SE537506C2 - Procedure for optimizing the useful life of filters between filter changes in a ventilation system - Google Patents

Procedure for optimizing the useful life of filters between filter changes in a ventilation system Download PDF

Info

Publication number
SE537506C2
SE537506C2 SE1151219A SE1151219A SE537506C2 SE 537506 C2 SE537506 C2 SE 537506C2 SE 1151219 A SE1151219 A SE 1151219A SE 1151219 A SE1151219 A SE 1151219A SE 537506 C2 SE537506 C2 SE 537506C2
Authority
SE
Sweden
Prior art keywords
filter
pressure drop
value
time
determined
Prior art date
Application number
SE1151219A
Other languages
Swedish (sv)
Other versions
SE1151219A1 (en
Inventor
Patrik Ödling
Original Assignee
Dinair Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dinair Ab filed Critical Dinair Ab
Priority to SE1151219A priority Critical patent/SE537506C2/en
Publication of SE1151219A1 publication Critical patent/SE1151219A1/en
Publication of SE537506C2 publication Critical patent/SE537506C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/143Filter condition indicators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure

Abstract

SAMMANDRAG Forfarande for aft bestamma en optimal filterbrukstid mellan bytena av ett filter i ett ventilationssystem, innefattande feljande steg: aft ta emot minst 5 ett filterhardvaruvarde som motsvarar en resursmangd som är forknippad med atminstone tillverkningen av filtret, aft ta emot minst ett filterbruksvarde som motsvarar en resursmangd eller resursfOrbrukning som är farknippad med anvandningen av filtret, aft ta emot minst en uppmatt datapunkt som motsvarar ett uppmatt tryckfall Over filtret, och aft bestamma namnda optimala filterbrukstid utgaende Wan namnda filterhardvaruvarde, namnda filterbruksvarde och namnda matdata. SUMMARY Method for determining an optimal filter usage time between replacements of a filter in a ventilation system, comprising the steps of: receiving at least one filter hardware value corresponding to a resource amount associated with at least the manufacture of the filter, receiving at least one filter usage value corresponding to a resource quantity or resource consumption associated with the use of the filter, aft receive at least one measured data point corresponding to a measured pressure drop across the filter, and aft determine said optimal filter usage time based on said filter hardware value, said filter usage value and said food data.

Description

FORFARANDE FOR OPTIMERING AV BRUKSTIDEN FOR FILTER MELLAN FILTERBYTEN I ETT VENTILATIONSSYSTEM Tekniskt omrade Foreliggande dokument avser ett forfarande for optimering av brukstiden for filter mellan byten vid anvandning i ventilationssystem. Dokumentet avser ett forfarande for att forbattra den totala filterkostnaden och/eller det koldioxidavtryck som orsakas av ett ventilationssystem. PROCEDURE FOR OPTIMIZING THE FILTER USE TIME BETWEEN THE FILTER CHANGE IN A VENTILATION SYSTEM Technical field This document relates to a procedure for optimizing the filter life between switches when used in a ventilation system. The document relates to a procedure for improving the overall filter cost and / or the carbon footprint caused by a ventilation system.

Bakgrund Ventilationssystem i byggnader, fartyg eller andra stora anlaggningar omfattar normalt ventilationskanaler och en flakt som driver luft genom ventilationskanalerna. I manga system ingar ocksa andra komponenter, som varmevaxlare och fuktvaxlare, som har till uppgift att skapa ett behagligt inomhusklimat. Background Ventilation systems in buildings, ships or other large installations normally include ventilation ducts and a flue that drives air through the ventilation ducts. Many systems also include other components, such as heat exchangers and moisture exchangers, which have the task of creating a pleasant indoor climate.

For att minska exponeringen for partiklar, bade for personer och for komponenter i ventilationssystemet, innefattar systemet normalt ett eller flera filter, anordnade for att filtrera inkommande och/eller utgaende luft. To reduce exposure to particles, both to persons and to components of the ventilation system, the system normally comprises one or more filters, arranged to filter incoming and / or outgoing air.

Sadana filter är normalt forbrukningsvaror som maste bytas med vissa mellanrum. Eftersom sjalva filtret är forknippat med en viss kostnad, liksom det arbete som atgar for att byta det, sá finns det en allman onskan att byta filter sá sallan som mojligt, heist forst nar det natt sin tekniska livslangd. Such filters are normally consumables that need to be replaced at certain intervals. Since the filter itself is associated with a certain cost, as well as the work required to replace it, there is a general desire to change the filter as much as possible, only at night when its technical service life.

Efterhand som filtret är i bruk fylls det gradvis med partiklar som franskilts ur den luft som filtreras. Nar filtret fylls blir motstandet storre for den luft som strommar genom filtret, sá att flakten maste arbeta hardare. Nar flakten arbetar hardare drar den mer energi. Det finns darfor samtidigt en Onskan am att byta filtret sa ofta som majligt fOr att halla nere energiforbrukningen. As the filter is in use, it is gradually filled with particles separated from the air being filtered. When the filter is filled, the resistance to the air flowing through the filter becomes greater, so that the flue has to work harder. When the surface works harder, it draws more energy. At the same time, there is a desire to change the filter as often as possible to keep energy consumption down.

Olika satt att Overvaka filtrets tillstand presenteras i FR2770788A, US2005247194A, US2008014853A, JP2011191017A, US6035851A, US2007146148A och US5036698A. Dessa forfaranden är dock inriktade pa att forutsaga filtrets tekniska livslangd, alltsa under hur lang tid filtret kommer 1 att fungera pa ett godtagbart satt. De tar inte hansyn till att aven om ett filter fungerar godtagbart, alltsa ger tillrackligt god filtrering och tillrackligt lagt tryckfall, sa kan den totala resursatgangen faktiskt minskas genom att filtret bytes langt innan dess tekniska livslangd lopt ut. Variously, the state of the Monitor filter is presented in FR2770788A, US2005247194A, US2008014853A, JP2011191017A, US6035851A, US2007146148A and US5036698A. However, these methods are aimed at predicting the technical life of the filter, ie for how long the filter will operate in an acceptable manner. They do not take into account that even if a filter works acceptably, ie provides sufficiently good filtration and sufficient pressure drop, then the total resource access can actually be reduced by replacing the filter long before its technical life has expired.

Det behovs darfor ett forfarande for att optimera tiden mellan filterbyten for att uppna ett forbattrat totalt resursutnyttjande. Therefore, a method is needed to optimize the time between filter changes to achieve improved overall resource utilization.

Sammanfattnino Ett syfte är att astadkomma ett forfarande for optimering av brukstiden for filter mellan filterbyten i ventilationssystem. Summary One object is to provide a method for optimizing the service life of filters between filter changes in ventilation systems.

Uppfinningen definieras av bifogade sjalvstandiga patentkrav. The invention is defined by the appended independent claims.

Utfaringsformer framgar av de osjalvstandiga patentkraven, av den fOljande beskrivningen och av de bifogade ritningarna. Embodiments appear from the dependent claims, from the following description and from the accompanying drawings.

Enligt en fOrsta aspekt astadkoms ett fOrfarande kir att bestamma en optimal brukstid mellan filterbyten i ett ventilationssystem. Forfarandet innefattar stegen att ta emot minst ett filterhardvaruvarde, vilket motsvarar en resursmangd som forknippas med atminstone tillverkning av filtret, att ta emot minst ett filterbruksvarde, vilket motsvarar en resursmangd eller en resursforbrukning som forknippas med anvandning av filtret, att ta emot minst en uppmatt datapunkt som motsvarar ett uppmatt tryckfall Over filtret, samt att bestamma namnda optimala brukstid for filtret utgaende fran namnda filterhardvaruvarde, filterbruksvarde och matdata. According to a first aspect, a procedure is achieved to determine an optimal service life between filter changes in a ventilation system. The method comprises the steps of receiving at least one filter hardware value, corresponding to an amount of resource associated with at least manufacturing the filter, receiving at least one filter usage value, corresponding to an amount of resource or a resource consumption associated with using the filter, receiving at least one measured data point which corresponds to a measured pressure drop across the filter, and to determine said optimal operating time for the filter based on said filter hardware value, filter use value and food data.

Har ska uttrycket "filter" uppfattas som den enhet som i praktiken byts, som alltsa kan innefatta bara sjalva filtermediet, eller filtermediet plus en ram i vilket detta har monterats. Vidare kan uttrycket "filter" avse en enhet med endast ett filter eller en enhet innefattande tva eller flera enskilda filter som är sammankopplade i serie och/eller parallellt. If the term "filter" is to be understood as the unit which in practice is replaced, which can thus comprise only the filter medium itself, or the filter medium plus a frame in which this has been mounted. Furthermore, the term "filter" may refer to a unit with only one filter or a unit comprising two or more individual filters which are interconnected in series and / or in parallel.

