SE542602C2 - Hydrogen generator with condensation and purification structure - Google Patents

Hydrogen generator with condensation and purification structure

Info

Publication number
SE542602C2
SE542602C2 SE1751264A SE1751264A SE542602C2 SE 542602 C2 SE542602 C2 SE 542602C2 SE 1751264 A SE1751264 A SE 1751264A SE 1751264 A SE1751264 A SE 1751264A SE 542602 C2 SE542602 C2 SE 542602C2
Authority
SE
Sweden
Prior art keywords
compartment
hydrogen generator
housing
zeolite
aluminium
Prior art date
Application number
SE1751264A
Other languages
Swedish (sv)
Other versions
SE1751264A1 (en
Inventor
Göran Schack
Original Assignee
Myfc Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myfc Ab filed Critical Myfc Ab
Priority to SE1751264A priority Critical patent/SE542602C2/en
Priority to PCT/EP2018/077470 priority patent/WO2019072844A1/en
Publication of SE1751264A1 publication Critical patent/SE1751264A1/en
Publication of SE542602C2 publication Critical patent/SE542602C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/608Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0062Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a hydrogen generator (10), comprising a housing (12) having at least one storage compartment (14, 26) for chemical reaction components, and a reaction compartment (26) in which the chemical reaction components can react. The first compartment (26) houses aluminium, and the second compartment (14) houses water and hydroxide in solution. There is provided means (18) for providing fluid communication between second compartment (14) containing the solution of water and hydroxide and the first compartment (26) containing the aluminium. A condensation structure (20, 22) is provided in which water vapour is removed from the generated hydrogen gas. In particular the first compartment (26) constitutes the reaction compartment. A purification structure (20, 22) comprising zeolite (s), is arranged to receive hydrogen gas from the reaction compartment when formed via an inlet and to feed such purified gas to a fuel cell via an outlet.

