or 40% aqueous ethanol
Media volume 500 mL
Temperature: 37 °C
Sampling time for 30 h release testing: 30/ 60/120 /180/ 240/360 /420/480/600/720/ 840 / 1080 / 1320/1560 / 1800 nunutes
Sample volume: 10 mb (no volume replacement)
Sample preparation: used as is
Analytical finish: UV detection, wavelength 280 nm 111. Dissolution testing of intact tablets in 0.01 N HCl at 37 °C a.) Fast releasing formulation (with respect to acetaminophen) in 0.01 N HCl at 37 °C is depicted in Table X. Table IX depicts the composition of the Core and the Overcoat of Formulation 5.
Table IX : Formulation 5;
Core Overcoat 65,42% acetaminophen 150 mg acetaminophen 5,29% Eudragit RL-PO 8 mg Kollicoat IR 9.29% Hypromellose Ph. Eur. USP 2208 Type V 100 (Methocel K100) 9.29% Hydroxypropycellulose Ph. Eur. Type EF 2.99% Polaxamer 188 Ph. Eur./NF
Rs hydrocodone 1 % Acrosil 200
Total weight core: 535 mg
Total weight coated tablet: 733 mg
Table X depicts dissolution data for hydrocodone (X{a)) and acetaminophen (X(b)).
Table X(a):
Drug release hydrocodone. | m0BINHGE
Ee 30 14 60 27 120 43 180 57 240 67 300 76 360 84 420 90 480 | 94 600 98 720 98 840 98 1080 99 1320 99 1560 | 99 1800 100
Table X{b)
Drug release acetaminopps,. | momNBGL
ETT —— aa 0 ey 30 33 60 39 120 46 180 56 240 64 300 71 360 78 420 85 480 90 600 98 720 100 840 101 1080 1900 1320 100 1560 100 1800 160 b.) Slow releasing formulation (with respect to acetaminophen) in 0.01 N HCH at 37 °C is depicted in Table XII. Table XI depicts the composition of the Core and the Overcoat of
Formulation 6.
Table XI : Formulation 6:
Core Overcoat [55.88% acetaminophen mg acetaminophen 13.50% Eudragit RL-PO 8.4 mg Kollicoat IR i 1.0% Hypromellose Ph. Eur. USP 2208 Type V 100 (Methocel K 100) 3.01% Hypromeliose Ph. Eur. 2208 Type V 200060 (Methocel K 100M) -— Xylitol Ph. Eur /NF Typ Xylisorb 90 2.21% hydrocodone 1% Aerosil 200 Ph, Eur. /NF
Total weight core: 680 mg
Total weight coated tablet: 8384 mg
Dissolution data for hydrocodone (XI(a)) and acetaminophen (XIb)).
Table XI a):
Drug release hydrocodone m0liNEG
SE ee 0 0 i 17 60 | 31 120 46 ; 180 57 240 67 300 75 360 82 420 88 480 91 600 96 720 97 840 98 1080 99
1320 99 1560 99 1860 100
Table X1Ib) 0 0 30 34 60 a1 120 47 180 51 240 56 300 60 360 65 420 | 68 480 71 600 76 720 80 840 84 1080 89 1320 | 100 1560 | 160 1800 | 100
IV. Dissolution testing of intact tablets in 40% aqueous ethanol at 37°C a) Fast releasing formulation (with respect to acetaminophen) in 40% aqueous ethanol at 37 °C is depicted in Table XIV. Table XIII depicts the composition of the Core and the Overcoat of
Formulation 5,
Table XI : Formulation 3;
Core Overcoat 65,42% acetaminophen 150 mg acetaminophen hn Eudragit RL-PO 8 mg Kollicoat IR 9,20% Hypromellose Ph. Eur, USP 2208 Type V 100 ( Methocel K100) pa Hydroxypropyceliulose Ph. Eur. Type EF 12.99% Polaxamer 188 Ph. Eur./NF 2,8% hydrocodone » Aerosil 200
Total weight core: 335 mg
Total weight coated tablet: 733 mg
Table XIV depicts dissolution data for hydrocodone (XIV(a)} and acetaminophen (XIV(b}).
Table X1V{a): 0 Sr 15 60 33 120 56 180 77 240 90 300 97 360 97 420 97 480 98 600 98 720 | 99 840 100 1086 98 1320 99
1560 99 1800 109
Tabie XIV(b)
Ever ye a 0 0 ""W% 30 31 60 51 120 67 180 82 240 93 300 98 360 99 420 i061 480 101 600 101 720 101 840 161 1080 101 1320 101 1560 101 i 1800 102 b.) Slow releasing formulation (with respect to acetaminophen) in 40% aqueous ethanol at 37 °C is depicted in Table XVI. Table XV depicts the composition of the Core and the Overcoat of
Formulation 8.
Table XV : formulation 8:
Core Overcoat [55.88% acetaminophen 120 mg acetaminophen 13.50% Eudragit RL-PO 38.4 mg Kollicoat IR 1.0% Hypromeliose Ph. Eur. USP 2208 Type V 10 {Methocel K100) 5.01% Hypromellose Ph. Eur. 2208 Type V 20000 (Methocel K100M) 13.40% Xylitol Ph. Eur/NF Typ Xylisorb 90 2.21% hydrocodone 11% Aecrosil 200 Ph, Eur/NF
Total weight core: 680 mg
Total weight coated tablet: 8384 mg
Table XVI depicts dissolution data for hydrocodone (XVI(a)) and acetaminophen (XVIi(b)).
Table XVi(a}):
Drug lease hydrocodone. | md0wEiOH
Eve en Te Sl { or 0 12 60 24 120 38 180 51 240 62 300 72 360 80 420 85 480 Hn 600 96 720 99 840 100 1080 104
1320 102 1560 101 1800 100
Table XVI(b)
Drug release acetaminophen | ind0%mod
Ce Ll
EE
30 23 60 38 120 47 180 57 240 65 300 73 360 80 420 84 480 90 600 94 720 98 840 160 1080 100 1320 191 1560 101 1800 102
V. Dissolution testing of ground tablets (coffee grinder 60 sec) in 40% aqueous ethanol at 37 °C
Ina houschold coffee grinder 3 extrudate tablet were milled for 60 sec at ~ 20,000-50,000 rpm.
The powder was collected and the to one tablet equivalent amount of powder was transferred to a dissolution vessel for release testing.
To determine the particle size analysis of the sample the powder was collected and sieved through a sieve with a mesh size of 355 pm. The material that went through the sieve was sieved again through a sieve with a mesh size of 63 um. The following fractions were obtained:
Fraction I: particle size > 355 um (~ 20 % of the total amount of powder)
Fraction2: particle size > 63 pm and < 355 pm {~ 66 % of the total amount of powder)
Fraction 3: particle size < 63 pum (~14 % of the total amount of powder) a.) Fast releasing formulation (with respect to acetaminophen) in 40% aqueous ethanol at 37 °C is depicted in Table X VIL Dissolution data for hydrocodone (XV1I(a)) and acetaminophen {(XVH(b)) are depicted below:
Table XVIi(a): testing time point (min) mean in % 0 0 56 60 75 120 92 180 99 240 10% 300 | 101 360 106 420 101 480 100 BR
Table XVil(b) 0 0 30 51 60 09 120 87 180 94
240 97 300 97 360 97 420 97 480 97 b.} Slow releasing formulation (with respect to acetaminophen) in 40% aqueous cthanol at 37 °C is depicted in Table XVII, Dissolution data for hydrocodone (XVIIi(a)) and acetaminophen (XVII(b)) are depicted below:
Tabic XVHI{a): testing time point (min) mean in % 0 8 42 60 56 120 74 180 84 240 91 300 96 360 98 420 100 480 , 109
Table XVIill(b): testing time point (min) mean in % owmemenimn CL weed 30 33 60 45 120 62 180 73
240 80 300 84 360 87 420 88 480 89
VI. Dissolution testing of intact tablets in 0.01 N HCl at 4 °C a.) Fast releasing formulation (with respect to acetaminophen) in 0.01 N HCI at 4 °C is depicted in Table XIX. Dissolution data for hydrocodone (XIX(a)) and acetaminophen (X1X{b)) are depicted below:
Table XIX{a).
EE rim eee — Ea aa 0 0 0 60 5 120 15 180 24 240 30 300 36 360 42 420 45 480 49 testing time point (min) mean in % rr I 30 16 60 23 120 30 180 34
240 36 300 39 360 41 420 43 480 44 b.) Slow releasing formulation (with respect to acetaminophen) in 0.01 N HCl at 4 °C is depicted in Table XX. Dissolution data for hydrocodone (XX{(a)) and acetaminophen (XX(D)) are depicted below:
Table XX({a): ny EEE 0 o 2 60 8 120 7 180 23 240 28 300 32 360 37 420 41 480 44
Table XX{(b):
Drug release acelamimophes | Wm0diNmGL
ER Se
Tr go 30 13 60 17 120 21 180 | 24
240 26 300 28 360 30 420 31 480 : 33
VII. Surface roughness
Coating of the extrudated tablets resulted in significant smoothing of the tablet surface as can be seen in Figure 1:
To determine the change in surface roughness coated and uncoated tablets were cut in half along the minor axis. The surface of this cross section was milled to obtain a plain and smooth surface.
Optical micrographs of the cross section were used to determine the average surface roughness.
For analysis, Centre Line Average approach (CLA), was used as depicted in Figure 2, in which the average height per unit length off the centre line is determined, The centre line was put in the micrograph such that the area above and below the line are approximately equal.
The CLA is calculated by using samples at evenly spaced positions according to the following equation:
Sh haha + 4h
CT 4 in » = wt 17 Hy... Ti & nm !
The total length | was 4.69 mm, the distance between the increments was 68 pm. Forunceated formulation CLA = 0.56, when (N = 69), as shown in Figure 3. Whereas fora coated formulation CLA = 0.15, when (N = 69), as shown in Figure 4,
IX. Dissolution testing of intact tablets in 0.01 N HCI at 37 °C for different coating thickness a.) Slow releasing formulation (with respect to acetaminophen) in 0.01 N HCl at 37 °C is depicted for various Formulations 9-12 in Tables X X11 and XXII. Compositions of the
Formulations are depicted in Table XXI.
lov 60% Coe0%
Composition } } 60% acetaminophen acetaminophen jacetaminophen jacetaminophen 12,6% . 12,6% Eudragit 112,6% Eudragit
Eudragit Ri.- 12,6% Eudragit RL-PO
RL-PO RI1-PO
PO
6,0% 6,0% 6,0%
Hypromeliose [Hypromellose Ph. Hypromellose Ph, . 6,0% Hypromellose Ph. Eur.
Ph. Eur. USP (Eur. USP 2208 Eur. USP 2208 (ISP 2208 Type V 2208 Type V. Type V Type V 100{Methocel K100) 100{Methocel {100(Methocel 100{Methocel
K100) K100) K100) ),0%% 6,0% 6,0%
Hypromellose
Hypromellose Ph. Hypromellose Ph. 16,0% Hypromellose Ph. Eur.
Ph. Eur. 2208 one V Fur. 2208 Type V Eur, 2208 Type V 2208 Type V he 1 0000(Methocel 20000(Methocel R20000(Methocel K100M) 20000(Mcthoc
K.100M) K100M) el K100M) 12,6% Xylitol Co 12,6% Xylitol Ph. i12,6% Xylitol Ph. }
Ph. Eur /NF 12,6% Xylitol Ph. Eur /NF
Fur /NF Typ Fur /NF Typ yp Xylisorb Typ Xylisorb 90 0 ylisorb 90 Xylisorb 90 18% 18% 1,8% 1.8% hydrocodone hydrocodone hydrocodone hydrocodone 1% Aerosil 1% Acrosit 200 {1% Acrosil 200 } . 00 Ph. 1% Aecrosil 200 Ph. Eur /NF
Ph. Eur./NF Ph. Eur/NF
Eur /NF } 50,0 mg 85,0 mg }
Coating ) 120,0 mg acetaminophen acetaminophen jacetaminophen
16,0 mg Kollicoat [27,2 mg Kollicoat 8,39 mg Kollicoat IR : IR iR arget weight [833 mg £99 mg 045.2 mg 091,39 mg
Drugrdlensel 0
Formulation 9 Formulation 10 Formuladon 11 | Bormulation 12 hydrocodone, 0
Seda ee ee BR ee a en ee a testing point } mean In Ys mean in % mean in % mean m % {min} 0 I 0 0 0 0 21 20 19 16 60 30 30 30 28 120 42 43 44 43 180 51 53 54 53 240 58 60 62 61 300 64 67 68 67 360 69 72 74 73 420 74 77 79 78 480 78 81 83 82 icetaminoph [Formulation 9: Formulation 10 Formulation 11 | Formulation 12 ee
BIE da i testing point } mean in % mean in % mean in % mean in % {min} 0 0 0 6 | 9 30 7 15 19 22 60 11 19 23 26 120 17 25 29 32 180 22 29 33 36 240 | 26 33 37 490
300 30 36 40 43 360 33 39 42 45 420 36 42 45 48 480 39 45 48 51
X. Dissolution testing of intact tablets without overcoat 1n 0.01 N HCI at 37 °C a.) Fast releasing formulation (with respect to acetaminophen) in 0.01 N HCl at 37 °C is depicted in Table XXV. Table XXIV depicts the composition of the Core of Formulation 13.