Uttrycket "filterhardvaruvarde" kan uppfattas som den resursatgang som är forknippad med ett filterbyte, dvs i forsta hand kostnaden for sjalva filtret (eller annan resursatgang, exempelvis koldioxidavtryck), men kan aven omfatta kostnaden for transport av filtret fran en distributionsplats till anvandningsplatsen, kostnaden for arbetet med att byta filtret, som aven kan 2 innefatta reskostnader, samt kostnaden fOr att omhanderta det forbrukade filtret. The term "filter hardware value" can be understood as the resource access associated with a filter change, ie primarily the cost of the filter itself (or other resource access, such as carbon footprint), but may also include the cost of transporting the filter from a distribution site to the application site. the work of replacing the filter, which may also include travel costs, as well as the cost of handling the spent filter.

Uttrycket "uppmatt tryckfall aver filtret" är ett matt pa det tryckfall som faktiskt uppkommer over det aktuella filtret nar detta sitter pa plats och 5 anvands. The expression "measured pressure drop across the filter" is a measure of the pressure drop that actually occurs over the filter in question when it is in place and used.

Foreliggande dokument baseras salunda pa insikten att det ur filterkostnadsperspektiv är gynnsamt att byta filtret sá sallan som mojligt, medan det ut flaktenergiperspektiv kan vara gynnsamt att byta filtret med kortare intervall. The present document is thus based on the insight that from a filter cost perspective it is favorable to change the filter as far as possible, while from a flat energy perspective it may be favorable to change the filter at shorter intervals.

Utover kostnadsperspektivet finns ocksa koldioxidperspektivet, eftersom produktionen (och distributionen) av sjalva filtret ger upphov till ett visst koldioxidavtryck pa miljon, liksom aven energiforbrukningen vid drift av flakten. In addition to the cost perspective, there is also the carbon dioxide perspective, since the production (and distribution) of the filter itself gives rise to a certain carbon dioxide footprint per million, as well as the energy consumption during operation of the fleet.

Foreliggande dokument avser salunda ett forfarande som mojliggor planering av filterbyten for minimering av en resursatgang, exempelvis kostnaden eller koldioxidavtrycket. The present document thus relates to a method which makes it possible to plan filter changes for minimizing a resource access, for example the cost or the carbon dioxide footprint.

Forfarandet innefattar stegen att skatta en sammanlagd resursatgang fOr en given tidsperiod utgaende fran filterhardvaruvardet och filterbruksvardet, och att bestamma den optimala brukstiden for att vasentligen minimera den sammanlagda resursatgangen. The method includes the steps of estimating a total resource access for a given period of time based on the filter hardware value and the filter usage value, and determining the optimal service life to substantially minimize the total resource access.

Den totala resursatgangen under den givna tidsperioden bestams med hjalp av en fOrsta faktor enligt vilken resursatgangen är omvant proportionell mot tiden, och en andra faktor enligt vilken resursatgangen är direkt proportionell mot tiden. The total resource access during the given time period is determined by means of a first factor according to which the resource access is inversely proportional to time, and a second factor according to which the resource access is directly proportional to time.

Den forsta faktorn bestams som en produkt av filterhardvaruvardet, ett inverterat varde av brukstiden, en driftcykelkvot samt eventuellt en eller flera konstanter. The first factor is determined as a product of the filter hardware value, an inverted value of the service life, an operating cycle ratio and possibly one or more constants.

Den andra faktorn kan bestammas som en produkt av filterbruksvardet, ett luftflode genom filtret, ett genomsnittligt tryckfallsvarde Over filtret, brukstiden, en driftcykelkvot, ett inverterat varde av flaktens verkningsgrad, samt eventuellt en eller flera konstanter. The second factor can be determined as a product of the filter service value, an air flow through the filter, an average pressure drop value over the filter, the service life, an operating cycle ratio, an inverted value of the flux efficiency, and possibly one or more constants.

Luftflodet är normalt det nominella vardet, alltsa det som bestams av systemets kapacitet eller systemets installning. 3 Det genomsnittliga tryckfallsvardet kan bestammas utgaende fran vardena for minst tva datapunkter. The air flow is normally the nominal value, ie that which is determined by the system's capacity or the system's installation. 3 The average pressure drop value can be determined based on the values for at least two data points.

Det genomsnittliga tryckfallsvardet bestams utgaende fran minst en skattad tryckfallsdatapunkt. The average pressure drop value is determined based on at least one estimated pressure drop data point.

Det skattade tryckfallet har formen Pa(t) = startpa*en dar startpa är ett uppmatt startvarde for tryckfallet, b är en miljokoefficient och t är tiden. The estimated pressure drop has the form Pa (t) = start pa * one where the start pa is a measured starting value for the pressure drop, b is an environmental coefficient and t is the time.

Det uppmatta startvardet for tryckfallet bestams som ett genomsnittligt varde av minst tva uppmatta varden for tryckfallet. The measured initial value for the pressure drop is determined as an average value of at least two measured values for the pressure drop.

Enligt en utforingsform, eller fran borjan, kan miljokoefficienten bestammas empiriskt. According to one embodiment, or from the beginning, the environmental coefficient can be determined empirically.

Enligt en annan utforingsform, eller efter en inledningsfas, kan miljokoefficienten bestammas genom regressionsanalys dar atminstone nagra av datapunktsvardena anpassas till en exponentialfunktion. According to another embodiment, or after an initial phase, the environmental coefficient can be determined by regression analysis where at least some of the data point values are adapted to an exponential function.

Narmare bestamt kan miljokoefficienten bestammas med hjalp av uttrycket b = EnN=Olog (71)/tn, dar Po är ett startvarde for tryckfallet, tn är Po tidpunkten for datapunkt nummer n, pn är tryckfallsvardet i datapunkt nummer n och N är antalet datapunkter. More specifically, the environmental coefficient can be determined using the expression b = EnN = Olog (71) / tn, where Po is a starting value for the pressure drop, tn is the time of data point number n, pn is the pressure drop value in data point number n and N is the number of data points.

Miljokoefficienten (b) kan bestammas med hjalp av N*21..0 tn*Pn-Mo tnEll-oPn ••- b =dar tn är tidpunkten for datapunkt nummer N*E0 tii-(E11.0 tn) n, pn är tryckfallsvardet i datapunkt nummer n, och N är antalet datapunkter. The environmental coefficient (b) can be determined using N * 21..0 tn * Pn-Mo tnEll-oPn •• - b = where tn is the time of data point number N * E0 tii- (E11.0 tn) n, pn is the pressure drop value in data point number n, and N is the number of data points.

Forfarandet kan ocksa innefatta steget att avgora huruvida tryckfallet Over filtret akar vasentligen linjart med tiden. The method may also include the step of determining whether the pressure drop across the filter is substantially linear with time.

Forfarandet kan vidare innefatta stegen att bestamma koefficienter i en linjar ekvation utgaende fran atminstone vissa av matdatapunkterna, foretradesvis alla utom de senaste, att infoga en tidpunkt for en senaste matdatapunkt i den linjara ekvationen, att jamfora ett salunda skattat tryckfall med ett motsvarande uppmatt tryckfall, att, om skillnaden mellan det skattade och det uppmatta tryckfallet är mindre an ett forvalt troskelvarde, faststalla att tryckfallet akar vasentligen linjart med tiden, och att, am skillnaden mellan det skattade och det uppmatta tryckfallet är storre an det forvalda troskelvardet, faststalla att tryckfallet akar vasentligen exponentiellt med tiden. The method may further comprise the steps of determining coefficients in a linear equation from at least some of the food data points, preferably all but the most recent, of inserting a time for a recent food data point into the linear equation, comparing a well estimated pressure drop with a corresponding measured pressure drop. that, if the difference between the estimated and the measured pressure drop is smaller than a preselected threshold value, determine that the pressure drop increases substantially linearly with time, and that, if the difference between the estimated and the measured pressure drop is greater than the preselected threshold value, determine that the pressure drop increases essentially exponentially with time.

Om det har faststallts att tryckfallet okar vasentligen exponentiellt kan minst tva olika miljokoefficienter skattas, utgaende fran olika antal 4 matdatapunkter, och den av de salunda skattade koefficienterna som är storst anvands for bestamning av det skattade tryckfallet. If it has been determined that the pressure drop increases substantially exponentially, at least two different environmental coefficients can be estimated, based on different numbers of 4 food data points, and the one of the most commonly estimated coefficients that is greatest is used to determine the estimated pressure drop.

Enligt en utforingsform kan resursen vara en kostnad. According to one embodiment, the resource can be a cost.

Enligt en annan utforingsform kan resursen vara ett koldioxidavtryck. According to another embodiment, the resource may be a carbon dioxide footprint.

Forfarandet kan vidare innefatta steget att ta emot ett filterbytesvarde, vilket motsvarar en resursmangd som är forknippad med filterbyte, varvid den optimala brukstiden for filtret bestams ocksa med beaktande av filterbytesvardet. The method may further comprise the step of receiving a filter change value, which corresponds to an amount of resources associated with filter change, the optimum operating time of the filter also being determined taking into account the filter change value.

