SG11201500915SA - Method of forming photonics structures - Google Patents
Method of forming photonics structuresInfo
- Publication number
- SG11201500915SA SG11201500915SA SG11201500915SA SG11201500915SA SG11201500915SA SG 11201500915S A SG11201500915S A SG 11201500915SA SG 11201500915S A SG11201500915S A SG 11201500915SA SG 11201500915S A SG11201500915S A SG 11201500915SA SG 11201500915S A SG11201500915S A SG 11201500915SA
- Authority
- SG
- Singapore
- Prior art keywords
- forming
- photonics structures
- photonics
- structures
- forming photonics
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02327—Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/186—Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
- H01L31/1864—Annealing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12061—Silicon
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12142—Modulator
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12169—Annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Optical Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Light Receiving Elements (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/600,779 US10094988B2 (en) | 2012-08-31 | 2012-08-31 | Method of forming photonics structures |
PCT/US2013/055135 WO2014035679A1 (en) | 2012-08-31 | 2013-08-15 | Method of forming photonics structures |
Publications (1)
Publication Number | Publication Date |
---|---|
SG11201500915SA true SG11201500915SA (en) | 2015-05-28 |
Family
ID=49035945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SG11201500915SA SG11201500915SA (en) | 2012-08-31 | 2013-08-15 | Method of forming photonics structures |
Country Status (8)
Country | Link |
---|---|
US (4) | US10094988B2 (en) |
EP (1) | EP2891180B1 (en) |
JP (1) | JP6154903B2 (en) |
KR (1) | KR101742407B1 (en) |
CN (1) | CN104769716B (en) |
SG (1) | SG11201500915SA (en) |
TW (1) | TWI520313B (en) |
WO (1) | WO2014035679A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10094988B2 (en) | 2012-08-31 | 2018-10-09 | Micron Technology, Inc. | Method of forming photonics structures |
CN106159036A (en) * | 2015-04-13 | 2016-11-23 | 中兴通讯股份有限公司 | A kind of preparation method of silicon based opto-electronics subsystem |
US9874693B2 (en) | 2015-06-10 | 2018-01-23 | The Research Foundation For The State University Of New York | Method and structure for integrating photonics with CMOs |
JP6533131B2 (en) * | 2015-09-04 | 2019-06-19 | ルネサスエレクトロニクス株式会社 | Semiconductor device manufacturing method |
JP6545608B2 (en) * | 2015-11-30 | 2019-07-17 | ルネサスエレクトロニクス株式会社 | Semiconductor device and method of manufacturing the same |
US10431670B2 (en) * | 2016-12-15 | 2019-10-01 | Taiwan Semiconductor Manufacturing Co., Ltd | Source and drain formation technique for fin-like field effect transistor |
US11295962B2 (en) | 2018-07-10 | 2022-04-05 | The Board Of Trustees Of The Leland Stanford Junior University | Low temperature process for diode termination of fully depleted high resistivity silicon radiation detectors that can be used for shallow entrance windows and thinned sensors |
US10649140B1 (en) * | 2019-03-04 | 2020-05-12 | Globalfoundries Inc. | Back-end-of-line blocking structures arranged over a waveguide core |
US11906351B1 (en) * | 2019-09-25 | 2024-02-20 | National Technology & Engineering Solutions Of Sandia, Llc | Monolithic integration of optical waveguides with metal routing layers |
US20240203742A1 (en) * | 2022-12-14 | 2024-06-20 | Applied Materials, Inc. | Contact layer formation with microwave annealing for nmos devices |
Family Cites Families (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US200084A (en) * | 1878-02-05 | Improvement in bee-hives | ||
