SE544874C2 - Method and system for remote or autonomous ligno harvesting and/or transportation - Google Patents

Method and system for remote or autonomous ligno harvesting and/or transportation

Info

Publication number
SE544874C2
SE544874C2 SE2051336A SE2051336A SE544874C2 SE 544874 C2 SE544874 C2 SE 544874C2 SE 2051336 A SE2051336 A SE 2051336A SE 2051336 A SE2051336 A SE 2051336A SE 544874 C2 SE544874 C2 SE 544874C2
Authority
SE
Sweden
Prior art keywords
ligno
uav
harvesting
trunk
harvested
Prior art date
Application number
SE2051336A
Other languages
Swedish (sv)
Other versions
SE2051336A1 (en
Inventor
Markus Romar
Mauritz Andersson
Olle Gelin
Original Assignee
Airforestry Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airforestry Ab filed Critical Airforestry Ab
Priority to PCT/EP2021/063845 priority Critical patent/WO2022100895A1/en
Priority to PCT/EP2021/064297 priority patent/WO2021239921A1/en
Priority to EP21731061.4A priority patent/EP4156905A1/en
Priority to US17/920,895 priority patent/US20230166875A1/en
Priority to PCT/EP2021/064295 priority patent/WO2021239920A1/en
Priority to EP21731062.2A priority patent/EP4156906A1/en
Priority to EP21730161.3A priority patent/EP4156902A2/en
Priority to PCT/EP2021/064298 priority patent/WO2021239922A1/en
Priority to US17/921,247 priority patent/US20230157225A1/en
Priority to CA3178473A priority patent/CA3178473A1/en
Priority to EP24164600.9A priority patent/EP4364557A2/en
Priority to CA3177520A priority patent/CA3177520A1/en
Priority to US17/921,534 priority patent/US20230205231A1/en
Priority to BR112022021814A priority patent/BR112022021814A2/en
Priority to US17/921,232 priority patent/US20230165199A1/en
Priority to PCT/EP2021/064300 priority patent/WO2021239924A2/en
Publication of SE2051336A1 publication Critical patent/SE2051336A1/en
Publication of SE544874C2 publication Critical patent/SE544874C2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G23/00Forestry
    • A01G23/02Transplanting, uprooting, felling or delimbing trees
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G23/00Forestry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Harvesting Machines For Specific Crops (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention relates to a system (10) for remote and/or autonomous selecting a ligno to be harvested and/or to be transported, said system (10) comprising: a remotely and/or autonomously controlled Unmanned Aerial Vehicle (100), UAV, comprising, at least one means for holding (105) and /or harvesting said at least a portion of a ligno, means for detecting said a ligno to be transported and/or harvested, means for detecting at least one of the group of ligno parameters: diameter of said ligno, length of said ligno, ligno species of said ligno and/or the weight of said ligno, a base station (120) for communication with said means configured for holding and/or harvesting said ligno and said UAV (100) , and means configured for selecting at least a portion of a ligno to be harvested and/or transported depending on at least one of said detected ligno parameters.