Forfarandet kan vidare innefatta steget att uttrycka den optimala brukstiden for filtret i ett format som är lasbart for anvandaren. Den optimala brukstiden kan exempelvis uttryckas som en del av ett diagram, som ett datum eller som den tidsperiod som aterstar tram till den optimala filterbytestidpunkten. The method may further comprise the step of expressing the optimum service life of the filter in a format which is readable by the user. The optimal service life can be expressed, for example, as part of a diagram, as a date or as the time period that remains tram to the optimal filter change time.

Enligt forfarandet kan namnda minst en uppmatt datapunkt innefatta minst en datapunkt som är storre an ett startvarde och mindre an ett slutvarde for tryckfallet over filtret, och som ligger minst cirka 5, foretradesvis cirka 10, 20 eller 30 dagar fran saval en tidpunkt for startvardet for tryckfallet som en tidpunkt kir slutvardet kir tryckfallet. According to the method, said at least one measured data point may comprise at least one data point which is greater than a starting value and less than a final value for the pressure drop across the filter, and which is at least about 5, preferably about 10, 20 or 30 days from a start time for the pressure drop as a time kir the final value kir the pressure drop.

Datapunkterna kan salunda vara utspridda Over filtrets livslangd, och behbver inte vara begransade till perioder strax fbre eller efter ett filterbyte. The data points can thus be spread over the life of the filter, and need not be limited to periods shortly before or after a filter change.

Enligt en andra aspekt astadkoms ett forfarande for optimering av filterbyten vid flera olika filterplatser. Forfarandet innefattar de steg som beskrivits ovan for vardera av minst tva av filtren, som är av olika slag. Forfarandet innefattar ocksa steget att ta tram ett bytesschema fOr namnda minst tva av filtren, baserat pa den optimala brukstiden for respektive filter. According to a second aspect, a method is provided for optimizing filter changes at several different filter locations. The process comprises the steps described above for each of at least two of the filters, which are of different types. The method also includes the step of drawing an exchange scheme for said at least two of the filters, based on the optimum service life of each filter.

Den optimering som uppnas med det beskrivna forfarandet kan alltsa anvandas som indata till ett schemasystem, som kan anvandas for schemalaggning av filterunderhallet. Filterbytena kan salunda schemalaggas utgaende fran den optimala brukstiden for vale filter, med vederborligt beaktande av exempelvis det faktum att det kan vara mer fordelaktigt att byta tva filter samtidigt pa en viss plats (eller pa intilliggande platser) an att Ora en resa for varje enskilt filterbyte. The optimization achieved with the described method can thus be used as input data to a scheduling system, which can be used for scheduling the filter maintenance. The filter changes can thus be scheduled based on the optimal service life of selected filters, taking into account, for example, the fact that it may be more advantageous to change two filters at the same time at a certain place (or at adjacent places) than to make a trip for each individual filter change. .

Kortfattad ritninasbeskrivnina Figur 1 visar schematiskt ett ventilationssystem 1, dar uppfinningen kan tillampas. Brief Description of the Drawings Figure 1 schematically shows a ventilation system 1, where the invention can be applied.

Figur 2 är ett schematiskt schema over en programvarustruktur for tillampning av tekniken enligt foreliggande uppfinning. Figure 2 is a schematic diagram of a software structure for applying the technique of the present invention.

Figurerna 3-7 är olika exempel pa programvarans anvandargranssnitt. Figurerna 8-12 är diagram som visar berakningsresultat utgaende fran exempel pa varden. Figures 3-7 are various examples of the software user interface. Figures 8-12 are diagrams showing calculation results based on examples of values.

Beskrivninq av utforinqsformer Figur 1 visar schematiskt ett ventilationssystem 1, som kan ha till uppgifter att tillfora/avlagsna luft till/fran rummen i exempelvis en byggnad. Systemet 1 innefattar ventilationskanaler 20, 22, en flakt 21 fOr att trycka luft genom ventilationskanalerna och en filtermodul 10, anpassad for att hysa en utbytbar filterkassett 11. I filtermodulen 10 finns ett matdon 12a, 12b for matning av tryckfallet over filtret. Matdonet kan exempelvis innefatta en forsta och en andra tryckgivare 12a, 12b. Matdonet kan vara anslutet till ett styrdon som kan vara anpassat for att ta emot matdata fran tryckgivarna 12a, 12b. Description of embodiments Figure 1 schematically shows a ventilation system 1, which may have the task of supplying / depositing air to / from the rooms in, for example, a building. The system 1 comprises ventilation ducts 20, 22, a vane 21 for forcing air through the ventilation ducts and a filter module 10, adapted to accommodate a replaceable filter cassette 11. In the filter module 10 there is a feeder 12a, 12b for feeding the pressure drop across the filter. The feeder may, for example, comprise a first and a second pressure sensor 12a, 12b. The feeder may be connected to a controller which may be adapted to receive feed data from the pressure sensors 12a, 12b.

Styrdonet 30 kan vara anordnat for att ta emot ett tryckvarde fran vardera givaren 12a, 12b och berakna tryckfallet. Alternativt kan givarna vara anordnade for direkt matning av tryckfallet, sá att styrdonet 30 bara far ta emot ett enda varde. The controller 30 may be arranged to receive a pressure value from each sensor 12a, 12b and calculate the pressure drop. Alternatively, the sensors can be arranged for direct supply of the pressure drop, so that the control device 30 can only receive a single value.

Styrdonet 30 kan vara anordnat for att avlasa varden fran givarna 12a, 12b kontinuerligt, eller med forvalda intervall, och att lagra mottagna data i minnet. Alternativt kan styrdonet 30 vara anordnat for att avlasa varden fran givarna endast pa anmodan. The controller 30 may be arranged to read the value from the sensors 12a, 12b continuously, or at preselected intervals, and to store received data in the memory. Alternatively, the controller 30 may be arranged to read the value from the sensors only on request.

Styrdonet 30 kan vara anordnat for att kommunicera med en fjarrenhet som kan vara en dator, en mobiltelefon/smart mobil osv. The controller 30 may be arranged to communicate with a remote unit which may be a computer, a mobile phone / smart mobile, etc.

Enligt en utforingsform kan styrdonet 30 utgoras av en for andamalet avsedd enhet med ett granssnitt mot givarna, samt en kommunikationsanordning, som kan vara utformad for att kommunicera exempelvis med SMS (korta textmeddelanden) eller via Wi-Fi (ftp, mejl osv). 6 Denna enhet kan vara utformad for att skicka givardata med forvalda intervall eller pa anmodan. Enheten kan t.ex. vara anordnad for att svara automatiskt pa ett inkommande textmeddelande med att skicka det forhandenvarande givarvardet. Enheten behover darmed inte ha nagot eget minne eller processor, utan behaver bara aktuella granssnitt och en a/d-omvandlare. I denna utforingsform kan all datalagring och -bearbetning ske i fjarrenheten 31, mojligen med en sakerhetskopieringsfunktion tillganglig. According to one embodiment, the control device 30 can be constituted by a unit intended for the purpose with an interface with the sensors, as well as a communication device, which can be designed to communicate, for example, with SMS (short text messages) or via Wi-Fi (ftp, e-mail, etc.). 6 This device may be designed to send sensor data at preselected intervals or on request. The device can e.g. be arranged to automatically respond to an incoming text message by sending the existing sensor value. The unit thus does not need to have its own memory or processor, but only needs current interfaces and an a / d converter. In this embodiment, all data storage and processing can take place in the remote unit 31, possibly with a security copying function available.

Enligt en annan utforingsform kan programvara finnas for att utfora de hari beskrivna forfarandena, i form av ett program som ligger i styrdonet eller i en dator som kommunicerar med styrdonet, och som kan nas fran fjarrenheten, t.ex. via en webblasare. Ett annat alternativ är att programvaran finns i form av en nedladdbar applikation (en sá kallad "app") som laddas ned till fjarrenheten. Enligt en utforingsform är programvaran en app som har utformats for anvandning pa en smart mobil, exempelvis en iPhonee, eller en pekplatta, exempelvis en iPad®, som kommunicerar direkt med styrdonet och har en sakerhetskopieringsfunktion antingen genom dockning till en varddator eller via en molnbaserad tjanst (exempelvis iCloud®). According to another embodiment, software may be provided for performing the procedures described herein, in the form of a program located in the controller or in a computer communicating with the controller, and which may be accessed from the remote unit, e.g. via a web browser. Another alternative is that the software is available in the form of a downloadable application (a so-called "app") which is downloaded to the remote device. According to one embodiment, the software is an app designed for use on a smart mobile, such as an iPhone, or a touchpad, such as an iPad®, which communicates directly with the controller and has a backup function either by docking to a host computer or via a cloud-based service. (e.g. iCloud®).

Programvaran kan ha den struktur som visas i figur 2, med en huvudmeny 40, ett oversiktsfonster 41, ett fonster 42 for inmatning av filterdata, omfattande far vane filter miljadata 43, filterspecifika data 44, tryckfallsdata 45, livscykelkostnadsoptimering 46 och koldioxidavtrycksoptimering 47. The software may have the structure shown in Figure 2, with a main menu 40, an overview window 41, a window 42 for inputting filter data, comprising conventional filter environmental data 43, filter specific data 44, pressure drop data 45, life cycle cost optimization 46 and carbon footprint optimization 47.