Table XXV : Formulation 13
Core No Overcoat 65,42% acetaminophen 9,29% Fudragit RL-PO 9,29% Hypromellose Ph. Eur, USP 2208 Type V 160 (Methocel K100) 0.29% Hydroxypropyceliulose Ph. Eur. Type EF 99% Polaxamer 188 Ph. Eur /NF on hydrocodone 1 % Acrosil 200
Total weight 535 mg
Dissolution data for hydrocodone (XXV(a)) and acetaminophen {XXV(b)} are depicted below:
Table XXV(a} testing time point (min) mean in % ee 28 60 38 120 50 180 62 ] 240 7 300 80 360 88 420 95 480 98 600 100 720 98 840 97 1080 97 1320 97 1560 97 1800 98
Table XX V(b):
Drug release acetaminophen 4 W0GINHCGL mea) 0 0 30 13 60 19 120 27 180 41 240 54 : 300 | 66
360 79 420 88 480 95 600 105
720 106
840 104
1080 104 1320 104 1560 104 1800 104 b.} Slow releasing formulation (with respect to acetaminophen) in 0.01 N HCl at 37 °C 1s depicted in Table XXVIII.
Table XXVI depicts the composition of the Core of Formulation 13.
Table XXVI: Formulation 14
Core No Overcoat 55.88% acetaminophen i 13.50% Eudragit RL-PO 1.0% Hyprometlose Ph. Eur. USP 2208 Type V 100 (Methocel K100) 3.01% Hypromellose Ph. Eur. 2208 Type V 26000 (Methocel K100M) 13.40% Xylitol Ph. Eur./NF Typ Xylisorb 90 2.21% hydrocodone 1% Acrosii 200 Ph. Eur. /NF
Total weight: 680 mg
Dissolution data for hydrocodone (XXVII(a)) and acetaminophen (XX V1I(b)) are depicted below:
Table XXVH(a): sting me point (min) meanin% 0 TT 0 30 60 42 120 54 180 65 240 72 300 79 : 360 88 420 | 94 480 96 600 99 720 101 840 160
1080 100 1320 100 : 1560 160 1800 100
Table XX VIla):
Drug release scommmophen. | mouNBGL 0 0 ] 30 1 60 17 120 25 180 31 240 36 : 306 42 360 48 420 53 480 56 600 63 720 69 840 74 1080 9 1320 99 1560 104 1800 163
Example 12: Compare Bioavailability of Test Formulations Against Control
The objective of the study was to compare the bioavaitability of two test formulations 135 and 16 with that of the reference Control table. The study design included single-dose, fasting, open- label, three-period, crossover study in 21 subjects. Regimen A included one tablet of
Formulation 15; Regimen B included one tablet of Formulation 16; Regimen C included one tablet of Control 1. Blood samples were collected at 0, 0.25, 0.5,0.75, 1, 2, 3, 4, 6, 8, 10, 12, 16, 24, 36 and 48 hours after the dose on Study Day 1. The following Table XXVI11il illustrates compositions of test Formulations 15, 16 and Control 1. See also Figures 5 and 6 for mean hydrocodone and acetaminophen concentrations for Formulations 15, 16 and Control 1.
Formulations 5, 7 and 15 are substantially identical to each other, however they have been numbered differently based on the different numbering of the tests and experiments, Similarly, formulations and 6, § and 16 are substantially identical to each other, however they have been numbered differently based on the different numbering of the tests and experiments. Also similarly Controls 1 and 2 are substantially identical to each other, however they have been numbered differently based on the different numbering of the tests and experiments,
In one embodiment of the invention, a preferred dosage form is Formulation 15 since
Formulation 15 provides better blending properties than Formulation 16, both for blending of hydrocodone bitartrate pentahemihydrate and HPMC and blending of all components. Further,
Formulation 15 blend provides for better flow properties than Formulation 16 into the extruder.
Also Formulation 15 provides better direct shaping property than Formulation 16 since
Formulation 15 is less sticky than Formulation 16. Moreover, Formulation 15 is expected to have better abuse deterrence than Formulation 16.
Table XXVIII:
Component Test Formulations Contrel 1
Amount (mg)/T ablet , : (mg) Formulation 15 Formulation 16
Tablet Core
Hyilrocodone Bitarlrats 15 13 IRE
Acetaminophen 380 350 330 ee ——
Tablet Overcoat
Hydrocodone Patartrate -- -- 5
Acetanunoplen J20 150 170
Preliminary pharmacokinetic parameters for Formulations 15, 16 and Control 1 are depicted below in Table XXIX:
Table XXIX: . Pharmacokinetic Parameters
Regime a
Fe Cos AUC, AUC, tye CL/F oo Me pal) Ogthandy gthanl) dy (Ly
Formulation 15 44 1G 208 209 6.22 447 mm Gre (Ue dee (ws (8m Qe)
Formulation 16 4.4 13.0 204 209 5.83 459
CTIA EG 3 .
Salt Gove (19% (20908 (Ri 220 (18%) control | 13 12.8 211 214 S68 43 3
He E300 (20%) (18%) (ma (19%) (16%
Toons Caz AUC, ATIC, tn CLF hy (nginiL) (pg*hanl) {ig *hanly thy {Lh
Focmlaion 15 it 74 106 212 329 9.85 3419) i (Gor) sv (ed (Be Ae es
Formation 16 B52 2.41 22.1 213 5.59 237
TENET . . . . . ere (808 (32% {2:40 (2300 21% {488
Coe - es a = . ontrol § [0 (240) (260) (26%) (2400) (2400)
Nee
Preliminary relative bioavailabifity of Formulations 15 and 16 versus Control 1 is shown below in Table XXX:
Table XXX: oT Redative Bioavail ab itit y
Regimens PK oo Lontral Value © 0 Paint iit Confidence
Test rs. Reference Parameter Test Reference Estimate’ Inierval } Hydrocodone
Formulation 13 vy Control Cae 13 530 12.626 1.148 LOA 1.173
Formation 16 vs. Ciondrol § LN 13.240 I? 62a 1.04% $9558 1.116
Formmudation 15 ve Control | ATHY F098 G38 14 338 0.968 (L939 — 1.4049
Formation 16 vs. Conlead 1 AUC, 203.603 206.338 _ n4Ay 0937 — L442
Foramiation 15 w Congrat § ATIC, 2a 210157 0.973% 0.026 — 1.822
Forsmslations 16+ Control 1 ALC, 28.887 210.187 HIRE 004d — 1.0646
Formwlaticn 12 ve. Cotrol 1 Cre 2.014 213 iho1% (.855 — 0.983
Fommlation 16 vs. Control 1 Coron 2.39% 2183 1.042 LHS 1.172 © Formulation 13 ve Control 1 ATIC, 20.580 21.732 (3.94% 0.85% — (hey
Formulation 16vy. Control 1 ALC 22363 21.732 1.019 0975 — 1.4356
Formation 13 vs Control 1 AUC, 22471 21.987 1.048 ih odd - 1.077
Fosiolation: 16 ve. Control 1 AUC, 32.462 21.887 LAELS 8.956 — LOS t Apklogarithm of the beast squat es means for loganithaes. to Anbilogacilam of he diffe nce dest names reference) of the least squates means In logalitlus.
Based on preliminary data, the two test Formulations 15 and 16 are bioequivalent to Control with respect to both Cpax and AUC... The initial rate of hydrocodone absorption is slightly slower for test formulations 15 and 16 compared to Control 1. i0
Example 13: In vitro Drug Release Profiles:
The following Formulations 17 and 18, as shown below in Table XXXI were studied for in vitro drug release profiles and this profile was compared with uncoated core VM-1 and Control 2, as shown in Figures 7 {a) and (b).
Table XXXI: - ——— a ion
Foomponent |G Quality Standard © Function | A7(850ma) { 18(500ma} ; Tabiet i Amount (mglfTahiet i
Civdracodone Bitartaa TT EE I Bg sbetance TER ETT PEE 3 estes ss esses sss BRE 2 rd
I Acetaminophen ; Usk : Drug sishstance : 330.0 i 25090 : nS ARR negara monroe ; Euckagit® KL-FO i ONEfPhLEu Carrier polymer and : 91.8 ! 40.7 : : i i contrdlled release polymer | {135%} i {3 3%) { {type V 100 ; i contrdled release polymer | (11.0%; i 9.3%) : aa BT IE aa BA Gnd Ae { type Vf 20000 ; i controlled release polymer | 2%} !
CHydrocypropyicaliioss, TT UTTTRR ERT Gamer payimer and 1-1 432 i {type EF {controlled release polymer i (5.2%) ; + Xylhiol | TUTTTRERN Bur Release modifier 1 etd U0 - i Poloxamer 188 i NF/Ph Eur Release modifier { - ! 16.0 i
Leerssen aes eto Ar PE rs rt nso enroserer TB ed i Colloidal siicon dioxide Po ONRFhLRuL Gliclant : 68 ; 5.4 : { { : i {1.0% i 1.0%)
EG TAB
CREATE ment TT house una TER omer TTR ES ETE ae
CER R S REG ESR or Riv Coa Big RR ; SE ed Tablet Weight | BESTT ETT
Example 14; Manufacturing of tablets by melt extrusion, deburring and film-coating;
For cach of the examples according to Table XXXII a homogeneous powder blend was prepared containing all ingredients. In the case of examples 14A to 16A a two-step blending was performed in order to ensure a homogeneous distribution of the low-dose API component {hydrocodon bitartrate 2.5 hydrate) in the final blend. Blending process is described in Table
XXXII In the case of examples 14A — 16A a total number of 5 powder samples from each final powder blend prior to extrusion were analyzed with respect to content uniformity of hydrocodone bitartrate 2.5. hydrate.
Table XXXII depicts composition of powder blends before extrusion and final extrudate tablet (after melt extrusion and direct shaping). All Ingredients were tested and released as specified according to US Pharmacopoeia (USP, NF) and/or European Pharmacopoeia (Ph. Eur).
Table XXXII: 1 | Paracetamol Ph. Eur./USP 55.9 65.4 60.0 61.8 i (Acetaminophen) i 2 | Hydrocodon bifartrate 2.5 hydrate 2.8 - 3 {Hypromeliose Ph. Eur./USP 2208, 11.0 6.0
Type V100 i {Type: Methocel® K 100) i 4 |Hypromellose Ph. Eur./USP 2208, 3.0 6.0 6.0
Type V20000 (Type: Methocel® K1G0M) | Ammoniummethacrylat- 13.5 9.3 12.8 12.6
Copolymer (Typ A) Ph. Eur./NF {Type: Eudragit RL PO) ; 6 | Hyvdroxypropylcellulose Ph. Eur. - 9.2 - - {Type : Klucel® EF) 7 Xylitol Ph. Eur/NF 13.4 12.6 12.6 {Type Xylisorb® 90) 8 | Poloxamer 188 Ph. Eur/NF - 3.0 - - {Type : Lutrol® F68) i 9 | Colloidal silica P. Eur /NF 1.0 10 1.0 1.0 : (Type: Acrosil® 200) ] _ 1 5
Table XXXII: Blending process for examples 14 — 17
Example 4B 1 Example15B | Example l6B | Bxample I7B 1 Blending of #2, #3, | Blending of #2, #3, | Blending of #2, #3, #4, #9 {according | #6, #9 (according | #4 (according io to Table XXXII} | to Table XXXII Table XXXII One-step-blending 2 Adding #1, #5, #7 | Adding #1, #5, #8 | Adding #1, #5, #7, | of all ingredients (according to Table | (according to Table | #9 (according te | according to Table
XXXII) to blend XXX to blend | Table XXXID to XXX1X from step 1. from step 1. blend from step 1. 3 Blending the whole | Blending the whole | Blending the whole mixture mixture mixture
Total 12kg 12 kg 3kg SO kg batch size
The final blend from examples 14B — 7B was dosed in a co-rotating twin-screw extruder at a constant feeding rate. The homogeneous, white drug-containing melt leaving the extruder nozzle was directly shaped into elongated tablets by calendering between two counterrotating rollers having depressions on their surface according to the dimensions listed in Table XXXIV. Process parameter settings of melt extrusion and calendering are listed in Table XXXIV,
Table XXXIV depicts melt extrusion and direct shaping (calendering) process:
Table XXXIV.
Extruder 18 mm 18 mm 18 mm 40 mm (screw diameter)
Tablet dimension 19.0/69/30(200/59/251175/797/7.67 1900/69/30 (calender roller mm mm mm mm depression dimension) (length / width / height) | i LL
Extrusion temperature | 129°C 124 °C 140 °C 140 °C i (melt temperature)
Calender temperature 11°C 20°C | 1cC 11 °C
Extrusion throughput 1.5 kg/h 1.5 kg/h 1.5 kg/h 25 kg/h
Batch size 12 kg 12 kg 3kg S0 kg
Tablets according to examples 14C, 15C and 17C were transferred into a Driam 600 film-coater.
In a first step the tablets were tumbled in the coater at maximum rotation speed in order to polish the tablets and to remove the seems surrounding the tablets which derive from the calendering shaping process. This material which was removed from the tablets was removed from the coating drum together with the exhausting air. After this “deburring” step film-coating of the tablets was directly started in the same coater. In the case of example 16C tablets were placed in closed stainless steel container and tumbled for 10 minutes once removal of edges and seems was complete. Tablets were then dedusted on a sieve and transferred to the same Driam film- coater as in the case of the other examples. Composition of film-coating layer and process parameter settings of deburring step and of subsequent film-coating are fisted in Table XXXV.