Description

Technical field of the lnvention The present invention relates in general to the field of ligno harvesting and in particular to methods and systems for remote and/or autonomous ligno harvesting and/or transportation by means of at least one Unmanned Aerial Vehicle, UAV.
Background of the lnvention Traditional tree harvesting or tree falling has long been conducted by persons and equipment based on the ground. ln earlier times, from the early twentieth century and going back to the early nineteenth century, little consideration was given to the state of the forest or to the eco- system within the forest. Logging was done on a massive scale to keep up with the demand caused by the industrial revolution and the subsequent expansion of human life at the time. Depending on the terrain, tree harvesting process usually begins with experienced tree fellers cutting down a stand of trees or by using heavy ground based manned harvesting machines.
The above-described methods represent a high level of risk, either to the environment or the people performing the work. Damage can also be done to the delicate ecology of the forest, known as the understory or underbrush, where smaller plants bind the soil together and provide a habitat to insects, birds, lichens, and fungus among other things.
Most importantly, many locations are extremely difficult to reach by land, even with the use of heavy equipment such as bulldozers, and removal of trees from such locations is expensive. Sometimes it may be desirable to harvest a single tree amongst a stand of trees, so called tree thinning, without disturbing the surrounding trees. ln US 6,263,932 it is disclosed an aerial tree harvesting apparatus. A first body of said apparatus is suspended from helicopter and a second body is suspended by cables from the first body. The apparatus is capable of delimbing and cutting the tree and thereafter transporting the harvested tree to another location.
The problem with the tree harvesting apparatus in US 6,263,932 is that it is very expensive, slow, noisy and complicated to use. Another problem with US 6, 263,932 is that it is rather labor intense and inefficient.
Ob'|ect of the lnvention The present invention aims at obviating the aforementioned problem. A primary object of the present invention is to provide an improved system for harvesting and/or transportation of ligno.
Another object of the present invention is to provide an improved method for harvesting and/or transportation of ligno.
Summary of the |nvention According to the invention at least the primary object is attained by means of the system having the features defined in the independent claims.
Preferred embodiments of the present invention are further defined in the dependent claims.
According to a first aspect of the present invention it is provided a system (10) for remote and/or autonomous selecting at least a portion of a ligno to be harvested and/or transported, said system (10) comprising: a remotely and/or autonomously controlled Unmanned Aerial Vehicle (100), UAV, comprising, at least one means for holding (105) and /or cutting said at least a portion of a ligno, means for detecting said at least a portion of a ligno to be transported and/or harvested, means for detecting at least one ligno parameter of at least a portion of a ligno and/or at least one growing condition of at least a portion of a ligno, a base station (120) for communication with said UAV, and means configured for selecting at least a portion of a ligno to be harvested and/or transported depending on at least one detected ligno parameter and/or at least one detected growing condition of said harvested and/or transported portion of a ligno and/or of a remaining portion of a ligno and/or of at least one ligno grown within a predetermined distance from said transported and/or harvested portion of a ligno.
An advantage of this embodiment is that the selection of a portion of a ligno to be harvested and/or transported can be made from a remote location.
Another advantage of the present invention is that it may have none or at least very little impact on the nature.
Still another advantage of the present invention is that harvesting and/or transportation of at least a portion of a ligno may be faster and more efficient compared to prior art since different kinds of portions of ligno may be selected out of customer needs, profit maximation and/or total harvesting time.
Yet another advantage is that the present invention provides for an integrated solution for unmanned harvesting and/or transportation of at least a portion of a ligno. A decision of which ligno to be transported and/or harvested may be made remote to said ligno, in vicinity of said ligno or at said ligno.
Still another advantage is that the selection can be made depending on ligno parameters and/or growing condition of the harvested/transported ligno, the remaining part of the ligno or surrounding ligno, i.e., intrinsic and/or extrinsic conditions which may have affected the quality/properties of the harvested/transported portion of ligno is taken into account when selecting a particular portion of a ligno. ln various example embodiments according to the present invention said system further comprising means configured for determining a certain point in time said at least a portion of a ligno should be harvested and/or transported.
An advantage of these embodiments is that the certain point in time may be depending on at least one ligno parameter. Another advantage of these embodiments is that harvesting and/or transportation may be prioritized depending on customer needs, profit maximation and/or harvesting/transportation logistics. ln various example embodiments of the present invention said means for detecting said at least one of the group of said ligno parameters comprising a camera and/or using a database with digital information about ligno.
An advantage of these embodiments is that ligno parameters may be detected on the fly and/or being detected prior to transporting/harvesting and stored digitally together with a position of the ligno. ln various example embodiments a digital marker may be attached to the ligno configured to communicate with the UAV and transmitting information about at least one ligno parameter. ln various example embodiments of the present invention said UAV and said means configured for harvesting at least a portion of the ligno is communicating with each other via one or more of WiFi, Bluetooth, radio communication, optical fibre and/or electrical wire.
An advantage of these embodiments is that the means configured for harvesting the ligno and said UAV can be physically separated from each other.
Another advantage of these embodiments is that said means and said UAV may be controlled individually independently of each other. Another advantage is that only the harvested portion of ligno may be transported away from the original position of the ligno, i.e., less transportation weight compared to also transporting the means configured for harvesting the ligno together with the harvested portion of the ligno. ln various example embodiment of the present invention it may comprise means configured for automatically locating a predetermined ligno or a ligno in a predetermined area to be harvested and/or locating a predetermined ligno in a predetermined area to be transported.
An advantage of these embodiments is that the localization of a ligno, or portion of a ligno, may be performed fully automatic without the help of an operator. Such means may include one or more of a GNSS and/or a camera and/or optical sensor. Such means may also include machine learning/artificial intelligence in order to recognise a suitable ligno and/or a suitable position of a ligno to attach said means configured for cutting the ligno trunk and/or gripping a ligno trunk for transportation. ln various example embodiments of the present invention it may comprise a synchronization unit for synchronizing the movement of at least two UAV for transportation of at least a portion of a ligno.
An advantage of these embodiments is that a plurality of UAV may be used in synchronism with each other for transporting heavy ligno/trunks or portions thereof and that it is more efficient, less expensive and easier to use. The synchronisation unit may either be arranged in one of the UAV being a master UAV for the other slave UAV or in a remote-control unit for synchronising all UAV at a remote distance. ln various example embodiments of the present invention it further comprises means for determining the number of UAV to be used together for transporting depending on said at least one ligno parameter and/or the distance between an original location of said at least a portion of a ligno to and said final destination.
An advantage of this embodiment in that the load capacity of the UAV may be optimized, i.e., not using overly large UAV and/or excessive number of UAV. Another advantage of this embodiment is that the size of UAV may be reduced resulting in an increased maneuverability, less power consumption and/or usability. ln various example embodiments of the present invention said means configured for selecting at least a portion of a ligno is further configured to select at least two portions of ligno to be transported having a total weight within a predetermined weight range.
An advantage of these embodiments is that harvesting may be more efficient by using the available capacity of the one or plurality UAV used for transportation. ln various example embodiments of the present invention means configured for directing said remotely and/or autonomously controlled UAV with said at least a portion of a ligno to a final destination a certain point in time where said final destination and/or said certain point in time is depending on at least one detected |igno parameter and/or at least one detected growing condition of said transported portion of a |igno and/or of a remaining portion of a |igno and/or of at least one |igno grown within a predetermined distance from said transported portion of a |igno. An advantage of this embodiment is that the transportation of at least a portion of a |igno can be made from a remote location. Another advantage of the present invention is that it may have none or at least very little impact on the nature. ln another aspect of the present invention it is provided method for remotely and/or autonomously selecting at least a portion of a |igno to be harvested and/or transported, said method comprising the steps of: remotely and/or autonomously controlling Unmanned Aerial Vehicle, UAV, remotely and/or autonomously operating at least one means for holding said at least a portion of a |igno and/or harvesting at least a portion of a |igno, where said at least one means for holding and/or harvesting said at least a portion of a |igno is attached to said UAV, detecting at least a portion of a |igno, detecting at least one |igno parameter of said at least a portion of a |igno and/or at least one growing condition of said at least a portion of a |igno and/or detecting at least one |igno parameter and/or at least one growing condition of at least one |igno grown within a predetermined distance from said at least a portion of a |igno, selecting said at least a portion of a |igno to be harvested and/or transported depending on at least one detected |igno parameter and/or at least one detected growing condition of said harvested and/or transported portion of a |igno and/or of a remaining portion of a |igno and/or of at least one |igno grown within a predetermined distance from said transported and/or harvested portion of a |igno. An advantage of this embodiment is that the selection of a portion of a |igno to be harvested and/or transported can be made from a remote location. Another advantage of the present invention is that it may have none or at least very little impact on the nature. Still another advantage of the present invention is that harvesting and/or transportation of at least a portion of a |igno may be faster and more efficient compared to prior art since different kinds of portions of |igno may be selected out of customer needs, profit maximation and/or total harvesting time.
Yet another advantage is that the present invention provides for an integrated solution for unmanned harvesting and/or transportation of at least a portion of a ligno. A decision of which ligno to be transported and/or harvested may be made remote to said ligno, in vicinity of said ligno or at said ligno.
Further advantages with and features of the invention will be apparent from the following detailed description of preferred embodiments.
Brief description of the drawings A more complete understanding of the abovementioned and other features and advantages of the present invention will be apparent from the following detailed description of preferred embodiments in conjunction with the appended drawings, wherein: Fig. 1-5, 7-12 depict schematic pictures of different inventive remote and/or autonomous harvesting steps by using a system according to the present invention, and Fig. 6 depicts an example embodiment of a unit comprising a remotely and/or autonomously controlled means configured for harvesting at least a portion of a ligno and at least one means for gripping said ligno trunk Detailed description of preferred embodiments of the invention The word ligno used hereinabove and hereinbelow is a generic term for any tree(s) and/or any bush(es).
The word harvesting used hereinabove and hereinbelow is a generic term for removing at least a portion from a ligno, i.e., cutting a portion of the ligno, cutting the full ligno and/or removing the ligno with at least a portion of its roots from the ground.
Figure 1-5, 7-12 depict schematic pictures of different inventive remote and/or autonomous harvesting and/or transporting steps of at least a portion of a ligno by using an example embodiment of a system 10 according to the present invention. Said system may comprise a remotely and/or autonomously controlled means configured for harvesting and/or transporting at least a portion of a ligno 110, a remotely and/or autonomously controlled Unmanned Aerial Vehicle 100, UAV, comprising, at least one means for holding 105 said ligno trunk and being configured for transporting said harvested portion of said ligno to another location, wherein said system comprising at least one means for detecting said ligno to be harvested and/or transported, and a base station 120 for controlling said means configured for harvesting and/or transporting at least a portion of a ligno and said UAV. Said system further comprising means for detecting at least one ligno parameter of at least a portion of a ligno and/or at least one growing condition of at least a portion of a ligno. Said system further comprising means configured for selecting least a portion of a ligno to be harvested and/or transported depending on at least one detected ligno parameter and/or at least one detected growing condition of said transported/harvested portion of a ligno and/or a remaining portion of a ligno and/or of at least one ligno grown within a predetermined distance from said transported portion of a ligno. ln figure 1 said UAV 100 is carrying said remotely and/or autonomously controlled means configured for harvesting at least a portion of a ligno 110 on its way to harvest a at least a portion of a ligno 135a, 135, b, 135c, 135d in a forest 130. The UAV is remotely controlled by said base station 120 and/or autonomously controlled and optionally communicating with base station The base station 120 may be a stationary unit or a mobile unit. ln figure 1-4, 7, 9, 10 the UAV 100 can be considered as a forestry forwarder and said means configured for harvesting at least a portion of a ligno 110 can be considered to be a forestry harvester. ln an autonomously controlled means configured for harvesting at least a portion of a ligno said means is able to operate without being controlled directly by humans whereas in a remotely controlled means configured for harvesting at least a portion of a ligno said means is able to be operated from a remote distance controlled directly by humans. ln various example embodiment said means configured for harvesting at least a portion of a ligno and said UAV are remotely controlled. ln various example embodiment said means configured for harvesting at least a portion of a ligno and said UAV are autonomously controlled. ln various example embodiments said means configured for harvesting at least a portion of a ligno is remotely controlled and said UAV is autonomously controlled. ln various example embodiments said means configured for harvesting at least a portion of a ligno is autonomously controlled and said UAV is remotely controlled.
Said means for detecting a ligno may be at least one of a camera or an optical sensor. The camera may be at least one of f-'ar example an iR--carräera (ånírareci--carneraL PdiR-»cainerze åïxåear Erefraredl- carneraïš, a VESbâiRl-carrzera (kfisual Near infrared--carneraL a CCD camera åíharged Coupled Dexßice- camera), a: CïHJiOS-camera (Cornpåemeretary ivletaå Oxicše SemEcfirecštectorl-carrzera), a cššgštal caaïiera, a 3D camera e.g., stereo camera, time-of-flight camera or LiDAR. The optical sensor may at least one of a photodetector, pyrometer, proximity detector and/or an infrared sensor.