Fonstret 42 for inmatning av filterdata är anpassat for tillagg av fler filter eller far andring eller tillagg av data for ett befintligt filter. Vid tillagg av ett nytt filter kan fonstret ha en forsta del 43 eller flik for inmatning av systemdata for den aktuella filterplatsen. Dessa systemdata kan omfatta luftflode 431 (t.ex. i m3/h), flakttyp 432 (t.ex. varvtalsstyrd/icke varvtalsstyrd), drifttid 433 (i procent eller timmar per dag osv.), lufttyp 434 (t.ex. flagon av kategorierna "stadskarna", "stad", "landsbygd"), filtersteg 435 (am flera filter sitter anordnade i serie), energityp 436 (t.ex. "svensk blandning", "europeisk blandning", "gran energi"), energikostnad 437 (t.ex. pris per kWh) och flaktens verkningsgrad 438 (t.ex. i procent). 7 En andra del 44 eller flik kan finnas for inmatning av filterdata for ett visst system. Denna andra del 44 kan ha ett inmatningsfonster 441 och ett tabellfonster/oversiktsfanster 442. I filterdata kan inga sadana uppgifter som antalet filter 443, typen av filter 444, artikelnummer for filter 445, filterkostnad 446 och det koldioxidavtrycksvarde 447 som är forknippat med ett filter. I filterdata kan aven am sá onskas inga uppgifter am t.ex. filterstorlek (area) och filtermaterial. Det kan ocksa finnas mojlighet for anvandaren eller systemet att ange am och i sá fall nar ett filter har bytts. Det kan finnas en meny over olika filtertyper, vilkas data finns forprogrammerade. The filter data entry window 42 is adapted for adding more filters or changing or adding data for an existing filter. When adding a new filter, the window may have a first part 43 or a tab for entering system data for the current filter location. This system data may include air flow 431 (eg in m3 / h), plane type 432 (eg speed controlled / non speed controlled), operating time 433 (in percent or hours per day, etc.), air type 434 (eg flag of the categories "urban", "urban", "rural"), filter stage 435 (several filters are arranged in series), energy type 436 (eg "Swedish mixture", "European mixture", "spruce energy") , energy cost 437 (eg price per kWh) and the efficiency of the float 438 (eg in percent). 7 A second part 44 or tab may be present for inputting filter data for a particular system. This second portion 44 may have an input window 441 and a table window / overview window 442. In filter data, no such information as the number of filters 443, the type of filter 444, article number for filter 445, filter cost 446 and the carbon footprint value 447 associated with a filter may be present. In filter data, even if no data can be requested, e.g. filter size (area) and filter material. It may also be possible for the user or system to specify am and in that case when a filter has been replaced. There may be a menu of different filter types, whose data is pre-programmed.

En tredje del 45 eller flik kan finnas for inmatning av tryckfallsvarden for ett visst filter. Denna tredje del kan innefatta ett statusfalt 451 som visar datum for nasta filterbyte och ett annat falt 452 som visar prognostiserat tryckfallsvarde vid detta datum kir filterbyte. lnmatningen kan leda till att systemet avlaser respektive styrdon 30 eller givare 12a, 12b; det kan innefatta en funktion for ett avlasningsschema, en funktion for visning av data (push) fran styrdonet 30, eller en funktion for manuell inmatning av data. I normalfallet skulle varje inmatning omfatta ett datum, eventuellt en klocktid, samt ett tryckfallsvarde (t.ex. i Pa) eller nagot annat motsvarande varde. Den tredje delen kan ocksa visa ett prognostiserat varde pa tryckfallet, vilket skulle beraknas pa nedan angivna satt. Prognosen kan visas som ett diagram 453 dar tryckfallet avsatts mot tiden. Uppmatta datapunkter kan visas som punkter i diagrammet, och diagrammet kan ocksa visa ett datum nar tryckfallet blir kritiskt (dvs. nar filtrets livslangd loper ut) och/eller ett rekommenderat (eller optimalt) datum for nasta filterbyte. Det kan finnas en tabell 454 som visar de uppmatta datapunkterna som tryckfallsvarden tillsammans med till horande datum. A third part 45 or tab may be provided for inputting the pressure drop value for a particular filter. This third part may include a status field 451 which shows the date of the next filter change and another field 452 which shows the forecast pressure drop value at this date kir filter change. The input may cause the system to unload respective controllers 30 or sensors 12a, 12b; it may include a function for a unloading scheme, a function for displaying data (push) from the controller 30, or a function for manually entering data. Normally, each input would include a date, possibly a clock time, as well as a pressure drop value (eg in Pa) or some other equivalent value. The third part can also show a forecast value of the pressure drop, which would be calculated in the manner given below. The forecast can be shown as a diagram 453 where the pressure drop is plotted against time. Uploaded data points can be displayed as points in the diagram, and the diagram can also show a date when the pressure drop becomes critical (ie when the filter's life expires) and / or a recommended (or optimal) date for the next filter change. There may be a table 454 that shows the entered data points as the pressure drop value along with to the due date.

En fjarde del 46 eller flik kan finnas for visning av resultatet vid optimering for en forsta resurs, exempelvis kostnad. Denna fjarde del kan innefatta ett statusfalt 461 som visar datum for nasta filterbyte och ett annat falt 462 som visar prognostiserat tryckfallsvarde vid detta datum for filterbyte. A fourth part 46 or tab may be present for displaying the result when optimizing for a first resource, for example cost. This fourth part may include a status field 461 showing the date of the next filter change and another field 462 showing the predicted pressure drop value at this filter change date.

Resultatet kan visas som ett diagram 464 som visar totalkostnaden Ctotal som en funktion av bytestidpunkten T. Den optimala bytestidpunkten T kan visas i diagrammet samt aven resterande livslangd for det filter som är i bruk. Det är 8 ocksa majligt att i ett separat diagram 463 och/eller i numerisk form visa de komponenter f(T), e(T) som ger upphov till totalkostnaden CtotaL Kostnaden kan summeras for en forvald tidsperiod, exempelvis ett är. The result can be shown as a diagram 464 which shows the total cost Ctotal as a function of the change time T. The optimal change time T can be shown in the diagram as well as the remaining life of the filter in use. It is also possible to show in a separate diagram 463 and / or in numerical form the components f (T), e (T) that give rise to the total cost CtotaL The cost can be summed for a preselected time period, for example one is.

En femte del 47 eller flik kan finnas for visning av resultatet vid optimering for en andra resurs, exempelvis koldioxidavtryck. Denna femte del kan innefatta ett statusfalt 471 som visar datum for nasta filterbyte och ett annat falt 472 som visar prognostiserat tryckfallsvarde vid detta datum for filterbyte. Visningen kan motsvara visningen i den fjarde delen 46, varvid optimeringen baseras pa koldioxidavtryck istallet for pa kostnad, varvid det arliga koldioxidavtrycket visas i 473, 474, uttryckt exempelvis kg CO2/ar. A fifth part 47 or tab may be present for displaying the result when optimizing for a second resource, for example carbon footprint. This fifth part may include a status field 471 which shows the date of the next filter change and another field 472 which shows the forecast pressure drop value at this date for the filter change. The display can correspond to the display in the fourth part 46, whereby the optimization is based on carbon dioxide footprint instead of cost, whereby the annual carbon dioxide footprint is shown in 473, 474, expressed for example kg CO2 / year.

Den kan papekas att inmatningsfunktioner och utmatningsfunktioner kan vara olika till funktion och utseende. It can be pointed out that input functions and output functions can be different in function and appearance.

Nedan beskrivs optimeringsalgoritmen. Utgaende Iran inmatade data enligt ovan leder en forsta del av optimeringsalgoritmen till en prognos for tryckfallsutvecklingen. The optimization algorithm is described below. Outgoing Iran entered data as above, a first part of the optimization algorithm leads to a forecast for the development of pressure drop.

Fran borjan, da det saknas tryckfallsvarden eller bara finns ett tryckfallsvarde att tillga, skattas tryckfallsvardet med hjalp av formel 1 nedan, dar Pa(t) är skattat tryckfallsvarde vid tiden t (som exempelvis kan vara uttryckt i timmar); startpa är det uppmatta startvardet for tryckfallet; airtype är en konstant som kan bestammas empiriskt och är specifik far en viss typ eller klass av luft (t.ex. "luft Iran stadskarnan", "stadsluft", "landsbygdsluft" eller "franluft"). From the beginning, when there is no pressure drop value or only one pressure drop value is available, the pressure drop value is estimated using formula 1 below, where Pa (t) is the estimated pressure drop value at time t (which can be expressed in hours, for example); startpa is the measured start value for the pressure drop; airtype is a constant that can be determined empirically and is specific to a particular type or class of air (eg "air Iran city center", "city air", "rural air" or "exhaust air").