Table XXXV depicts deburring of tablets after calendering
Table XXXV: [Process parameter | Example 14D | Example ISD | Example 16D | Example [7D setting. 3 0 0 aE 0
Deburring time in | 20 min. 94 min. - 60 min.
Driam film-coater
Deburring time in - - 10 min. - stainless steel drum
Drum temperature 25°C 25°C 25°C 25°C
Tablet weight {mean) 084.3 mg 536.4 mg 840.7 716 mg after deburring
Acetaminophen drug | 382.5 mg {350.8 mg 500.4 mg 442.5 mg content per tablet (calculated according to {composition and mean; tablet weight)
Hydrocodone 150mg 15.0 mg 15.1 mg - t bitartrate 2.5 hydrate drug content per tablet (calculated according to composition and mean tablet weight)
Batch size 49 kg | 6.5 kg 1 kg 7.8 kg
Manufacturing of the film-coating suspension for examples 14E — 16E was generally prepared by the following steps: First, acetaminophen was dispersed in water at room temperature during stirring. To this suspension the polymer (Kollicoat® IR) was added and stirring was continued until a homogeneous suspension was formed. This suspension was directly used for film-coating.
Stirring was continued during the whole film-coating process. For examples 14E — 17E a ready to use acetaminophen powder was used (Rhodia, acetaminophen “fine powder”). No additional sieving or micronizing was performed. Composition of film-coating suspensions are summarized in Table XXXVI.
Table XXXVI depicts composition of film-coating suspension
Table XXXVL
Rel. amount of 22.73 % acetaminophen
Acetaminophen 1% > 0.25 mm particle size 5% > 0.1 mm (Rhodia « fine 16 % > 0.063 mm powder »)
Rel. amount of 7.27% polymer { Type:
Kollicoat®iR)
Rel. amount of water | 70.0 % i . i (purified) i
Film-coating of the deburred tablets was performed in a Driam 600 film-coater. Process conditions, parameter settings and data from final film-coated tablets are listed in Table
XXXVI In the case of all examples 14F - 17F samples were taken at different time point during main phase of film-coating. This was to study the influence of different amount of coating layer thickness on drug release of both acetaminophen and hydrocodone bitartrate from the film- coated tablets, Spray rate during main phase of film-coating was at maximum rate of the peristaltic pump dosing the acetaminophen/Kollicoat® IR suspension. Higher spray rates should be possible.
Table XXXVI depicts film-coating process conditions
Table XXXVI frsspuimde | Esp (OF [Example SE | Exar 8 | Berle IF
Pebeatingphae inlet air temperature | 63°C spray rate | BN - time | 10min. oo inlet air temperature 65°C spray rate | 16 g/min. 10 g/min. time TD 5 min. 6 min. | tog ne spray rate 21 g/min. 25 g/min, inlet air temperature | 65°C spray rate 31-42 g/min. | 28-47 g/min. | 20-44 g/min. 30-48 g/min. me EE 31 min. 230 min. 193 min, - 159 min. inlet air temperature | _ 25-30 °C . spray rate - - ] - - time | smin. | Smin | Smin CSmin.
Batch size 4.4 keg 6.1 kg lke 7 kg
Dimension of film- 19.46 mm 20.63 mm 19.45 mm 19.53 mm coated tablets (mean) 7.82 mm 7.32 mm 10.66 mm 7.62 mm (length / width / height) 7.07 mm 6.41 mm 7.71 mm 7.23 mm 848.2 my 1018.4 mg 872 mg tablets (mean)
Weight of coating 157.9 mg 208.4 mg 177.7 mg 156 mg {layer per tablet (calculated) 1
Acetaminophen drug content per film- 119.6 mg 157.9 mg 134.6 mg 118.2 mg coated tablet in film- coating layer (calculated)
Total acetaminophen 502.1 mg 508.7 mg 635mg 560.7 mg drug content per film- coated tablet (calculated)
Total hydrocodone 15.0 mg 15.0 mg 15.1 mg - bitartrate 2.5 hydrate drug content per film- coated tablet (calculated)
Generally, certain preferred embodiments of the present invention provide dosage forms and methods for the delivery of drugs, particularly drugs of abuse, characterized by resistance to solvent extraction; tampering, crushing or grinding, and providing an initial burst of release of drug followed by a prolonged period of controllable drug release.
Further, as shown below in Table XXXVI, in one preferred embodiment, the present invention provides a pharmaceutical composition having a core and a non-core layer, comprising: (a) hydrocodone, a pharmaceutically acceptable salt or a hydrate thereof, and (b) acetaminophen. or ibuprofen. In this embodiment, at least 75% all of the hydrocodone, pharmaceutically acceptable salt or hydrate thereof is in the core, and the acetaminophen or the ibuprofen is the non-core layer. Further, this composition is adapted so as to be useful for oral administration to a human 3,2, or 1 times daily. Preferably, greater than 90% of the hydrocodone, pharmaceutically acceptable salt or hydrate thereof is in the core. More preferably, substantially all of the hydrocodone, pharmaceutically acceptable salt or hydrate thereof is in the core. In another embodiment, the core further comprises acetaminophen or ibuprofen. More preferably, the core further comprises acetaminophen.
o wn wy on OO + wooed wl sr len cl GE Sm 0 win A wie mr nee ts ee en ge Br FE On HF el TT OH 00 OR 2 Clie ed ied 00 8 pi OL Cen en nen wr ee ODE Sn be ef AY CR Ov en Tn cl en fy 1 pe =O ON on) OOO TT 00100 ON N= 00 Sj 6 WIAD OW OY emer) ee 0 2 A CD EM VN TE NDING By I ND el oe ED Das en a en = — mt Cm ED em] EDIE Wy 20] en on rm me eg wep em 0 1 Be = — “gE 2 RELNND EOE 2 TA yD Dy HOD OT a et 00 eon) 0
LENS OSL UOT Hen em TN Sow TD DS NS vy
HD aT Rn 03 enon orm ett ee SE AD CHO] OF CHAO TE OIE en engl oF on a * aan]
Uh =
QD Ele 00 NO UO ON ON mn ge 00 D000 00 NODS MD TIC 00 Cee Oh 2 ESN NN ASIN OX CTH Nn Fo on™ Reo Oo o «6
Lz AS en Ne Tey wn JET PT oils © =o em | OF ee ey wy CAE CF POO Ce
Ee po SF OR DDI mI cn 0 © Ge Co fF Doo mn nO) ny — Clon QIN © MND ag 00] TT Ros Geil Dr eins wr on -~ Clon DN WT ND =e) =D OY jen on onjoe TD oenfv in sren on =r o Gor SEO TS WD 00 Na py oD WD CINE © IO | Oy un pa Oho — 00 en endl = wn TI NO el © md ni © THT a =f | or od : PO TT THO TE HS we or Sm cro = hen on oh od - OO OID CS | Of CD C1 en rt eet en wf eld = Ne —
OO ED ei ms CNEOD WD Su en — en o £2 0 elon wr AQ en AUD yn [D2D Tien mp OE GY OT wn CS Set mei] mm TE OH LL eT TL a SIO NDC in
CC ~ = OG OF CUI op em 0 © | 4 on] mine ie © oli en Te oo en a een Oy PO I Sl De Ten ed [TY OE on enlen of - rete CO OF mm OY ery or een ee —iE ow 0d Cl Cpu ND Een on enol oF
Z — hm ND — OO Oe OS = ON De ON Se OO ONS — Cl ort el J] er eee |] et ee | OC ree ret [Owed een | ES] een eet | 0] eed eel OR] eel ee FEN] ee ee fut & : = CO RGGI CA LOCC << =f OD OC ~ 00 OC 00 GC —| 00 00 r=fo0 60 — [00 00 rio oo —ioo oo —i| oO SO x F3REIT ILI ILI ELIE BS ERD LE Rb EL oe GOO GO oD 0 DICT OO C000 DO SO|C0 O00 SOLD OD SOO U0 CLIO OO SOD OR DG x zz z 2 2 = = : ™ = Buy © Be “ Pu LO Bm Oo Buy -, - jon! -< us - on - = -, yond = 2 — rE — = joe] red
E E E & £ E £ £ = — Zh oh Bir = El Bi £0 oh £n = = = = = = = 5 £2 = * * * ES ka ¥ += %*- aw — = = = = = = 2 = = =
Jos fet = i 3 ow; hd 5d © | | “es © E |= = = = — = SR ~ © ~ & MOE ID oo = =) — [a Be fn | « - < tt on 100 = an nin Oo —n oy ole cl loo © Sie em solo on Bl = =o Dwr = RF N00 © 0 Dy B00 DOS I WH alg fT re 0 ON eg MD en
ANNE SITE aol wio don docs od a 8f— —~cle So
Oe ee | 30 O CREey uy en ho eGo WO nino Oo GO He 0 ono on refer oo =o oon = Flog wr Blom of S| Ges @Slen o0 al og O01 M0 wT CI) ND Vey on on «Te a Sl of Te el Te Te Tee = a oe al Te a Tay Tes rr et SO — CIN © Dm nO Onn oO © Dr wy on wae ED Cn ew en TF lle © © mootlee 0 we on IO in 100 Tr ee TS 20
NNT oo RT De BOND Will af en 0 MOT OF CHOY = 00 er FB
Cl Cm od SW me) of O00 COD ONES TO @ SoD 00 NS — OE Oh — 00 |S we —es rn — 0 CIO me WI Wn ON TT Woe WD DION Cl led © ivy oy 6 QE Ty ne TTR ES nn = OV Toe oT EE =i 00 Do en tr CO fs mr DO C0 — dU ED OO On NO SH [OO Oe OO On
Cocina ole = g|len dR ILI 0 wlo ow olt moemiT AA o
So PN ES Cen ne Gy CSE THE 00 NES en mf UT ON NS Ln | 00 R20
Fen lao Sl DH SIT RIe oS] OS Be em md ed OY
On I~ wn [0 TT Neg ee CO wP CORW ND ene] TT ns © Shon or Ded anlen © ret wn
Sin onl on Blin oy Bi on SOY NG YE) Alle un | C0 OND 00 ent TF Sh og or orm emi es Ope OF —_ oe Se = nO OO Oe oO DF TOD Sen ny e100 en oon OND 00 © 00 Cael © inet oo ein © DIS TF Oi Oh
B= Wir § wilds of FFD FID DS Ten = mg ded iE TIN Sg a
Oo ope of CSO OC] CF OO SO CRD OD De OO De OY oo ™~ oan — Om CIN ee OP ni © win en Der 00 SN Ds i] eee
EERi® ola Se mow dln a Tla 3 oT nF a mle og of 5
C1 CF Ode oo] S| CF _— el Se noe SO On mS DO Of SOO OOo ret EAD tN Dr ON AO en OAD ee OD ON AD ON Ne ON Oe ON De OY AD ee OND
CF mt | em em Ed rem em | Ed mm EO) rd et] 0] rm em] red et | OF ro rf OF rt eri JO vm ret | Oe cmdit malian dla gto Sgm Clg mai mmm
FoF wai oF wnlef oF nie oer ns sr wnisr SF waist SF owe og wee own onder on ob Gh Golioh Oh OOloo oh Geich 00 o0|on of cooled oo oelnh oo ooo 00 sooo oo wooo 0 solos WL wo o |g OE <Q
Zz |F ZF = fm A. Ey Fa Bu Li [= [~ -f -, 1, -, - «0 1, ! -} Pu Fu - o A Ae Bm Oo A Bm o «, - - I « a « == - -, — £ i. ol i. 3 2 . - » OE EOE IE EE |E % TB Po) Bh oh 20 20 =) = = = ol = = = = ~
Oo oJ “
WO en cifoy 00 voile = io 1 fey infos wo [el el Dect enfos ot THAR ojo n = Ng enn] Dg opi Se CQ ee nT 2 wo Ca sent em Sm En mm lS SSS DS SEE afd dei wn FINE Se — ~ cio ome ole 2 ie oo alo vn unlo w ofc Wt wie TF Ti cee
Ne Wiles HOC NG NOL oo] SR RS Se Oy nfs al lan Sy ie Ng SC)
SO Sir Om = Ohm OO SOS Sen el mae en =e cl SS oo ©
Sn mien ing elma old 0 REC HE 6 cer ci n[Q I 0 ee Sle om
SE Ken of FR Dis of wf SO DS Si im eiled of ll Den A SD ro Det ee et OO) CD em ee] ed el lf = wy Wy Cie oe eee | TD ee nO i000 Ni 00 —i— oy wild LL on|FE DF on olen oofen = a! FON Wig ee CD IA nT © Con Oy To)
OOO = re 0) Ort et Dis = oes ory ory r= re = = PC Co wore ao oa — NI HEIRS Ran ale =a TERR
TROL en oN ok ne SIE SSE © ned 5 wi] Hed m=
Qo Olen wt oo
LER nBFE Erne sn In maa iE Sala nl
Sood glow BS STS a Al mG SSS ey EOE TF On
ARR —ela rm m= = BTR Beh Fao ER
Co lel ei miei en nS 2 2 CS Che TL JS wo) Cen wf end oo coo oS o Ce ee sao = oo oy
Fe © oo (Ilo t= its Oo nj + =| I elo a on — 00 wn TG en
D0 0 I Ten © AD © nile on ovo on HT NS
XAT = NDT Ear on |S SDSS Ol of ihr om al TS] on TD
CSO Crt mm fd NS = HD SS So + fF El S OS — ON De ON Om ON AS OV Ort OF Ot OO ON |= Oy De OO] Oy De
CF Fm i] Om rr OF rt rf OF om mf OF mm [OF rd rt LO re wl] ON rt et LO] rm med OF set et | OF cmd alamadm lmao mala mgm i Oa Cio
OF 50 i108 00 +100 G6 {00 00 00 00 | 00 OO [U0 00 m106 00 08 00 {D0 90 —log 0
FF nT Fn Tong Foal SF nT Fn TF ond TF ont oF wf wit = = Z = = z aa 1») Aa Au o a o fu o fo « = - = -, = = x He -, — a] pore] — £ © E E ~ “&n & En h = = = = = = — i < ot = - he « — — x . 3 5 ° . o & = cto os £ = gz = oO Wl oO aE fr jan} tr ery] On ed + cron =X Do — now nn Cl Ben 0D Talon o 0a Ty en = NOC Dior oq =p NEN MY wp Sey OY] Tay «|e wi NS 3 NTF OS S| Seif dT wren on TE Sr
E own wn wo = — on om RR Tle ely ow onic lon 0 Qi I er on
Oy Oy = SE oo®D 8 EN XM we ag Tio Oo I nD eiled oon = 7 Cl Ol 5 emi FS Se ei 00 OV en en od
I C5 al ol 90 Dig ve mhin i ctlen SF lon me ed TD ei] im 0 ole on 2 £8 SOE RT eno go oid mn hog wu Wu nS ET Pla of 9 Or ON THON OL Og MO on
Sen oo = O85 glare 22 alow elm x = low olf & fe =
Ses Oo 2 E See nT DH = lew Of mm A =D Toye eden en en PESO oR mm © 00 ON OHO ee OT Ten on om ole © 5 — an DC He VD nl od eT ees TD sr on
SDSS s + Oo TN Ela wis eo? Anjan dni Tals ©
Glos © © = FO iS es SI Deel DR lr oF en DG oO ole oo = —a RG Flow nleoe gsivogiaa gion nln
LED 2 = WONT OYE SL on DED 00 Gy vy oy on I] © OSG oiled er 2 DS Ses DD DC Or me P00 HO
Wen ea WO WIm nN Te wlan ole © we oliel oo nie o ol sf wn = Dow CU Ll SM BSE Een wn OND I Ine of SEO © po | ns v1 Se Sl es SSP OD Dn SS SINT | D
QQ oo = —t ry GE Wy Tf eles wn = en wn cto lO oN nicl 12 doy en xr iz Ww
Aen en g NT CEST SNS ASB nin own Tole en | =f = wt = CEO Om oo S| I Ci mm dO Ten COL OL 0 on
Or ono wr —On AD] Gh AD Oy Oe ON Sm Of on Cle oO wt | 0) — A] CF ore et] et ee LO] emt eed ON) or emt OS] em ed LON) pe eet 0] mo = ON] ee = .
