SE542788C2 - Method for increasing the instantaneous bandwidth of a digital receiver system with frequency coding - Google Patents

Method for increasing the instantaneous bandwidth of a digital receiver system with frequency coding

Info

Publication number
SE542788C2
SE542788C2 SE1800093A SE1800093A SE542788C2 SE 542788 C2 SE542788 C2 SE 542788C2 SE 1800093 A SE1800093 A SE 1800093A SE 1800093 A SE1800093 A SE 1800093A SE 542788 C2 SE542788 C2 SE 542788C2
Authority
SE
Sweden
Prior art keywords
frequency
signal
signals
channel
frequency channel
Prior art date
Application number
SE1800093A
Other languages
Swedish (sv)
Other versions
SE1800093A1 (en
Inventor
Anders Widman
Original Assignee
Ew Labs Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ew Labs Ab filed Critical Ew Labs Ab
Priority to SE1800093A priority Critical patent/SE542788C2/en
Priority to PCT/SE2019/050419 priority patent/WO2019216819A1/en
Publication of SE1800093A1 publication Critical patent/SE1800093A1/en
Publication of SE542788C2 publication Critical patent/SE542788C2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

SammanfattningUppfinningen utgör en metod för att med hjälp av frekvenskodning göra ett mottaga rsystem momentant bredbandigt trots att ingående digitalmottagare har begränsad bandbredd. Inkommande signaler delas upp i analoga frekvenskanaler (SI) och signalen i varje frekvenskanal splittas i två (S2, S3).Lokaloscillatorer (O1, O2, O3, O4) och blandare (M1, M2, M3, M4) används för att konvertera signalerna till en mellanfrekvens som kan samplas av en analog- digitalomvandlare (ADC) och därefter frekvensbestämmas i signalbehandling. Efter konvertering med olika lokaloscillatorfrekvenser summeras signalerna i varje frekvenskanal (C1, C2). Varje inkommande signal kommer konverteras till att bestå av ett frekvenspar. Varje frekvenskanal har dock en unik skillnadsfrekvens mellan dess oscillatorer. Alla signaler från frekvenskanalerna sammanlagras (C_1). Genom att mäta den momentana frekvensskillnaden mellan detekterade signaler kan signalbehandlingen bestämma vilken frekvenskanal signalen härrör ifrån. Metoden fungerar även med flera samtidigt inkommande signaler i samma eller olika frekvenskanaler.Summary The invention constitutes a method for using frequency coding to make a receiver system momentarily broadband despite the fact that the incoming digital receivers have limited bandwidth. Incoming signals are divided into analog frequency channels (SI) and the signal in each frequency channel is split into two (S2, S3). Local oscillators (O1, O2, O3, O4) and mixers (M1, M2, M3, M4) are used to convert the signals to an intermediate frequency that can be sampled by an analog-to-digital converter (ADC) and then frequency-determined in signal processing. After conversion with different local oscillator frequencies, the signals are summed in each frequency channel (C1, C2). Each incoming signal will be converted to consist of a frequency pair. However, each frequency channel has a unique difference frequency between its oscillators. All signals from the frequency channels are stored together (C_1). By measuring the instantaneous frequency difference between detected signals, the signal processing can determine which frequency channel the signal originates from. The method also works with several simultaneously incoming signals in the same or different frequency channels.

Description

Metod för att med frekvenskodning öka den momentana bandbredden i ett digitalmottagarsystem Allmän beskrivning och känd teknik Uppfinningen utgör en metod för att betydligt reducera hårdvara i bredbandiga signalspaningssystem med digitala mottagare. Method to increase the instantaneous bandwidth of a digital receiver system with frequency coding General description and prior art The invention constitutes a method for significantly reducing hardware in broadband signal reconnaissance systems with digital receivers.

Signalspaning mot radar används för att karakterisera olika radarsändningar för att varna för annalkande hot (radarvarningsfunktion) eller för att bilda en taktisk lägesbild rörande omgivande emittrar (taktisk signalspaning). Signalspaning kan också användas i underrättelsesyfte för att skapa databasunderlag för olika radarsystem (sk. ELINT). Radar signal reconnaissance is used to characterize different radar transmissions to warn of impending threats (radar warning function) or to form a tactical picture of the surrounding emitters (tactical signal reconnaissance). Signal reconnaissance can also be used for intelligence purposes to create database data for various radar systems (so-called ELINT).