Description

HYDROGEN GENERATOR WITH CONDENSATION AND PRUIFICATIONSTRUCTURE This invention relates generally to hydrogen generators, and in particular to a generatorwhich delivers hydrogen that has been freed from water and contaminants originating from the chemical processes in the generator.
Background of the InventionProduction of hydrogen for fuel cell applications is becoming more interesting ascharging of electronic equipment is required in locations where the access to grid power is limited, and the need for mobility in general increases.
So called power banks are very popular and the sales boomed the last couple of years.
Still such power banks need recharging via the grid, and thus mobility is restricted.
A number of fuel cell based solutions to mobile charging has been presented over thelast decade, most have been based on hydrogen consuming poly-electrolyte membranefuel cells. Generation of hydrogen is commonly by so called chemical hydrides, e.g. sodium borohydride is allowed to react with water to produce hydrogen.
Most of these solutions are fairly heavy and have not met with any particular success in the market.
Thus there is a need for more versatile systems for hydrogen generation.
It is essential that the gas produced be reasonably dry and clean in order not to jeopardize the sensitive membranes in the fuel cells.
Summary of the Invention The present applicants have devised a novel approach using aluminium as a basisreagent for the generation of pure and reasonably dry hydrogen, and provide a singleuse generator of hydrogen in the form of a flat card type device that is connectable to a fuel cell based power generator.
In fact, dryness is not a critical factor, and the gas can have a humidity of up to 80- 90% Without a problem as long as the gas is clean and the Water does not condense.
In order to provide the clean and dry gas required the present inventors have devised ahydrogen generator comprising a novel purification structure that meets the above mentioned requirements. The novel generator is defined in claim 1.
Thus, it comprises a hydrogen generator (10), comprising a housing. The housingcontains at least two storage compartments for chemical reaction components, andmeans for enabling said reaction components to react to generate hydrogen. Thereis also a condensation structure in Which Water vapour is removed from the generated hydrogen gas, and a purification structure comprising zeolite(s).
Preferred embodiments are defined in the dependent claims.
Brief Description of the Drawings Further scope of applicability of the present invention Will become apparent from thedetailed description given hereinafter and the accompanying dravvings Which are givenby Way of illustration only, and thus not to be considered limiting on the present invention, and Wherein Fig. 1 is a perspective exploded view of a housing of the hydrogen generator; Fig. 2 is a perspective exploded view of a purification and condensation structure; Fig. 3 schematically illustrates the lay-out of compartments in the generator; and Fig. 4 schematically illustrates a partioning of the purification and condensation structure.
Detailed Description of Preferred Embodiments Generally the hydrogen generator comprises a housing, suitably, but not restricted to,made of a polymer material for Weight and cost reasons. Inside the housing there are compartments for storing reaction components and for performing the gas generating reaction. There is also provided a structure for removing Water vapour from the generated gas and for purifying the gas, i.e. for removing any contaminants that maybe vvithdrawn from the reaction. In particular the present invention makes use of anovel reactant system comprising aluminium that reacts With a reactant solutionhaving a high pH, i.e. very basic, such as NaOH (or other alkali) in water, to generatehydrogen.
Fig. 1 shows the hydrogen generator 10 in a partly exploded view. One part 20 ofthe generator is shown in broken lines and indicated with reference numeral 20, and will be described separately below.
A generally flat housing 12, i.e. having a width W exceeding the thickness T by afactor of 4 in preferred embodiments, is provided. The flatness ratio W/T is notcrucial and the shape of the housing could in principle vary from cylindrical tooval, or square to rectangular over a wide range, depending on the application forwhich the generator is intended, without the general structure needing any substantial design changes.
Into a distal end DE of housing 12 a water and hydroxide solution container 14 isinsertable (illustrated by an arrow A). The container 14 has a bottom part 15having a peripheral circumferential edge P1 which is welded to the periphery P2 ofthe distal end DE of the housing 12. The opposite end of the housing 12 is consequently referred to as the proximal end PE.
The container 14 is sealed, after filling it with reactant solution, by welding a thinfoil 16 to the end opposite to the bottom end of the container 14. This foil 16 iseasily penetrated by penetration means 18 to be described below so as to cause aflow of reactant solution into the reaction compartment. The foil is suitably made ofa material that is at least impermeable to the ions used in the reaction system,such as Na+ and OH+ ions, one such material being polypropylene, although thisis only eXemplary and many other foil materials are equally usable. It shouldpreferably also be impermeable to water although some permeability to water may be acceptable.
Adjacent the foil 16 inside the housing 12 said penetration means 18 is provided.