I
= <a i mC DC RC CM = Zn TF nT TF nis TF nF wn of wn OF nf Fw sr
RE LE & ob 00 aolen oo selon oo solo oO cojoh oo wo|oD G0 LOC OC olen WO ojo oo wo) [4
LE
@ @ - £2 » Pe ~ A . a o~ = -< = Lo -, W 1, 7 a pr pu ~ an ~ kL 2 pe o EH ” ‘ y a > 2 56 oh oh oh oh zl) oh oh : gE O|E (2 (EB |B EE 2 Su — _— — = — pt § rd =
E = E E E T E E E g = ~ =n BE EE) 5h 5 2h 8h &
Ft = t= = © = aed = £3 st A He += * + ko ¥* = 2 = = = ol x = = = - w W Ww w = w ow oa wn wn = & oS © 2S = 2 zg 8 2 2 a = HE 3 7
Eo m8 [= = s = = oo 8 |< & O wo = le ft fo» —
Tm” eo nent =o on soit [= nr Es neh ne I nfo
TIC WO Fire pe Of VY N23 G0 Dye Nf ee fC CO mC Dy ONY 0 [SE ony Gh ND nn iW wy Mc] en ee] = OO Or ee tf or ri 0) TE = ee ei ee | 0 TE pet] ee emt =O)
SRIND eo] wD ok En wn ey C0 SEO Cd ND |W — I OS CE WT eR D0 Che OD NDT Uy
Dei <f Bled 08 ov FT ®RST GIN I Oe Bin AR RA Ty A © SS Te x
Clon on Clee m= =i 0d 0 OOO OIE OD OS Oi Cd 0 DD Dem ON ef DD Ofer oe
CNG OD uri om O00 ND NCD OO vy oni = COC OO en 0G ND wn em ny Wey ON =| CD CD ed em enw in og] GF 02 HICH Th 0IO 0 CHOY OY QJ 00 Dye of CHC Dy jn = Se “HI uy De) ON en mE oe OD om ODD en Tm ried ed et [OF OF) ee pes me 0) rye OO MDT Tie own Clee ey DW CD 00 C8 ONVND on HO ND iE ND ONE ND DE
Ne mo eT ONS SE NDE Oy Dey Tr Dy mr en Oy Sen ND HY me 0 ery |= wt onic] OF Olen on =i OO OHO DO OS OO Or] of reer OD =O ON em [em em en OO — {oO ] Dr m= mr Oo Dm CO eon G0 WN 00 ND ORE CO NDC DD O00 0 GO en Cl
D| = 08 len wy wn CL SQW en SE Py on | OF OND SF [00 CO NO JOY Vy e000 00100 OY
WB ND Cen or on |W Te ee eed rt be peed pe pet ee emp NO ON OC] er [0 ND Or ON] ee poy ite oF Se on ON G0 |e G0 ener Ds Of— oF SOON 00 HOC 0 OF 00 I en WY en Ion I
OM ed any =tlf mw FS Maen md SET NS nen 0 END © OY [I ND oof en ND OQ ah OG Tefen =F ee CL Ce = led ODD OD CD OO Ol Ct] OOD OO Dre DED QD CD] re pe ent on mm en TE MD Che © ee IO ND R00 © CHOY r= To | Oro CTE ON (pees Wy ON Od lem — =| Hoo oh Aten A OYA A Olen OHS oF SEE a effi en en on ADS 00
Slr FH No Solo o oles Sic oo —ooocio mojo @ ew — oo clit ow SEN Oh CON — nn Ooo 00 Die em Of ee hE ND en | 00 ed Ol on NDE Oh
Tg wn Sed od | 01 OFT 0 [00 C3 SHBG 00 Oy rr I THe] md ND 0) ME en) Sen NO erie =F owed 0d ellen mr oe |S Do OD ee OED CD 00 00 rem ee em POE ON eter ee | ON) 0] etn] em a eo met et | ©) = rm | OF re mf Ort et | 0d em leg Se eS ed od Re 0d | 8 lM wl gl <i ml Die | CC wt | G0 OHS m=] OO HS em 00 0 m0 G0 00 0 G0 U0 D0 GO ee 00 00 em | G0 D0 00 D0 ee] 00 D0 wim wb owner ow una st wii SF wnt Towne ot oni =E oun ost un =F sk owner = wii er er sooo of Solon of Solon SO Solos OD S0lo0 OO Ol eD 00 T0lo0 OU oo oD OO GOS G0 OU on D0 QDo0 00
Am Pe fm Ay Ru Bu , QO « Oo « O « oO <
A TZ Ay T a = A od & i &~ - RX -< - - of) of & = af} fy oh oh an oh on ah oh = = E E £ = & EB g E = — = tm ~—. — ~~ 3 ~ I ~ a = a = bord —_] pr] — sd £ E E E E E g E E
Ef} of ~ rn or B= = = = & £1 5h 3h &h 5h on £0) Eh * # = © o oh = = fa! «= ol £2 SLI ww a @ a 2 Z Z 2 2 = 2 ~ @ 8 2 = & 3 a 2 a © C 5 CO C O = O -
— | SS ef my OER en Th eyo
Cot Ne Me Ne 00D Wh eg SE 00 S000 lr eee ee fn] ret me = UY ND NF —t et
ClO I~ Oecd vy CD Sh eel a ON Oh vn
TAS Sm Rm © Sf =A = = —] ret — mm ed eed ed [eed et rd LF 0) et |r pee pe
SCING TOY CO] ND AGI AD ONS Ne pom {pt re pe dower FF ped oper per ped ORT 3) peed ome pee pe liu = mr oe PD De 00 ND ee mE ee OO
CAO OY ee NE ON or GIN mr SL en en
COITF em r= {QO RE SFM WD on | 00 OO NGF OF ony
EY AY 9008 NO Ol ND er G0 ST GY
Cf wet = mt FO 00 Ce ee CFD OO OF fee O10 m=O 0 NOD et PD = NS ND ND Den NDT
RD 00 BH 6 KIS 6 GA = GD Sy Oy
Com © OAS ODD OD Oil on Ope OO
Wilh ND SH G0 Oh Opp mb on Ds DI SE on
HA A AYR © Flor AO mS a mies oo
Sr © Dp OO OOD OD Oe em DC OO ™~ oC
Noe mr SAD sf eC 00 een — GHD OO I
WIPE 00 on OY SP Of |e Oy No JVY EE
SO et On NG eee ON ND et ON ND ed ON ND em ON ND ef FL) per em Of ord em iO] el = LO] ee et [Need ees <|<C OQ Ci Maia |g m gia mo ipsr Tr war SE ounidsk oF uni TT owner TF un
CLEO0 G0 D000 CO GOGO OO SDIo0 OO OOO O00 OD = . Rg : 2 8 FE & « . & 2 on 20 Lb
E JE |E |E |& wd pond — = —
EOE OIE OEE sh oh oly £h £5 pa: = oi = = 2 2 2 2 2 a 5 £5 I]
O £ =
Tn certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma profile characterized by a
Cmax for hydrocodone from about 0.6 ng/mL/mg to about 1.4 ng/mL/mg and a Cmax for acetaminophen from about 2.8 ng/mL/mg and 7.9 ng/mL/mg after a single dose. In another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/mI./mg and a Cmax for acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/mL/mg after a single dose. In yet another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of from about 0.6 ng/mL/mg to about 1.0 ng/mL/mg and a Cmax for acetaminophen of from about 3.0 ng/mL/mg to about 5.2 ng/mL/mg after a single dose. Other embodiments of the dosage form include about 5-20 mg of hydrocodone bitartrate pentahemihydrate and about 400-600 mg of acetaminophen. Yet another embodiment of the dosage form includes 10-15 mg of hydrocodone bitartrate pentahemihydrate and about 500-600 mg of acetaminophen.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 135 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. When administered to the human patient, the dosage form produces an AUC for hydrocodone of about 9.1 ng*hr/mL/mg to about 19.9 ng*hr/mL/mg and an AUC for acetaminophen of about 28.6 ng*hu/mL/mg to about 59.1 ng*hr/mL/mg. In another embodiment, the dosage form produces an AUC for hydrocodone of about 7.0 ng*hr/mL/mg to about 26.2 pg*hy/mL/mg and an AUC for acetaminophen of about 18.4 ng*hr/mL/mg to about 79.9 ngth/mL/mg. In yet another embodiment, the dosage form produces an AUC for hydrocodone of about 11.3 ng*hi/mL/mg to about 18.7 ng*hr/mL/mg and an AUC for acetaminophen of about 28.7 ng*hr/mL/my to about 53.5 ng*hr/ml/mg. Preferably in this embodiment, the in vitro rate of release of the pharmaceutical composition has a biphasic release profile, and wherein for cach phase of the in vitro rate of release 1s zero order or first order for acetaminophen and zero order or first order for hydrocodone bitartrate pentahemihydrate.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour {C1 for hydrocodone of about 0.18 ng/mE/mg to about 1.51 ng/mL/mg, and a plasma concentration at 1 hour C1 for acetaminophen of about 2.34 ng/mBL/mg to about 7.24 ng/mi./mg.
In preferred embodiments such as Formulation 15, the dosage form produces a C1 for hydrocodone of about 0.32 ng/mE/mg to about 1.51 ng/mL/mg and a C1 for acetaminophen of about 2.34 ng/mL/mg to about 5.50 ng/mL/mg.
In certain other embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 13 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour (C1) for hydrocodone from about 0.30 ng/ml./mg to about 1.06 ng/ml/mg, and a Cl for acetaminophen from about 2.75 ng/mbL/mg to about 5.57 ng/mL/mg. in preferred embodiments, the dosage from produces a Ct for hydrocodone from about 6.45 ng/mb/mg to about 1.06 ng/mL/mg and a C1 for acetaminophen from about 2.75 ng/ml./mg to about 4.43 ng/mL/mg.
In certain embodiments, the dosage form produces a combined C1 for hydrocodone and acctaminophen from about 1.18 ug/ml to about 3.63 ng/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined C1 for hydrocodone and acetaminaphen from about 1.18 ug/ml. to about 2.76 pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 300 mg of acetaminophen.