Pa(t) = startpa eairtype*t(formel 1) Konstanten airtype for en given typ av luft (eller for en given plats) kan bestammas empiriskt, genom provning av filter enligt flagon given standard, exempelvis EN 13779, for en given plats. Pa (t) = start pa eairtype * t (formula 1) The constant airtype for a given type of air (or for a given location) can be determined empirically, by testing filters according to the flag given standard, for example EN 13779, for a given location.

Erfarenheten har klargjort for uppfinnarna att tryckfallet tenderar att variera under den forsta delen av ett filters brukstid, vilket kan Ora prognosen mindre saker. Efterhand som fler tryckfallsvarden blir tillgangliga kan startpa beraknas som medelvardet av dessa tryckfallsvarden. Det är mojligt att vikta de uppmatta tryckfallsvardena, sá att varden som uppmatts 9 senare ges stOrre vikt. Denna medelvardesberakning av startpa kan utforas exempelvis under de forsta cirka 1-45 (foretradesvis cirka 15-25, cirka 25-35 eller cirka 30) dagarna efter installation av ett nytt filter. Denna tidsperiod for medelvardesberakning benamns har "startperioden". Experience has made it clear to the inventors that the pressure drop tends to vary during the first part of a filter's life, which can predict the smaller things. As more pressure drop values become available, start-up can be calculated as the average of these pressure drop values. It is possible to weight the measured pressure drop values, so that the value measured 9 later is given greater weight. This averaging of starting pa can be performed, for example, during the first about 1-45 (preferably about 15-25, about 25-35 or about 30) days after installation of a new filter. This time period for averaging is called the "start period".

Det är ocksa mojligt att berakna startp, med hjalp av en rad uppmatta tryckfallsvarden fran tidigare motsvarande filterbyten. Information fran tidigare motsvarande filterbyten kan ocksa anvandas for prognostisering av tryckfallet, sá att prognosen blir sakrare, am filtren är identiska och sitter pa samma plats i systemet. It is also possible to calculate the starting point, with the help of a series of measured pressure drop values from previously corresponding filter changes. Information from previously corresponding filter changes can also be used to forecast the pressure drop, so that the forecast becomes more accurate, if the filters are identical and located in the same place in the system.

Efter startperioden, efterhand som fler matvarden blir tillgangliga, kan tryckfallet skattas med hjalp av formel 2 nedan, dar b är en konstant som beraknas med hjalp av formel 3. After the start-up period, as more food values become available, the pressure drop can be estimated using formula 2 below, where b is a constant calculated using formula 3.

Pa(t) = startp, eb*t (formel 2) b = Eirv,=0 log (&1)/tn, Po (formel 3) I formel 3 är N antalet matdata och pn är det uppmatta tryckfallsvardet vid tidpunkten t. Da kommer formel 3 att Ora att de uppmatta tryckfallsdatapunkterna anpassas till exponentialfunktionen i formel 2. Pa (t) = startp, eb * t (formula 2) b = Eirv, = 0 log (& 1) / tn, Po (formula 3) In formula 3, N is the number of feed data and pn is the measured pressure drop value at time t. Da For example, Formula 3 will ensure that the applied pressure drop data points are adapted to the exponential function of Formula 2.

Resursatgangen (t.ex. kostnaden eller koldioxidavtrycket) for en given brukstid T for filtret har tva element: resursatgangen for filtret eller filterenheten sjalv under denna brukstid (dvs. resursatgangen for tillverkning, distribution och/eller atervinning/kassation av filtret) samt resursatgangen for matning av luft genom filtret, dvs. for drift av flakten. The resource access (eg the cost or carbon footprint) for a given service life T for the filter has two elements: the resource access for the filter or filter unit itself during this service life (ie the resource access for manufacturing, distribution and / or recovery / disposal of the filter) and the resource access for supply of air through the filter, i.e. for operation of the flat.

Det kan papekas att resursen kan utgoras av en kostnad eller exempelvis koldioxidavtryck pa miljon. It can be pointed out that the resource can consist of a cost or, for example, a carbon footprint of millions.

Resursatgangen for filtret eller filterenheten ges av formel 4 nedan, dar f(T) är resursatgangen, Crater är resursatgangen for filtret/filterenheten, Rup är drifttiden (exempelvis uttryckt i h/dag). f (T) = C filter*36*Rup(formel 4) Resursatgangen far driften av filtret ges av formel 5 nedan, dar e(T) är resursatgangen, Cuse är resursatgangen per drifttidsenhet, Q är luftfloclet, pavg är det genomsnittliga tryckfallsvardet enligt formel 6 nedan och /Wan är flaktens verkningsgrad. The resource input for the filter or filter unit is given by formula 4 below, where f (T) is the resource input, Crater is the resource input for the filter / filter unit, Rup is the operating time (for example expressed in h / day). f (T) = C filter * 36 * Rup (formula 4) The resource input for the operation of the filter is given by formula 5 below, where e (T) is the resource input, Cuse is the resource input per operating time unit, Q is the air flocculation, pavg is the average pressure drop value according to formula 6 below and / Wan is the efficiency of the flattening.

Paygup e(T) = Cuser *365* R) fan Pavg = ;_107'Pa(t)dt (formel 5) (formel 6) Det genomsnittliga tryckfallsvardet under en given tidsperiod T beraknas alltsa enligt formel 2, som ger tryckfallet far filtrets hela livslangd utgaende Iran uppmatt data, medan det forvantade framtida tryckfallsvardet är skattas. Paygup e (T) = Cuser * 365 * R) fan Pavg =; _107'Pa (t) dt (formula 5) (formula 6) The average pressure drop value during a given time period T is thus calculated according to formula 2, which gives the pressure drop far the filter entire lifetime outgoing Iran measured data, while the expected future pressure drop value is estimated.

Den totala resursatgangen C01 är summan av de tva elementen, enligt formel 7 nedan: Ctotal = f(T) e(T)(formel 7) Som framgar av genomgangen ovan minskar det forsta elementet f(T) nar filtrets brukstid akar, dvs. det är omvant proportionellt mot tiden T. A andra sidan okar det andra elementet e(T) nar filtrets brukstid akar, dvs. det är direkt proportionellt mot tiden T. The total resource input C01 is the sum of the two elements, according to formula 7 below: Ctotal = f (T) e (T) (formula 7). it is inversely proportional to the time T. On the other hand, the second element e (T) increases when the service life of the filter increases, i.e. it is directly proportional to time T.

Under hanvisning till figurerna 8-12 foljer nedan ett exempel, baserat pa realistiska varden. Referring to Figures 8-12, an example follows, based on realistic values.

For exemplet galler foljande antaganden: luftflodet Q=0,9444 m3/h; filtrets dagliga drifttid Rup=16 h; filterkostnaden Cfifter=5 SEK, filtrets koldioxidavtryck CO2fiiter=13 kg; energikostnaden C„e=1,1 SEK/kWh; flaktens verkningsgrad rifen=50`)0; lufttypen airtype=0,00015. For the example, the following assumptions apply: the air flow Q = 0.9444 m3 / h; filter daily operating time Rup = 16 h; the filter cost Cfifter = 5 SEK, the carbon footprint of the filter CO2fiiter = 13 kg; the energy cost C „e = 1.1 SEK / kWh; the efficiency of the flake torn = 50`) 0; air types airtype = 0.00015.

I ett forsta fall, da det uppmatta tryckfallet är 80 Pa, kommer det prognostiserade tryckfallet enligt formel 1 att folja kurvan i figuren 8, dar tiden i tim mar avsatts langs den vagrata axeln. 11 Den sammanlagda arliga filterkostnaden enligt forme! 4 framgar av figur 9. In a first case, when the measured pressure drop is 80 Pa, the forecast pressure drop according to formula 1 will follow the curve in Figure 8, where the time in hours is plotted along the horizontal axis. 11 The total annual filter cost according to form! 4 is shown in Figure 9.

Det genomsnittliga tryckfallsvardet vid olika bytesintervall T beraknas med formel 6 och illustreras i figur 10. The average pressure drop value at different byte intervals T is calculated by formula 6 and illustrated in Figure 10.

Energikostnaden som funktion av bytesintervallet T beraknas med formel 5 och illustreras i figur 11. The energy cost as a function of the change interval T is calculated by formula 5 and illustrated in Figure 11.

Totalkostnaden Ctotal beraknas med formel 7 och illustreras i figur 12. Figur 12 visar att man tycks uppna lagst kostnad genom att ha ett bytesintervall T pa cirka 5000 h, vilket med en drifttid Rut, om 16 h/dag innebar filterbyte var lle manad. The total cost Ctotal is calculated with formula 7 and illustrated in figure 12. Figure 12 shows that one seems to achieve the lowest cost by having a change interval T of about 5000 h, which with an operating time Rut, of 16 h / day meant filter change every month.

Figur 12 visar salunda schematiskt ett exempel pa de tva elementen och hur de kan summeras. Man ser att summakurvan Ctotal har ett tydligt minimum, dar man alltsa hittar den optimala tiden mellan filterbyten. Optimeringen innebar alltsa en bestamning av denna tid T. Figure 12 thus schematically shows an example of the two elements and how they can be summed. You can see that the sum curve Ctotal has a clear minimum, where you therefore find the optimal time between filter changes. The optimization thus meant a determination of this time T.