KR960008503B1 (en) * | 1991-10-04 | 1996-06-26 | Semiconductor Energy Lab Kk | Manufacturing method of semiconductor device |
US5424244A (en) * | 1992-03-26 | 1995-06-13 | Semiconductor Energy Laboratory Co., Ltd. | Process for laser processing and apparatus for use in the same |
US5304509A (en) * | 1992-08-24 | 1994-04-19 | Midwest Research Institute | Back-side hydrogenation technique for defect passivation in silicon solar cells |
JP2988353B2 (en) | 1995-03-13 | 1999-12-13 | 日本電気株式会社 | Semiconductor device for photodetection and method of manufacturing the same |
US6018187A (en) * | 1998-10-19 | 2000-01-25 | Hewlett-Packard Cmpany | Elevated pin diode active pixel sensor including a unique interconnection structure |
EP1158581B1 (en) * | 1999-10-14 | 2016-04-27 | Shin-Etsu Handotai Co., Ltd. | Method for producing soi wafer |
US6387720B1 (en) | 1999-12-14 | 2002-05-14 | Phillips Electronics North America Corporation | Waveguide structures integrated with standard CMOS circuitry and methods for making the same |
GB0002775D0 (en) * | 2000-02-07 | 2000-03-29 | Univ Glasgow | Improved integrated optical devices |
US6677655B2 (en) * | 2000-08-04 | 2004-01-13 | Amberwave Systems Corporation | Silicon wafer with embedded optoelectronic material for monolithic OEIC |
US6472243B2 (en) * | 2000-12-11 | 2002-10-29 | Motorola, Inc. | Method of forming an integrated CMOS capacitive pressure sensor |
US7038242B2 (en) * | 2001-02-28 | 2006-05-02 | Agilent Technologies, Inc. | Amorphous semiconductor open base phototransistor array |
US20030021515A1 (en) * | 2001-07-25 | 2003-01-30 | Motorola, Inc. | Semiconductor structure employing a multi-path wave guide to concurrently route signals |
JP4555568B2 (en) * | 2001-11-09 | 2010-10-06 | 株式会社半導体エネルギー研究所 | Laser processing apparatus, laser processing method, and method for manufacturing thin film transistor |
US6861341B2 (en) * | 2002-02-22 | 2005-03-01 | Xerox Corporation | Systems and methods for integration of heterogeneous circuit devices |
JP2003287636A (en) * | 2002-03-28 | 2003-10-10 | Nec Corp | Optical function device and method for manufacturing the same |
US7110629B2 (en) * | 2002-07-22 | 2006-09-19 | Applied Materials, Inc. | Optical ready substrates |
US7043106B2 (en) * | 2002-07-22 | 2006-05-09 | Applied Materials, Inc. | Optical ready wafers |
US20040062465A1 (en) * | 2002-10-01 | 2004-04-01 | Woodley Bruce Robert | Apparatus and method for measuring optical power as a function of wavelength |
US6935792B2 (en) * | 2002-10-21 | 2005-08-30 | General Electric Company | Optoelectronic package and fabrication method |
US6995407B2 (en) * | 2002-10-25 | 2006-02-07 | The University Of Connecticut | Photonic digital-to-analog converter employing a plurality of heterojunction thyristor devices |
JP2004186495A (en) * | 2002-12-04 | 2004-07-02 | Toshiba Corp | Semiconductor device, method and arrangement for manufacturing the same |
WO2004095112A2 (en) | 2003-04-21 | 2004-11-04 | Sioptical, Inc. | Cmos-compatible integration of silicon-based optical devices with electronic devices |
US20040235281A1 (en) | 2003-04-25 | 2004-11-25 | Downey Daniel F. | Apparatus and methods for junction formation using optical illumination |
WO2004097486A1 (en) * | 2003-04-29 | 2004-11-11 | Pirelli & C. S.P.A. | Coupling structure for optical fibres and process for making it |
US7262117B1 (en) * | 2003-06-10 | 2007-08-28 | Luxtera, Inc. | Germanium integrated CMOS wafer and method for manufacturing the same |
JP2005123513A (en) | 2003-10-20 | 2005-05-12 | Nippon Telegr & Teleph Corp <Ntt> | Photodetector |
EP1688770B1 (en) * | 2003-11-27 | 2012-11-14 | Ibiden Co., Ltd. | Ic chip mounting board, substrate for mother board, device for optical communication, method for manufacturing substrate for mounting ic chip thereon, and method for manufacturing substrate for mother board |