Det är ofta viktigt att signalspaningssystemet är "vidöppet" d.v.s. spanar inom hela det avsedda frekvensområdet samt rymdtäckningsområdet momentant. Detta för att inte missa signaler som kan utgöra ett hot. Det finns olika typer av mottagararkitekturer som stödjer detta men den vanligaste är den sk. IFM-mottagaren vilken i grunden är en analog mottagare som kan ges stor momentan bandbredd. IFM-mottagaren är dock behäftad med ett antal svagheter och två av dessa är: 1. IFM-mottagaren kan inte resolvera tidsöverlappande signaler på olika frekvenser. Förekomst av flera samtidiga signaler ger mätfel och indikation på endast en signal. 2. IFM-mottagaren får begränsningar i känslighet som dimensioneras av bottenbrusnivå som bestäms av RF-bandbredd tillsammans med videobandbredd enligt: Image available on "Original document" Där BB är ekvivalent brusbandbredd, BHF är RF-bandbredd och Bv är videobandbredd efter signaldetektorn. Bottenbruset vid rumstemperatur brukar anges till -114 dBm/MFIz och ovanstående formel ger som exempel ett bottenbrus på -85 dBm vid 16 GHz RF-bandbredd och 20 MHz videobandbredd. Med mottagarens brusfaktor adderad samt den signalbrus-marginal som behövs för signaldetektion hamnar känsligheten på typiskt -65 dBm. It is often important that the signal reconnaissance system is "wide open", i.e. scans within the entire intended frequency range as well as the space coverage area momentarily. This is so as not to miss signals that could pose a threat. There are different types of receiver architectures that support this but the most common is the so-called. The IFM receiver which is basically an analog receiver that can be given large instantaneous bandwidth. However, the IFM receiver has a number of weaknesses and two of these are: 1. The IFM receiver cannot resolve time-overlapping signals at different frequencies. The presence of several simultaneous signals gives measurement errors and an indication of only one signal. The IFM receiver has limitations in sensitivity dimensioned by bottom noise level determined by RF bandwidth together with video bandwidth according to: Image available on "Original document" Where BB is equivalent noise bandwidth, BHF is RF bandwidth and Bv is video bandwidth after the signal detector. The bottom noise at room temperature is usually set to -114 dBm / MFIz and the above formula gives as an example a bottom noise of -85 dBm at 16 GHz RF bandwidth and 20 MHz video bandwidth. With the receiver's noise factor added and the signal noise margin needed for signal detection, the sensitivity typically ends up at -65 dBm.

På senare år har den snabba utvecklingen av högpresterande AD-omvandlare gjort att marknaden försöker omsätta IFM-baserade system med digitalteknikbaserade mottagare för att bl. a. frångå ovanstående problem men även p.g.a. andra fördelar som miniatyrisering. Ett digitalmottagarsystem består av analog RF-del som filtrerar och frekvenskonverterar inkommande signaler för att de ska bli lämpliga för sampling (d.v.s. sampling sker inte direkt på RF utan en lägre mellanfrekvens). In recent years, the rapid development of high-performance AD converters has led the market to try to implement IFM-based systems with digital technology-based receivers in order to e.g. a. depart from the above problems but also p.g.a. other benefits such as miniaturization. A digital receiver system consists of analog RF part that filters and frequency converts incoming signals to make them suitable for sampling (i.e. sampling does not take place directly on RF but a lower intermediate frequency).

Digitalmottagare kan göras överlägsna en IFM-mottagare avseende mätprecision för radarparametrar, känslighet och hantering av tidsöverlappande signaler. Det senare är viktigt då civil kommunikationstrafik, typiskt mobilbasstationer, ökar i omfattning och kryper upp i frekvens och idag finns inom banden aktuella för radarsignalspaning. Digital receivers can be made superior to an IFM receiver in terms of measurement accuracy for radar parameters, sensitivity and handling of time-overlapping signals. The latter is important as civilian communication traffic, typically mobile base stations, is increasing in scope and creeping up in frequency and today is within the bands relevant for radar signal reconnaissance.