In certain embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen from about 1.38 pg/mL to about 2.79 ng/mL, after a single dose of 15 mg hydrocodone bitartrate pentahemihiydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined C1 for hydrocodone and acetaminophen from about 1.38 ug/mL to about 2.23 pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentshemihydrate and 500 mg of acetaminophen.
In preferred embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen of 1.80 + 0.42 pg/ml with the 95% confidence interval for the mean value falling between about 1.61 pg/ml. to about 2.00 ug/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. The 95% confidence interval of combined C1 for hydrocodone and acetaminophen for the preferred embodiments and the Control overlapped. The 95% confidence interval for the mean value of combined Ci for hydrocodone and acetaminophen for the Contre! ranged from about 1.46 to 1.96 ug/ml, after administered as a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen to the human patient. The Control provides sufficient plasma levels of opioid and nonopioid analgesic to provide a reduction in pain intensity within about 1 hour after administration.
When administered to a population of healthy North Americans or Western Europeans, particularly when the formulation is adapted to be suitable for, or intended for, administration to a human every 12 hours as needed, about 20-45% of the hydrocodone is released in vitro from the pharmaceutical compositions in about Thour and about 20-45% of the acetaminophen is released in vitro from the pharmaceutical compositions in about lhour in 0.01 N HCI at 50 rpm at 37 °C. In another embodiment, about 25-35% of the hydrocodone is released in vitro from the pharmaceutical compositions in about hour and about 25-35% of the acetaminophen 1s released in vitro from the pharmaceutical compositions in about Thour in 0.01 N HCI at 50 rpm at 37 °C.
Further, in another embodiment, at least 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 12 hours and at least 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours fo about 8.5 hours. In another embodiment, at least 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 11 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 8 hours to about 11 hours, In another embodiment, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 9 hours to about 12 hours and at least 95% of the acetaminophen is relcased in vitro from the pharmaceutical compositions in about 9 hours to about 12 hours. Yet in another embodiment, at least 95% is of the hydrocodone is released from the pharmaceutical composition in about 10 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours. In another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about 1 1hours to about 12 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours. ln yet another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 13 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 13 hours,
However, when the a slow-release version of the formulation is adapted to be suitable for, or intended for administration to a human, twice daily, as needed, then at least 90% of the hydrocodone is released from the pharmaceutical composition in about 18 hours fo about 23 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 18 hours to about 23 hours, In another embodiment of the slow release formulation, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 20 hours to about 25 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours. In another embodiment of the slow release formulation, at least 95% is of the hydrocodone is released from the pharmaceutical composition in about 21 hours to about 22 hours and at feast 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours fo about 22 hours. In another embodiment of this slow release embodiment, at feast 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 22 hours to about 26 hours. In yet another embodiment of the slow release formulation, at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 27 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 27 hours.
In a preferred embodiment, the present invention provides a composition where the core layer comprises an excipient or a mixture of excipients capable of controlling the drug relcase and the non-core layer comprises an excipient capable of instantly releasing the drog. Further, in a preferred embodiment, the core layer is manufactured by melt-extrusion followed by direct shaping of the drug-containing melt and the non-core layer is spray coated over the core layer.
Most preferably, the composition comprises about 500mg of acetaminophen and about 15 mg of hydrocodone bitartrate pentahemihydrate. In another embodiment, the non-core layer, or the tablet fayering may be prepared by another methodology. In this methodology the film-coating layer is separately manufactured by extrusion and the extrudate is shaped into a foil. This foil is introduced into the calendar during manufacturing of the cores. This method is especially suitable for thick layers (saving long spray-coating time} and is a solveni-free process. This technology is also known as the Xellex technology.
In another exemplary embodiment, the present invention provides a pharmaceutical composition having a core and a non-core layer, comprising: (a) an abuse-rclevant drug, a pharmaceutically acceptable salt or a hydrate thereof and a non-abuse-relevant drug or a pharmaceutically acceptable salt thereof in the core layer, and (b) a non-abuse-relevant drug, a pharmaceutically acceptable salt or a hydrate thereof in the non-core layer. Preferably, this composition is characterized by at least one of the following features: i) the amount of abuse-relevint drug that is extracted from the composition by 40% aqueous ethanol within one hour at 37 °C in vitro is less than or equal 1.5 times the amount of the abuse- relevant drug that is extracted by 0.01 N hydrochloric acid m vitro within one hour at 37 °C, i1) the composition does not break under a force of 150 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably 500 newtons as measured by “Pharma Test PTB 501” hardness tester, iii) the composition releases at least 20% of the abuse-relevant drug and not more than 45% of the abuse-relevant drug during the first hour of in vitro dissolution testing and preferably also during the first hour of in vivo testing, iv) the composition releases a therapeutically effective dose of the non-abuse reievant drug within 1 to 2 hours after a single dose, v) the composition releases a therapeutically effective dose of the non-abuse relevant drug and/or the abuse~relevant drug at 1 hour and at 12 hours after a single dose, vi) in the composition, release of the abuse-relevant drug upon grinding increases by less than 2- to 3-fold, as compared to an intact tablet, when the composition is ground for 1 minute by a coffee-grinder at 20,000 - 50,000 rpm, in 40% aqueous ethanol for 1 hour at 37°C, vii) the composition when ground comprises a particulate size of about 2 em to about 355 micrometer for about 20% of the fraction, greater than about 63 microns and less than about 3535 microns for about 66% of the fraction and less than about 63 microns for about 14% of the fraction, as measured by a sieving test, or viii) the composition is substantially smooth, wherein the Centre Line Average (CLA) is from about 0.1 to about 0.6, preferably from about 0.1 to about 0.4, and most preferably from about 0.1toabout 0.2. [nn this composition, the amount of the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethanol within one hour at 37 °C 18 about 70% to about 130% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C. in another embodiment, the amount of the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethanol within one hour at 37 °C is about 70% to about 90% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C. In yet another embodiment, the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethanol within one hour at 37 °C is about 75% to about 90% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C.
Another embodiment of the present invention provides a pharmaceutical composition having a core layer and a non-core layer. In this composition the core layer comprises a mixture of: {a} at least one opioid; and (b) at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof. The non-core layer comprises at least one non-opioid analgesic, Further, these compositions are adapted so as to be useful for oral administration to a human 3, 2, or 1 times daily. Preferably, the core layer further comprises at least onc non-opioid analgesic. In a preferred embodiment, the composition is characterized by at least onc of the following features: i} the amount of abuse-relevant drug that is extracted from the composition by 40% aqueous ethanol within one hour at 37 °C in vitro is less than or equal 1.5 times the amount of the abuse- relevant drug that is extracted by 0.01 N hydrochloric acid in vitro within one hour at 37 °C, if) the composition does not break under a force of 150 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably S00 newtons as measured by “Pharma Test PTB 501” hardness tester, iti) the composition releases at least 20% of the abuse-relevant drug and not more than 45% of the abuse-relevant drug during the first hour of in vitro dissolution testing and preferably also during the first hour of in vivo testing,
iv) the composition releases a therapeutically effective dose of the non-abuse relevant drug within | to 2 hours after a single dose, v) the composition releases a therapeutically effective dose of the non-abuse relevant drug and/or the abuse—relevant drug at 1 hour and at 12 hours after a single dose, vi) in the composition, release of the abuse-relevant drug upon grinding increases by less than 2- to 3-fold, as compared to an intact tablet, when the composition is ground for | minute by a coffee-grinder at 20,000 - 50,000 rpm, in 40% aqueous ethanol for 1 hour at 37°C, vii) the composition when ground comprises a particulate size of about 2 cm to about 355 micrometer for about 20% of the fraction, greater than about 63 microns and less than about 355 microns for about 66% of the fraction and less than about 63 microns for about 14% of the fraction, as measured by a sieving test, or viii) the composition is substantially smooth, wherein the Centre Line Average (CLA) is from abou 0.1 to about 0.6, preferably from about 0.1 to about 0.4, and most preferably from about 0.1 to about 0.2.
In one embodiment, the opioid is selected from the group consisting of alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethobeptazine, ethylmethylthhambuiene, ethylmorphine, etonitazene, fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levallorphan, levophenacylmorphan, levorphanol, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbulphine, narceine, nicomorphine, norpipanonc, opium, oxycodone, oxymorphene, papvretum, pentazocine, phenadoxene, phenazocine, phenomorphan, phenoperidine, piminodine, propiram, propoxyphene, sufentanil, tilidine, and tramadol, and salts, hydrates and mixtures thereof.
Further, the non-opioid analgesic is selected from the group consisting of acetaminophen, aspirin, fentaynl, ibuprofen, indomethacin, ketorolac, naproxen, phenacetin, piroxicam, sufentanyl, sunlindac, interferon alpha, and salts, hydrates and mixtures thereof. Preferably, the opioid is hydrocodone and the non-opioid analgesic is acetaminophen or ibuprofen. More preferably, the opioid is hydrocodone and the non-opioid analgesic is acetammophen.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour (C1) for hydrocodone of about 0.18 ng/mi./mg to about 1.51 ng/mL/mg, and a plasma concentration at 1 hour C1 for acetaminophen of about 2.34 ng/mL/mg to about 7.24 ng/mbL/mg.
In preferred embodiments such as Formulation 15, the dosage form produces a C1 for hydrocodone of about 0.32 ng/mL/mg to about 1.51 ng/mL/mg and a C! for acetaminophen of about 2.34 ng/mL/mg to about 5.50 ng/ml/mg,
In certain other embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour (C1) for hydrocodone from about 0.30 ng/ml./mg to about 1.06 ng/mL/mg, and a CI for acetaminophen from about 2.75 ng/mL/mg to about 5.57 ng/mL/mg. In preferred embodiments, the dosage from produces a Cl for hydrocodone from about 0.45 ng/mL/mg to about 1.06 ng/mL/mg and a C1 for acetaminophen from about 2.75 ng/mL/mg to about 4.43 ng/mL/mg.
In certain embodiments, the dosage form produces a combined Ci for hydrocodone and acetaminophen from about 1.18 pg/mL to about 3.63 pg/mL, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined Cl for hydrocodone and acetaminophen from about 1.18 ng/ml to about 2.76 pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentshemihydrate and 500 mg of acetaminophen.
In certain embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen from about 1.38 pg/mL to about 2.7% pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined C1 for hydrocodone and acetaminophen from about 1.38 pg/mL to about 2.23 pg/mL, afler a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. :
In preferred embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen of 1.80 + 0.42 ug/mL with the 95% confidence interval for the mean value falling between about 1.61 pg/mL to about 2.00 ng/mL, after a single dose of 15 mg hydrocodone bitartrate pentahemthydrate and 500 mg of acetaminophen. The 95% confidence interval of combined C1 for hydrocodone and acctaminophen for the preferred embodiments and the Control overlapped. The 95% confidence interval for the mean value of combined C1 for hydrocodone and acetaminophen for the Control ranged from about 1.46 to 1.96 ug/ml, after administered as a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen to the human patient. The Control provides sufficient plasma levels of opioid and nonopioid analgesic to provide a reduction in pain intensity within about I hour after administration.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma profile characterized by a
Cmax for hydrocodone from about 0.6 ng/mL/mg to about 1.4 ng/mL/mg and a Cmax for acetaminophen from about 2.8 ng/mL/mg and 7.9 ng/mL/mg after a single dose. In another cmbodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/ml./mg and a Cmax {or acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/mi/mg after a single dose. In yet another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of from about 0.6 ng/mL/mg to about 1.0 ng/mL/mg and a Cmax for acetaminophen of from about 3.0 ng/mL/mg to about 5.2 ng/mL/mg after a single dose.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemibydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. When administered {o the human patient, the dosage form produces an AUC for hydrocodone of about 9.1 ng*hr/mL/mg to about 19.9 ng*hr/mL/mg and an AUC for acetaminophen of about 28.6 ng*hi/mlL/mg to about 59.1 ng*hr/mL/mg. In another embodiment, the dosage form produces an AUC for hydrocodone of about 7.0 ng*hr/mL/mg to about 26.2 ng*hr/mb/mg and an AUC for acetaminophen of about 18.4 ng*hr/ml/mg to about 79.9 ng*hr/mL/mg. In yet another embodiment, the dosage form produces an AUC for hydrocodone of about 11.3 ng*hr/mL/mg to about 18.7 ng*hr/mEL/mg and an AUC for acetaminophen of about 28.7 ng*hr/mL/mg to about 53.5 ng*hr/mL/mg, Preferably in this embodiment, the in vitro rate of release of the pharmaceutical composition has a biphasic release profile, and wherein for each phase of the in vitro rate of reicase is zero order or first order for acetaminophen and zero order or first order for hydrocodone.
When administered to a population of healthy North Americans or Western Europeans, particularly when the formulation is adapted to be suitable for, or intended for, administration to a human every 12 hours as needed, about 20-45% of the hydrocodone is released in vitro from the pharmaceutical compositions in about Thour and about 20-45% of the acetaminophen is released in vitro from the pharmaceutical compositions in about Thour in 0.01 N HCI at 50 rpm at 37 °C. In another embodiment, about 25-35% of the hydrocodone is released in vitro from the pharmaceutical compositions in about Thour and about 25-35% of the acetaminophen is released in vitro from the pharmaceutical compositions in about Thour in 0.01 N HCI at 50 rpm at 37 °C.