US7292745B2 (en) * | 2004-01-13 | 2007-11-06 | Franklin W. Dabby | System for and method of manufacturing optical/electronic integrated circuits |
US9813152B2 (en) | 2004-01-14 | 2017-11-07 | Luxtera, Inc. | Method and system for optoelectronics transceivers integrated on a CMOS chip |
US7385167B2 (en) | 2004-07-19 | 2008-06-10 | Micron Technology, Inc. | CMOS front end process compatible low stress light shield |
JP2006133723A (en) | 2004-10-08 | 2006-05-25 | Sony Corp | Light guide module and optoelectric hybrid device, and their manufacturing method |
US7098070B2 (en) * | 2004-11-16 | 2006-08-29 | International Business Machines Corporation | Device and method for fabricating double-sided SOI wafer scale package with through via connections |
KR100610016B1 (en) * | 2004-11-18 | 2006-08-08 | 삼성전자주식회사 | activation apparatus of impurity atom for semiconductor device manufacturing and activation method thereof |
US8294078B2 (en) * | 2005-06-24 | 2012-10-23 | The Board Of Trustees Of The University Of Illinois | Optically-triggered multi-stage power system and devices |
KR100621776B1 (en) | 2005-07-05 | 2006-09-08 | 삼성전자주식회사 | Method of manufacturing a semiconductor device using slective epitaxial growth |
US8110823B2 (en) | 2006-01-20 | 2012-02-07 | The Regents Of The University Of California | III-V photonic integration on silicon |
US7515793B2 (en) * | 2006-02-15 | 2009-04-07 | International Business Machines Corporation | Waveguide photodetector |
US7613369B2 (en) * | 2006-04-13 | 2009-11-03 | Luxtera, Inc. | Design of CMOS integrated germanium photodiodes |
US7574090B2 (en) * | 2006-05-12 | 2009-08-11 | Toshiba America Electronic Components, Inc. | Semiconductor device using buried oxide layer as optical wave guides |
US7670927B2 (en) * | 2006-05-16 | 2010-03-02 | International Business Machines Corporation | Double-sided integrated circuit chips |
US7679157B2 (en) * | 2006-08-21 | 2010-03-16 | Powerchip Semiconductor Corp. | Image sensor and fabrication method thereof |
JP2008066410A (en) | 2006-09-05 | 2008-03-21 | Sony Corp | Solid-state image sensing device, its manufacturing method, semiconductor device, and its manufacturing method |
WO2008063939A2 (en) * | 2006-11-13 | 2008-05-29 | Syngenta Participations Ag | Pest detector |
US7666723B2 (en) * | 2007-02-22 | 2010-02-23 | International Business Machines Corporation | Methods of forming wiring to transistor and related transistor |
US7781306B2 (en) * | 2007-06-20 | 2010-08-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor substrate and method for manufacturing the same |
JP4486985B2 (en) * | 2007-08-06 | 2010-06-23 | シャープ株式会社 | Solid-state imaging device and electronic information device |
JP2009058888A (en) | 2007-09-03 | 2009-03-19 | Sony Corp | Semiconductor device, manufacturing method therefor, and mounting substrate |
JP5117156B2 (en) * | 2007-10-05 | 2013-01-09 | 株式会社日立製作所 | Semiconductor device |
WO2009055778A1 (en) * | 2007-10-25 | 2009-04-30 | Bae Systems Information And Electronic Systems Integration Inc. | Method for manufacturing lateral germanium detectors |
US7811844B2 (en) * | 2007-10-26 | 2010-10-12 | Bae Systems Information And Electronic Systems Integration Inc. | Method for fabricating electronic and photonic devices on a semiconductor substrate |
WO2009058470A1 (en) * | 2007-10-30 | 2009-05-07 | Bae Systems Information And Electronic Systems Integration Inc. | Method for fabricating butt-coupled electro-absorptive modulators |
JP5248995B2 (en) * | 2007-11-30 | 2013-07-31 | 株式会社半導体エネルギー研究所 | Method for manufacturing photoelectric conversion device |