Said means for detecting a ligno may be arranged on said UAV and/or said means configured for harvesting at least a portion of a ligno.
Said means for detecting at least one of the group of ligno parameters may be the same means as being used for detecting a ligno and/or an additional means. The additional means may be at least one of a camera or an optical sensor. The camera may be at least one of for example an iR-carnera (infrared-camera), Niäkcarnera (båear Enfraredæanïara), a kfifšiišiR-canfiera (Visual Near inirareci~ carraera), a camera (Charged Cfsaigaiecš Devicefcarnera), a CMGS-camera (Compierneritaryf ívietai flxšcše Sernícanrluctoecameraš, a digital camera, a 3D camera e.g., stereo camera, time-of- flight camera or LiDAR, a spectral camera, a heat sensitive camera, an ultrasonic measurement device, a radar device, a vibration device. The optical sensor may at least one of a photodetector, pyrometer, proximity detector and/or an infrared sensor. A 3D picture may see through foliage and/or branches. A mean value of multiple 3D images may result in mm precision images. 3D pictures may reveal lots of information about branches, ligno trunk and/or ligno species. 3D images may be taken from an air born vehicle such as an UAV. The spectral camera may be used for measuring vegetation index (NDVI), i.e., a measure of the photosynthesis in a particular area. Heat sensitive cameras may be used for measuring the temperature of the surface of the ligno trunk which in turn may be a measure of the health of the ligno, an insect infestation ligno has a higher surface temperature than a non-infested ligno. Ultrasonic measurement and/or radar may be used for determining the inner form of the ligno, i.e., rotten or hollow inner structure and/or the inner moisture content of the ligno. Computer tomography and/or magnetic resonance imaging can give information about a portion of a ligno down to a ligno cell level.
Said means for detecting at least one of the group of ligno parameters may be a camera or optical sensor in combination with Artificial Intelligence Al. Al may be used for training a model for recognizing one or a plurality of said ligno parameters. Ligno parameters may be recognized visually and/or by measurement and/or by at least on physical sample. Measurement may be made by optical inspection at a distance from the ligno and/or by physical measurement, for instance integrated in said means for gripping/holding 105 said ligno trunk. Said means for detecting at least one ligno parameter may be a laser scanner attached to said UAV and/or said means for holding said ligno trunk and/or said means for harvesting said at least a portion of a ligno. By laser scanning the ligno trunk the ligno species may be determined and other surface conditions of the ligno trunk such as the presence of any moss and/or any damage. Detected ligno parameters may be compared with stored ligno parameters in a data base for categorization and/or future choice and/or prioritization.
The final destination of said at least a portion of the ligno may be determined by as least one of said detected ligno parameters and/or at least one detected growing condition. Ligno parameter can be considered to be intrinsic features and growing condition can be considered to be extrinsic features.
Ligno parameters may for instance be a diameter of said at least a portion of a ligno (top diameter, base diameter, mean diameter, median diameter), length of said at least a portion of a ligno, ligno species of said at least a portion of a ligno and/or the weight of said at least a portion of a ligno, dry content, age of ligno, number of annual rings, distance between annual rings, color of annual rings, width of annual rings, amount of leaves, amount of fir needle, color, chemical composition of the ligno, twig-free, deformation(s), cracks (dry cracks (partial or all trough), end crack, ring crack), rootstock, density, rot, discolored, dead ligno, insect infested, microorganism infested, weather damage (storm, wind, fire, drought), machine damage (root, ligno trunk), amount of fruits, seeds, berries, nuts, cones, flowers on the ligno, form of root, root structure, root depth, root volume etc. The color of the ligno may be an indicator of ligno species. The color may be the color of the outer surface of the ligno trunk or the color of a cut area. The form of the ligno may be determined by a 3D camera. Form may comprise total volume of ligno, leaves or fir needles, deformations, shape deviations etc. Ligno parameters may also comprise material properties of the ligno such as moisture content (%), tensile strength (MPa), flexural strength (MPa), compressive strength (MPa), shear strength (MPa), impact strength (KJ/mz), hardness (Brinell, Vickers, Rockwell), elasticity module (MPa), thermal conductivity (W/m°C), heat capacity (J/kg°C), Calorific value (MJ/kg), etc.. ln various example embodiments said ligno parameters may be detected manually by human or remote and/or autonomous by a separate unit prior to harvesting. Ligno parameters may be stored digitally together with GPS position. ln various example embodiments a digital marker may be arranged physically on ligno prior to cutting the ligno or when the ligno is laying on ground. The digital marker may have stored information about at least one ligno parameter. The input of ligno parameters may be made manually prior to harvesting. The digital marker may be configured to communicate with said UAV. The communication may be performed by Bluetooth, wifi, radio communication and/or telecommunication (3G, 4G, 5G). A physical sample for detecting ligno parameters such as density, rot and/or dry content may be made manually prior to harvesting and/or automatically by a sample detection means added to the means for holding the ligno trunk and/or the means configured for harvesting at least a portion of a ligno. Such sample detection means may be a suitable tool for removing a predetermined amount of the ligno to be analysed. The removal of said predetermined amount to be analysed may be made by drilling, sawing or cutting. The analyzation of said predetermined amount of the ligno may be made while the UAV is at or near the ligno or said predetermined amount of ligno may be brought to an analyzation station at a distance from the ligno. A selection of where to remove said predetermined amount of the ligno may be made by using said camera. Suspected rotten or insect infested area may be detected by the camera and thereafter a sample of such area may be removed and analyzed. Different portions of a single ligno and different ligno may be catagorized differently depending on the outcome of the analyzation, i.e., depending on the ligno parameters a specific portion of a ligno may fall into one or a plurality of different categories. lf a specific portion of a ligno may fall in a plurality of different categories a selection may be based on the value or the current demand in the market.
Growing conditions may for instance be #ligno per unit area and/or growth potential.
Growing condition may also be biotic environmental factors (interaction of organism of the same species and/or interaction of organisms of other species) such as mount of dead ligno/wood within a predetermined area, interaction and/or competition of other species, gas and fragrance from plants, temperature of other plants etc. Fungal infestation and insect infestation may be spread over a large area. lt may be advantageous to harvest non infested ligno within a predetermined time after having detected an infested ligno in a predetermined area. Fungal and insects may spread over several km. Competition for water, nutrition, and sun hours may be within a distance of 0-50m. Advantageous interaction/competition situation may be made through sorting out plants in predetermined positions in order to get optimal conditions for the remaining ones.
Growing conditions may also be abiotic environmental factors climate (temperature, precipitation etc), topography, ground temperature, geology, hydrology, vegetation, soil, earth deposit, soil depth, surface blockage, minerals, ground carbon contents, ground nitrogen content, ground carbon nitrogen ratio, PH value, bas kat ions, amount of trace elements, physical or chemical erosion, environmental condition, wind etc. Abiotic environmental factors may also be the type ofland such as forest land, arable land, agricultural land, natural pasture, mountain impediment, protected area, power line area, military area, built up land etc.
At least one ligno parameter and/or growing condition may be used as a factor for determining the usage, demand, storage, quality of the at least a portion of ligno. This in turn may be used for determining the final destination of a particular portion of a ligno.
Gas sensors may be used to detect water quality (carbon oxide content, methane content, oxygen content etc.).
The UAV may have one or a plurality of propellers. ln figure 1-4 said UAV has 6 propellers arranged symmetrically around an origin.
The base station 120 may, when remotely controlled, be operated by at least one human being, whereas, when autonomously controlled, be a base station 120 with programmed software algorithms used for supporting the autonomous UAV and/or the means configured for harvesting at least a portion of a ligno. The base station 120 may be a stationary unit or a mobile unit.
Said means for holding the said ligno 105 may be at least one movable gripping arm. ln various example embodiments said means for holding said ligno 105 may be one or a plurality of metal bars which may at least partially penetrate a ligno trunk. ln various example embodiments said means for holding said ligno 105 may be a unit surrounding said ligno trunk and being able to change its holding area and thereby compress around the ligno trunk for securing purpose and decompress for releasing a ligno trunk or entering a ligno to be harvested. Said means for holding said ligno 105 may comprise said sample detection means. ln various example embodiments said means configured for harvesting at least a portion of the ligno may be arranged with means for attaching itself to said ligno trunk. ln various example embodiments said means configured for harvesting at least a portion of a ligno is also configured for moving up and down along the trunk of the ligno. The movement may be performed by at least one electrically driven wheel travelling on said ligno trunk. ln various example embodiments at least one wheel may be electrically driven for enabling movement up and down said ligno trunk and at least one other wheel is arranged for friction reduction during said movement. ln various example embodiments at least to wheels are configured to attach, secure and move said means configured to harvesting at least a portion of a ligno.ln various example embodiments said means configured for harvesting at least a portion of the ligno is also configured for moving on ground. The movement can be made via a plurality of wheels or legs and/or as a tracked vehicle.
Said UAV 100 and said means configured for harvesting at least a portion of the ligno may be communicating with each other via one or more of WiFi, Bluetooth, radio communication, telecommunication (SG, 4G, 5G), optical fibre and/or electrical wire. ln various example embodiments said control unit and said UAV and/or said means configured for harvesting at least a portion of the ligno may be communicating with each other via one or more of WiFi, Bluetooth, radio communication, telecommunication (SG, 4G, 5G). Depending on the distance and/or communication quality between the control unit and said UAV and/or said means configured for harvesting at least a portion of a ligno the communication may change from one type of communication to another. ln various example embodiments said means configured for harvesting at least a portion of the ligno is connectable to an underside of said UAV 100. ln various example embodiments said means configured for harvesting at least a portion of the ligno may be released from said UAV directly onto a ligno to be harvested or on the ground at or near the ligno to be harvested. ln various example embodiments said means configured for harvesting at least a portion of the ligno may be provided at a distance from said ligno to be harvested from a land vehicle. The means configured for harvesting at least a portion of the ligno may of its own motion move from the position on ground to the desired ligno to be harvested. Communication between said UAV and said means configured for harvesting at least a portion of a ligno may at any desired time result is a pick-up of said means configured for harvesting at least a portion of a ligno by said UAV. The pickup of said means configured for harvesting at least a portion of a ligno by said UAV 100 may be made on ground if there is enough space or on a trunk of a ligno. ln various example embodiments the UAV 100 may comprise a power unit for powering said UAV 100 and said means configured for harvesting at least a portion of said ligno 110. The power from said power unit in said UAV 100 may be delivered to said means configured for harvesting at least a portion of a ligno 110 via at least one power cable. The power unit may be an electric motor and/or an internal combustion engine.ln various example embodiments said UAV 100 may comprising at least a first power unit for powering said UAV 100 and said means configured for harvesting at least a portion of a ligno 110 may comprise at least a second power unit for powering said means configured for harvesting at least a portion of a ligno 110. The power unit in said UAV 100 may be electrical and/or an internal combustion engine. The power unit in said means configured for harvesting at least a portion of a ligno 110 may be electrical and/or an internal combustion engine. ln various example embodiments said means configured for harvesting at least a portion of a ligno 110 is also configured for delimbing a ligno. The delimbing may be performed from top to bottom if said means configured for harvesting at least a portion of the ligno is initially arranged on said ligno to be harvested from above. ln various example embodiments said delimbing may be performed from bottom to the top if said means configured for harvesting at least a portion of a ligno is moved by its own motion from ground to the ligno to be harvested or attached to a lower section of the ligno to be harvested from the UAV. The delimbing may be performed by one or a plurality of cutting means, snapping means, and/or shearing means. The cutting means may be by cutting chains and/or by rotary cutting disks. The cutting may be performed by a straight movement along said trunk of said means configured for harvesting at least a portion of a ligno and/or by a serpentine movement along the trunk by said means configured for harvesting at least a portion of a ligno. ln various example embodiments said means configured for harvesting at least a portion of a ligno 110 is configured to be in direct communication with a remote operator and/or a remote base station 120 or indirect communication via said UAV 100 with a remote operator and/or a base station 120. The indirect communication, i.e., the UAV 100 as access point, with said means configured for harvesting at least a portion of a ligno 110 may be used if the same information is to be sent to both UAV 100 and said means configured for harvesting at least a portion of a ligno 110. The UAV 100 may be in various example embodiments work independently from a remote base station 120. The indirect communication may also be used if said UAV 100 is arranged in between said base station 120 and said means configured for harvesting at least a portion of a ligno ln various example embodiments said UAV and/or said means configured for harvesting at least a portion of a ligno may comprise means configured for automatically locating a ligno and/or a predetermined area to be harvested. Said means configured for automatically locating a ligno and/or said predetermined area to be harvested may comprise at least a Global NavigationSatellite System, GNSS. Said means configured for automatically locating a ligno and/or a predetermined area to be harvested may comprise at least one camera or optical sensor. Said means configured for automatically locating a ligno and/or a predetermined area to be harvested may comprise at least a camera in combination with Artificial intelligence or machine learning algorithms for speeding up the detection of a suitable area to arrange said means configured to cut a ligno trunk.