Further, in another embodiment, at least 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 12 hours and at least 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours to about 8.5 hours. In another embodiment, at least 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 11 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 8 hours to about 11 hours. In another embodiment, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 9 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 9 hours fo about 12 hours. Yet in another embodiment, at {cast 95% is of the hydrocodone is released from the pharmaceutical composition in about 10 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours. In another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about 11hours to about 12 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours, In yet another embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 13 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 13 hours,
However, when the a slow-release version of the formulation is adapted to be suitable for, or intended for administration to a human, twice daily, as needed, then at least 90% of the hydrocodone is released from the pharmaceulical composition in about 18 hours to about 23 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 18 hours to about 23 hours. In another embodiment of the slow release formulation, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 20 hours to about 25 hours and at cast 95% of the acetaminophen 1s released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours. In another embodiment of the slow release formulation, at least 95% is of the hydrocodone 1s released from the pharmaceutical composition in about 21 hours to about 22 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours to about 22 hours. In another embodiment of this slow release embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 22 hours to about 26 hours. In yet another embodiment of the slow release formulation, at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 27 hours and at least 99% of the acetaminophen is released m vitro from the pharmaceutical compositions in less than about 27 hours.
In a preferred embodiment, the present invention provides a composition where the core layer comprises an excipient capable of controlling the diug release and the non-core layer comprises an excipient capable of instantly releasing the drug. Further, in a preferred embodiment, the core layer is manufactured by melt-extrusion followed by direct shaping of the drug-containing melt and the non-core layer 1s spray coated over the core layer. Most preferably, the composition comprises about 500mg of acetaminophen and about 15 mg of hydrocodone bitartrate pentahemihydrate.
In another embodiment, the present invention provides a pharmaceutical composition having a core layer and a non-core layer. In this composition, the core layer comprises a mixture of (a) at least onc opioid and at cast one first non-opioid analgesic; (b) at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof. The non-core layer comprises at least one second non-opioid analgesic. Further, the composition is adapted so as to be useful for oral administration to a human 3, 2, or ! times daily. In this embodiment, preferably, the opioid comprises hydrocodone and the first and the second non-opioid analgesic comprises acetaminophen or ibuprofen. More preferably, the opioid comprises hydrocodone and the first and the second non-opioid analgesic comprises acetaminophen. Further, in this embodiment, the non-core layer comprises: (a) acctaminophen; and (b) at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof. Preferably, the polymer or copolymer is selected from the group consisting of: hydroxypropyl cellulose, hydroxypropyl methyleeltulose, hydroxyethyl cellulose; polymethacrylate, polyvinyl alcohol, polyethylene oxide, and combinations thereof. More preferably, the polymer or copolymer is selected from the group consisting of: hydroxypropyl methylceliulose, and polyvinyl alcohol, or combinations thereof. Yet more preferably, the polymer or copolymer is selected from the group consisting of: polyvinyl alcohol and polyethylene oxide graft copolymers. Further, in this embodiment, the ratio of acetaminophen to the rate controlling polymer or copolymer or combination thereof is about 1:1 to about 10:1. More preferably, the ratio of acetaminophen to the rate controlling polymer or copolymer or combination thereof is about 3:1 to about 5:1. As provided in the present invention, in one preferred embodiment, the non-core layer has at least one of the following characteristics: {a} substantially does not crack after 3 months at 40°C, 75% relative humidity in induction- scaled HDPE bottles, (b) substantially dry (not sticky); provides fast dissolution in 0.01N HCI at 37°C to expose the core fayer releases at least 80% of the acetaminophen in the non-core layer within 20 minutes of administration to a human patient; or (e) provides a white pigmentation to the formulation without additional pigments.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour (C1) for hydrocodone of about 0.18 ng/mL/mg to about 1.51 ng/ml/mg, and a plasma concentration at 1 hour C1 for acetaminophen of about 2.34 ng/mL/mg to about 7.24 ng/ml./mg.
In preferred embodiments such as Formulation 15, the dosage form produces a C1 for hydrocodone of about 0.32 ng/mL/mg to about 1.51 ng/mL/mg and a C1 for acetaminophen of about 2.34 ng/mL/mg to about 5.50 ng/mL/mg.
In certain other embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 my hydrocodone bitartrate pentahemihydrate and about 300 mg of acetaminophen, administered to the patient, when fasting. Preferably when administered to a human patient the pharmaceutical composition produces a plasma concentration at 1 hour (C1) for hydrocodone from about 0.30 ng/mlL/mg to about 1.06 ng/mL/mg, and a C1 for acetaminophen from about 2.75 ng/mL/mg to about 5.57 ng/mL/mg. In preferred embodiments, the dosage from produces a C1 for hydrocodone from about 0.45 ng/mL/mg to about 1.06 ng/mL/mg and a C1 for acetaminophen from about 2.75 ng/mL/mg to about 4.43 ng/mL/mg.
In certain embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen from about 1.18 pg/ml. to about 3.63 ug/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined C1 for hydrocodone and acetaminophen from about 1.18 ug/mi. to about 2.76 pg/mL, after a single dose of 15 mg hydrocodone bitartrate pentahemilydrate and 500 mg of acetaminophen.
In certain embodiments, the dosage form produces a combined Cl for hydrocodone and acetaminophen from about 1.38 ng/mL to about 2.79 ug/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemiliydrate and 500 mg of acetaminophen. In preferred embodiments, the dosage from produces a combined Cl for hydrocodone and acetaminophen from about 1.38 ug/ml. to about 2.23 pg/ml, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 300 mg of acetaminophen.
In preferred embodiments, the dosage form produces a combined C1 for hydrocodone and acetaminophen of 1.80 + 0.42 ug/mL with the 95% confidence interval for the mean value falling between about 1.61 pg/mL to about 2.00 pg/mL, after a single dose of 15 mg hydrocodone bitartrate pentahemihydrate and 500 mg of acetaminophen. The 95% confidence interval of combined Cl for hydrocodone and acetaminophen for the preferred embodiments and the Control overlapped. The 95% confidence interval for the mean value of combined C1 for hydrocodone and acetaminophen for the Control ranged from about 1.46 to 1.96 ug/ml, after administered as a single dose of 15 mg hydrocodone bitartrate pentahemibydrate and 500 mg of acetaminophen to the human patient. The Control provides sufficient plasma levels of opioid and nonopioid analgesic to provide a reduction in pain intensity within about 1 hour after administration.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting, Preferably when administered to a human patient the pharmaceutical composition produces a plasma profile characterized by a
Cmax for hydrocodone from about 0.6 ng/mL/mg to about 1.4 ng/mL/mg and a Cmax for acetaminophen from about 2.8 ng/mL/mg and 7.9 ng/mL/mg after a single dose. In another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/mL/mg and a Cmax for acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/mL/mg after a single dose. In yet another embodiment, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of from about 0.6 ng/mL/mg to about 1.0 ng/mL/mg and a Cmax for acetaminophen of from about 3.0 ng/mL/mg to about 5.2 ng/mL/mg after a single dose.
In certain embodiments, the following pharmacokinetic profile is preferably exhibited when the single dose comprises about 15 mg of hydrocodone bitartrate pentahemihydrate and about 500 mg of acetaminophen, administered to the patient, when fasting. When administered to the human patient, the dosage form produces an AUC for hydrocodone of about 9.1 ng*hr/mL/mg to about 19.9 ng*hr/mlL/mg and an AUC for acetaminophen of about 28.6 ng*he/mlL/mg to about 59.1 ng*hr/mL/mg. In another embodiment, the dosage form produces an AUC for hydrocodone of about 7.0 ng*hr/mIL/mg to about 26.2 ng*hr/mL/mg and an AUC for acetaminophen of about 18.4 ng*hr/mL/mg to about 79.9 ng*he/mL/mg. In yet another embodiment, the dosage form produces an AUC for hydrocodone of about 11.3 ng*hr/mL/mg to about 18.7 ng*hr/mL/myg and an AUC for acetaminophen of about 28.7 ng*hr/mL/mg to about 53.5 ng*hr/mL/mg. Preferably in this embodiment, the in vitro rate of release of the pharmaceutical composition has a biphasic release profile, and wherein for each phase of the in vitro rate of release is zero order or first order for acetaminophen and zero order or first order for hydrocodone.
When administered to a population of healthy North Americans or Western Europeans, particularly when the formulation is adapted to be suitable for, or intended for, administration to a human every 12 hours as needed, about 20-45% of the hydrocodone is released in vitro from the pharmaceutical compositions in about lhour and about 20-45% of the acetaminophen is reieased in vitro from the pharmaceutical compositions in about hour in 0.01 N HCI at 50 rpm at 37 °C. In another embodiment, about 25-35% of the hydrocodone is released in vitro from the pharmaceutical compositions in about lhour and about 25-35% of the acetaminophen is released in vitro from the pharmaceutical compositions in about thour in 0.01 N HCI at 50 rpm at 37 °C.
Further, in another ermbodiment, at least 90% of the hydrocodone 1s released from the pharmaceutical composition in about 8 hours to about 12 hours and at least 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours to about 8.5 hours. Iu another embodiment, at least 90% of the hydrocodone is released from the pharmaceutical composition in about § hours to about 11 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about § hours to about | 1 hours. In another embodiment, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 9 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 9 hours to about 12 hours. Yet in another embodiment, at least 95% is of the hydrocodone is released from the pharmaceutical composition ins about 10 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours. In another embodiment, at least 99% of the hydrocodone is refeased from the pharmaceutical composition in about 11hours to about 12 hours and at feast 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours. In yet another embodiment, at feast 99% of the hydrocodone is released from the pharmaceutical composition in less than about 13 hours and at least 99% of the gcctaminophen 1s released in vitro from the pharmaceutical compositions in less than about 13 hours.
However, when the a slow-release version of the formulation is adapted to be suitable for, or intended for administration to a human, twice daily, as needed, then at feast 90% of the hydrocodone is released from the pharmaceutical composition in about 18 hours to about 23 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 18 hours to about 23 hours. In another embodiment of the slow release formulation, at least 95% of the hydrocodone is released from the pharmaceutical composition in about 20 hours to about 25 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours. In another embodiment of the slow release formulation, at least 95% is of the hydrocodone is released from the pharmaceutical composition in about 21 hours to about 22 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours to about 22 hours. In another embodiment of this slow release embodiment, at least 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 22 hours to about 26 hours. In yet another embodiment of the slow release formulation, at feast 99% of the hydrocodone is released from the pharmaceutical composition in less than about 27 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 27 hours.
In a preferred embodiment, the present invention provides a composition where the core layer comprises an excipient capable of controlling the drug release and the non-core layer comprises an excipient capable of instantly releasing the drug. Further, in a preferred embodiment, the core layer is manufactured by melt-extrusion followed by direct shaping of the drug-containing melt and the non-core layer is spray coated over {he core layer. Most preferably, the composition comprises about 500mg of acetaminophen and sbout 15 mg of hydrocodone bitartrate pentahemihydrate.
Ina preferred embodiment, the composition is characterized by at least one of the following features: 1} the amount of abuse-relevant drug that is extracted from the composition by 40% aqueous ethanol within one hour at 37 °C in vitro is less than or equal 1.5 times the amount of the : hydrocodone that is extracted by 0.01 N hydrochloric acid in vitro within one hour at 37 °C, ii) the composition does not break under a force of 150 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably 500 newtons as measured by “Pharma Test PTB 501" hardness tester, iif} the composition releases at least 20% of the hydrocodone and not more than 45% of the hydrocodone during the first hour of in vitro dissolution testing and preferably also during the first hour of in vivo testing,
iv) the composition releases a therapeutically effective dose of the acetaminophen within 1 to 2 hours after a single dose, v) the composition releases a therapeutically effective dose of the acetaminophen and/or the abuse-relevant drug at 1 hour and at 12 hours after a single dose, vi) in the composition, release of the hydrocodone upon grinding increases by less than 2- to 3- fold, as compared to an intact tablet, when the composition is ground for I minute by a coffee- grinder at 20,000 - 50,000 rpm, in 40% aqueous ethanol for 1 hour at 37°C, vii) the composition when ground comprises a particulate size of about 2 cm to about 355 micrometer for about 20% of the fraction, greater than about 63 microns and less than about 335 microns for about 66% of the fraction and less than about 63 microns for about 14% of the fraction, as measured by a sicving test, or viii) the composition is substantially smooth, wherein the Centre Line Average (CLA) 1s from about 0.1 to about 0.6, preferably from about 0.1 to about 0.4, and most preferably from about 0.1 to about 0.2.
The foregoing detailed description and accompanying examples arc merely illustrative and not intended as limitations upon the scope of the invention, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and are part of the present invention. Such changes and modifications, including without limitation those relating to the chemical structures, substituents, derivatives, intermediates, syntheses, formulations and/or methods of use of the invention, can be made without departing from the spirit and scope thereof,

Claims (1)

  1. WHAT IS CLAIMED 15:
    1. A pharmaceutical composition having a core and a non-core layer, Comprising: (a) hydrocodone, a pharmaceutically acceptable salt or a hydrate thereof, and (b} acetaminophen or ibuprofen, wherein at feast 75% all of the hydrocodone, pharmaceutically acceptable sait or hydrate thereof 1s in the core, wherein the acetaminophen or the ibuprofen is the non-core layer, and wherein the composition is adapted so as to be useful for oral administration to a human 3,2, or | times daily.
