SE537440C2 - Process for enzymatic hydrolysis of glucuronoxylane - Google Patents

Process for enzymatic hydrolysis of glucuronoxylane Download PDF

Info

Publication number
SE537440C2
SE537440C2 SE1150989A SE1150989A SE537440C2 SE 537440 C2 SE537440 C2 SE 537440C2 SE 1150989 A SE1150989 A SE 1150989A SE 1150989 A SE1150989 A SE 1150989A SE 537440 C2 SE537440 C2 SE 537440C2
Authority
SE
Sweden
Prior art keywords
xylan
polypeptide
seq
amino acid
homologous
Prior art date
Application number
SE1150989A
Other languages
Swedish (sv)
Other versions
SE1150989A1 (en
Inventor
Willem Heber Van Zyl
Peter Biely
Olena Ryabova
Annie Fabian Abel Chimphango
Johann Ferdinand Görgens
Original Assignee
Univ Stellenbosch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Stellenbosch filed Critical Univ Stellenbosch
Publication of SE1150989A1 publication Critical patent/SE1150989A1/en
Publication of SE537440C2 publication Critical patent/SE537440C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01139Alpha-glucuronidase (3.2.1.139)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

..c1flß20] Û/ UÛl]72 4 ' f? ABSTRACT The present invention relates to an isolated polypeptide having a-glucuronidaseactivity and that can degrade glucuronoxylan molecules by hydrolysis of aglycosidic Iinkage between a MeGlcA residue (glucuronic side chain) and a non-terminal xylopyranosyl residue. The isolated polypeptide is capable of cleavingglycosidic linkages within glucuronoxylans from plant biomass, thereby removinginternal glucuronic side chains. The invention also relates to amino acidsequences of the isolated polypeptide, and homologous thereto, as well asisolated' polynucleotides having nucleic acid sequences encoding thepolypeptides. The invention further relates to methods of isolating thepolypeptides from microbial cultures, such as that of Pichia stipitis, usingchromatographic techniques, and to methods of producing substantially enriched preparations of the polypeptides.

Description

537 4 FoRFARANDE FOR ENZYMATISK HYDROLYSERING AV GLUKURONOXYLAN Uppfinningens omrade Denna uppfinning avser som helhet enzymatisk degradering av vaxtbiomassa. Mer specifikt avser uppfinningen en isolerad polypeptid med a-glukuronidasaktivitet, ett forfarande for att isolera polypeptiden och en vasentligen berikad beredning darav. FIELD OF THE INVENTION This invention relates generally to the enzymatic degradation of plant biomass. More specifically, the invention relates to an isolated polypeptide having α-glucuronidase activity, a method for isolating the polypeptide and a substantially enriched formulation thereof.

Uppfinningens bakgrund Massa- och pappersindustrin behandlar stora kvantiteter vaxtbiomassa eller tra. Denna bio- massa innefattar komplexa kolhydrater, sAsom cellulosa, hemicellulosa och lignin, vilka mAste vara delvis nedbrutna och behandlade for att ge en pappersprodukt. Tra innehaller omkring 20% hemicellulosor, av vilka xylan bildar en vasentlig del i bAcle lovtra och barrtra. Den huvudsakliga gruppen av hemicellulosor som finns i h5rt tra är glukuronxylaner. Dessa innefattar en 13- 1,4-15nkad D-xylopyranos-grundstomme med 4-0-metyl-D-glukuronsyra-substituenter lankade a-1,2. Dessutom kan 2,3-positionerna p5 xylosgrundstommen vara delvis acetylerade. Gluku- ronxylaninnehAllet i lovtra är typiskt mellan 15 och 30 viktprocent baserat p5 traet. Background of the Invention The pulp and paper industry processes large quantities of plant biomass or tra. This biomass includes complex carbohydrates, such as cellulose, hemicellulose and lignin, which must be partially degraded and treated to give a paper product. Tra contains about 20% hemicelluloses, of which xylan forms an essential part of bAcle lovtra and conifers. The main group of hemicelluloses present in the heart are glucuronone xylans. These include a 13-, 1.4-15-membered D-xylopyranose backbone with 4-O-methyl-D-glucuronic acid substituents linked α-1,2. In addition, the 2,3-positions p5 xylose backbone may be partially acetylated. The glucuronoxylan content in lovtra is typically between 15 and 30% by weight based on ptraet.