Now returning to figure 1 where the UAV 100 is on its way to a ligno 135 in forest 130 to be harvested. The ligno 135 may be preselected, i.e., selected prior to arrival to the ligno 135. Alternatively said ligno 135 may be selected by the UAV 100 in combination with the base station 120 once the UAV 100 is at or near a position above said ligno 135. The selection may be performed by identifying a picture of the ligno 135 from above with stored pictures in said control station 120 and by means of a selection algorithm select a ligno for ligno thinning purpose or other selection criteria. ln figure 1 the forest 130 comprises four ligno 135a, 135b, 135c, 135d, all of which may have equal or different ligno parameters and/or growing conditions. The forest may of course have a larger or smaller amount of ligno than the depicted 4 as shown in figure 1-4. A ligno to be harvested may be determined by at least one of said detected ligno parameters and/or growing conditoins. ln various example embodiments the order of harvesting ligno 135a, 135b, 135c, 135d may be selected out of minimizing a total harvesting time. ln various example embodiments a particular ligno may be selected because there is a demand of such ligno parameters from a particular customer. ln various example embodiments a particular ligno may be selected to be harvested due to a particular ligno thinning strategy, e.g., smallest or largest ligno in a group of ligno, diameter of said at least a portion of a ligno, length of said at least a portion of a ligno, ligno species of said at least a portion of a ligno and/or the weight of said at least a portion of a ligno, dry content, twig-free, rootstock, density, rot, discolored, dead ligno and/or insect infested. Ligno parameters may be detected prior to arriving with the UAV 100 to the forest 130. This may be made manually and/or automatically. Manual detection may be made by human being registering at least one ligno parameter in a digital data base. Automatic ligno parameter may be made by a separate UAV and/or a land-based vehicle. Detection may be non-destructive and/or destructive. Non-destructive methods may be made by visual inspection by a human being or by registering the ligno by a suitable optical means such as a camera. Destructive detection may be made by removing a predetermined amount of a ligno and analyzing it on site or at a remote site. A ligno to be harvested may be selected depending on its distance to the final destination, e.g., choosing ligno with a particular set of ligno parameters as close to the final destination as possible. A ligno to be harvested may be selected in order to maximize the value of the total amount of harvested ligno in a particular time frame. A ligno to be harvested may be selected in order to maximize the value of the remaining ligno in the forest. A decision of how much of a particular ligno to be harvested may be made depending on at least one ligno parameter. ln various example embodiments the selection of already harvested portions laying on ground may be made depending on at least one ligno parameter. ln various example embodiments a correct size of UAV may be made depending on at least one ligno parameter of said at least a portion of ligno laying on the ground. ln various example embodiments a correct choice of number of UAV for transportation may be made depending on at least one ligno parameter of said at least a portion of ligno laying on the ground. ln various example embodiments the system further comprising means configured for determining a certain point in time said at least a portion of a ligno should be harvested and/or transported. A ligno 135a having a first set of ligno parameters may be selected to be harvested and/or transported prior to a ligno 135c having a second set of ligno parameters. ln figure 2 the selected ligno 135 has been attached on its top portion by at least one means for gripping 105 said ligno trunk. A gripping position on said ligno 135 may be selected depending on the expected lift weight of the harvested portion of said ligno. lf the full ligno is to be harvested a greater diameter of said trunk of the ligno is to be chosen as a gripping position compared to if just a portion of the ligno is to be harvested. ln figure 3 the autonomously controlled means configured for harvesting at least a portion of a ligno 110 has been moved a distance down from said at least one means for gripping 105 said ligno trunk. On its way down said means configured for harvesting at least a portion of a ligno 110 also has delimbed the ligno 135 leaving a bare ligno trunk 137 without twigs and limbs. The powering of said means configured for harvesting at least a portion of a ligno 110 may be provided by said UAV 100 or by a power unit in said means configured for harvesting at least a portion of a ligno 110. ln case of power supplied from said UAV to said means configured for harvesting at least a portion of a ligno 110 said power may be delivered via one or a plurality of power cables arranged on between said UAV 100 and said means configured for harvesting at least a portion of a ligno 110. A power unit in said means for cutting a ligno trunk 110 may be one or a plurality of battery packs. ln various example embodiments a first battery pack maybe usedfor communication with the UAV 100 and/or a base station 120. A second battery pack may be used for moving said means for harvesting at least a portion of a ligno 110 up/down on a ligno trunk and/or for moving said means for harvesting at least a portion of said ligno 110 on ground. |nstead of harvesting trees and/or bushes (ligno) by means of cutting at least a a portion of said ligno, said ligno may be removed from ground with at least a portion of its root system. This removal may be made by using the UAV as removal means, i.e., gripping a ligno and using the upward traction power of the UAV for removing the ligno from ground. This technique may only be used for small ligno, for instance when invasive arts is to be removed from a particular area at an early stage for not causing damage on the remaining portion of the forest. ln figure 4 the ligno 135 has been delimbed, harvested and on its way to a location away from the original location of the ligno. What is left of the original ligno 135 at its original location is a pile of limbs 138 and a ligno stump 139. ln the depicted example embodiment said means configured for harvesting at least a portion of a ligno 110 is still arranged on said ligno trunk when the ligno is transported away from the original location of the ligno. ln various example embodiments it is provided means configured for directing said remotely and/autonomously UAV 100 with said at least a portion of a ligno to a final destination where said final destination is depending on said detected ligno parameters. ln various example embodiments a first type of ligno species may be transported to a first final destination whereas a second type of ligno species may be transported to a second final destination. Figure 5 illustrates 3 different final destinations A, B and C respectively. Final destination A may have a first set of ligno parameters, final destination B may have a second set of ligno parameters and final destination C may have a third set of ligno parameters. Said first, second and third set of ligno parameters may be different. Ligno parameters may for instance be a diameter of said at least a portion of a ligno, length of said at least a portion of a ligno, ligno species of said at least a portion of a ligno and/or the weight of said at least a portion of a ligno, dry content, twig-free, rootstock, density, rot, discolored, dead ligno, insect infested. At least one of said final destinations A, B or C may be an intermediate storage on ground. At least one of said final destinations A, B or C may be a mobile storage, for instance a timber truck. ln various example embodiments said final destination A, B or C may as in figure 5 be close to each other. ln various example embodiments said final destination A, B or C may be remote to each other. ln various example embodiments more or less final destinations than 3 as depicted in figure 5 may be present.ln various example embodiments the final destination A may be for timber having a length within a predetermined interval. The final destination B may be for timber having a predetermined weight per unit of timber. The final destination C may be for rotten ligno, discolored ligno, dead ligno and/or insect infested ligno. ln various example embodiments the final destination A may be allocated with timber having a first set of ligno parameters and a requirement to be filled with timber prior to a final destination B which may have the same ligno parameters but will be filled with timber later in the ligno harvesting process. lt may be that the final destination A is close to a road or at a timber truck, whereas final destination B may be an intermediate storage closer to the harvesting area compared to final destination A and far away from any available road. ln various example embodiments the first final destination A may be for timber to be used as pulp. The second final destination B may be for building material, such as plank. The third final destination C may be for biomass material.
Depending on the location of said first second and third final destination, A, B and C respectively, and the location of the ligno to be harvested an optimization may be performed prior to harvesting in order to minimize the time required to harvest and transport a given number of ligno in various categories. A forest having numerous ligno, such optimization may result in harvesting a first set of ligno parameters first and a second set of ligno parameters later in time for a first harvesting area whereas in a second harvesting area a third set of ligno parameters, different to said first and second may be chosen to be harvested first. The optimization may be depending on the density of ligno per unit area, the topography of the nature where the ligno are located, the type of ligno present in a predetermined area and/or the purpose of the harvesting technique, sorting out or complete disforestation.
At least one ligno parameter and/or growing condition may steer the final destination. Coordinates for different final destinations may be pre stored in the UAV and/or base station. Different sets of ligno parameter and/or growing condition may be linked to different final destinations, i.e., coordinates.
A plurality of portions of ligno may be transported simultaneously by at least one UAV. The choice of portions of ligno to be transported may depend on the distance between the portions of ligno and/or the distance between the plurality of portions of ligno to be transported and the finaldestination. The choice of portions of ligno to be transported may also depend on the total remaining battery power and/or remaining fuel of the UAV(s).
Said means configured for directing said remotely and/autonomously UAV with said at least a portion of a ligno to a final destination depending on said detected ligno parameters may also be configured for determining a certain point in time said at least a portion of a ligno should be arrived at said final destination. Not only the destination may be determined depending on one or a plurality of ligno parameters, also the certain point in time a particular at least a portion of a ligno should arrive at a predetermined location may depending on one or a plurality of ligno parameters. ln a first example embodiment a particular ligno parameter is to be picked up by a timber truck and transported away days or weeks from a particular harvesting time. This may be a trigger factor for either just harvesting the particular ligno and let them lay on the ground or simply postpone the actual harvesting said days or weeks until said pickup by timber truck is to take place. ln a second example embodiment timber at a particular final destination A, B, or C may be sorted so that a particular set of ligno parameters arrives first, time A, at a particular final destination, i.e., furthest down in a pile of timer. A second set of ligno parameters arrives later, time B and will be arranged on the middle of the pile of timber. A third set of ligno parameters arrives latest, time C, and will be arranged on a top portion of the pile of timber. Having sorted different sets of ligno parameters at one and the same location may make transport logistics more effective in picking up the correct type of timber.
The predetermined distance of at least one ligno grown from said transported portion of a ligno may depend on topography and/or invasive species. An insect infested and/or fungal infested tree in a predetermined area may result in harvesting relatively far away from the infested tree, i.e., large predetermined distance up to several hundred of meters, whereas in a healthy environment said predetermined distance may be less than 50 meters and in some cases may be less thanmetefS.
The system may further comprising means for determining the number of UAV to be used together for transporting at least one potion of a ligno depending on said at least one ligno parameter and/or the distance between an original location of said at least a portion of a ligno to and said final destination. Long and/or heavy portions of ligno and/or a transport of a plurality of portions of ligno may require more than one UAV for transporting said portion of the ligno(s) from its original location to its final destination. At least one ligno parameters may be used to allocate the correct number of UAV to be used in synchronism for transporting said portions of ligno(s).The plurality of UAV may either attach to the portion of ligno to be transported or attach to another UAV for synchronously transporting said portion of ligno away from its original location to its final destination. The attachment of one UAV to another UAV may be made directly via a connection arrangement or via a wire or bar in between said two UAV. A plurality of UAV may also be necessary if the distance between the original location and the final destination is very long. lf the distance between the original location and the final destination is long an intermediate storage location in between said original location and the final destination may be necessary for later pick up and transport to the final destination. By using a plurality of UAV in synchronism may be advantageous since smaller UAVs may be used which is easier to handle and easier to use in a dense forest. Synchronization of a plurality of UAV for working together in transporting at least a portion of a ligno may be made through a base station and/or a master UAV. When it is determined that more than one UAV is needed, one of said UAV may be assigned a master role and the other UAV a servant role. The master role may be assigned to the UAV first approaching the portion of ligno to be transported or to a specific type of UAV. Alternatively, the plurality of UAV are attached together for transport and the base station assigned one of them as a master and the other as servant UAV. Each and every UAV may communicate with each other and to the base station. ln yet an alternative embodiment the base station is the synchronization unit, i.e., all UAV are assigned as servant UAV and follow one and the same instructions sent out from said base station. ln various example embodiments single UAV transportation may be prioritized before plurality of UAV transportation. This may be the case in an early stage of harvesting when the forest is still dense and there are lots of UAV available. ln various example embodiments transportation is based on total lift capacity of the UAV(s). A transportation optimization may in such case be based on the order the ligno should be picked up in order to minimize the clearing of a particular area. ln various example embodiments only ligno having a predetermined ligno parameter should be prioritized before all other ligno parameters and/or growing conditions. ln various example embodiments a particular type of UAV, size and/or capacity may be used depending on at least on ligno parameter. ln various example embodiments ligno parameters sent to said base station may allocate a particular type of UAV out of a UAV fleet which may make the transportation as effective as possible.
Ligno parameters may be detected by non-destructive evaluation, such as camera or optical sensors. Ligno parameters may also be detected by removing physical sample from the ligno and analyzing said sample. The removal may be in form of cutting drilling or sawing and predetermined amount of the ligno at a predetermined position. The analyzing may take place directly in the UAV or means attached to said UAV. Alternatively said analyzing may be made at a remote location from the ligno. Ligno parameter(s) may be detected by means attached to the same UAV which is used for transporting/harvesting the portion of ligno and/or by a human being prior to harvesting/transportation and/or by a land based remotely and/or autonomously controlled Unmanned Vehicle (100) and/or by means attached to a separate UAV only used for detecting tree parameters and/or growing conditions. ln various example embodiments detection of ligno parameters and/or growing conditions may be made simultaneously and by separate means (UAV, human being, remotely and/or autonomously controlled Unmanned Vehicle) as harvesting and/or transportation in a particular area. |nstead of as in figure 4 delimbing and cutting the full ligno, said ligno may be harvested in sections starting from above and going down the trunk of the ligno. When a section of the ligno has been harvested, said means configured for harvesting at least a portion of a ligno 110 may be left on the still uncut portion, the stump, of the ligno while the UAV is transporting away the harvested portion from the original location of the ligno.