In the shown embodiment it comprises a knife member 18 which in the shown embodiment comprises four knives 18' on a supporting structure. When the knifemember 18 is mounted in the housing 12 the knives 18' extend across the width ofthe housing 12 such that when the knife member is pressed against the thin foil 16in operative mode, the knives 18' will cut open the foil so as to allow solution to flow out from the compartment 14.
Fig. 2 shows the previously mentioned and in Fig. 1 hidden part 20 of the hydrogen generator 10.
It constitutes the above mentioned purification structure 20 which is located insidethe housing 12 (as shown in broken lines in Fig. 1). The purification structure 20comprises a further container 22 in which there is provided an amount ofpreferably granulated zeolites. In particular embodiments it can also contain suitable desiccants, which will be described in further detail below.
There is also provided a safety release valve 23 provided for handling unexpected pressure increase inside the system.
There can also be provided neutralizing components for neutralizing the basicsolution used in the reaction system. Such component can be a buffer chemical or an acid, e.g. citric acid.
First a discussion of the merits of zeolites will be given.
An issue when using NaOH (or the like: KOH, Ca(OH)2) catalysed systems forhydrogen generation is that due to the very large volume expansion when gas isgenerated, aerosols of of NaOH can be entrained with the gas formed. The aerosolcontains very small particles of NaOH which are very difficult to filter off, and theNa* and OH- ions will then deactivate the electrolyte membrane in the fuel cells towhich the gas is fed, which then irreversibly will lose its function. Zeolites havesurprisingly been found to be very efficient in eliminating the presence of entrained hydroxide particles in the hydrogen flow.
The zeolites used in the invention are preferably acidic zeolites. At present a preferred, but only exemplary zeolite is H-ZMS-5. ZSM-5 stands for Zeolite Socony Mobil-5 (framework type MFI from ZSM-5 (five)), and is an aluminosilicate zeolitebelonging to the pentasil family of zeolites. Its chemical formula is NanA1nSi96- nO192-16H2O (0 Acidic zeolites consist of a structure containing Si and Al. Si and Al are close to eachother in the periodic table of the elements and have practically the same size (Al = 1,18Ä; Si = 1,1 1 Ä), but have different oxidation numbers. When Al replaces a Si in astructure there is needed an anion to neutralize the lower oxidation number of the Al.When a zeolite is synthesized the counter ion is most often Na+. In a finished calcinedzeolite the ion can be replaced by other ions such as Cu2+ and H+. Each Al in the zeolitestructure is an acidic site and the zeolite is a Lewis acid. Zeolites consist of a structuresimilar to a three-dimensional sieving structure having pores or holes of a size in therange 3-5 Ä. The average size of the zeolite granules is preferably in the range 0,3 to 1,0 mm. Porous pellets can also be used which have size of up to 2 mm.
When water vapour containing aerosols of Na+ and OH- ions pass through a zeolite structure having H+ and Al bound to it, the following reaction takes place: Al-site-H* + Na+ + OH- 69 Al site-Na+ + H* + OH- 9 Al site-Na+ H20 The first reaction must be regarded as an equilibrium reaction driven by theconcentrations of Na+ and H+. Due to the access of OH- the concentration of H* willnever increase, and hence the reaction will be driven in the desired direction. Usingacidic zeolites for cleaning of outflowing water vapour from any aerosols presenttherein allow a complete neutralization without risk for other ions reaching the membrane and thereby destroying it.
Now, returning to Fig. 2, the container 22 is smaller, both with respect to thicknessT and width W, than the interior of the housing 12 and closed off at a proximal endPE' of the container 22 by means of a lid 24 which conforms to the shape of theproximal end PE of the housing 12. At the distal end DE' of the container 22 thereis also a lid member 25 which is welded to the container 22 after filling with thezeolites and desiccants, if any. The entire purification structure 20 is inserted inthe housing at its proXimal end PE (as shown in broken lines in Fig. 1) and welded to the housing along the periphery at the proximal end PE.
When the further container 22 is inserted in the housing 12 to provide a finishedgenerator, because of the smaller dimensions of the container 22, there is formed aspace between the purification structure 20 and the inner Walls of the housing 12.To illustrate this, the contour lines of the housing 12 are shown in broken lines 12”.This space surrounding the container 22 constitutes a reaction chamber in which aluminium is provided.
Fig. 3a illustrates this schematically in a view from above, showing the housing 12,the hydroxide solution container 14, and the purification structure container 22.As mentioned above the space between the housing 12 and the container 22constitutes a reaction chamber 26, in which aluminium is provided. Notably thereis also space in the vertical direction with respect to the plane of the paper, suchthat the container 22 is surrounded on all sides by a space that is filled with aluminium. This can be seen in the schematic side view in Fig. 3b.
Returning now to Fig. 2, the container 22 as mentioned contains zeolites for purification purposes and optionally also desiccants for drying and purifying thehydrogen generated in the reaction chamber 26. Thus, there is at least one inletopening 28, in the shown embodiment there are four openings, for admission of generated hydrogen gas into the container 22.