Under massatillverkning genomgAr hemicellulosor olika andringar. Hemicellulosor sa'som xylan bildar inte t5tt packade kristallina strukturer sasom de for cellulosa, p5 grund av narvaron av sidokedjor i xylanstrukturen. Detta kannetecken has hemicellulosor betyder att dessa polysackarider bryts ned lattare an cellulosa. Medan n5gra hemicellulosor och nedbrutna produkter av hemicellulosa loses i kokande vatskor, sasom latt alkalilosliga hemicellulosor, bryts andra ned till produkter med lagre molekylvikt som kan bibeh5llas i en oloslig form inuti fibermatrisen eller losas i de kokande vatskorna. Fraktionen av hemi- cellulosor och nedbrutna produkter av hemicellulosa som loses i de kokande vatskorna forloras sedan till processen, vilket resulterar i utbytesforlust av traet. Hemicellulosor tros bidra till svallningen av massan och darmed formbarheten for de \rata fibrerna under arkbildning som ett resultat av deras icke-kristallina hydrofila natur. Under nedbrytningen av xylan ar det darfor onskvart att minimera forlusten av hemicellulosa och nedbrutna produkter av hemicellulosa i de kokande vatskorna, och att maximera bevarandet av hemicellulosan i fibermatrisen. 1 537 4 For att framstalla onskvarda nedbrutna produkter av hemicellulosa utfors selektiv nedbrytning av hemicellulosa genom anvandning av enzymer. Enzymatisk nedbrytning av hemicellulosaxylanet Jr en komplex process som kraver verkan av olika enzymer som allmant faller inom tv5 kategorier: i) enzymer som bryter ned polysackaridens huvudkedja, sasom endo-13-1,4-xylanas (EC 3.2.1.8) och 13-xylosidas (EC 3.2.1.37); och ii) enzym som frig& sidokedjor, de huvudsakliga kedjesubstituenterna, sa kallade accessoriska xylanolytiska enzym, som inkluderar a-glukuronidas (EC 3.2.1.139), a-L-arabinofurano-sidas (EC 3.2.1.55), acetylxylanesteras (EC 3.1.1.72) och feruloylesteras (3.1.1.73). Medan endoxylanaset attackerar huvudkedjan av xylaner och 13-xylosidas hydrolyserar xylooligosackari- der till xylos, a-arabionfuranosidaset och a-glukuronidaset avlagsnar arabinoset respek- tive 4-0-metyl-glukuronsyrasubstituenterna Iran xylanstommen. Esteraset hydrolyserar esterlankar mellan xylosenheter p5 xylanet och attiksyra (acetylxylanesteras) eller mellan arabinossidokedjerester och fenolsyror, sasom ferulsyra (ferulsyraesteras) och p-kumarsyra (p-kumarsyraesteras). During pulp production, hemicelluloses undergo various changes. Hemicelluloses such as xylan do not form densely packed crystalline structures as do cellulose, due to the presence of side chains in the xylan structure. This characteristic of hemicelluloses means that these polysaccharides are broken down more easily than cellulose. While some hemicelluloses and degraded hemicellulose products are dissolved in boiling liquids, such as slightly alkali-soluble hemicelluloses, others are broken down into lower molecular weight products that can be retained in an insoluble form within the fiber matrix or released in the boiling liquids. The fraction of hemicellulose and degraded hemicellulose products that are dissolved in the boiling liquids are then lost to the process, resulting in loss of exchange of the wood. Hemicelluloses are believed to contribute to the swelling of the pulp and thus the formability of the straight fibers during sheet formation as a result of their non-crystalline hydrophilic nature. During the degradation of xylan, it is therefore desirable to minimize the loss of hemicellulose and degraded hemicellulose products in the boiling liquids, and to maximize the preservation of the hemicellulose in the fiber matrix. 1 537 4 In order to produce unwanted degraded hemicellulose products, selective degradation of hemicellulose is performed using enzymes. Enzymatic degradation of the hemicellulosaxylan is a complex process that requires the action of various enzymes that generally fall into tv5 categories: i) enzymes that degrade the polysaccharide backbone, such as endo-13-1,4-xylanase (EC 3.2.1.8) and 13-xylosidase (EC 3.2.1.37); and ii) enzymes such as free & side chains, the main chain substituents, so-called accessory xylanolytic enzymes, which include α-glucuronidase (EC 3.2.1.139), αL-arabinofuranosidase (EC 3.2.1.55), acetylxyl anesterase (EC 3.1.1.72) and feruloyl esterase (3.1.1.73). While the endoxylanase attacks the main chain of xylans and 13-xylosidase, xylooligosaccharides hydrolyze to xylose, the α-arabionfuranosidase and the α-glucuronidase degrade the arabinoset and the 4-0-methyl-glucuronic acid substituents, respectively, of Iran. The esterase hydrolyzes ester linkages between xylose units p5 xylanet and attic acid (acetylxylanesterase) or between arabinose side chain residues and phenolic acids, such as ferulic acid (ferulic acid esterase) and β-coumaric acid (β-coumaric acid esterase).