Delimbing means may be arranged on a top portion and on a bottom portion of said means configured for harvesting at least a portion of a ligno 110. By arranging said delimbing means on both sides of said means configured for harvesting at least a portion of a ligno 110 makes it possible to provide said means configured for harvesting at least a portion of a ligno 110 from above on the ligno or from root of said ligno. The delimbing means is provided at the front position with respect of the direction of movement of said means configured for harvesting at least a portion of a ligno ln various example embodiments said means configured for harvesting at least a portion of a ligno 110 may be provided by said UAV directly on a portion of the ligno to be harvested where there are no limbs. ln various example embodiments said means configured for harvesting at least a portion of a ligno 110 may be dropped on the ground at or near the ligno to be harvested.ln figure 6 it is depicted a schematic picture of an example embodiment of said means configured for harvesting at least a portion of a ligno 110 and said means for holding said ligno 105. Said holding means 105 may be provided at a distance from said UAV 100, for instance via one or a plurality of wires 111a. The holding means 105 is in this example embodiment in the form of a first movable curved arm 107a and a second movable curved arm 107b. Said arms (107a, 107b) can be set to any position between a fully open position and fully closed position in order to allow to embrace a ligno trunk and also to grip and release the same. Said means configured for harvesting at least a portion of a ligno 110 comprises in figure 6 a first movable curved fixing/delimbing arm 114a and a second movable curved fixing/delimbing arm 114b. Said first and second movable curved fixing/delimbing arms (114a, 114b) may be set to any position between a fully open position and fully closed position on order to allow to embrace a ligno trunk and also to fixing the same. Said fixing/delimbing arms may have a sharp edge on its top portion and/or its bottom portion for delimbing the ligno as the means configured for harvesting at least a portion of the ligno moves along the trunk of said ligno. Said means configured for harvesting at least a portion of a ligno 110 also comprises a cutter 116. The cutter may be in the form of an electrically driven or internal combustion engine driven chain saw. The chain saw may be arranged movable in said means 110 in order to cut a ligno while said means is in a fixed position on said trunk of the ligno.
The delimbing means 114a, 114b may be optional. The holding means 105 may be provided at a distance from said means configured for harvesting at least a portion of a ligno 110. Said holding means 105 may be attached at said means configured for harvesting at least a portion of a ligno 110 with at least one wire 111b or at least one metal bar or other suitable attaching means. ln various example embodiments said holding means 105 may be mechanically separable from said means configured for harvesting at least a portion of a ligno 110 meaning that the holding means may attached at a fixed position at the ligno while the means configured for harvesting at least a portion of the ligno may of its own motion move along the trunk of the ligno with no mechanical attachment to the holding means 105. The means for harvesting at least a portion of a ligno may cut a portion of a ligno and stay on the still not harvested portion of the ligno while said UAV is moving away with the harvested portion to another location. Delimbing may take place by said means configured for harvesting at least a portion of a ligno 110 while said UAV is moving away said harvested portion of the ligno. The UAV may return to the same ligno and remove yet another portion of it and said means configured for harvesting may stay on the not yet harvested portion or attach to the harvested portion or the UAV and move together with the UAV to another location. The holding means 105 and the means configured for harvesting at least aportion of a ligno 110 may communicate with each other and/or independently of each other communicate with the UAV and/or the base station 120. A camera may be used, attached either on said UAV or said may be used for means configured for harvesting at least a portion of a ligno 110, in order to simplify attachment of said UAV with said means configured for harvesting at least a portion of a ligno 110. The attachment of said UAV and said means configured for harvesting at least a portion of a ligno 110 may be a fully automatic process. Said means configured for harvesting at least a portion of a ligno 110 may have at least one electrically driven wheel 190 for allowing movement of said means configured for harvesting at least a portion of a ligno 110 along a trunk of a ligno. One or a plurality of supporting wheels 112 may be used for securing said means configured for harvesting at least a portion of a ligno 110 onto said trunk of said ligno and for reduce friction while moving along said trunk of said ligno. Said supporting wheel(s) may be arranged on arms 188 which may be movable in order to secure said means configured for harvesting at least a portion of a ligno 110 on said trunk of said ligno. ln various example embodiments said means configured for harvesting at least a portion of a ligno 110 may be made of two separable parts, a first part that is mainly configured for holding the ligno and a second part, capable of moving up and down along the trunk of the ligno, which can delimb and/or cut the ligno. ln various example embodiments said means configured for harvesting at least a portion of a ligno 110 may be provided at or near the ligno to be harvested either by the UAV or by a land vehicle. Said means configured for harvesting at least a portion of a ligno 110 may of its own motion move towards a predetermined ligno to be harvested and arrange itself at a predetermined position on the trunk. An UAV may before said ligno is cut be arranged at a top position of said ligno and grip the trunk of the ligno on a position safe to lift the portion to be cut. Said means configured for harvesting at least a portion of a ligno 110 cuts the ligno and the UAV moves the harvested ligno away from the original location of the ligno. The harvested ligno has all of its limbs left on the ligno. Said means configured for harvesting at least a portion of a ligno 110 may follow the harvested ligno from the original location of the ligno or stay at the ligno stump. ln various example embodiments said means configured for harvesting at least a portion of a ligno 110 may be provided at or near the ligno to be harvested either by the UAV or by a land vehicle. Said means configured for harvesting at least a portion of a ligno 110 may of its own motion move towards a predetermined ligno to be harvested and arrange itself at a predetermined position on the trunk. An UAV may, before said ligno is cut, be arranged at a top position of said ligno andhold/grip the trunk of the ligno on a position safe to lift the portion to be cut. Said means configured for harvesting at least a portion of a ligno 110 first moves upwards the trunk of the ligno in order to delimb the same. Thereafter said means configured for harvesting at least a portion of a ligno 110 moves to a predetermined position and cuts the ligno. The UAV moves the harvested ligno from the original location of the ligno. The harvested ligno is delimbed. Said means configured for harvesting at least a portion of a ligno 110 may follow the harvested ligno from the original location of the ligno or stay at the ligno stump.
The system may comprise a plurality of UAV and a plurality of means configured for harvesting at least a portion of a ligno all of which may work together for efficiently harvesting ligno in a forest.
A plurality of UAV may work together synchronously for transporting a harvested portion of a ligno or a plurality of harvested ligno. This may be arranged so that a first UAV is a master UAV and at least a second UAV is a slave UAV. The master UAV may grip the ligno to be harvested at a predetermined position on its trunk. Said at least one slave UAV may be attached to said master UAV via wires. Said at least one slave UAV may be arranged at an elevated position with respect to the master UAV. A synchronisation unit makes sure the master UAV and the at least one slave UAV works in synchronisation with respect to movement and distance to each other. The synchronisation unit may be arranged in the master UAV or arranged in the control unit controlling said master UAV and said at least one slave UAV. |nstead of a single UAV gripping said portion of the ligno to harvest a plurality of UAVs may grip the same ligno to be harvested. ln various example embodiments of the present invention said UAV is designed to be capable of flying as to control position, velocity, orientation and rotational speed and via a rigid connection impart its motion to the means for cutting/delimbing said ligno. ln this embodiment the UAV controls the movement of the means for cutting/delimbing said ligno. ln various example embodiments of the present invention the UAV may be used to reduce load on said cutting means 116 during cutting. This may be performed by first holding a predetermined portion of the ligno by said holding means 105 and thereafter apply a lift force by said UAV while cutting the ligno by the means for harvesting at least a portion of the ligno 110. This may be advantageous since a reduced load on the cutting means 116 from the weight of the ligno mayincrease the efficiency of the cutting procedure and/or require less power compared to cutting a ligno with the full load onto said cutting means ln various example embodiments a separate land vehicle may be used with means for harvesting at least a portion of said ligno while the UAV is lifting the ligno. This may be advantageous since there is no load on the cutting means from the weight of the ligno which may increase the efficiency of the cutting procedure and/or require less power compared to cutting a ligno with the full load of the portion to be cut on said cutting means.
Figure 7 depicts an UAV 100 with means for harvesting 110 or cutting at least a portion of a ligno. ln figure 7 a ligno 135m is only cut with means for cutting 116. ln various example embodiments the cut ligno may be with or without delimbing. The decision which ligno to cut may depend on several factors. lt may depend on ligno parameters and/or growing conditions for ligno 135k and/or 135l. Those ligno may have a specific quality which may have been detected by ligno parameters and/or growing condition, which specific quality one wants to improve. The improvement may be achieved by cutting ligno 135m with means for cutting 116. With ligno 135 removed the economical growth value and/or growth potential of ligno 135k and/or 135l may be increased. Ligno 135k and/or 135l may have an increased growth potential after ligno 135m has been removed just because ligno 135m was too close to ligno 135k and/or 135l. ln another example embodiment ligno 135m is cut because ligno 135m has at least one ligno parameter and/or growing condition which may be inferior, for instance ligno 135 may be storm damaged and is cut for fertilizing and/or give more sunlight, water and nutrition to the remaining lignos 135k and/or 135l. ln the depicted example embodiment in figure 7 the ligno is cut without being taken care of. lt may be economically advantageous to fertilize remining trees with trees of low value. Cutting trees without taking care of them may also depend on nature conservation goals or to fulfil environmental certification where some trees must be left on ground for favouring other living species.
Figure 8 depicts tree ligno, whereof one 135n is not harvested while the other two has been cut down and cut in portions. The three ligno may have different ligno parameters and/or growing conditions, which may have determined which of the ligno to be cut down and how the ligno is cut in portions. Ligno 135o, 135p, 135q and remaining ligno 135r are portions of a first harvested ligno. Ligno 135s, 135t, 135u and remaining ligno 135v are portions of a second harvested ligno.
The different portions of said first and second harvested ligno may have different ligno parameters, i.e., different portions of a single ligno may have varying ligno parameters. Said first and second harvested ligno may have been harvested by a UAV and/or by a land going harvesting equipment. lf said first and second harvested ligno has been harvested by an UAV, it may be advantageous to leave said first and second harvested ligno on the ground as an intermediate storage location for later transportation to another location when it is more logistically advantageous. The reason for not transporting away a ligno from its original location immediately after having cut it down may depend on limited storage capacity at a nearby forest road. Harvesting can either be made with UAV and/or land based harvesting machines. Ligno parameters may be detected during harvesting by means attached to the UAV and/or the land based harvesting machine. For instance, when ligno 135p is harvested it may give indirect information about weight and other ligno parameters of ligno 1350 and/or ligno 135q. Ligno parameters of for instance a top scrap portion of a ligno may determine if the remaining portion of the ligno should be transported when harvested or be cut and stored at its original location for transportation at later point in time. Annual rings in 135r may be detected with a camera and give information about ligno parameters for the other portions 1350, 135p, 135q. ln various example embodiments ligno parameters and/or growing condition for ligno 135n may give indication of the quality of ligno 1350, 135p, 135q, 135s, 135t, 135u. Ligno parameters and/or growing condition from ligno 135n may determine the priority of harvesting and/or the order of transportation and/or the final destination for ligno 1350, 135p, 135q, 135s, 135t, 135u. ln various example embodiments information about ligno parameter and/or growing condition for ligno 1350, 135p, 135q, 135s, 135t, 135u may be stored digitally during harvesting. Such digitally stored information may not be visible on the harvested portions 1350, 135p, 135q, 135s, 135t, 135u, but may be stored together with coordinates in three dimensions. The digitally stored information may determine which quality the different portion may have and when, in time, said different portion shall be transported. ln various example embodiments harvesting and transportation may be made at different times due to ground condition, wet, snow etc or other temporary weather conditions.
Information about ligno parameters and/or growing condition which is detected during harvesting may be performed by a land based machine and/or a UAV, may be used for determining the number of UAV needed for lifting the ligno portions 1350, 135p, 135q, 135s, 135t, 135u.Figure 9 depicts transportation of |igno with at least one UAV to different storage locations 201a, 201b. Storage location 201a has a first |igno quality (first set of |igno parameters and/or growing conditions) and storage location 201b has a second |igno quality ( second set of |igno parameters and/or growing conditions). A weight of a specific portion of a tree may be estimated based on information about a |igno average diameter length and volume.
UAV 100a may have harvested |igno in pile 135i at location 201a. Ligno in pile 135i at location 201b may have lower weight than |igno in pile 135w. Ligo in pile 135w may require two UAV, 110b, 110c, for transportation of each individual |igno due to its weight.
UAV 100b has a first means 105 for holding the |igno 135] and said UAV 100c has a second means 105 for holding the same |igno 135j. As indicated in figure 9, attachment point for holding means 105 for UAV 100b is different than attachment point for holding means 105 for UAV 100c. Based on |igno parameters and/or growing condition a location for storage of different portions of |igno is determined. Different number of UAV may be necessary for lifting different |igno depending on |igno weight, max lifting capacity for UAV may determine the number of UAV necessary for transportation.
Two or more UAV 100b, 100c may, as depicted in figure 10, use a common means for holding 105 the |igno 135x and transporting said |igno 135x in synchronism to a final destination. Using a common means for holding the |igno may increase the load capacity.
Figure 11 depicts |igno of different quality stored at a common destination. Ligno 135e and |igno 135f have different |igno parameters, in this case diameter, volume and weight is different, meaning that |igno 135e has a lower value than |igno 135f. ln figure 11 |igno 135e is on top of |igno 135f, meaning that |igno 135e was arrived earlier to the common destination than |igno 135e. Ligno parameters has in this case determined that higher value |igno 135f has arrived earlier to the common destination than the lower value |igno 135e. Although a common destination is used for different value |igno and no marking has been made further transportation of the different |igno types 135e, 135f may be easily separated due to its evident difference in size and shape. The common destination may not only be tagged with longitude and latitude but also its spatial location, height, in the pile. Transportation from the common destination may be made in different time slots so that different transportation means may select the correct |igno for further transportation. Storing different types of |igno spatially differently at a common destination may be advantageous logistically due to the fact that different quality of |igno may have different final destinations.Figure 12 depicts that different classes of quality of |igno may be transported to the same location but at different points in time during a day. Ligno 135h of a first mix of |igno parameters and/or growing condition is transported to common destination 201 at a first time 202b. |igno 135h is picked up for further transportation before |igno of a second mix of |igno parameters and/or growing condition arrives at said common destination 201. Ligno 135g arrives at time 202a, which is later than 202b. Using a common destination may be necessary when space is limited.