KR100898471B1 (en) | 2007-12-28 | 2009-05-21 | 주식회사 동부하이텍 | Image sensor and method for manufacturing thereof |
JP2009164158A (en) * | 2007-12-28 | 2009-07-23 | Panasonic Corp | Semiconductor device and its fabrication process |
US7838955B2 (en) * | 2007-12-28 | 2010-11-23 | Dongbu Hitek Co., Ltd. | Image sensor and method for manufacturing the same |
US20090188557A1 (en) * | 2008-01-30 | 2009-07-30 | Shih-Yuan Wang | Photonic Device And Method Of Making Same Using Nanowire Bramble Layer |
US7901974B2 (en) * | 2008-02-08 | 2011-03-08 | Omnivision Technologies, Inc. | Masked laser anneal during fabrication of backside illuminated image sensors |
KR100962610B1 (en) * | 2008-03-17 | 2010-06-11 | 주식회사 티지솔라 | Heat Treatment Method |
WO2010004850A1 (en) | 2008-07-07 | 2010-01-14 | 日本電気株式会社 | Optical interconnection structure |
EP2151856A1 (en) * | 2008-08-06 | 2010-02-10 | S.O.I. TEC Silicon | Relaxation of strained layers |
US8877616B2 (en) * | 2008-09-08 | 2014-11-04 | Luxtera, Inc. | Method and system for monolithic integration of photonics and electronics in CMOS processes |
US7985617B2 (en) | 2008-09-11 | 2011-07-26 | Micron Technology, Inc. | Methods utilizing microwave radiation during formation of semiconductor constructions |
WO2010045339A2 (en) * | 2008-10-14 | 2010-04-22 | Cornell University | Apparatus for imparting phase shift to input waveform |
US8228409B2 (en) * | 2008-10-24 | 2012-07-24 | Dongbu Hitek Co., Ltd. | Image sensor and method for manufacturing the same |
US8088667B2 (en) * | 2008-11-05 | 2012-01-03 | Teledyne Scientific & Imaging, Llc | Method of fabricating vertical capacitors in through-substrate vias |
US7838337B2 (en) * | 2008-12-01 | 2010-11-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming an interposer package with through silicon vias |
US7847353B2 (en) * | 2008-12-05 | 2010-12-07 | Bae Systems Information And Electronic Systems Integration Inc. | Multi-thickness semiconductor with fully depleted devices and photonic integration |
US7952096B2 (en) * | 2008-12-08 | 2011-05-31 | Omnivision Technologies, Inc. | CMOS image sensor with improved backside surface treatment |
US8278167B2 (en) * | 2008-12-18 | 2012-10-02 | Micron Technology, Inc. | Method and structure for integrating capacitor-less memory cell with logic |
EP2200084A1 (en) | 2008-12-22 | 2010-06-23 | S.O.I. TEC Silicon | Method of fabricating a back-illuminated image sensor |
US7927975B2 (en) * | 2009-02-04 | 2011-04-19 | Micron Technology, Inc. | Semiconductor material manufacture |
US8531565B2 (en) * | 2009-02-24 | 2013-09-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Front side implanted guard ring structure for backside illuminated image sensor |
US9142586B2 (en) * | 2009-02-24 | 2015-09-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Pad design for backside illuminated image sensor |
JP5365345B2 (en) | 2009-05-28 | 2013-12-11 | ソニー株式会社 | Manufacturing method of semiconductor device |
US9305779B2 (en) * | 2009-08-11 | 2016-04-05 | Bae Systems Information And Electronic Systems Integration Inc. | Method for growing germanium epitaxial films |
JP2011071482A (en) * | 2009-08-28 | 2011-04-07 | Fujifilm Corp | Solid-state imaging device, process of making the same, digital still camera, digital video camera, mobile phone, and endoscope |
US8121446B2 (en) * | 2009-09-24 | 2012-02-21 | Oracle America, Inc. | Macro-chip including a surface-normal device |
DE102009047873B4 (en) * | 2009-09-30 | 2018-02-01 | GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG | Optical signal exchange in a semiconductor device using monolithic optoelectronic components |
US8450804B2 (en) * | 2011-03-06 | 2013-05-28 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