Avlagsnandet av MeGIcA- eller GIcA-sidokedjor fran xylan foreslas for att Oka kvarhallandet av xylanet i fibermatrisen. For narvarande innehaller endast en GH-familj, GH67, exklusivt a-glukuronidaser. Aktiviteten hos dessa enzym Jr emellertid begransad eftersom de frigor MeGIcA eller GIcA enbart fran de fragment av glukuronxylan (alduronsyror), i vilken uronsyran är lankad till icke-reducerande terminala xylopyranosylrester. Dessa a- glukuronidaser klyver inte glykosidlankar inuti polymera substrat, sasom inuti glukuronxylaner. Den enda a-glukuronidas som hittills beskrivits ha formagan att frisatta MeGIcAsidokedjor Iran glukuronxylan fran lovtrad Jr enzymet som finns narvarande i det cellulolytiska systemet i trarotsvampen Schizophyllum commune. Formel 1 till 4 visar glykosidlan- karna i fragment av glukuronxylan som attackeras () eller inte attackeras (x) av GH67-a- glukuronidaser. The removal of MeGIcA or GIcA side chains from xylan is proposed to increase the retention of the xylan in the fiber matrix. At present, only one GH family, GH67, contains exclusively α-glucuronidases. However, the activity of these enzymes is limited because they release MeGIcA or GIcA only from those fragments of glucuronxylan (alduronic acids) in which the uronic acid is linked to non-reducing terminal xylopyranosyl residues. These α-glucuronidases do not cleave glycoside linkages within polymeric substrates, as within glucuronoxylanes. The only α-glucuronidase described so far to have the ability to release MeGIcAsid chains Iran glucuronxylan from the praised Jr enzyme present in the cellulolytic system of the root rot fungus Schizophyllum commune. Formulas 1 to 4 show the glycoside linkers in fragments of glucuronxylan that are attacked () or not attacked (x) by GH67-α-glucuronidases.