A certain point in time may be a specific time, a specific time range, between time A and time B, after time B or before time A. A certain point in time may be before or after a specific occasion or that specific requirements are fulfilled. lt can also mean that specific |igno, based on |igno parameters and/or growing condition may be transported, cut, harvested and/or left at a final destination when specific requirements are fulfilled. lt may also mean that specific command, functions or the like is activated and when such commands or functions are activated, transportation, cutting, harvesting and/or drop of |igno at a final destination is started based on |igno parameters and/or growing condition in a specific order. lt may also mean when specific requirements are fulfilled transportation is always or never started for a specific |igno parameter and/or growing condition. Ligno may mean at least a portion of a tree, bush, or other wood-like species such as bamboo. A |igno may be cut with or without delimbing.
A certain point in time may be the moment when directing a UAV to a predetermined destination for harvesting, transportation and/or cutting and/or delivery of |igno at a predetermined location. Harvesting, transportation, cutting and/or leaving functions as a trigger for setting a speed and/or acceleration of a UAV with or without load in a predetermined direction to a predetermined destination. A certain point in time may be when a predetermined capacity per hour is reached, e.g., a predetermined harvested amount per hour is reached, a predetermined amount of |igno per hour is transported and/or a predetermined amount of |igno per hour is cut. Said capacity and/or speed may be controlled or optimized based on weather condition, detected |igno parameter, detected growing condition, transporting distance, power consumption and/or logistic prerequisites.
A certain point in time may be, for both selection of a |igno and selection of a final destination, at which time different portions of a |igno is to be transported, harvested, cut and/or delivered.A certain point in time may be a targeted point in time and/or an estimated/predicted (based on simulations) point in time. A targeted point in time may mean that transportation, harvesting, cutting and/or delivering is intended to happen a certain point in time. An estimated/predicted point in time may mean that transportation, harvesting, cutting and/or delivering is expected to happen a certain point in time.
A final destination may be a place or position where the ligno is expected to be delivered. The final destination may be a position in air where the ligno is dropped from the UAV to the ground. ln various example embodiments the UAV is configured with aerodynamic means, comprising rotors, fans, wings, or equivalent combination, interacting with the air so as to be capable to precisely control the UAV position, velocity, orientation and/or angular velocity. ln various example embodiments said UAV and said means configured for harvesting at least a portion of a ligno may be separated from each other end reconnected with each other. One or a plurality of cameras or other suitable position sensors may be used for the reconnection procedure. ln various example embodiments a plurality of UAV is used for transporting a plurality of ligno.
The means configured for harvesting at least a portion of a ligno may optionally be capable for moving on ground. The movement may be with legs, wheels or other suitable moving means. ln various example embodiments of the present invention a digital transmitter may be attached to a ligno for communication with a control unit and/or at least one UAV and/or at least one means for harvesting at least a portion of a ligno. Said digital transmitter may not only send out the position of said ligno it is attached to but also send out information about distance to neighbour ligno, the terrain, the diameter of the ligno, the final destination of a non-harvested ligno and/or other quality parameters of the ligno such as type and/or curved trunk. The digital transmitter may be attached to the ligno by a UAV, land vehicle, robot or by a human. The digital transmitter function may also be implemented as a pure software digital recognition function by unique features of the ligno such as ligno rings, limb pattern or ligno bark.
The digital transmitter may be used to determine which ligno to be harvested, where to move the harvested ligno in order to simplify transportation logistics. A digital transmitter may be used tomove ligno/timber of different quality to different locations by said UAV. A digital marking may be used to determine which UAV and/or means for harvesting at least a portion of a ligno trunk to be used. The digital information may be used for using one or a plurality of UAV depending on the size of the ligno to be harvested. The digital marking may be used for ligno thinning. The digital marking may be used in combination with a remote harvesting planning and/or ligno thinning process prior to the actual harvesting. With digital marking a map of ligno in a predetermined area may be used for guiding the UAV to the correct ligno to be harvested. The digital marking may also determine in which order the ligno shall be harvested in order to reduce the harvesting time. The digital marking may be used to estimate a future harvesting time. The digital marking may be used to determine which type of ligno there are in a particular area, the distance between ligno in a particular area, the topography of the land where ligno are to be harvested, the height of the ligno, the quality of the ligno, the form of the ligno, the diameter of the ligno. The digital marking may determine prior to harvesting of the ligno shall be cut in portions. The digital marking may be used to mark the different portion of the harvested ligno weight. ln various example embodiments of the present invention the quality of a harvested ligno may be predicted by studying at least one intrinsic parameter i.e., tree parameter and/or at least one extrinsic parameter i.e., growing condition. ln various example embodiments of the present invention detected spectral properties and/or spatial structures of a portion of a ligno may be used as input for detecting ligno parameters and/or growing conditions of at least a portion of said ligno. Spectral properties and spatial structures may be detected on a microscopic and/or macroscopic level. ln various example embodiments of the present invention detected spectral properties and/or spatial structures of a ligno's surrounding environment within a pre-determined distance may be used as input for detecting ligno parameters and/or growing conditions of a portion of a ligno. Spectral properties and spatial structures may be detected on a microscopic and/or macroscopic level.
Shape of leaves or fir needles may be used as a ligno parameter.
Spectral properties and/or spatial structures may be from a cut surface of a ligno, a ligno trunk, a ligno branch, ligno leaves/fir needles and/or a ligno leaves/fir needles. lt may also be the spectral properties and/or spatial structures of vegetation, species and/or the ground within a pre- determined distance from said ligno. Spectral and/or spatial properties may be evaluated on pixel level. ln various example embodiments of the present invention spatial properties of the tree to be harvested and/or transported and/or the spectral properties and/or the spatial structure of the ground and/or surrounding may be used as input for determining the final destination of at least a portion of a ligno and/or for determining if a portion of a ligno is to be harvested. Spatial properties may be detected on a microscopic and/or macroscopic level. Spatial properties may be from a cut surface of a ligno, a ligno trunk, a ligno branch and/or a ligno leaves/fir needles. Spatial properties may be evaluated on pixel level.
The spatial properties of a tree may be used as an intrinsic parameter of a tree for predicting its quality. Various sensors may be used for determining temperature and/or humidity which in turn may be used for predicting the quality of the tree.
The length of a tree may be the cut portion laying on ground waiting for transportation. The length may be the total length above sea level. The length may be the total length above ground.
The length may be the length of a particular tree in comparison with at least one other tree. ln various example embodiments a ligno parameter may vary within a single ligno (tree, bush). A ligno parameter may also vary between ligno of the same species. A ligno parameter may also vary between ligno of different species. A ligno parameter may be the temperature of the ligno. The temperature of the ligno may be an indication about the health and thereby the quality of the ligno.
A ligno parameter may for instance be a chest heigh diameter of the ligno trunk or a branch.
A ligno parameter may be various types of ligno deformations A ligno parameter may be the number of branches and its location on a ligno. A ligno parameter may be the shape of the branches. A ligno parameter may be the number of dry branches or a dry branch.
A ligno parameter may be defects generated by weather, e.g., storm, fire, torrential rain, dry periods etc. ln various example embodiments a particular type of tree may not be harvested within a predetermined time period after a rainy season such as birch.A |igno parameter may be a |igno gene or a set of genes. Ligno genes may be detected in a lab.
Ligno genes may also be present together with the position of the |igno when sowing the |igno.
A |igno parameter may be the number of leaves or fir needles. The number of leaves or fir needles may be estimated by detecting a spectral density per unit area. A growing condition may be hydrology of a predetermined area. Hydrology may be presence of running water and/or soil moisture.
A growing condition may be climate and/or meteorological variables such as wind, humidity, air pressure, radiation etc. A growing condition may be the weather during a particular season, a depth of snow, average wind speed, sensitivity to storm damage. A temperature, fire and/or snow depth etc. during a particular time-period may be a determining factor to harvest or not and/or if special equipment is needed.
Abiotic factors such as soil quality may be a growing condition and a determining factor for |igno parameter. Abiotic factors in combination with a detection of annual rings, the shape of the tree, surrounding vegetation may give a good indicator of the quality of a |igno. Visual inspection of a |igno in combination with historical weather data may give a strong indication of the quality /value of a |igno.
A final destination of a |igno may not only be determined in longitude and latitude but also in height above ground level or sea level. The height and/or spatial position in relation to other portions of trees, ground or other objects variable may be useful if different types of |igno parameters is to be stored on the same location but being transported to yet another location at different times. The final destination may be a fixed position, a vehicle, but also a position in relation to another object, portion of the landscape and/or a predetermined area or volume. The knowledge about the spatial location of a particular |igno parameter in a pile of |igno trunks may be logistically advantageous.
A growing condition and/or a |igno parameter may determine the final quality of wood such as flat bend, edge bend and/or skew.ln various example embodiments a ligno may be cut in several portions and said portions may be laid on ground. One of the smallest portions may be transported first and based on at least one of its tree parameters the weight of the remaining portions may be estimated.
Cutting a portion of a tree or a number of full trees may be performed for increasing the value of the remaining portion of the forest.
Feasible modifications of the lnvention The invention is not limited only to the embodiments described above and shown in the drawings, which primarily have an illustrative and exemplifying purpose. This patent application is intended to cover all adjustments and variants of the preferred embodiments described herein, thus the present invention is defined by the wording of the appended claims and the equivalents thereof. Thus, the equipment may be modified in all kinds of ways within the scope of the appended claims. ln various example embodiments it is provided a system (10) for remote and/or autonomous harvesting at least a portion of a tree, said system (10) comprising: a first remotely and/or autonomously controlled Unmanned Aerial Vehicle (100), UAV, comprising, at least one means for holding (105) said harvested portion of said tree and being configured for transporting said harvested portion of said tree away from the original location of the tree, and a second remotely and/or autonomously controlled Unmanned Aerial Vehicle (100), UAV, comprising, at least one means for harvesting at least a portion of a tree, at least one means for detecting said tree to be harvested a base station (120) for communication with said first and/or second UAV. Said means for detecting said tree to be harvested may be arranged on said first UAV, said second UAV and/or a third UAV and/or a remotely and/or autonomously controlled land-based vehicle. Said third UAV and/or said autonomously controlled land-based vehicle may be in direct communication with said base station and/or indirect communication with said base station. |ndirect communication may be via said first and/or said second UAV. ln various example embodiments it is provided a system (10) for remote and/or autonomous selecting at least a portion of a ligno to be cut, said system (10) comprising:a remotely and/or autonomously controlled Unmanned Aerial Vehicle (100), UAV, comprising, at least one means for cutting said at least a portion of a ligno, means for detecting said at least a portion of a ligno to be cut, means for detecting at least one ligno parameter of at least a portion of a ligno and/or at least one growing condition of at least a portion of a ligno, a base station (120) for communication with said UAV, and means configured for selecting at least a portion of a ligno to be cut depending on at least one detected ligno parameter and/or at least one detected growing condition of said cut ligno and/or of a remaining portion of a ligno and/or of at least one ligno grown within a predetermined distance from said cut ligno.
Harvesting means felling of ligno and preparing tbern for transport away frorn its original location. lt includes both thinning and clearfelling operations. Harvesting rnay be rnade depending on current demand for a particular tree parameter. Harvfestirig :nav he rnade depending on current available storage capacity. Harvesting rnav he made depending on seasoh/ternperature for nlaxirnizirig a particular tree parameter. Harvesting rnay be rhade for nlaxirnizirig the ooalityfgroyvtll potential of the rernaining ligno in a particular area. Harvesting rnay also be rnade for nlairitairiing a forest having a diverse age. Harvesting may also be made for inairitairiirig a forest of a particular species, age and/or corhnosition. Harvesting may be made for rnaintaining cultural arid/or aesthetic tfaloes.
For instance, the disclosed system may also transport already harvested ligno or portions of ligno laying on ground. A plurality of UAV may be used for removing a plurality of ligno laying on ground to a final destination. A plurality of UAV working together in synchronism may take one or a plurality of ligno or portions of ligno at the same time. The selection of ligno to be transported may be made depending on the total weight of the ligno or portions of ligno to be transported. The plurality of UAV may have a maximum load capacity and maximum range capacity. Ligno or portions of ligno may be selected depending on their location, weight, time and the current state of the UAV, i.e., remaining charge and/or fuel. ln various example embodiments of the present invention at least a portion of a ligno is removed and left on ground. Said portion can be anything from a branch, a top section to a full ligno. Full ligno may be removed without being taken care of, a so-called scrap ligno. A scrap ligno may have a relatively low value in comparison with other surrounding trees and/or for letting the remaining ligno in a particular area to obtain the best possible growing conditions.Throughout this specification and the claims which follows, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or ”comprising”, will be understood to imply the inclusion of a stated integer or steps or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