De erhallna optimeringsresultaten kan anvandas for att planera filterbyten i ett eller flera ventilationssystem. Genom att kombinera filterbytesintervallet T och kalenderdata kan man bestamma vid vilka tidpunkter byten bOr gOras, och detta kan i sin tur anvandas vid planering av arbetsfordelning. The obtained optimization results can be used to plan filter changes in one or more ventilation systems. By combining the filter change interval T and calendar data, it is possible to determine at what times changes should be made, and this in turn can be used in planning the division of labor.

Man kan exempelvis ha ett diagram (ej avbildat) som visar antalet filter (t.ex. det totala antalet filter eller antalet filter per anlaggning) med en viss status i fraga om aterstaende livslangd. Exempelvis kan filter med mer an 20 veckors aterstaende livslangd sammanforas i en forsta grupp, filter med fyra till 20 veckor kvar kan bli en andra grupp, filter med noll till fyra veckor kvar kan bli en tredje, och filter som borde ha bytts kan vara en fjarde grupp. For example, you can have a diagram (not shown) that shows the number of filters (eg the total number of filters or the number of filters per plant) with a certain status in terms of remaining life. For example, filters with a residual life of more than 20 weeks can be combined in a first group, filters with four to 20 weeks left can become a second group, filters with zero to four weeks left can become a third, and filters that should have been replaced can be a fourth group.

Enligt en annan utforingsform kan man fa data i relation till den geografiska positionen for vale filter och/eller system. Sadana data kan anvandas for att basera planeringen av filterbyten inte bara pa det forutspadda tillstandet for respektive filter, utan ocksa pa den kostnad och/eller det koldioxidavtryck som kan kopplas till bytet av filtret i fraga. According to another embodiment, data can be obtained in relation to the geographical position of selected filters and / or systems. Such data can be used to base the planning of filter changes not only on the predicted state of each filter, but also on the cost and / or the carbon footprint that can be linked to the change of the filter in question.

Exempelvis kan arbets- och transportkostnaden och/eller koldioxidavtrycket for ett byte av ett visst filter beraknas, och sedan anvandas som en faktor vid optimeringen. 12 Det är ocksa mojligt att infora en algoritm for planering av transportvagarna sá att transportarbetet minimeras for filtren och/eller restiden minimeras for personalen som byter filter pa olika anlaggningar. Det som beskrivs i foreliggande dokument är sarskilt anvandbart i ventilationssystem som styrs for att avge ett konstant luftflade. Sadana ventilationssystem är vanliga i byggnader och andra stora och/eller stationara anlaggningar, exempelvis oljeplattformar och havsgaende fartyg. Filter dar det som beskrivs i foreliggande dokument kan anvandas kan vara filter av typerna G3-F9 enligt EN779 och H10-H14 enligt EN1822. Sadana filter kan vara av typen sackfilter, fickfilter, filterkuddar, panelfilter eller veckade kompaktfilter. I normalfallet lampar sig det som beskrivs i foreliggande dokument for filter med relativt stora luftfloden, exempelvis over cirka 0,1 m3/s eller Over cirka 0,47 m3/s. For example, the labor and transportation cost and / or carbon footprint of a particular filter replacement can be calculated, and then used as a factor in optimization. It is also possible to introduce an algorithm for planning the transport wagons so that the transport work is minimized for the filters and / or the travel time is minimized for the personnel who change filters at different facilities. What is described in the present document is particularly useful in ventilation systems that are controlled to emit a constant air surface. Such ventilation systems are common in buildings and other large and / or stationary installations, such as oil platforms and sea-going vessels. Filters where what is described in the present document can be used can be filters of types G3-F9 according to EN779 and H10-H14 according to EN1822. Such filters can be of the type bag filter, pocket filter, filter pads, panel filter or pleated compact filter. In the normal case, what is described in the present document for filters with a relatively large air flow, for example above about 0.1 m3 / s or Over about 0.47 m3 / s.

Det är mojligt att forfina algoritmerna som beskrivs i foreliggande dokument genom att lagga till ytterligare givardata. Man kan exempelvis ha data som anger mangden partiklar i luften. It is possible to refine the algorithms described in the present document by adding additional sensor data. For example, you can have data that indicates the amount of particles in the air.

Sokanden har noterat att tryckfallet over filtret under inledningen av filtrets brukstid akar vasentligen linjart med tiden, men senare under brukstiden istallet borjar aka vasentligen exponentiellt. For att Oka noggrannheten hos prognosen far filtrets livslangd kan det vara Onskvart att bestamma huruvida ett visst filter befinner sig i sin "linjara fas" eller sin "exponentiella fas". The applicant has noted that the pressure drop across the filter during the beginning of the filter's service life increases substantially linearly with time, but later during the service life it instead starts to run substantially exponentially. In order to increase the accuracy of the forecast for the life of the filter, it may be unwise to determine whether a particular filter is in its "linear phase" or its "exponential phase".

Ett satt att faststalla detta kan vara att anpassa N stycken uppsattningar matdata, vardera innefattande ett tidvarde och ett tryckfallsvarde, till en forstagradsekvation enligt formel 8. y(t)=Iet-Fm(formel 8) Matdata, normalt alla utom den senaste datapunkten, infors normalt i formel 9 nedan, sá att koefficienterna m och k kan beraknas. [71 [ENi ,N 0 ti, EL1 otn1 *[ Eirvi=oPn EN=042 LEnN n=0 Pn * tn (formel 9) 13 Om man i forme! 8 info!' koefficienterna m, k som erhallits fran forme! 9 kan man skatta ett tryckfallsvarde vid tidpunkten for den senaste matningen. Sedan kan detta skattade tryckfallsvarde jamforas med det faktiska (alltsa det uppmatta vardet) vid tidpunkten i fraga, och skillnaden kan bestammas och uttryckas exempelvis som ett procenttal. One way to determine this may be to adapt N sets of food data sets, each including a time value and a pressure drop value, to a first degree equation according to formula 8. y (t) = Iet-Fm (formula 8) Food data, normally all except the most recent data point, is normally entered in formula 9 below, so that the coefficients m and k can be calculated. [71 [ENi, N 0 ti, EL1 otn1 * [Eirvi = oPn EN = 042 LEnN n = 0 Pn * tn (formula 9) 13 If you are in shape! 8 info! ' the coefficients m, k obtained from shape! 9, a pressure drop value can be estimated at the time of the last feed. Then this estimated pressure drop value can be compared with the actual (i.e. the measured value) at the time in question, and the difference can be determined and expressed, for example, as a percentage.

Skillnaden kan sedan jamforas med ett forvalt troskelvarde, varvid filtret bedoms vara kvar i sin linjara fas om skillnaden är mindre an detta. Troskelvardet kan exempelvis vara cirka 10-30%, foretradesvis cirka 20% for filtrets forsta 2000 driftstim mar. The difference can then be compared with a preselected threshold value, whereby the filter is judged to remain in its linear phase if the difference is smaller than this. The threshold value can, for example, be about 10-30%, preferably about 20% for the filter's first 2000 operating hours.

Troskelvardet kan andras beroende pa hur lange filtret har varit i drift. The threshold value may vary depending on how long the filter has been in operation.

Det kan exempelvis minska med tiden. Troskelvardet kan vara cirka 10%30% for filtrets forsta 2000 drifttimmar, cirka 5%-15% (foretradesvis cirka 10%) for filtrets nasta 2000 drifttimmar och cirka 2%-7% (foretradesvis cirka 5%) nar filtret har varit i drift under 4000 timmar eller langre. For example, it may decrease over time. The threshold value can be about 10% 30% for the filter's first 2000 operating hours, about 5% -15% (preferably about 10%) for the filter's next 2000 operating hours and about 2% -7% (preferably about 5%) when the filter has been in operation. for 4000 hours or longer.

Observera att det gar att ange ett godtyckligt antal traskelvarden, och enligt en utforingsform kan troskelvardet beraknas som en funktion av drifttiden. Note that it is possible to specify an arbitrary number of threshold values, and according to an embodiment, the threshold value can be calculated as a function of the operating time.

Algoritmen kan alltsa goras alit kansligare far avvikelser fran den linjara funktionen efterhand som filtret anvands. The algorithm can thus be made more probable if deviations from the linear function occur as the filter is used.

Antalet matdatapunkter som anvands far att bestamma miljokoefficienten b i formel 2 kan ocksa variera, beroende pa am filtret befinner sig i den linjara fasen eller inte. The number of food data points used to determine the environmental coefficient b in formula 2 may also vary, depending on whether the filter is in the linear phase or not.

Om filtret bedoms befinna sig i den linjara fasen kan alla matpunkter anvandas for att skatta koefficienten b. If the filter is judged to be in the linear phase, all feed points can be used to estimate the coefficient b.