Xylft1w4Xylp1.4Xylp1-4,Xy1-Xylfi1-4Xylp1.4Xyl*Xylp1-4Xy101-4Xy1p14xy. 22222Aryl kix al0.1alalalal MeGIcAMeWcAMeGicAGicAGicAriteGcA Forme! 1Forme! 2Forme! 3Forme! 4 2 537 4 Dessa enzym hydrolyserar inte heller aryl-a-glukuronider, vilka fungerar som substrat for icke-hemicellulolytisk familj 4-a-glukuronidaser. Aven om ett a-glukuronidas som hydrolyserar aryl-a-D-glukuronosider Jr kant i GH4, !canner inte detta enzym igen glukuronxylan eller dess fragment som substrat. Typerna av glykosidlankar som klyvs av a-glukuronidaser fram till idag Jr darfor begransade. Xylft1w4Xylp1.4Xylp1-4, Xy1-Xylfi1-4Xylp1.4Xyl * Xylp1-4Xy101-4Xy1p14xy. 22222Aryl kix al0.1alalalal MeGIcAMeWcAMeGicAGicAGicAriteGcA Forme! 1Forme! 2Forme! 3Forme! These enzymes also do not hydrolyze aryl-α-glucuronides, which act as substrates for the non-hemicellulolytic family of 4-α-glucuronidases. Although an α-glucuronidase that hydrolyzes aryl-α-D-glucuronosides Jr edge in GH4, this enzyme does not recognize glucuronone xylan or its fragments as a substrate. The types of glycoside linkages that are cleaved by α-glucuronidases to date are therefore limited.

Det finns ett behov av ett forbattrat forfarande for enzymatisk hydrolysering av glukuron- xylan for att Oka kvarh5llandet av glukuronxylan i fibermatrisen under nedbrytning av vaxtbiomassa, och av enzymer for anvandning dari. There is a need for an improved process for enzymatic hydrolysis of glucuron xylan to increase the retention of glucuron xylan in the fiber matrix during degradation of plant biomass, and for enzymes for use therein.

Uppfinningens andam51 Det Jr ett andam5I med denna uppfinning att tillhandah51Ia ett alternativt forfarande for enzymatisk hydrolysering av glukuronxylan som, 5tminstone till viss utstrackning, kan mildra problemen beskrivna ovan. It is an object of the present invention to provide an alternative process for the enzymatic hydrolysis of glucuronxylan which, at least to some extent, can alleviate the problems described above.

Sammanfattning av uppfinningen I enlighet med uppfinningen tillhandah5lls en isolerad polypeptid som har a-glukuronidasaktivitet och som kan bryta ned en glukuronxylanmolekyl genom hydrolys av en glykosid- lank mellan en MeGIcA-rest och en icke-terminal xylopyranosylrest. Summary of the Invention In accordance with the invention, there is provided an isolated polypeptide which has α-glucuronidase activity and which can degrade a glucuronoxylan molecule by hydrolysis of a glycosidic link between a MeGIcA residue and a non-terminal xylopyranosyl residue.

Uppfinningen tillhandahaller ocks5 en isolerad polypeptid med en aminosyrasekvens vald frAn foljande grupp: i. aminosyrasekvensen for SEQ ID NO:1; II. en aminosyrasekvens som är 5tminstone 95% homolog med SEQ. ID NO:1 eller en del clarav; en aminosyrasekvens som Jr atminstone 85% homolog med SEQ. ID NO:1 eller en del clarav; en aminosyrasekvens som Jr 5tminstone 75% homolog med SEQ. ID NO:1 eller en del clarav; 3 537 4 en aminosyrasekvens som Jr 5tminstone 65% homolog med SEQ ID NO:1 eller en del darav; en aminosyrasekvens som Jr 5tminstone 50% homolog med SEQ ID NO:1 eller en del darav; vii. en funktionell variant av n5gon av aminosyrorna listade i i-vi. The invention also provides an isolated polypeptide having an amino acid sequence selected from the following group: i. The amino acid sequence of SEQ ID NO: 1; II. an amino acid sequence that is at least 95% homologous to SEQ. ID NO: 1 or part clarav; an amino acid sequence as Jr at least 85% homologous to SEQ. ID NO: 1 or part clarav; an amino acid sequence as Jr 5 at least 75% homologous to SEQ. ID NO: 1 or part clarav; An amino acid sequence as Jr 5 at least 65% homologous to SEQ ID NO: 1 or a portion thereof; an amino acid sequence as Jr 5 at least 50% homologous to SEQ ID NO: 1 or a portion thereof; vii. a functional variant of n5gon of the amino acids listed in i-vi.