Claims (21)

1. A system (10) for remote and/or autonomous selecting at least a portion of a ligno trunk to be harvested and/or transported, said system (10) comprising: a. a remotely and/or autonomously controlled Unmanned Aerial Vehicle (100), UAV, comprising, at least one means for holding (105) and/or harvesting at least a portion of a ligno trunk, b. means for detecting said at least a portion of a ligno (110) to be transported and/or harvested, c. means for detecting at least one ligno parameter of at least a portion of a ligno (110) and/or at least one growing condition of at least a portion of a ligno (110), d. a base station (120) for communication with said UAV, and e. means configured for selecting at least a portion of a ligno trunk to be harvested and/or transported depending on at least one detected ligno parameter and/or at least one detected growing condition of said harvested and/or transported portion of a ligno trunk and/or of a remaining portion of a ligno (110) and/or of at least one ligno (135) grown within a predetermined distance from said transported and/or harvested portion of a ligno trunk.
2. The system according to claim 1, further comprising means configured for determining a certain point in time said at least a portion of a ligno trunk should be harvested and/or transported.
3. The system according to any one of claim 1-2, wherein said means for detecting said at least one ligno parameter and/or at least one growing condition comprising a camera and/or using a database with digital information about ligno (135).
4. The system according to any one of claim 1-3, wherein said UAV and said means configured for harvesting at least a portion of the ligno trunk is communicating with each other via one or more of Wifi, Bluetooth, radio communication, optical fibre and/or electrical wire.
5. The system according to any one of claim 1-4, further comprising means configured for automatically locating a ligno (135) in a predetermined area.
6. The system according to claim 5, wherein said means configured for automatically locating a ligno (135) in a predetermined area comprising at least a Global Navigation Satellite System, GNSS or a digital transmitter configured to be attached to a ligno (135) and to communicate with the UAV.
7. The system according to any one of the preceding claims, further comprising a synchronization unit for synchronizing the movement of at least two UAV for transportation and/or harvesting of said at least a portion of a ligno.
8. The system according to any one of the preceding claims, further comprising means for determining the number of UAV to be used together for transporting and/or harvesting depending on said at least one ligno parameter and/or the distance between an original location of said at least a portion of a ligno (110) to said final destination. The system according to any one of the preceding claims, wherein said means configured for selecting at least a portion of a ligno trunk is further configured to select at least two portions of ligno trunks to be transported having a total weight within a predetermined weight range. än; . « v. The system according to any one of the preceding claims, further comprising means configured for directing said remotely and/or autonomously controlled UAV with said at least a portion of a ligno trunk to a final destination a certain point in time where said final destination and/or said certain point in time is depending on at least one detected ligno parameter and/or at least one detected growing condition of said transported portion of a ligno and/or of a remaining portion of a ligno (135) and/or of at least one ligno (135) grown within a predetermined distance from said transported portion of a ligno. A method for remotely and/or autonomously selecting at least a portion of a ligno trunk to be harvested and/or transported, said method comprising the steps of: a. remotely and/or autonomously controlling an Unmanned Aerial Vehicle, UAV, b. remotely and/or autonomously operating at least one means for holding (105) said at least a portion of a ligno trunk and/or harvesting at least a portion of a ligno trunk, where said at least one means for holding (105) and/or harvesting said at least a portion of a ligno trunk is attached to said UAV, c. detecting at least a portion of a ligno, d. detecting at least one ligno parameter of said at least a portion of a ligno (110) and/or at least one growing condition of said at least a portion of a ligno (110) and/or detecting at least one ligno parameter and/or at least one growing condition of at least one ligno grown within a predetermined distance from said at least a portion of a ligno, e. selecting said at least a portion of a ligno trunk to be harvested and/or transported depending on at least one detected ligno parameter and/or at least one detected growing condition of said harvested and/or transported portion of a ligno trunk and/or of a remaining portion of a ligno and/or of at least one ligno (135) grown within a predetermined distance from said transported and/or harvested portion of a ligno trunk. The method according to claim 11, further comprising the step of determining a certain point in time said at least a portion of a ligno trunk should be harvested and/or transported. The method according to any one of claim 11-12, further comprising the step of determining the number of UAV to be used together for transporting and/or harvesting said at least a portion of a ligno trunk depending on said at least one detected ligno parameter and/or said at least one detected growing condition and/or a distance between an original position of said at least a portion of a ligno (110) and a final destination. The method according to any one of claim 11-13, further comprising the step of setting up a communication link between said UAV and said means configured for harvesting and/or holding said at least a portion of a ligno trunk via one or more of WiFi, Bluetooth, radio communication, tele communication, optical fibre and/or electrical wire. The method according to any one of claim 11-14, further comprising the step of identifying a first predetermined area within which a ligno (135) is to be harvested and/or a ligno (135) to be transported by means of a GNSS-system by means of at least one of a camera and/or at least one optical sensor. The method according to any one of claims 11-15, further comprising the step of synchronizing a movement of at least two UAV for transportation of said at least a portion of a ligno trunk away from the original location of the ligno to the final destination. The method according to any one of claim 11-16, wherein the detection of said at least one ligno parameter and/or said at least one growing condition is performed by means of a camera and/or using a database with digital information of ligno (135) in a predetermined area. transporting said at least a portion of a ligno trunk, by said UAV, away from the original location of said at least a portion of a ligno trunk to a final destination a certain point in time, where said final destination and/or said certain point in time is depending on said at least one detected ligno parameter and/or said at least one detected growing condition of said at least a portion of a ligno trunk and/or of a remaining portion of a ligno (135) and/or of at least one ligno (135) grown within a predetermined distance from said at least a portion of a ligno trunk. An Unmanned Aerial Vehicle, UAV, configured to be used in a system according to any one of claim 1- gThe UAV according to claim 19, further comprising a synchronization unit for synchronizing the movement of at least two UAV. means configured for transporting and/or harvesting at least a portion of a ligno (110) configured to be used in a system according to any one of claim 1-10.
SE2051336A 2020-05-27 2020-11-16 Method and system for remote or autonomous ligno harvesting and/or transportation SE544874C2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
PCT/EP2021/063845 WO2022100895A1 (en) 2020-11-16 2021-05-25 Method and system for remote or autonomous tree harvesting and/or transportation
PCT/EP2021/064297 WO2021239921A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous holding a tree trunk
EP21731061.4A EP4156905A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous holding a tree trunk
US17/920,895 US20230166875A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous holding a tree trunk
PCT/EP2021/064295 WO2021239920A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous cutting a ligno trunk
EP21731062.2A EP4156906A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous ligno harvesting and/or transportation
EP21730161.3A EP4156902A2 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous cutting a tree trunk
PCT/EP2021/064298 WO2021239922A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous ligno harvesting and/or transportation
US17/921,247 US20230157225A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous cutting a ligno trunk
CA3178473A CA3178473A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous ligno harvesting and/or transportation
EP24164600.9A EP4364557A2 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous ligno harvesting and/or transportation
CA3177520A CA3177520A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous holding a tree trunk
US17/921,534 US20230205231A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous ligno harvesting and/or transportation
BR112022021814A BR112022021814A2 (en) 2020-05-27 2021-05-27 METHOD AND SYSTEM FOR REMOTE OR AUTONOMOUS RETENTION OF A TREE TRUNK
US17/921,232 US20230165199A1 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous cutting a ligno trunk
PCT/EP2021/064300 WO2021239924A2 (en) 2020-05-27 2021-05-27 Method and system for remote or autonomous cutting a ligno trunk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE2050611A SE544184C2 (en) 2020-05-27 2020-05-27 Method and system for remote or autonomous tree harvesting