US8257995B2 (en) * | 2009-12-11 | 2012-09-04 | Twin Creeks Technologies, Inc. | Microwave anneal of a thin lamina for use in a photovoltaic cell |
CN102812562B (en) * | 2010-01-25 | 2016-02-24 | Lg化学株式会社 | Photovoltaic module |
EP2539979B1 (en) * | 2010-02-24 | 2018-05-23 | Universiteit Gent | Laser light coupling into SOI CMOS photonic integrated circuit |
JP2012008272A (en) | 2010-06-23 | 2012-01-12 | Olympus Imaging Corp | Waterproof equipment |
US8399292B2 (en) * | 2010-06-30 | 2013-03-19 | International Business Machines Corporation | Fabricating a semiconductor chip with backside optical vias |
WO2012008272A1 (en) | 2010-07-16 | 2012-01-19 | 日本電気株式会社 | Light-receiving element, optical communication device equipped with same, process for production of light-receiving element, and process for production of optical communication device |
US8901613B2 (en) * | 2011-03-06 | 2014-12-02 | Monolithic 3D Inc. | Semiconductor device and structure for heat removal |
CN102135649B (en) * | 2010-08-04 | 2012-04-18 | 华为技术有限公司 | Manufacturing method of optical module and optical module |
US20120034769A1 (en) * | 2010-08-05 | 2012-02-09 | Purtell Robert J | Low temperature microwave activation of heavy body implants |
JP5300807B2 (en) | 2010-09-03 | 2013-09-25 | 株式会社東芝 | Light modulation element |
CN102446741B (en) * | 2010-10-07 | 2016-01-20 | 株式会社日立国际电气 | Method, semi-conductor device manufacturing method, lining processor and semiconductor device |
US8796728B2 (en) * | 2010-10-25 | 2014-08-05 | The Board Of Trustees Of The University Of Illinois | Photonically-activated single-bias fast-switching integrated thyristor |
US8633067B2 (en) * | 2010-11-22 | 2014-01-21 | International Business Machines Corporation | Fabricating photonics devices fully integrated into a CMOS manufacturing process |
WO2012073583A1 (en) | 2010-12-03 | 2012-06-07 | Kabushiki Kaisha Toshiba | Method of forming an inpurity implantation layer |
US8513037B2 (en) * | 2010-12-03 | 2013-08-20 | Bae Systems Information And Electronic Systems Integration Inc. | Method of integrating slotted waveguide into CMOS process |
US8818144B2 (en) * | 2011-01-25 | 2014-08-26 | Tyco Electronics Corporation | Process for preparing an optical interposer for waveguides |
US9146349B2 (en) * | 2011-03-31 | 2015-09-29 | Alcatel Lucent | Monolithic integration of dielectric waveguides and germanium-based devices |
JP5742947B2 (en) * | 2011-09-09 | 2015-07-01 | 日本電気株式会社 | Receiver module |
US9293641B2 (en) * | 2011-11-18 | 2016-03-22 | Invensas Corporation | Inverted optical device |
WO2013133794A1 (en) * | 2012-03-05 | 2013-09-12 | Intel Corporation | Optical coupling techniques and configurations between dies |
US9691869B2 (en) * | 2012-04-09 | 2017-06-27 | Monolithic 3D Inc. | Semiconductor devices and structures |
US9971088B2 (en) * | 2012-04-16 | 2018-05-15 | Hewlett Packard Enterprise Development Lp | Integrated optical sub-assembly |
US9709740B2 (en) * | 2012-06-04 | 2017-07-18 | Micron Technology, Inc. | Method and structure providing optical isolation of a waveguide on a silicon-on-insulator substrate |
US10094988B2 (en) | 2012-08-31 | 2018-10-09 | Micron Technology, Inc. | Method of forming photonics structures |
GB2507512A (en) * | 2012-10-31 | 2014-05-07 | Ibm | Semiconductor device with epitaxially grown active layer adjacent a subsequently grown optically passive region |
US8796747B2 (en) * | 2013-01-08 | 2014-08-05 | International Business Machines Corporation | Photonics device and CMOS device having a common gate |
KR101691851B1 (en) * | 2013-03-11 | 2017-01-02 | 인텔 코포레이션 | Low voltage avalanche photodiode with re-entrant mirror for silicon based photonic integrated circuits |