Ytterligare kannetecken for uppfinningen medlar att polypeptiden har en molekylvikt av omkring 120 kDa och att polypeptiden Jr ett biologiskt aktivt fragment av polypeptiden. Additional features of the invention mediate that the polypeptide has a molecular weight of about 120 kDa and that the polypeptide is a biologically active fragment of the polypeptide.

Uppfinningen stracker sig till en isolerad polynukleotid som kodar en polypeptid enligt uppfinningen, varvid polynukleotiden har en nukleotidsekvens vald fran foljande grupp: nukleotidsekvensen enligt SEQ ID NO:2; en nukleotidsekvens som Jr 5tminstone 95% homolog med SEQ ID NO:2 eller en del clarav; iii. en nukleotidsekvens som Jr 5tminstone 85% homolog med SEQ ID NO:2 eller en del darav; och iv. en nukleotidsekvens som Jr 5tminstone 75% homolog med SEQ ID NO:2 eller en del darav. The invention extends to an isolated polynucleotide encoding a polypeptide of the invention, the polynucleotide having a nucleotide sequence selected from the following group: the nucleotide sequence of SEQ ID NO: 2; a nucleotide sequence as Jr 5 at least 95% homologous to SEQ ID NO: 2 or a portion of clarav; iii. a nucleotide sequence as Jr 5 at least 85% homologous to SEQ ID NO: 2 or a portion thereof; and iv. a nucleotide sequence as Jr 5 at least 75% homologous to SEQ ID NO: 2 or a portion thereof.

Uppfinningen tillhandah5lIer ocks5 ett forfarande for att isolera en polypeptid enligt uppfinningen, varvid forfarandet innefattar stegen att: odla en mikrob med formagan att uttrycka polypeptiden i induktionsmedium och skapa mikrobiell biomassa; separera den mikrobiella biomassan fr5n induktionsmediet; iii. fraktionera induktionsmediet genom anjonutbyteskromatografi for ett erh51Ia ett forsta elueringsmedel; fraktionera det forsta elueringsmedlet genom hydrofob interaktionskromatografi for att erhAlla ett andra elueringsmedel; fraktionera ett andra elueringsmedel genom anjonutbyteskromatografi for att erh51Ia ett tredje elueringsmedel; och 4 537 4 vi. fraktionera det tredje elueringsmedlet genom anjonutbyteskromatografi for att erh51Ia en fraktion inneh5llande den isolerade polypeptiden. The invention also provides a method of isolating a polypeptide of the invention, the method comprising the steps of: culturing a microbe capable of expressing the polypeptide in induction medium and creating microbial biomass; separating the microbial biomass from the induction medium; iii. fractionating the induction medium by anion exchange chromatography to give a first eluent; fractionating the first eluent by hydrophobic interaction chromatography to obtain a second eluent; fractionating a second eluent by anion exchange chromatography to obtain a third eluent; and 4,537 4 vi. fractionating the third eluent by anion exchange chromatography to obtain a fraction containing the isolated polypeptide.

Ytterligare kannetecken hos uppfinningen tillhandah5lIer mikroben att valjas fr5n gruppen inkluderande Pichia stipitis, Schizophyllum commune, Aspergillus clavatus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus terreus, Aspergillus oryzae, Sclerotinia sclerotiorum, Botryotinia fuckeliana, Pyrenophora triticirepentis, Neurospora crassa, Gibberella zeae, Podospora anserina, Coprinopsis cinerea okayama, Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibriojaponicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus och Streptomyces pristinaespiralis; och for mikroben att foretradesvis vara Pichia stipitis CBS 6054. Further features of the invention provide the microbe to be selected from the group including Pichia stipitis, Schizophyllum commune, Aspergillus clavatus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus terreus, Aspergillus oryzae, Sclerotinelia sclerotiropia, Sclerotinelia sclerotiropia, Coprinopsis cinerea okayama, Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibriojaponicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus and Streptomyces pristinaespiralis; and for the microbe to be preferably Pichia stipitis CBS 6054.