Problemet med digitalmottagare är att kostnadseffektivt skapa momentan frekvenstäckning över hela det aktuella signalspaningsbandet, typiskt 2-18 GHz. Dessutom vill man ofta momentant (d.v.s. utan att använda en svepande reflektorantenn) mäta signalens ankomstriktning varför ett antal parallella mottagare behövs för att genom amplitud- eller fasjämförelse (eller kombinationer därav) skatta signalens ankomstriktning. Då den momentana digitalmottagarbandbredden idag är begränsad till ett antal GHz krävs ett mycket stort antal digitalmottagare för att täcka hela området i frekvens- och rymd med samtidig riktningsmätning. Ett exempel kan utgöras av ett 6-kanaligt system med 4 GHz breda digitalmottagare. Erforderligt antal mottagare för ett komplett momentant spanande system blir 24 st. mottagare (4 frekvenskanaler x 6 kompletta mottagare) för täckning 2-18 GHz. Detta är mycket kostnadsdrivande. The problem with digital receivers is to cost-effectively create instantaneous frequency coverage over the entire current signal reconnaissance band, typically 2-18 GHz. In addition, one often wants to momentarily (i.e. without using a sweeping reflector antenna) measure the direction of arrival of the signal, so a number of parallel receivers are needed to estimate the direction of arrival of the signal by amplitude or phase comparison (or combinations thereof). As the instantaneous digital receiver bandwidth today is limited to a number of GHz, a very large number of digital receivers is required to cover the entire area in frequency and space with simultaneous directional measurement. An example could be a 6-channel system with 4 GHz wide digital receivers. The required number of receivers for a complete instantaneous reconnaissance system will be 24. receivers (4 frequency channels x 6 complete receivers) for coverage 2-18 GHz. This is very costly.

Det finns patenterade metoder för att reducera antalet digitalmottagare i ett bredbandigt system. En sådan metod (US6031869A) använder flera undersamplande mottagare som nyttjar olika samplingsfrekvens. Härvidlag kan sann frekvens bestämmas. Nackdelen här är att flera mottagare behövs. There are patented methods for reducing the number of digital receivers in a broadband system. One such method (US6031869A) uses several subsampling receivers that utilize different sampling frequencies. In this respect, true frequency can be determined. The disadvantage here is that more receivers are needed.

Figurbeskrivning Figur 1 beskriver uppfinningens princip. Description of the figures Figure 1 describes the principle of the invention.

Figur 2 beskriver flöde för signalbehandling Specifik beskrivning Föreliggande uppfinning reducerar antalet digitalmottagare markant utan avgörande prestandasänkning. Detta görs genom analog frekvenskanalisering och frekvenskodning av signaler i varje frekvenskanal åtföljt av sampling i en digitalmottagare. Exempelvis kan en digitalmottagare täckande strax över 4 GHz användas för momentan mottagning över hela bandet 2-18 GHz. I exemplet med 6-kanalssystem kan erforderligt antal digitalmottagare således reduceras med en faktor 4. Frekvenskodningen i varje frekvenskanal är uppfinningens nyckelfunktion. Denna gör så alla signaler kan blandas ner till ett smalare band än vad det totala systemet täcker utan att förlora upptäckssannolikhet för signaler (momentan täckning). Signaler i varje frekvenskanal frekvenskodas automatiskt olika varför efterföljande signalbehandling kan identifiera vilken frekvenskanal signal härstammar ifrån genom att mäta den momentana frekvensskillnaden mellan frekvenskomponenter. Eftersom lokaloscillatorfrekvenser i systemet är kända kan signalbehandlingen extrahera sann absolutfrekvens. Uppfinningen är en del i ett komplett signalspaningssystem men övrig teknik i signalspaningssystemkonstruktion är känd av fackmannen. En helhetsbeskrivning ges dock i detta dokument för att sätta in uppfinningen i sitt sammanhang. Figure 2 describes flow for signal processing Specific description The present invention significantly reduces the number of digital receivers without decisive performance reduction. This is done by analog frequency channeling and frequency coding of signals in each frequency channel accompanied by sampling in a digital receiver. For example, a digital receiver covering just over 4 GHz can be used for instantaneous reception over the entire 2-18 GHz band. Thus, in the example of a 6-channel system, the required number of digital receivers can be reduced by a factor of 4. The frequency coding in each frequency channel is the key function of the invention. This allows all signals to be mixed down to a narrower band than the total system covers without losing the detection probability of signals (instantaneous coverage). Signals in each frequency channel are automatically frequency coded differently, which is why subsequent signal processing can identify which frequency channel signal originates from by measuring the instantaneous frequency difference between frequency components. Since local oscillator frequencies in the system are known, the signal processing can extract true absolute frequency. The invention is part of a complete signal reconnaissance system, but other techniques in signal reconnaissance system construction are known to those skilled in the art. However, a comprehensive description is given in this document to place the invention in its context.