US9323008B2 (en) * | 2014-03-25 | 2016-04-26 | Globalfoundries Inc. | Optoelectronic structures having multi-level optical waveguides and methods of forming the structures |
US9326373B2 (en) * | 2014-04-09 | 2016-04-26 | Finisar Corporation | Aluminum nitride substrate |
US9276160B2 (en) * | 2014-05-27 | 2016-03-01 | Opel Solar, Inc. | Power semiconductor device formed from a vertical thyristor epitaxial layer structure |
US9768330B2 (en) * | 2014-08-25 | 2017-09-19 | Micron Technology, Inc. | Method and optoelectronic structure providing polysilicon photonic devices with different optical properties in different regions |
US9395489B2 (en) * | 2014-10-08 | 2016-07-19 | International Business Machines Corporation | Complementary metal oxide semiconductor device with III-V optical interconnect having III-V epitaxially formed material |
US9423563B2 (en) * | 2014-10-20 | 2016-08-23 | International Business Machines Corporation | Variable buried oxide thickness for a waveguide |
-
2012
- 2012-08-31 US US13/600,779 patent/US10094988B2/en active Active
-
2013
- 2013-08-15 KR KR1020157006969A patent/KR101742407B1/en active IP Right Grant
- 2013-08-15 JP JP2015529848A patent/JP6154903B2/en active Active
- 2013-08-15 CN CN201380044708.0A patent/CN104769716B/en active Active
- 2013-08-15 EP EP13753241.2A patent/EP2891180B1/en active Active
- 2013-08-15 SG SG11201500915SA patent/SG11201500915SA/en unknown
- 2013-08-15 WO PCT/US2013/055135 patent/WO2014035679A1/en unknown
- 2013-08-30 TW TW102131419A patent/TWI520313B/en active
-
2018
- 2018-06-22 US US16/015,778 patent/US10761275B2/en active Active
-
2020
- 2020-07-10 US US16/926,490 patent/US11402590B2/en active Active
-
2022
- 2022-07-29 US US17/816,336 patent/US11886019B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11886019B2 (en) | 2024-01-30 |
KR20150046188A (en) | 2015-04-29 |
US20220381976A1 (en) | 2022-12-01 |
US20200348472A1 (en) | 2020-11-05 |
US11402590B2 (en) | 2022-08-02 |
TWI520313B (en) | 2016-02-01 |
US10761275B2 (en) | 2020-09-01 |
KR101742407B1 (en) | 2017-05-31 |
CN104769716B (en) | 2018-03-09 |
US20180299626A1 (en) | 2018-10-18 |
EP2891180A1 (en) | 2015-07-08 |
WO2014035679A1 (en) | 2014-03-06 |
EP2891180B1 (en) | 2019-03-13 |
CN104769716A (en) | 2015-07-08 |
US10094988B2 (en) | 2018-10-09 |
US20150198775A1 (en) | 2015-07-16 |
JP2015535389A (en) | 2015-12-10 |
JP6154903B2 (en) | 2017-06-28 |
TW201417247A (en) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2504593B (en) | Method of forming silicon | |
PL2825719T3 (en) | Method of well operation | |
HUE037048T2 (en) | Methods of producing 4-cycloalkyloxybenzenesulfonamides | |
RS61740B1 (en) | Method of constructing merge list | |
EP2813203A4 (en) | Action setting method | |
SG11201500915SA (en) | Method of forming photonics structures | |
EP2913831A4 (en) | Rare-earth-magnet production method | |
HK1209790A1 (en) | Method of producing recombinant iduronate-2-sulfatase -2- | |
GB201222693D0 (en) | Novel method | |
GB201220940D0 (en) | Method P | |
PL2931937T3 (en) | Method of producing metal-nanoparticle-arrays | |
HUE041814T2 (en) | Method of making isoidide | |
EP2902212A4 (en) | Image formation method | |
EP2880048A4 (en) | Method | |
GB201220155D0 (en) | Method of manufacture | |
IL237862A0 (en) | Methods of reducing scalant formation | |
GB201202198D0 (en) | Method | |
EP2871033A4 (en) | Production method for concrete | |
SG2013085071A (en) | Method of producing methionine | |
GB201215942D0 (en) | Method of treatent | |
EP2887938A4 (en) | Methods of preparing tecovirimat | |
GB201215939D0 (en) | Method of preparing monomers | |
EP2812301A4 (en) | Method of producing alcohols | |
GB201201332D0 (en) | Method | |
EP2639418A4 (en) | Exhaust-heating method |