Annu her kannetecken enligt foreliggande uppfinning visar ett forfarande for att isolera polypeptiden for att ytterligare inkludera steget att koncentrera ett eller flera av induktionsmediet; det forsta elueringsmedlet, det andra elueringsmedlet, det tredje elueringsmedlet och fraktionen innefattande den isolerade peptiden. Other jars of the present invention show a method of isolating the polypeptide to further include the step of concentrating one or more of the induction medium; the first eluent, the second eluent, the third eluent and the fraction comprising the isolated peptide.

Uppfinningen tillhandah5lIer vidare en vasentligt berikad beredning av en polypeptid enligt uppfinningen. The invention further provides a substantially enriched formulation of a polypeptide of the invention.

Ytterligare kannetecken for uppfinningen mojliggor rening av polypeptiden fr5n en odling av en mikrob som valts fr5n gruppen inkluderande Schizophyllum commune, Aspergillus clavatus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus terreus, Aspergilfus oryzae, Sclerotinia sclerotiorum, Botryotinia fuckeliana, Pyrenophora tritici-repentis, Neurospora crassa, Gibberella zeae, Podospora anserina, Coprinopsis cinerea okayama, Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibriojaponicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus och Streptomyces pristinaespiralis; och att mikroben fore- tradesvis är Pichia stipitis CBS 6054. 537 4 Annu her kannetecken for uppfinningen mojliggor for induktionsmediet att vara glukosYNB-medium kompletterat med xylooligosackarider och metyl-P-xylopyranosid; for xylooligosackarider att vara i en koncentration av 0,5 mg/ml; for metyl-P-xylopyranosiden att vara i en koncentration av 0,33 mg/ml; for fraktioneringen av induktionsmediet genom anjonutbyteskromatografi for att erhalla ett forsta elueringsmedel utfors genom anvand- ning av en HiTrap-DEAE-FF-kolonn; for det forsta elueringsmedlet att erhallas genom tillforseln av en forsta elueringsbuffert till HiTrap-DEAE-FF-kolonnen, varvid den forsta elueringsbufferten innefattar en NaCI-gradient av 0 till 1,0 M i ungefar 50 mM natriumfosfatbuffert vid ungefar pH 7,0; for fraktionering av det forsta elueringsmedlet genom hydrofob interaktionskromatografi for att erhalla ett andra elueringsmedel utfors med anvandning av en butyl-FF-kolonn; for det andra elueringsmedlet som ska erhallas genom tillsats av en andra elueringsbuffert till butyl-FF-kolonnen, varvid den andra elueringsbufferten innefattar att minska (NH4)2SO4-gradienten av 1,1M till 0,61M i ungefar 50 mM acetatbuffert vid ett ungefarligt pH av 4,0; for fraktioneringen av det andra elueringsmed- let genom anjon-utbyteskromatografi for att erhalla ett tredje elueringsmedel att utforas med anvandning av en "Tricorn MonoQ5/50GL"-kolonn; for det tredje elueringsmedlet som ska erhallas genom tillforandet av en tredje elueringsbuffert till Tricorn MonoQ 5/50GL-kolonnen, varvid den tredje elueringsbufferten innefattar en okande NaCIgradient fran 0 till 1,0 M i ungefar 50 mM natriumacetatbuffert vid ungefar pH 4,0; frak- tionering av det tredje elueringsmedlet genom anjon-utbyteskromatografi for att erhalla en vasentligen ren enzymfraktion att utforas med anvandning av en Tricron MonoQ 5/50GL-kolonn; for den vasentligen rena enzymfraktionen att erhallas genom tillforseln av en fjarde elueringsbuffert till Tricron MonoQ 5/50GL-kolonnen, varvid den fjarde buffer-ten innefattar en okande NaCI-gradient Iran 0 till 1,0 M i ungefar 50 mM natriumfosfatbuf- fert vid ungefar pH 7,0. Additional features of the invention allow purification of the polypeptide from a culture of a microbe selected from the group including Schizophyllum commune, Aspergillus clavatus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus terreus, Aspergilfus oryeaisia tria, Sclerophylaia, Sclerophysia. , Gibberella zeae, Podospora hellerina, Coprinopsis cinerea okayama, Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibriojaponicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus and Streptomyces pristinaespiralis; and that the microbe is preferably Pichia stipitis CBS 6054. Other features of the invention allow the induction medium to be glucose YNB medium supplemented with xylooligosaccharides and methyl-β-xylopyranoside; for xylooligosaccharides to be in a concentration of 0.5 mg / ml; for the methyl β-xylopyranoside to be in a concentration of 0.33 mg / ml; for the fractionation of the induction medium by anion exchange chromatography to obtain a first eluent is performed using a HiTrap-DEAE-FF column; for the first eluent to be obtained by supplying a first elution buffer to the HiTrap-DEAE-FF column, the first elution buffer comprising a NaCl gradient of 0 to 1.0 M in about 50 mM sodium phosphate buffer at about pH 7.0; for fractionating the first eluent by hydrophobic interaction chromatography to obtain a second eluent is performed using a butyl FF column; for the second eluent to be obtained by adding a second elution buffer to the butyl FF column, the second elution buffer comprising reducing the (NH 4) 2 SO 4 gradient of 1.1M to 0.61M in about 50 mM acetate buffer at an approximate pH of 4.0; for the fractionation of the second eluent by anion exchange chromatography to obtain a third eluent to be performed using a "Tricorn MonoQ5 / 50GL" column; for the third eluent to be obtained by adding a third elution buffer to the Tricorn MonoQ 5 / 50GL column, the third elution buffer comprising an increasing NaCl gradient from 0 to 1.0 M in about 50 mM sodium acetate buffer at about pH 4.0; fractionating the third eluent by anion exchange chromatography to obtain a substantially pure enzyme fraction to be performed using a Tricron MonoQ 5 / 50GL column; for the substantially pure enzyme fraction to be obtained by supplying a fourth elution buffer to the Tricron MonoQ 5 / 50GL column, the fourth buffer comprising an unknown NaCl gradient Iran 0 to 1.0 M in about 50 mM sodium phosphate buffer at about pH 7.0.