En genomgång av signalkedjan med referens till figur 1 ges nedan. Figur 1 exemplifierar två frekvenskanaler i en fyrkanalsarkitektur: 1. Signalen tas emot från antenn Ant. 2. Signalen bandpassfiltreras i bredbandigt bandpassfilter BF1. 3. Signalen nivåanpassas vid behov via digitalt styrd dämpare Al. 4. Signalen förstärks i förförstärkare G1. A review of the signal chain with reference to Figure 1 is given below. Figure 1 exemplifies two frequency channels in a four-channel architecture: 1. The signal is received from antenna Ant. 2. The signal is bandpass filtered in broadband bandpass filter BF1. 3. The signal is level-adjusted if necessary via digitally controlled attenuator Al. 4. The signal is amplified in preamplifier G1.

. Signalen splittas upp i frekvenskanaler i splitter S1. 6. Signalen i varje frekvenskanal splittas upp i två grenar i splitter S2, S3... 7. Signalen i varje splittergren blandas med localoscillator O1, O2, O3, O4... Varje frekvenskanal har en unik frekvensskillnad mellan de två oscillatorerna. Oftast måste frekvenskonverteringen ske i flera steg (med flera oscillatorer) med anpassad filtrering i ett bredbandigt system. Metoder för signalren och bredbandig frekvenskonvertering är väl kända av fackmannen. Slutprodukten blir dock två signaler med en frekvensskillnad f1, f2... i varje frekvenskanal. 8. Signalerna från alla frekvenskanaler konverteras till ett och samma mellanfrekvensband för att möjliggöra bredbandig signalmottagning med endast en bandbreddsreducerad digitalmottagare. 9. Nivåanpassning med flera förstärkare och eventuellt dämpare i varje frekvenskanal är inte inritat i figur lmen tillämpas av fackmannen för att nå erforderlig nivåanpassning mot blandare och AD-omvandlare ADC. . The signal is split into frequency channels in splitter S1. 6. The signal in each frequency channel is split into two branches in splitters S2, S3 ... 7. The signal in each splitter branch is mixed with local oscillator O1, O2, O3, O4 ... Each frequency channel has a unique frequency difference between the two oscillators. Most often, the frequency conversion must take place in several steps (with several oscillators) with custom filtering in a broadband system. Methods for signal purification and broadband frequency conversion are well known to those skilled in the art. However, the end product will be two signals with a frequency difference f1, f2 ... in each frequency channel. 8. The signals from all frequency channels are converted into one and the same intermediate frequency band to enable broadband signal reception with only one bandwidth-reduced digital receiver. 9. Level adjustment with several amplifiers and possibly attenuators in each frequency channel is not drawn in the figure lmen applied by the person skilled in the art to achieve the required level adjustment to mixer and AD converter ADC.