    2. The composition of claim I, wherein greater than 90% of the hydrocodone, pharmaceutically acceptable salt or hydrate thereof is in the core.
    3. The composition of claim I, wherein substantially all of the hydrocodone, pharmaceutically acceptable salt or hydrate thereof is in the core, 4, The composition of claim 1, further wherein the core further comprises acetaminophen.
    5. The composition of claim 1, further wherein the core further comprises acetaminophen or ibuprofen.
    6. The composition of any one of the claims | to 5, wherein when administered to the human patient the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone from about 0.6 ng/mL/mg to about 1.4 ng/mL/mg and a Cmax for acetaminophen from about 2.8 ng/mL/mg and 7.9 ng/mL/mg after a single dose. 7 The composition of any one of the claims 1 to 5, wherein when administered to the human patient, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/mL/mg and a Cmax for acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/ml/mg after a single dose.
    8. The composition of any one of the claims 1 to 5, wherein when administered to the human patient, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of from about 0.6 ng/ml/mg to about 1.0 ng/mL/mg and a Cmax for acetaminophen of from about 3.0 ng/mL/mg to about 5.2 ng/ml/mg after a single dose.
    9. The composition of any one of the claims 1 to 5, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodone of about 9.1 ng*hr/mL/mg to about 19.9 ng*hr/mb/mg and an AUC for acetaminophen of about 28.6 ng*hr/ml./mg to about 59.1 ng*hr/mL/mg,
    10. The composition of any onc of the claims 1 to 5, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodone of about 7.0 ng¥hr/mL/mg to about 26.2 ng*hr/mE/mg and an AUC for acetaminophen of about 18.4 ng*hr/mi/mg to about 79.9 ng*hry/miL/mg. 11 The composition of any one of the claims | to 5, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodone of about 11.3 ng*hr/mL./mg to about 18.7 ng*hr/mL/myg and an AUC for acetaminophen of about 28.7 ng*hr/mi./mg to about 53.5 ng*hr/mL/mg.
    12. The composition of any one of the claims | to 3, wherein the in vitro rate of release of the pharmaceutical composition has a biphasic release profile, and wherein for cach phase of the in vitro rate of release is zero order or first order for acetaminophen and zero order or first order for hydrocodone. 13, The composition of any one of the claims 1 to 3, wherein about 20-45% of the hydrocodone is released in vitro from the pharmaceutical compositions in about lhour and about
    20-45% of the acetaminophen is released in vitro from the pharmaceutical compositions in about Thour in 0.01 N HCH at 50 rpm at 37 °C. 14, The composition of any one of the claims 1 to 5, wherein about 25-35% of the hydrocodone is released in vitro from the pharmaceutical compositions in about hour and about 25-35% of the acetaminophen is released in vitro from the pharmaceutical compositions in about thour in 0.01 N HCI at 50 rpm at 37 °C.
    15. The composition of any one of the claims 1 to 5, wherein at least 90% of the hydrocodone is released from the pharmaceutical composition in about § hours to about 12 hours and at least 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours to about 8.5 hours. 16, The composition of any one of the claims 1 to 5, wherein at least 90% of the hydrocodone is released from the pharmaceutical composition in about 18 hours to about 23 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 18 hours to about 23 hours,
    17. The composition of any one of the claims 1 to 5, wherein at feast 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 11 hours and at least 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 8 hours to about 11 hours,
    18. The composition of any one of the claims 1 to 5, wherein at least 95% of the hydrocodone is released from the pharmaceutical composition in about 9 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 9 hours to about 12 hours.
    19. The composition of any one of the claims 1 to 5, wherein at feast 95% is of the hydrocodone is released from the pharmaceutical composition in about 10 hours to about 12 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours.
    20. The composition of any one of the claims 1 to 5, wherein at least 95% of the hydrocodone is released from the pharmaceutical compasition in about 20 hours to about 25 hours and at feast 95% of the acctaminophen is released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours. 21 The composition of any one of the claims 1 to 5, wherein at least 95% 1s of the hydrocodone is released from the pharmaceutical composition in about 21 hours to about 22 hours and at least 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours to about 22 hours,
    22. The composition of any one of the claims 1 to 5, wherein at {east 99% of the hydrocodone is released from the pharmaceutical composition in about 1 Thours to about 12 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours. 23, The composition of any one of the claims 1 to 5, wherein at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 13 hours and at least 99% of the acetaminophen is refeased in vitro from the pharmaceutical compositions in less than about 13 hours, 24, The composition of any one of the claims 1 to 5, wherein at least 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and at least 99% of the acetaminophen 1s released in vitro [rom the pharmaceutical compositions in about 22 hours fo about 26 hous,
    25. The composttion of any one of the claims 1 to 5, wherein at least 99% of the hydrocodone is released from the pharmaceutical composition in less than about 27 hours and at least 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 27 hours,
    26. The composition of any one of claim 1 or 5, wherein the core layer comprises an excipient capable of controlling the drug release and the non-core layer comprises an excipient capable of instantly releasing the drug.
    27. The composition of any one of the claims 1 to 5, wherein the core layer is manufactured by melt-extrusion followed by direct shaping of the drug-containing melt and the non-core layer is spray coated over the core layer.
    28. The composition of any onc of the claims 1 to 27, wherein the composition comprises about 500mg of acetaminophen and about 15 mg of hydrocodone bitartrate pentahemihydrate.
    29. A pharmaceutical composition having a core and a non-core layer, comprising: (a) an abusc-refevant drug, a pharmaceutically acceptable salt or a hydrate thereof and a non-abuse-relevant drug or a pharmaceutically acceptable salt thereof in the core layer, and {b} a non-abuse-rclevant drug, a pharmaceutically acceptable salt or a hydrate thereof in the non-core layer, wherein the composition is adapted so as to be useful for oral administration to & human 3, 2, or 1 times daily; and wherein the composition is characterized by at least one of the following features: 1) the amount of abuse-relevant drug that is extracted from the composition by 40% aqueous ethanol within one hour at 37 °C in vitro is less than or equal 1.5 times the amount of the abuse- relevant drug that 1s extracted by 0.01 N hydrochloric acid in vitro within one hour at 37 °C, 11} the composition does not break under a force of 150 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably 500 newtons as measured by “Pharma Test PTB 501” hardness tester,
    iii) the composition releases at least 20% of the abuse-relevant drug and not more than 45% of the abuse-relevant drug during the first hour of in vitro dissolution testing and preferably also during the first hour of in vivo testing, iv) the composition releases a therapeutically effective dose of the non-abuse relevant drug within I to 2 hours after a single dose, v) the composition releases a therapeutically effective dose of the non-abuse relevant drug and/or the abuse-relevant drug at 1 hour and at 12 hours after a single dose, vi) in the composition, relcase of the abuse-relevant drug upon grinding increases by less than 2- to 3-fold, as compared to an intact tablet, when the composition is ground for 1 minute by a coffee-grinder at 20,000 - 50,000 rpm, in 40% aqueous ethanol for 1 hour at 37°C, vii) the composition when ground comprises a particulate size of about 2 cm to about 355 micrometer for about 20% of the fraction, greater than about 63 microns and less than about 355 microns for about 66% of the fraction and {ess than about 63 microns for about 14% of the fraction, as measured by a sieving test, or viii) the composition is substantially smooth, wherein the Centre Line Average (CLA) 1s from about 0.1 to about 0.6, preferably from about 0.1 to about 0.4, and most preferably from about
    0.1 to about 0.2.
    30. The composition of claim 29, wherein the amount of the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethanol within one hour at 37 °C 1s about 70% to about 90% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C. 3k The composition of claim 29, wherein the amount of the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethanol within one hour at 37 °C 1s about 70% to about 130% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C.
    32. The composition of claim 29, wherein the amount of the abuse-relevant drug that is extracted from the formulation by 40% aqueous ethanol within one hour at 37 °C is about
    75% to about 90% of the amount of the drug that is extracted by 0.01 N hydrochloric acid within one hour at 37 °C.
    33. A pharmaceutical composition having a core layer and a non-core layer, {A) wherein the core layer comprises a mixture of; (a) at least one opioid; (b) at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof; {B) wherein the non-core layer comprises at least one non-opioid analgesic; and (C) wherein the composition is adapted so as to be useful for oral administration to a human 3, 2, or 1 times daily.
    34. The composition of claim 33, wherein the core layer further comprises at least one non-opioid analgesic.
    33. The composition of claim 33, wherein the composition is characterized by at feast one of the following features: i} the amount of abuse-relevant drug that 1s extracted from the composition by 40% aqueous ethanol within one hour at 37 °C in vitro is less than or equal 1.5 times the amount of the abuse- relevant drug that is extracted by 0.01 N hydrochloric acid in vitro within one hour at 37 °C, ii) the composition does not break under a force of 150 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably 500 newtons as measured by “Pharma Test PTB 5017 hardness tester, iii) the composition releases at least 20% of the abuse-relevant drug and not more than 45% of the abuse-relevant drug during the first hour of in vitro dissolution testing and preferably also during the first hour of in vivo testing, iv) the composition releases a therapeutically effective dose of the non-abuse relevant drug within 1 to 2 hours after a single dose, v} the composition releases a therapeutically effective dose of the non-abuse relevant drug and/or the abusc—relevant drug at 1 hour and at 12 hours after a single dose,
    vi) in the composition, release of the abuse-relevant drug upon grinding increases by less than 2- to 3-fold, as compared to an intact tablet, when the composition is ground for 1 minute by a coffee-grinder at 20,000 - 30,000 rpm, in 40% aqueous ethanol for 1 hour at 37°C, vii) the composition when ground comprises a particulate size of about 2 cm to about 355 3 micrometer for about 20% of the fraction, greater than about 63 microns and less than about 355 microns for about 66% of the fraction and less than about 63 microns for about 14% of the fraction, as measured by a sieving test, or viii) the composition 1s substantially smooth, wherein the Centre Line Average (CLA) 1s from about 0.1 to about 0.6, preferably from about 0.1 to about 0.4, and most preferably from about
    0.1 io about 0.2,
    36. The composition of claim 33, wherein the opioid is selected from the group consisting of alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazenc, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, cthobeptazine, ethylmethylithiambutene, ethylmorphine, etonitazene, fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levallorphan, levophenacylmorphan, levorphanol, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbulphine, narceine, nicomorphine, norpipanone, opium, oxycodone, oxymorphone, papvretum, pentazocine, phenadoxone, phenazocine, phenomorphan, phenoperidine, piminodine, propiram, propoxyphene, sufentanil, tilidine, and tramadol, and salts, hydrates and mixtures thereof and the non-opioid analgesic is selected from the group consisting of acetaminophen, aspirin, fentaynl, ibuprofen, indomethacin, ketorolac, naproxen, phenacetin, piroxicam, sufentanyl, sunlindac, interferon alpha, and salts, hydrates and mixtures thereof,
    37. The composition of claim 33, wherein the opioid is hydrocodone and the non- opioid analgesic is acetaminophen or ibuprofen. 38 The composition of claim 33, wherein the opioid 1s hydrocodone and the non- opioid analgesic is acetaminophen.
    39. The composition of any one of the claims 33 to 38, wherein when administered to the human patient, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone from about 0.6 ng/mL/mg to about {.4 ng/ml/mg and a Cmax for acetaminophen from about 2.8 ng/mL/mg and 7.9 ng/ml./mg after a single dose. 40, The composition of any one of the claims 33 to 38, wherein when administered to the human patient, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/mL/mg and & Cmax for acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/mL/mg after a single dose.
    41. The composition of any one of the claims 33 to 38, wherein when administered to the human patient, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of from about 0.6ng/mL/mg to about 1.0 ng/mL/mg and a Cmax for acetaminophen of from about 3.0 ng/ml/mg to about 5.2 ng/mL/mg after a single dose.
    42. The composition of any one of the claims 33 to 38, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodone of about
    9.1 ng*hr/mL/mg to about 19.9 ng*ht/mL/mg and an AUC for acetaminophen of about 28.6 ng*hr/mL/mg to about 59.1 ng*hr/mL/mg.
    43. The composition of any one of the claims 33 to 38, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodone of about
    7.0 ng*hr/mL/mg to about 26.2 ng*hr/mL/mg and an AUC for acetaminophen of about 18.4 ng*hr/mL/mg to about 79.9 ng*hr/mL/mg. 44, The composition of any one of the claims 33 to 38, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodene of about
    11.3 ng*hi/mL/mg to about 18.7 ng*hr/mL/mg and an AUC for acetaminophen of about 28.7 ng*he/mL/mg to about 53.5 ng*hr/mL/mg,
    45. The composition of any one of the claims 33 to 38, wherein the in vitro rate of release of the pharmaceutical composition has a biphasic release profile, and wherein for cach phase of the in vitro rate of release is zero order or first order for acetaminophen and zero order or first order for hydrocodone. 3
    46. The composition of any one of the claims 33 to 38, wherein about 20-45% of the hydrocodone is released in vitro from the pharmaceutical compositions in about 1hour and about 20-45% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 1hour in 0.01 N HCl at 50 rpm at 37 °C.
    47. The composition of any one of the claims 33 to 38, wherein about 25-35% of the hydrocodone is released in vitro from the pharmaceutical compositions in about hour and about 25-35% of the acetaminophen is released in vitro from the pharmaceutical compositions in about hour in 0.01 N HCI at 50 rpm at 37 °C.