Om filtret bedoms befinna sig i den exponentiella fasen kan ett mindre antal punkter anvandas for att skatta koefficienten b. Exempelvis kan olika skattningar goras utgaende fran de senaste tva, tre, fyra eller fem datapunkterna, vilket resulterar i tva eller flera olika varden pa koefficienten b. NormaIt valjer man det hogsta vardet pa b nar man ska Ora en prognos (med hjalp av formel 2). If the filter is judged to be in the exponential phase, a smaller number of points can be used to estimate the coefficient b. For example, different estimates can be made based on the last two, three, four or five data points, resulting in two or more different values of the coefficient b Normally you choose the highest value when you want to make a forecast (using formula 2).

Formel 10 nedan visar hur man bestammer koefficienten b for N stycken uppsattningar matdatapunkter. 14 b = N*YnN -- 0 tn*Pn-EnN -- 0 tn En1\1-0 Pn N*EirVi=0 t n-(E.17 \ 1=0 t n) (forme! 10) Den koefficient som erhalls med hjalp av formel 10 satts in i formel 2' for skattning av tryckfallsvardet. p(t) = lastPointpressure * e -131, 0 < t < maxTime(formel 2') Tiden for varje skattad tryckfallsdatapunkt adderas till tiden for det senaste uppmatta vardet. [t + lastPointtime, Pail Slutligen kan man observera att det genomsnittliga tryckfallsvardet efter en drifttid pa T for filtret alternativt kan beraknas med hjalp av formel 6' nedan, dar N är antalet uppsattningar matdatapunkter vid tiden T. Formula 10 below shows how to determine the coefficient b for N sets of food data points. 14 b = N * YnN - 0 tn * Pn-EnN - 0 tn En1 \ 1-0 Pn N * EirVi = 0 t n- (E.17 \ 1 = 0 tn) (forme! 10) Den coefficient som obtained by means of formula 10 is inserted into formula 2 'for estimating the pressure drop value. p (t) = lastPointpressure * e -131, 0 <t <maxTime (formula 2 ') The time of each estimated pressure drop data point is added to the time of the last measured value. [t + lastPointtime, Pail Finally, it can be observed that the average pressure drop value after an operating time of T for the filter can alternatively be calculated using formula 6 'below, where N is the number of sets of food data points at time T.

PaVg (T) =ZirVi=gtn+1 tn) * Pn+1+Pn(formel 6') N2 Det p„g som erhalls fran formel 6' kan infogas i formel 5. PaVg (T) = ZirVi = gtn + 1 tn) * Pn + 1 + Pn (formula 6 ') N2 The p' g obtained from formula 6 'can be inserted into formula 5.

Den resurs som optimeringen baseras pa kan som namndes tidigare vara kostnad eller koldioxidavtryck. Andra icke-begransande exempel pa resurser kan vara transportarbete eller andra miljoeffekter (exempelvis utslapp av fororeningar). The resource on which the optimization is based can, as mentioned earlier, be cost or carbon footprint. Other non-limiting examples of resources may be transport work or other environmental effects (eg emissions of pollutants).

Claims (16)

PatentkravPatent claims 1. Forfarande for aft bestamma en optimal filterbrukstid (Too) mellan byten av eft filter i ett ventilationssystem, innefattande fOljande steg: att ta emot minst ett filterhardvaruvarde som motsvarar en resursmangd som är farknippad med atminstone tillverkning av filtret, aft ta emot minst ett filterbruksvarde som motsvarar en resursmangd eller resursforbrukning som är forknippad med anvandning av filtret, aft ta emot minst en uppmatt datapunkt (ta,som motsvarar ett uppmatt tryckfall Over filtret, och aft bestamma namnda optimala filterbrukstid (Too) utgaende fran namnda filterhardvaruvarde, namnda filterbruksvarde och namnda matdata aft skatta en total resursatgang fOr en given tidsperiod (T) utgaende fran filterhardvaruvardet och filterbruksvardet, och aft bestamma den optimala filterbrukstiden (Too) som vasentligen minimerar den totala resursatgangenvarvid den totala resursatgangen fOr den givna tidsperioden (T) bestams av: en fOrsta faktor ( f(T) ) enligt vilken resursatgangen är omvant proportionell mot tiden (T), och en andra faktor ( e(T) ) enligt vilken resursatgangen är direkt proportionell mot tiden (T), varvid den andra faktorn ( e(T) ) bestams som en produkt av filterbruksvardet (Cuse), ett luftflode (Q) genom filtret, ett genomsnittligt tryckfall (pavg) Over filtret, tiden (T), en driftcykelkvot (Rup), ett inverterat varde av en flakts verkningsgrad (rkan) och eventuellt en eller flera konstanter, varvid det genomsnittliga tryckfallet bestams utgaende fran minst en skattad tryckfallsdatapunkt, varvid det skattade tryckfallet har formen Pa(t) = startpa*e", dar startpa är ett startvarde for tryckfallet, b är en miljOkoefficient och t är tiden, och varvid startvardet fOr tryckfallet (startpa) bestams som ett genomsnittligt varde av minst tva uppmatta data (ta, pn). 16A method for determining an optimal filter usage time (Too) between replacements of a filter in a ventilation system, comprising the following steps: receiving at least one filter hardware value corresponding to a resource amount associated with at least manufacturing the filter, receiving at least one filter usage value corresponding to an amount of resource or resource consumption associated with the use of the filter, aft receiving at least one measured data point (ta, corresponding to a measured pressure drop across the filter, and aft determining said optimal filter operating time (Too) based on said filter hardware value, said filter use value and said food data to estimate a total resource access for a given time period (T) based on the filter hardware value and the filter usage value, and to determine the optimal filter usage time (Too) which substantially minimizes the total resource input where the total resource access for the given time period (T) is determined by: (f (T)) according to which the resource access is o mvant proportional to time (T), and a second factor (e (T)) according to which the resource access is directly proportional to time (T), the second factor (e (T)) being determined as a product of the filter usage value (Cuse), an air flow (Q) through the filter, an average pressure drop (pavg) Over the filter, the time (T), an operating cycle ratio (Rup), an inverted value of a flattening efficiency (rkan) and possibly one or more constants, the average pressure drop being determined starting from at least one estimated pressure drop data point, wherein the estimated pressure drop has the form Pa (t) = start pa * e ", where startpa is a start value for the pressure drop, b is an environmental coefficient and t is the time, and an average value of at least two measured data (ta, pn). 16 2. FOrfarande enligt krav 1, varvid den forsta faktorn ( f(T) ) bestams som en produkt av filterhardvaruvdrdet (Crater), ett inverterat vdrde av brukstiden (7), en driftcykelkvot (Rup), och eventuellt en eller flera konstanter.A method according to claim 1, wherein the first factor (f (T)) is determined as a product of the filter hardware value (Crater), an inverted value of the service life (7), an operating cycle ratio (Rup), and optionally one or more constants. 3. Forfarande enligt krav 1 eller 2, varvid det genomsnittliga tryckfallet bestams utg5ende fran vardena hos minst tv5 stycken av ndmnda uppmatta datapunkter (tn, Pn).A method according to claim 1 or 2, wherein the average pressure drop is determined starting from the values of at least two pieces of said measured data points (tn, Pn). 4. FOrfarande enligt nagot av foregaende krav, varvid miljOkoefficienten (b) bestams empiriskt.A method according to any one of the preceding claims, wherein the environmental coefficient (b) is determined empirically. 5. FOrfarande enligt nagot av foregAende krav, varvid miljOkoefficienten (b) bestdms utgaende fran en regressionsanalys dar minst tva stycken upprnatta datapunkter (tn, pn) matchas mot en exponentialfunktion.A method according to any one of the preceding claims, wherein the environmental coefficient (b) is determined on the basis of a regression analysis in which at least two obtained data points (tn, pn) are matched against an exponential function. 6. FOrfarande enligt nagot av fOregaende krav, varvid miljOkoefficienten (b) bestams med hjalp av uttrycket b = EiNi=c, log (&1:0)/t, varvid po dr ett startvarde fOr tryckfallet, och varvid tn dr tidpunkten fOr 20 datapunkt nummer n, pn är tryckfallet hos datapunkt nummer n och N är antalet datapunkter.A method according to any one of the preceding claims, wherein the environmental coefficient (b) is determined by means of the expression b = EiNi = c, log (& 1: 0) / t, wherein po is a starting value for the pressure drop, and wherein tn is the time for 20 data points number n, pn is the pressure drop of data point number n and N is the number of data points. 7. FOrfarande enligt nagot av fOregaende krav, varvid miljokoefficienten (b) bestams med hjalp av uttrycket N,NN_ tt b 4. 7,0 n Pn L.m-o nPn varvid tn är tidpunkten for datapunkt nummer n, N.EfL0t,i.--(EL0t.) pn är tryckfallet hos datapunkt nummer n och N 5r antalet datapunkter.A method according to any one of the preceding claims, wherein the environmental coefficient (b) is determined by means of the expression N, NN_ tt b 4. 7.0 n Pn Lm-o nPn wherein tn is the time of data point number n, N.EfL0t, i. - (EL0t.) Pn is the pressure drop at data points number n and N 5r the number of data points. 8. FOrfarande enligt nagot av fOregaende krav, ocks5 innefattande steget aft faststalla huruvida tryckfallet over filtret Okar vasentligen linjart med 30 tiden.A method according to any one of the preceding claims, also comprising the step of determining whether the pressure drop across the filter increases substantially linearly with time. 9. FOrfarande enligt krav 8, ocksa innefattande feljande steg: 17 att bestamma koefficienterna i en linjar ekvation utgaende fran atminstone vissa av matdatapunkterna, faretradesvis alla utom de senaste matdatapunkterna, att infoga en tidpunkt far en senaste matdatapunkt i den linjara 5 ekvationen, all jamfara ett salunda skattat tryckfall med ett motsvarande uppmatt tryckfall, att faststalla all tryckfallet akar vasentligen linjart med tiden om skillnaden mellan det skattade tryckfallet och det uppmatta tryckfallet är mindre an ett forvalt triiskelvarde, och att faststalla att tryckfallet akar vasentligen exponentiellt med tiden om skillnaden mellan det skattade tryckfallet och det uppmatta tryckfallet är starre an det farvalda troskelvardet.The method of claim 8, further comprising the steps of: 17 determining the coefficients of a linear equation from at least some of the food data points, preferably all but the most recent food data points, inserting a time of a last food data point into the linear equation, all a well-estimated pressure drop with a corresponding measured pressure drop, to determine all the pressure drop increases substantially linearly with time if the difference between the estimated pressure drop and the measured pressure drop is less than a preselected tri-threshold value, and to determine that the pressure drop increases substantially exponentially with time if the difference between the estimated pressure drop and the measured pressure drop are stiffer than the selected threshold value. 10. FOrfarande enligt krav 8 eller 9, varvid minst tva olika miljakoefficienter (b) skattas utgaende fran olika antal matdatapunkter om det faststalls all tryckfallet akar vasentligen exponentiellt, och den salunda beraknade koefficienten (b) som har starst varde anvands far bestamning av det skattade tryckfallet.A method according to claim 8 or 9, wherein at least two different environmental coefficients (b) are estimated based on different numbers of food data points if it is determined that all the pressure drop is substantially exponential, and the well-calculated coefficient (b) that has been used is used to determine the estimated the pressure drop. 11. FOrfarande enligt nagot av foregaende krav, varvid resursen utgors av en kostnad.A method according to any one of the preceding claims, wherein the resource consists of a cost. 12. Forfarande enligt nagot av kraven 1-10, dar resursen utgars av ett koldioxidavtryck.A method according to any one of claims 1-10, wherein the resource is a carbon dioxide footprint. 13. Ferfarande enligt nagot av faregaende krav, ocksa innefattande steget att ta emot ett filterbytesvarde som motsvarar en resursmangd som är farknippad med filterbytet, varvid den optimala filterbrukstiden (Tow) aven 30 bestams med avseende pa filterbytesvardet. 18A method according to any one of the preceding claims, also comprising the step of receiving a filter change value corresponding to an amount of resource associated with the filter change, the optimum filter usage time (Tow) also being determined with respect to the filter change value. 18 14. FOrfarande enligt nagot av fOregaende krav, ocksa innefattande steget aft visa den optimala filterbrukstiden (Tow) i ett format som kan avlasas av anvandare.A method according to any one of the preceding claims, also comprising the step of displaying the optimal filter usage time (Tow) in a format that can be read by users. 15. FOrfarande enligt nggot av fOregaende krav, varvid namnda minst en uppmatt data (tn, pn) innefattar minst en datapunkt som är storre an ett startvarde for tryckfallet och mindre an ett slutvarde kir tryckfallet for filtret, och som ligger minst cirka 5, fOretradesvis cirka 10, cirka 20 eller cirka 30, dagar fran saval en tidpunkt for startvardet for tryckfallet som en tidpunkt for slutvardet for tryckfallet.A method according to any one of the preceding claims, wherein said at least one measured data (tn, pn) comprises at least one data point which is greater than an initial value for the pressure drop and less than a final value which is the pressure drop for the filter, and which is at least about 5, about 10, about 20 or about 30, days from saval a time of the initial value of the pressure drop as a time of the final value of the pressure drop. 16. Forfarande RV optimering av filterbytena pa flera olika filterplatser, innefattande foljande steg: aft tillampa forfarandet enligt nagot av fOregaende krav Mr vardera av minst tva av filtren, varvid namnda filter ar av olika typ, och aft faststalla ett bytesschema Mr namnda minst tvA av filtren utgAende fran deras respektive optimala filterbrukstid CroptY 19 1 / 1121 6 I I I I s 22 12a12b 31Method RV optimization of the filter changes at several different filter locations, comprising the following steps: applying the procedure according to any of the preceding claims Mr each of at least two of the filters, said filters being of different type, and again establishing a change schedule Mr said at least two of filters based on their respective optimal filter life CroptY 19 1/1121 6 IIII p 22 12a12b 31
SE1151219A 2011-12-19 2011-12-19 Procedure for optimizing the useful life of filters between filter changes in a ventilation system SE537506C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE1151219A SE537506C2 (en) 2011-12-19 2011-12-19 Procedure for optimizing the useful life of filters between filter changes in a ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1151219A SE537506C2 (en) 2011-12-19 2011-12-19 Procedure for optimizing the useful life of filters between filter changes in a ventilation system