. De två signalerna i varje frekvenskanal summeras i kombinerare C1, C2... 11. Signalerna från alla frekvenskanaler summeras i kombinerare C_1. 12. Signalerna samplas och kvantiseras i AD-omvandlare ADC. Företrädesvis används komplex sampling vilket ger ett kvadraturpar, I och Q, som bestämmer belopp och fas för varje signalsampel. 13. När signal detekterats och kanalbestämts i en snabb frekvensskattningsfunktion (som Fast Fourier Transform) kopplas digitala data till en smalbandig mätkanal för parameterskattning. Mätning av ankomsttid och pulslängd görs företrädesvis i tidsplanet på konventionellt sätt. Mätning av noggrann frekvens, amplitud och modulation på signalen görs lämpligen i frekvensplanet. Metoder för parameterskattning är känd av fackmannen. 14. Signalerna signalbehandlas för att extrahera emitterparametrar, emittrar och genomföra signalidentifiering mot signaldatabas. . The two signals in each frequency channel are summed in combiner C1, C2 ... 11. The signals from all frequency channels are summed in combiner C_1. 12. The signals are sampled and quantized in AD converter ADC. Preferably, complex sampling is used, which gives a quadrature pair, I and Q, which determines the amount and phase of each signal sample. 13. When signal is detected and channel determined in a fast frequency estimation function (such as Fast Fourier Transform), digital data is connected to a narrowband measurement channel for parameter estimation. Measurement of arrival time and pulse length is preferably done in the schedule in a conventional manner. Measurement of accurate frequency, amplitude and modulation of the signal is suitably done in the frequency plane. Methods for parameter estimation are known to those skilled in the art. 14. The signals are signal processed to extract emitter parameters, emit and perform signal identification against signal database.

. Signalbehandlingen i ett komplett system tillgår enligt flöde i figur 2 med beskrivning enligt nedan. . The signal processing in a complete system is available according to the flow in figure 2 with a description as below.

A. Frekvensinnehåll i mottaget spektra skattas via snabb Fouriertransform (FFT) eller motsvarande algoritm. Flera parallella frekvensskattningsfunktioner med olika beräkningslängd kan nyttjas för att skapa en viss signalanpassad detektion. Längre beräkningssekvens medför smalare frekvenskanaler och därmed lägre brus i varje kanal. Längre beräkningssekvenser ger högre känslighet för längre pulslängder. Tröskling tillämpas för att sortera nyttosignaler från bottenbrus med en given falsklarmsrisk. A. Frequency content in received spectra is estimated via fast Fourier transform (FFT) or equivalent algorithm. Several parallel frequency estimation functions with different calculation lengths can be used to create a certain signal-adapted detection. Longer calculation sequence results in narrower frequency channels and thus lower noise in each channel. Longer calculation sequences give higher sensitivity for longer pulse lengths. Threshold is applied to sort utility signals from bottom noise with a given false alarm risk.

B. Frekvensavstånd mellan signaltoppar extraheras och matchas med förväntade frekvensavstånd för varje frekvenskanal. B. Frequency distances between signal peaks are extracted and matched with expected frequency distances for each frequency channel.

C. När frekvensavstånd extraherats kan absolutfrekvensen räknas ut med hänsyn till lokaloscillatorfrekvenserna i, för frekvensavståndet, aktuell frekvenskanal. C. When frequency range is extracted, the absolute frequency can be calculated with respect to the local oscillator frequencies in, for the frequency range, the current frequency channel.

D. En av tonerna hörande till ett frekvenspar isoleras i en digital smalbandskanal som föregås av lämplig fördröjning för att inte missa signalinnehåll. D. One of the tones belonging to a frequency pair is isolated in a digital narrowband channel which is preceded by an appropriate delay so as not to miss signal content.

E. I den digitala smalbandskanalen mäts tidsparametrar som ankomsttid och pulslängd men även parametrar som noggrann frekvens, modulation på puls och amplitud. Metoder för dessa typer av mätningar är kända av fackmannen. E. In the digital narrowband channel, time parameters such as arrival time and pulse length are measured, but also parameters such as accurate frequency, modulation of pulse and amplitude. Methods for these types of measurements are known to those skilled in the art.

F. När signalparametrar har mätts upp skapas ett sk. signaldeskriptorord som sammantaget innehåller alla karakteristika hörande till en signal. Metoder för bildande av signaldeskriptorord är känt av fackmannen. F. When signal parameters have been measured, a so-called signal descriptor words which together contain all the characteristics belonging to a signal. Methods for generating signal descriptor words are known to those skilled in the art.