    48. The composition of any one of the claims 33 to 38, wherein about 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 12 hours and at feast 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours to about 8.5 houss. 49, The composition of any one of the claims 33 to 38, wherein about 90% of the hydrocodone is released from the pharmaceutical composition in about 18 hours to about 23 hours and about 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about [8 hours to about 23 hours,
    50. The composition of any onc of the claims 33 to 38, wherein about 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 11 hours and about 90% of the acctaminophen is released in vitro from the pharmaceutical compositions in about 8 hours to about 11 hours.
    51. The composition of any one of the claims 33 to 38, wherein about 95% of the hiydrocodone is released from the pharmaceutical composition in about 9 hours to about 12 hours and about 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 9 hours to about 12 hours.
    52. The composition of any one of the claims 33 to 38, wherein about 95% is of the hydrocodone is released from the pharmaceutical composition in about 10 hours to about 12 hours and about 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours.
    53. The composition of any one of the claims 33 to 38, wherein about 95% of the hydrocodone is released from the pharmaceutical composition in about 20 hours to about 25 hours and about 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours.
    54. The composition of any one of the claims 33 to 38, wherein about 95% is of the hydrocodone is released from the pharmaceutical composition in about 21 hours to about 22 hours and about 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours to about 22 hours.
    55. The composition of any one of the claims 33 to 38, wherein about 99% of the hydrocodone is released from the pharmaceutical composition in about 11hours to about 12 hours and about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours.
    56. The composition of any one of the claims 33 to 38, wherein about 99% of the hydrocodone is refeased from the pharmaceutical composition in less than about 13 hours and about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 13 hours.
    57. The composition of any one of the claims 33 to 38, wherein about 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 22 hours to about 26 hours.
    58. The composition of any one of the claims 33 to 38, wherein about 99% of the hydrocodone is released from the pharmaceutical composition in less than about 27 hours and about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in tess than about 27 hours.
    59. The composition of any one of the claims 33 to 38, wherein the core layer comprises an excipient capable of controlling the drug release and the non-core layer comprises an excipient capable of instantly releasing the drug.
    60. The composition of any one of the claims 33 to 38, wherein the core layer is manufactured by melt-cxtrusion followed by direct shaping of the drug-containing melt and the non-core layer is spray coated over the core layer.
    61. A pharmaceutical composition having a core layer and a non-core layer, (A) wherein the core layer comprises a mixture of (a) at least one opioid and at least one first non-opioid analgesic; {b) at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof; (B) wherein the non-core layer comprises at least one second non-opioid analgesic; and (OC) whetein the composition is adapted so as to be useful for oral administration to 2 human 3, 2, or 1 times daily. 62, The composition according to claim 61, wherein the opioid comprises hydrocodone and the first and the second non-opioid analgesic comprises acetaminophen or ibuprofen. IRE!
    63. The composition according to claim 61, wherein the opioid comprises hydrocodone and the first and the second non-opioid analgesic comprises acetaminophen.
    64. The composition according to claim 61, wherein the non-core layer comprises; acetaminophen; and at least one rate altering pharmaceutically acceptable polymer, copolymer, or a combination thereof.
    65. The composition according to claim 64, wherein the polymer or copolymer is selected from the group consisting of” hydroxypropyl celiulose, hydroxypropyl methylcellulose, hydroxyethyi cellulose; polymethacrylate, polyvinyl alcohol, polyethylene oxide, and combinations thereof.
    66. The composition according to claim 64, wherein the polymer or copolymer is selected from the group consisting of: hydroxypropyl methylcellulose, and polyvinyl alcohol, or combinations thereof.
    67. The composition according to claim 64, wherein the polymer or copolymer is sclected from the group consisting of: polyvinyl alcohol and polyethylene oxide graft copolymers.
    68. The composition according to claim 64, wherein the ratio of acetaminophen to the rate controlling polymer or copolymer or combination thereof is about 1:1 to about 10:1.
    69. The composition according to claim 64, wherein the ratio of acetaminophen to the rate controlling polymer or copolymer or combination thereof is about 3:1 to about 5:1,
    70. The composition according to any onc of the claims 61 to 69, wherein the non-core layer has at least one of the following characteristics:
    {a) substantially does not crack after 3 months at 40°C, 75% relative humidity in induction- scaled HDPE bottles; {by substantially dry (not sticky); provides fast dissolution in 0.0 IN HCI at 37°C to expose the core layer releases af least 80% of the acetaminophen in the non-core layer within 20 minutes of admmistration fo a human patient; or {e) provides a white pigmentation to the formulation without additional pigments.
    71. The composition of any one of the claims 61 fo 70, wherein when administered to the human patient, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone from about 0.6 ng/ml./mg to about {.4 ng/mb/mg and a Cmax for acetaminophen from about 2.8 ng/mL/mg and 7.9 ng/mL/mg after a single dose.
    72. The composition of any one of the claims 61 to 70, wherein when administered to the human patient, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of about 0.4 ng/mL/mg to about 1.9 ng/mL/mg and a Cmax for acetaminophen of about 2.0 ng/mL/mg to about 10.4 ng/mL/mg after a single dose.
    73. The composition of any one of the claims 61 fo 70, wherein when administered to the human patient, the pharmaceutical composition produces a plasma profile characterized by a Cmax for hydrocodone of from about 0.6ng/mL/mg to about 1.0 ng/mL/mg and a Cmax for acetaminophen of from about 3.0 ng/mL/mg to about 5.2 ng/mL/mg after a single dose. 74 The composition of any one of the claims 61 to 70, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodone of about
    9.1 ng*hr/mL/mg to about 19.9 ng*hs/mL/mg and an AUC {or acetaminophen of about 28.6 ng*hr/ml/mg to about 59.1 ng*hr/mL/mg.
    75. The composition of any one of the claims 61 to 70, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodone of about
    7.0 ng*hr/mL/mg to about 26.2 ng*hr/mL/mg and an AUC for acetaminophen of about 18.4 ng*hr/ml/mg to about 79.9 ng*hr/mbL/mg.
    76. The composition of any one of the claims 61 to 70, wherein when administered to the human patient, the dosage form produces an AUC for hydrocodone of about
    11.3 ng*hr/mi/mg to about 18.7 ng*hr/mL/mg and an AUC for acetaminophen of about 28.7 ng*hr/mL/mg to about 53.5 ng*hi/ml/mg.
    77. The composition of any one of the claims 61 to 70, wherein the in vitro rate of release of the pharmaceutical composition has a biphasic release profile, and wherein for cach phase of the in vitro rate of release is zero order or first order for acetaminophen and first order for hydrocodone.
    78. The composition of any one of the claims 61 to 70, wherein about 20-45% of the hydrocodone 1s released in vitro from the pharmaceutical compositions in about 1hour and about 20-45% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 1hour m 0.01 N HCI at 50 rpm at 37 °C, 79, The composition of any one of the claims 61 to 70, wherein about 25-35% of the hydrocodone is released in vitro from the pharmaceutical compositions in about Thour and about 25-35% of the acetaminophen is released in vitro from the pharmaceutical compositions in about Thour in 0.01 N HCI at 50 rpm at 37 °C.
    80. The composition of any one of the claims 61 to 70, wherein about 90% of the hydrocodone is released from the pharmaceutical composition in about § hours to about 12 hours and at least 60% to about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 6 hours to about 8.5 hours.
    81. The composition of any one of the claims 61 to 70, wherein about 90% of the hydrocodone is released from the pharmaceutical composition in about 18 hours to about 23 hours and about 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 18 hours to about 23 hours. 82, The composition of any one of the claims 61 fo 70, wherein about 90% of the hydrocodone is released from the pharmaceutical composition in about 8 hours to about 11 hours and about 90% of the acetaminophen is released in vitro from the pharmaceutical compositions in about § hours to about 11 hours.
    83. The composition of any one of the claims 61 to 70, wherein about 953% of the hydrocodone is released from the pharmaceutical composition in about 9 hours to about 12 hours and about 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 9 hours to about 12 hours.
    84. The composition of any one of the claims 61 to 70, wherein about 95% is of the hydrocodone is released from the pharmaceutical composition in about 10 hours to about 12 hours and about 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 10 hours to about 12 hours,
    85. The composition of any one of the claims 61 to 70, wherein about 95% of the hydrocodone is released from the pharmaceutical composition in about 20 hours to about 25 hours and about 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 20 hours to about 25 hours.
    86. The composition of any one of the claims 61 to 70, wherein about 95% is of the hydrocodone is released from the pharmaceutical composition in about 21 hours to about 22 hours and about 95% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 21 hours to about 22 hours.
    87. The composition of any one of the claims 61 to 70, wherein about 99% of the hydrocodone is released from the pharmaceutical composition in about | Thours to about 12 hours and about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 11 hours to about 12 hours.
    88. The composition of any one of the claims 61 to 70, wherein about 99% of the hydrocodone is released from the pharmaceutical composition in less than about 13 hours and about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 13 hours.
    89. The composition of any one of the claims 61 to 70, wherein about 99% of the hydrocodone is released from the pharmaceutical composition in about 22 hours to about 26 hours and about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in about 22 hours to about 26 hours.
    90. The composition of any one of the claims 61 to 70, wherein about 99% of the hydrocodone is released from the pharmaceutical composition in less than about 27 hours and about 99% of the acetaminophen is released in vitro from the pharmaceutical compositions in less than about 27 hours.
    91. The composition of any one of the claims 61 to 70, wherein the composition is characterized by at least one of the following features: i} the amount of hydrocodone that is extracted from the composition by 40% aqueous ethanol within one hour at 37 °C in vitro is less than or equal 1.5 times the amount of the hydrocodone that is extracted by 0.01 N hydrochloric acid in vitro within one hour at 37 °C, ii} the composition docs not break under a force of 1504 newtons, preferably 300 newtons, more preferably 450 newtons, yet more preferably 500 newtons as measured by “Pharma Test PTB 5017 hardness tester, iit) the composition releases at least 20% of the hydrocodone and not more than 45% of the hydrecodone during the first hour of in vitro dissolution testing and preferably also during the first hour of in vivo testing, iv) the composition releases a therapeutically effective dose of the acetaminophen within 1 to 2 hours after a single dose,
    v} the composition releases a therapeutically effective dose of the acetaminophen and/or the abuse—relevant drug at 1 hour and at 12 hours after a single dose, vi) in the composition, release of the hydrocodone upon grinding increases by less than 2- to 3- fold, as compared to an intact tablet, when the composition is ground for I minute by a coffee- grinder at 20,000 - 50,000 rpm, in 40% aqueous ethanol for 1 hour at 37°C, vii) the composition when ground comprises a particulate size of about 2 cm to about 353 micrometer for about 20% of the fraction, greater than about 63 microns and less than about 355 microns for about 66% of the fraction and less than about 63 microns for about 14% of the fraction, as measured by a sieving test, or viii) the composition is substantially smooth, wherein the Centre Line Average (CLA) 1s from about 0.1 to about 0.6, preferably from about 0.1 to about 0.4, and most preferably from about
    0.1 to about 0.2.
    92. The composition of any one of the claims 61 to 70, wherein the core layer is manufactured by melt-extrusion followed by direct shaping of the drug-containing melt and the non-core layer is spray coated over the core layer.
SG2012009270A 2007-07-20 2007-07-20 Formulations of nonopioid and confined opioid analgesics SG178771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG2012009270A SG178771A1 (en) 2007-07-20 2007-07-20 Formulations of nonopioid and confined opioid analgesics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SG2012009270A SG178771A1 (en) 2007-07-20 2007-07-20 Formulations of nonopioid and confined opioid analgesics

Publications (1)

Publication Number Publication Date
SG178771A1 true SG178771A1 (en) 2012-03-29

Family

ID=45896899

Family Applications (1)

Application Number Title Priority Date Filing Date
SG2012009270A SG178771A1 (en) 2007-07-20 2007-07-20 Formulations of nonopioid and confined opioid analgesics

Country Status (1)

Country Link
SG (1) SG178771A1 (en)

Similar Documents

Publication Publication Date Title
US20170014348A1 (en) Formulations of Nonopioid and Confined Opioid Analgesics
US20140120061A1 (en) Abuse resistant melt extruded formulation having reduced alcohol interaction
US11207318B2 (en) Immediate release abuse-deterrent granulated dosage forms
US20100172989A1 (en) Abuse resistant melt extruded formulation having reduced alcohol interaction
EP2182928A1 (en) Formulations of nonopioid and confined opioid analgesics
US20070190142A1 (en) Dosage forms for the delivery of drugs of abuse and related methods
EP2448406B1 (en) Extended release oral pharmaceutical compositions of 3-hydroxy-n-methylmorphinan and method of use
US9827204B2 (en) Immediate release abuse-deterrent granulated dosage forms
KR20140090222A (en) Anti-misuse microparticulate oral pharmaceutical form
US20170157052A1 (en) Immediate release dosage forms that deter abuse by oral ingestion of multiple dosage units
SG178771A1 (en) Formulations of nonopioid and confined opioid analgesics
BR112016009748B1 (en) IMMEDIATE RELEASE ORAL DOSAGE FORMS DETERMINING ABUSIVE USE AND USES THEREOF