The moisture generated during the reaction that takes place needs to be removedfrom the gas before feeding to the fuel cells, and therefore these openings 28should preferably be covered with a filter 30. This filter should be hydrophobic andresistant towards alkaline solutions. It should also preferably be inert, i.e. it shouldnot react with any reaction components to produce gases that potentially coulddamage the fuel cells. It should also withstand operation temperatures in the range50 - 130°C. Example of a suitable material for the filter is PTFE (poly-tetra-fluoro-ethylene).
The filter(s) 30 can handle removal of moisture to a certain extent, but it may notbe sufficient. Liquid can obstruct the filter if the pore size is small, and if the pore size is too large, solution will pass through.
Example of a suitable material for the filter is PTFE (poly-tetra-fluoro-ethylene).
Therefore, in order to avoid this to happen, it is possible to use coarser filters 30 but instead provide desiccants in the container 22 together With zeolites.
In a simple embodiment the zeolites and desiccants are mixed in suitableproportions and placed in the container 22 in a homogenous miXture. HoWever, fora more efficient drying of the gas, preferably the desiccant is provided at differentmixing ratios vs the zeolites in different sections inside the container. This isdisclosed in Fig. 4 in an exemplary embodiment, Wherein the container comprisesthree sections A, B and C, section A is located at the inlet end IL, section C at theoutlet OL and section B between section A and B. All sections contain zeolites, butonly section A and B contain desiccant. In the first section A there is a higherconcentration of desiccant than in the second section B, Whereas section Ccontains only zeolites. The different concentrations are illustrated by different hatchings.
In a further fourth section D, constituting a part of section C close to the outlet,the components in the container 22 can comprise citric acid, or some other neutralizing component, e.g. other acids or buffer solutions.
The actual miXing ratios can vary depending on dimensions, application etcetera,but exemplary values are 20-30 % desiccant and 80-70 % zeolite in section A, and5-20 % desiccant and 95-80 % zeolite in section B, Whereas there is no desiccant in section C, only zeolites.
Of course it is possible to have another number of sections, other sizes of thesections and other ratios of desiccant vs zeolites. It is also conceivable to have amore or less continuous gradient of components in the container 22, although this is more complicated to achieve from a manufacturing point of view.
The desiccant can be selected from commercially available products, e.g. gypsumor a product sold under the trademark Drierite®. It can be provided as a powder or granulate in a large variation of sizes, although 20 - 40 mesh can be suitable.
It can also be provided in pellet format, by miXing several components and sintering to produce pellets.
The present invention also provides a specific reactant system for the generation of hydrogen.
Namely, it is well-known that aluminium will be dissolved in e.g. aqueous sodiumhydroxide with the evolution of hydrogen gas, H2, and the formation of aluminates of the type [Al(OH)4]-, the overall reaction can be written as follows: 2Al(s) + 2NaOH(aq) + 6H2O -> 2Na+(aq) + 2[Al(OH)4]- + 3H2(g) The various reactions taking place can be described as follows: 2A1+ 6H2o _» 2A1(oH)3 + sHmg)A1(oH)s + NaoH s Na+ + [A1(oH)4]-A12os + zNaoH + 3H2o _» 2Na+ + 2[A1(oH)4]- The bottom line is that when exposed to aqueous solutions under proper conditions the aluminium dissolves and hydrogen gas evolves.
The present inventors have carefully optimized the system by selecting proper forms of aluminium and proper composition of the aqueous solution.
In particular it is important to be able to control the rate of hydrogen evolution tofit the application in which the reactant system is to be used. It has beendiscovered that if the aluminium is provided as a powder having a particle sizedistribution such that 99,8% of the particles have an effective diameter of < 45 um,it is possible to obtain very efficient reactant system. Also, the purer the aluminiumis the better the performance will be. A purity of higher than 95% Al is required,preferably >98 %, and at present a purity of about 99,7% or pure Al or higher isused, the balance being unavoidable contaminants. It is of importance that therebe very low amounts of silicon (Si) present, preferably no Si at all. The aluminiumis provided in the form of any of a powder, granulates, pellets, sheet, stripes, stretch (expanded) metal foil, or combinations thereof.
The pH of the aqueous solution should also be in the range 12,5 < pH < 14.
The reactant system thus comprises the above mentioned aluminum powder, Waterand a Water soluble compound Which results in an alkaline solution With a pH inthe interval 12,5 < pH < 14, in particular a metal hydroXide such as LiOH, NaOH,KOH, Ca(OH)2 or Mg(OH)2Would be usable.
Preferably, the Al powder has a constitution such that it is not reactive When Wet. Itshould not react until brought in contact With the alkaline solution. Mostcommercially available poWders appear to have this property. HoWever, it ispreferred that poWders for use be tested for this property before implementing in a reactant system as claimed.
In addition to hydroxides various salts, such as NaCl, KCl, MgClg, and carbonates,sulphates or phosphates of metals, or other chemicals can be added to the reactant solution. The purpose could e.g. be for controlling reaction rates.