Publications (2)

Publication Number Publication Date
SE1151219A1 SE1151219A1 (en) 2013-06-20
SE537506C2 true SE537506C2 (en) 2015-05-26

Family

ID=48749644

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1151219A SE537506C2 (en) 2011-12-19 2011-12-19 Procedure for optimizing the useful life of filters between filter changes in a ventilation system

Country Status (1)

Country Link
SE (1) SE537506C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146633A1 (en) 2016-02-24 2017-08-31 Camfil Ab Air filter arrangement, device and system
WO2017146637A1 (en) 2016-02-24 2017-08-31 Camfil Ab System, method and computer program product for air filter management
WO2017167666A1 (en) 2016-04-01 2017-10-05 Dinair Ab Method of optimizing filter life cycle between replacements and system for monitoring a ventilation system
EP3652487A4 (en) * 2017-07-10 2021-02-24 Carrier Corporation A condition based energy smart air circulation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878466B2 (en) * 2016-05-31 2021-05-26 ブルーエアー・エービー How to determine the availability of air filters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146633A1 (en) 2016-02-24 2017-08-31 Camfil Ab Air filter arrangement, device and system
WO2017146637A1 (en) 2016-02-24 2017-08-31 Camfil Ab System, method and computer program product for air filter management
WO2017167666A1 (en) 2016-04-01 2017-10-05 Dinair Ab Method of optimizing filter life cycle between replacements and system for monitoring a ventilation system
RU2720221C1 (en) * 2016-04-01 2020-04-28 Динаир АБ Method for optimization of filter service life between replacements and system for current monitoring of filtering ventilation system state
US11016014B2 (en) 2016-04-01 2021-05-25 Dinair Ab Method of optimizing filter life cycle between replacements and system for monitoring a ventilation system
EP3652487A4 (en) * 2017-07-10 2021-02-24 Carrier Corporation A condition based energy smart air circulation system
US11268725B2 (en) 2017-07-10 2022-03-08 Carrier Corporation Condition based energy smart air circulation system

Also Published As

Publication number Publication date
SE1151219A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
SE537506C2 (en) Procedure for optimizing the useful life of filters between filter changes in a ventilation system
CN105229389B (en) Air exchange system and control device
RU2720221C1 (en) Method for optimization of filter service life between replacements and system for current monitoring of filtering ventilation system state
WO2015132947A1 (en) Vehicle preventive maintenance system
JP4610466B2 (en) Vehicle placement system
Mousavi et al. A hierarchical framework for concurrent assessment of energy and water efficiency in manufacturing systems
CN107990504A (en) Information processing method, device and air-conditioning equipment for air-conditioning equipment
JP6004709B2 (en) Energy saving support system, server device, energy saving support method and program
CN107274300A (en) EMS and method
CN102930399A (en) Scheduling method of subway attendant management system
CN104112192A (en) System and method for managing steel billets in heating furnace
AU2012200635A1 (en) Service dependency notification system
CN104238483B (en) The scaling method of blast furnace gas yield and consumption based on production status
JP4586927B2 (en) Equipment management system
CN111667604B (en) Vehicle maintenance information processing method and device and electronic equipment
CN107606751A (en) The method and device that air conditioning purge filter element replacing is reminded
CN106683029A (en) Evaluation method and system for first and last bus on-time rate
KR20200133151A (en) Indoor air smart management system for vehicle and management method thereof
JP2004198017A (en) Simulator for coal ash quality in silo
JP6189728B2 (en) Equipment management system, equipment management apparatus and equipment management method
JP5084800B2 (en) Equipment operation support system and program
JP2021086533A (en) Gas delivery processing method, system, program, sever device, and recording medium
Lorenzo Varela et al. Public transport: one mode or several?
JP2022029293A (en) Delivery processing method, delivery processing method, program, recording medium, and server
KR20220100389A (en) Central control system based on data of dust collector