Publications (2)

Publication Number Publication Date
SE2051336A1 SE2051336A1 (en) 2021-11-28
SE544874C2 true SE544874C2 (en) 2022-12-20

Family

ID=76250301

Family Applications (3)

Application Number Title Priority Date Filing Date
SE2050611A SE544184C2 (en) 2020-05-27 2020-05-27 Method and system for remote or autonomous tree harvesting
SE2051335A SE544809C2 (en) 2020-05-27 2020-11-16 Method and system for remote or autonomous ligno transportation
SE2051336A SE544874C2 (en) 2020-05-27 2020-11-16 Method and system for remote or autonomous ligno harvesting and/or transportation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
SE2050611A SE544184C2 (en) 2020-05-27 2020-05-27 Method and system for remote or autonomous tree harvesting
SE2051335A SE544809C2 (en) 2020-05-27 2020-11-16 Method and system for remote or autonomous ligno transportation

Country Status (2)

Country Link
SE (3) SE544184C2 (en)
WO (1) WO2021239704A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467533B (en) * 2022-01-20 2023-04-07 深圳坤元生态科技有限公司 Experimental method for influence of crown trimming amount on wind load bearing capacity of tree
SE545517C2 (en) * 2022-02-01 2023-10-10 Airforestry Ab A method for remotely and/or autonomously harvesting a tree from air
WO2023167624A1 (en) * 2022-03-03 2023-09-07 Airforestry Ab Aerial tree harvesting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263932B1 (en) * 1999-06-10 2001-07-24 Robert Chalifoux Aerial tree harvesting apparatus
WO2016123201A1 (en) * 2015-01-27 2016-08-04 The Trustees Of The University Of Pennsylvania Systems, devices, and methods for robotic remote sensing for precision agriculture
WO2016123656A1 (en) * 2015-02-05 2016-08-11 The University Of Sydney Horticultural harvesting system and apparatus using revolving shells
WO2018033925A1 (en) * 2016-08-18 2018-02-22 Tevel Advanced Technologies Ltd. System and method for drone fleet management for harvesting and dilution

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369673A (en) * 1965-01-12 1968-02-20 Clifford F. Mosher Tree harvesting lifting and transporting apparatus
US9063544B2 (en) * 2012-09-19 2015-06-23 The Boeing Company Aerial forest inventory system
US9420748B2 (en) * 2015-01-20 2016-08-23 Elwha Llc Systems and methods for pruning plants
US20180215466A1 (en) * 2015-08-05 2018-08-02 Geoffrey William Hall Aerial tree harvester
US11609159B2 (en) * 2017-05-08 2023-03-21 The Trustees Of The University Of Pennsylvania Systems, devices, and methods for agricultural sample collection
CN109287308A (en) * 2018-09-17 2019-02-01 南京林业大学 One kind can flight branch pruning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263932B1 (en) * 1999-06-10 2001-07-24 Robert Chalifoux Aerial tree harvesting apparatus
WO2016123201A1 (en) * 2015-01-27 2016-08-04 The Trustees Of The University Of Pennsylvania Systems, devices, and methods for robotic remote sensing for precision agriculture
WO2016123656A1 (en) * 2015-02-05 2016-08-11 The University Of Sydney Horticultural harvesting system and apparatus using revolving shells
WO2018033925A1 (en) * 2016-08-18 2018-02-22 Tevel Advanced Technologies Ltd. System and method for drone fleet management for harvesting and dilution

Also Published As

Publication number Publication date
SE2050611A1 (en) 2021-11-28
SE2051335A1 (en) 2021-11-28
SE544809C2 (en) 2022-11-22
SE544184C2 (en) 2022-02-22
WO2021239704A1 (en) 2021-12-02
SE2051336A1 (en) 2021-11-28

Similar Documents

Publication Publication Date Title
SE544809C2 (en) Method and system for remote or autonomous ligno transportation
Bergerman et al. Robotics in agriculture and forestry
Billingsley et al. Robotics in Agriculture and Forestry.
US8381501B2 (en) Agricultural robot system and method
EP4156904B1 (en) Method and system for remote or autonomous tree harvesting
US20230157225A1 (en) Method and system for remote or autonomous cutting a ligno trunk
US20220046859A1 (en) System and method for selective harvesting at night or under poor visibility conditions, night dilution and agriculture data collection
EP4364557A2 (en) Method and system for remote or autonomous ligno harvesting and/or transportation
US20230159190A1 (en) Method and system for remote or autonomous ligno transportation
WO2022100895A1 (en) Method and system for remote or autonomous tree harvesting and/or transportation
WO2022100894A1 (en) Method and system for remote or autonomous tree transportation
Zhang et al. Research status of agricultural robot technology
US20230278732A1 (en) Aerial tree harvesting system
CA3234632A1 (en) A payload and a uav carrying said payload, a harvesting tool and a method
WO2023149830A1 (en) A method for remotely and/or autonomously harvesting a tree from air
WO2024102046A1 (en) Method, apparatus and system for delimbing a tree from air
Billingsley et al. Robotics in A