Claims (15)

1. I1. A hydrogen generator (10), comprising a housing (12), said housing (12) con-taining:at least two storage compartments for chemical reaction components, andmeans for enabling said reaction components to react to generate hydrogen:a condensation structure in Which Water vapour is removed from the generatedhydrogen gas, anda purification structure (20) comprising zeolite(s),characterized in that:the contents in the separate compartment of the purification structure (20) compri-ses a plurality of sections (A, B, C, D), Wherein at least one section contains only zeolite, and the other contain different concentrations of desiccant.
2. The hydrogen generator (10) according to claim 1, Wherein the zeolite(s) areprovided as granules having an average size of 0.3-1.0 mm, or if porous pellets are used, size can be up to 2 mm.
3. The hydrogen generator (10) according to claim 1 or 2, Wherein the zeolite(s) are acidic.
4. The hydrogen generator (10) according to any preceding claim, Wherein themeans for enabling said reaction components to react is a reaction compartment (26) in Which the chemical reaction components can react.
5. The hydrogen generator (10) according to any preceding claim, Wherein one sto-rage compartment contains aluminium, and the at least one further compartment(22) contains Water and a hydroxide, preferably selected from the group consistingof NaOH, KOH, Ca(OH)2, Mg(OH)2, or combinations thereof.
6. The hydrogen generator (10) according to claim 5, Wherein the Water and the hydroxide are provided in separate compartments.
7. The hydrogen generator (10) according to claim 5, Wherein the Water and the hydroxide are provided as a solution in one compartment (14). 11
8. The hydrogen generator (10) according to any of claim 5-7, Wherein the storagecompartment for aluminium constitutes a reaction compartment (26) in Which the chemical reaction components can react.
9. The hydrogen generator (10) according to any of claims 5-8, Wherein the alumi-nium is provided in the form of any of a powder, granulates, pellets, sheet, stripes, expanded metal foil, or combinations thereof.
10. The hydrogen generator (10) according to any of claims 5-9, Wherein the alumi-nium has a purity of >95 % by Weight aluminium, preferably >98 %, most>99,7 % contaminants. preferred by Weight aluminium, the balance being unavoidable
11. The hydrogen generator (10) according to any of claims 5-10, Wherein the there is no silicon present in the aluminium.
12. The hydrogen generator (10) according to any preceding claim, Wherein the pu-rification structure is constituted by a separate compartment housing the zeolite(s),and having an inlet for generated hydrogen and an outlet for feeding purified gas to a fuel cell.
13. The hydrogen generator (10) according to claim 12, Wherein the purificationstructure (20) comprises three sections, a first section (A) located at the inlet andcomprising zeolites and a desiccant, a second middle section (B) comprisingzeolites and a desiccant at a lower concentration than in the first section (A), and a third section (C) comprising only zeolites.
14. The hydrogen generator (10) according to claim 13, further comprising a fourthsection (D) located close to the outlet and comprising zeolite and citric acid or some other neutralizing component, e.g. other acids or buffer solutions.
15. A hydrogen generator (10), comprising a housing (12) having at least one storage compartment for chemical reactioncomponents, and a reaction compartment (26) in Which the chemical reaction com-ponents can react, a first compartment housing aluminium; a second compartment (14) housing Water and hydroxide in solution; 12 means (18) for providing fluid communication between second compartment(14) containing the solution of Water and hydroxide and the first compartmentcontaining the aluminium; a condensation structure (22) in Which Water vapour is removed from thegenerated hydrogen gas; Wherein the first compartment (26) constitutes the reac-tion compartment (26),characterized in that the hydrogen generator (10) further comprises a purification structure (20) comprising zeo1ite(s), arranged to receive hydrogengas from the reaction compartment (26) When formed via an inlet (IL), and to feedsuch purified gas to a fuel cell via an outlet (OL),the contents in the separate compartment of the purification structure (20) compri-ses a plurality of sections (A, B, C, D), Wherein at least one section contains only zeolite, and the other contain different concentrations of desiccant.
SE1751264A 2017-10-12 2017-10-12 Hydrogen generator with condensation and purification structure SE542602C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1751264A SE542602C2 (en) 2017-10-12 2017-10-12 Hydrogen generator with condensation and purification structure
PCT/EP2018/077470 WO2019072844A1 (en) 2017-10-12 2018-10-09 Hydrogen generator with condensation and purification structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1751264A SE542602C2 (en) 2017-10-12 2017-10-12 Hydrogen generator with condensation and purification structure