G. När signaldeskriptorord har skapats sorteras signaler i fack för att sortera vilka pulser som härrör från samma sändare. För pulser beräknas sedan pulsrepetitionsintervall för signalen. G. Once signal descriptor words have been created, signals are sorted in bins to sort which pulses originate from the same transmitter. For pulses, the pulse repetition interval for the signal is then calculated.

Signalsorteringsprocesser är kända för fackmannen. Signal sorting processes are known to those skilled in the art.

H. När signalsortering och beräkning av pulsrepetitionsintervaller skett matchas all tillgänglig signaldata mot data i en signaldatabas för att försöka identifiera den aktiva emittern för att presentera en känd emitterbeteckning för operatör. Processen för signalidentifiering är känd av fackmannen. H. When signal sorting and calculation of pulse repetition intervals has taken place, all available signal data is matched against data in a signal database to try to identify the active emitter to present a known emitter designation to the operator. The process of signal identification is known to those skilled in the art.

Claims (2)

PatentkravPatent claims 1. Metod för att med hjälp av frekvenskodning göra ett mottagarsystem momentant bredbandigt trots att ingående digitalmottagare har begränsad bandbredd, kännetecknad av, en analog kanalisering där signaler i varje frekvenskanal frekvensmoduleras i frekvenskodare för att i efterföljande digitalmottagare göra det möjligt att bestämma från vilken analog frekvenskanal signal härrör trots att signaler från alla ingående frekvenskanaler nyttjar samma mellanfrekvensområde, där signalen tillhörande varje frekvenskanal splittas upp (S2, S3) i två grenar där signalen i respektive gren blandas (M1, M2, M3, M4) med varsin lokaloscillatorsignal (01, 02, 03, 04) för att skapa två frekvensförskjutna signaler på mellanfrekvenser som kan samplas för varje inkommande signal, där signalerna från alla frekvenskanaler summeras (C1, C2, C_1), samplas och kvantiseras, och varefter, genom signalbehandling, det bestäms vilken frekvenskanal signalen härrör ifrån genom att mäta frekvensskillnaden mellan de detekterade signalerna.Method for using frequency coding to make a receiver system momentarily broadband even though the incoming digital receiver has limited bandwidth, characterized by an analog channeling where signals in each frequency channel are frequency modulated in frequency encoders to make it possible in subsequent digital receivers to determine from which analog frequency channel signal originates even though signals from all input frequency channels use the same intermediate frequency range, where the signal belonging to each frequency channel is split (S2, S3) into two branches where the signal in each branch is mixed (M1, M2, M3, M4) with each local oscillator signal (01, 02 , 03, 04) to create two frequency-shifted signals at intermediate frequencies that can be sampled for each incoming signal, where the signals from all frequency channels are summed (C1, C2, C_1), sampled and quantized, and then, by signal processing, it is determined which frequency channel the signal derives from by measuring the frequency difference between the detek the signals. 2. Metod enligt krav 1, kännetecknad av, att frekvensskillnaden mellan lokaloscillatorfrekvenserna i varje frekvenskanal är unik för varje frekvenskanal.Method according to claim 1, characterized in that the frequency difference between the local oscillator frequencies in each frequency channel is unique for each frequency channel.
SE1800093A 2018-05-11 2018-05-11 Method for increasing the instantaneous bandwidth of a digital receiver system with frequency coding SE542788C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1800093A SE542788C2 (en) 2018-05-11 2018-05-11 Method for increasing the instantaneous bandwidth of a digital receiver system with frequency coding
PCT/SE2019/050419 WO2019216819A1 (en) 2018-05-11 2019-05-11 Method to increase the bandwidth in a digital receiver system by the use of frequency coding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1800093A SE542788C2 (en) 2018-05-11 2018-05-11 Method for increasing the instantaneous bandwidth of a digital receiver system with frequency coding

Publications (2)

Publication Number Publication Date
SE1800093A1 SE1800093A1 (en) 2019-11-12
SE542788C2 true SE542788C2 (en) 2020-07-07

Family

ID=68466619

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1800093A SE542788C2 (en) 2018-05-11 2018-05-11 Method for increasing the instantaneous bandwidth of a digital receiver system with frequency coding