Publications (2)

Publication Number Publication Date
SE1751264A1 SE1751264A1 (en) 2019-04-13
SE542602C2 true SE542602C2 (en) 2020-06-09

Family

ID=63896097

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1751264A SE542602C2 (en) 2017-10-12 2017-10-12 Hydrogen generator with condensation and purification structure

Country Status (2)

Country Link
SE (1) SE542602C2 (en)
WO (1) WO2019072844A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800319B2 (en) * 2005-10-31 2011-10-26 日立マクセルエナジー株式会社 Hydrogen production apparatus and fuel cell system using the same
WO2009151500A1 (en) * 2008-04-02 2009-12-17 Cedar Ridge Research Llc Aluminum-alkali hydroxide recyclable hydrogen generator
WO2013150527A1 (en) * 2012-04-05 2013-10-10 H Force Ltd A system and method for efficient production of hydrogen
WO2013177679A1 (en) * 2012-06-01 2013-12-05 University Of Manitoba Cationic zeolite compositions for recovery and purification of hydrogen gas
KR101887701B1 (en) * 2012-10-26 2018-08-10 현대자동차주식회사 Apparatus for producing fuel for fuel cell car
CN104591088A (en) * 2013-10-30 2015-05-06 扬光绿能股份有限公司 Fuel treatment device and hydrogen purification device thereof
SE1550580A1 (en) * 2015-05-07 2016-11-08 Myfc Ab Fuel cell based charger system and fuel generator therefor
SE540499C2 (en) * 2016-01-05 2018-09-25 Myfc Ab Distribution of reactant solution in a fuel cartridge
SE540539C2 (en) * 2016-01-05 2018-09-25 Myfc Ab Fuel cartridge

Also Published As

Publication number Publication date
SE1751264A1 (en) 2019-04-13
WO2019072844A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US20070271844A1 (en) Hydrogen fuel cartridge and methods for hydrogen generation
US20230339749A1 (en) Article for Generating Chlorine Dioxide
CN108163813B (en) Oxygen generating compositions comprising ionic liquids
CN108069399B (en) Oxygen generator for using ionic liquid
RU2014102610A (en) GAS HYDROGEN GENERATOR
CN108069395B (en) Use of ionic liquids in compositions for generating oxygen
US9050570B2 (en) Device for facilitating a chemical reaction
AU2010345048B2 (en) System and method for generating chlorine dioxide
SE542602C2 (en) Hydrogen generator with condensation and purification structure
BR102017024584A2 (en) OXYGEN GENERATION COMPOSITION
US10549993B2 (en) Method for generating oxygen from compositions comprising ionic liquids
JP2008528438A (en) Hydrogen generation system and method
US10544511B2 (en) Device for generating oxygen
US10589995B2 (en) Methods using ionic liquids for decomposing peroxides
JP2010202438A (en) Hydrogen generation method and hydrogen generation apparatus
JP2010001188A (en) Hydrogen production apparatus and fuel cell
WO2008022346A4 (en) Hydrogen generation cartridge
CA3009939A1 (en) Fuel cartridge
US10329148B2 (en) Performance balancing elastomeric hydrogen reactor
SU1623750A1 (en) Reactor for converting detonating gas
FI124991B (en) Improved fuel cell fuel system
KR20170076229A (en) A hydrogen generation system comprising a plurality of cartridges

Legal Events

Date Code Title Description
NUG Patent has lapsed