Country Status (2)

Country Link
SE (1) SE542788C2 (en)
WO (1) WO2019216819A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091444A1 (en) * 2019-11-08 2021-05-14 Ew Labs Ab Method to increase the bandwidth in a digital receiver system by the use of frequency coding
SE544648C2 (en) * 2020-09-08 2022-10-04 Anders Widman Method to double the bandwidth in a digital receiver system by the use of frequency and amplitude coding
SE544242C2 (en) * 2020-09-08 2022-03-15 Anders Widman Method to double the effective bandwith in a digital receiver system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2234874B (en) * 1981-08-17 1991-06-26 Philips Electronic Associated Electronic surveillance systems.
GB2160686B (en) * 1984-06-22 1987-06-10 Stc Plc Identification of ships
US5493306A (en) * 1987-08-28 1996-02-20 Eaton Corporation Phased array antenna system to produce wide-open coverage of a wide angular section with high directive gain and moderate capability to resolve multiple signals
NO20032897D0 (en) * 2003-06-23 2003-06-23 Ericsson Telefon Ab L M Portable passive sensor
US8805297B2 (en) * 2012-10-16 2014-08-12 Raytheon Company Band stitching electronic circuits and techniques
GB2518010A (en) * 2013-09-09 2015-03-11 Crfs Ltd Frequency discriminator
US9473158B1 (en) * 2015-09-30 2016-10-18 Lockheed Martin Corporation Radio frequency receiver with overlapped analog to digital converter (ADC) architecture

Also Published As

Publication number Publication date
WO2019216819A1 (en) 2019-11-14
SE1800093A1 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
AU2003282636B2 (en) A method for detecting the presence of radar signal emitters, an electronic support measures unit and a system for determining the position and identity of said emitters
CA2279160C (en) Simultaneous intrapulse analysis, direction finding and lpi signal detection
US7427954B2 (en) Method and apparatus for direction finding
SE542788C2 (en) Method for increasing the instantaneous bandwidth of a digital receiver system with frequency coding
WO2003012473A1 (en) Passive moving object detection system and method using signals transmitted by a mobile telephone station
AU2002325370A1 (en) Passive moving object detection system and method using signals transmitted by a mobile telephone station
CN101105525A (en) Pure phase type broad frequency band microwave radiation source direction finding system and method
US5451956A (en) Instantaneous parameter measuring receiver
US6469657B1 (en) FFT-based filtering for low-quality signal direction finding
CN110208737A (en) A kind of ultrashort wave binary channels broadband direction-finding system and thresholding determine direction-finding method
CN210323343U (en) Ultrashort wave binary channels broadband direction finding system
RU2449305C1 (en) Time-frequency coded radio-pulse signal monopulse interogator receiver
RU2429501C1 (en) Detection and direction finding method of air objects
RU2669357C1 (en) Time-frequency coded radio-pulse signal monopulse interogator receiver
RU166267U1 (en) BISTATIC RADAR DEVICE WITH DIGITAL TELEVISION LIGHT SIGNAL
WO2021091444A1 (en) Method to increase the bandwidth in a digital receiver system by the use of frequency coding
Barès et al. A multifrequency HF-VHF radar system for aircraft identification
Kumawat et al. Moving target detection in foliage environment using FMCW radar
RU2262119C1 (en) Method for direction finding of radio signals
RU2558654C1 (en) Device determining direction and distance to signal source
RU139198U1 (en) FREQUENCY SELECTION DEVICE AND IDENTIFICATION OF RADIO-RADIATING TARGETS OF A SHIP RADAR COMPLEX WITH A FUNCTIONAL CONTROL DEVICE
RU2799480C1 (en) Method for signal processing in time and frequency domains
CN114866164B (en) Method and device for measuring characteristics of radio frequency channel with frequency conversion module
RU138273U1 (en) DEVICE FOR FREQUENCY SELECTION OF RADIO-RADIATING TARGETS OF THE SHIP RADAR COMPLEX
RU2782574C1 (en) Digital signal processing device in pulse-doppler radar with compensation of fm of doppler signals for one period of radiation and reception of a packet of radio pulses