Ytterligare kannetecken for uppfinningen gar det mojligt att erhalla polypeptiden fran en odling av en mikrob vald Iran gruppen inkluderande Schizophyllum commune, Aspergillus clavatus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus terreus, Aspergillus oryzae, Sclerotinia sclerotiorum, Botryotinia fuckeliana, Pyrenophora tritici-repentis, Neurospora crassa, Gibberella zeae, Podospora anserina, Coprinopsis cinerea okayama, 6 537 4 Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibriojaponicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus och Streptomyces pristinaespirali; och for mikroben att foretradesvis vara Pichia stipitis CBS 6054. Additional features of the invention make it possible to obtain the polypeptide from a culture of a microbial group selected from the group including Schizophyllum commune, Aspergillus clavatus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus terreus, Aspergillus oryzae, Sclerotinelia sclerotinia sclerotinia sclerotinia sclerotinia sclerotinia crassa, Gibberella zeae, Podospora hellerina, Coprinopsis cinerea okayama, 6 537 4 Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibriojaponicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus and Streptomyces pristinaespirali; and for the microbe to be preferably Pichia stipitis CBS 6054.

Kort beskrivning av ritningarna Ytterligare egenskaper for uppfinningen kommer nu att bli uppenbara fr5n den foljande beskrivningen, som endast ska ses som exempel, med hanvisning till de medfoljande ritningarna och SEQ. IDNO:s. Brief Description of the Drawings Additional features of the invention will now become apparent from the following description, taken by way of example only, with reference to the accompanying drawings and SEQ. IDNO: s.

I ritningarna: Figur 1 5r en sammanfattning av a-glukosinidasrening fra'n induktionsmediet av P.stipitis CBS 6054; Figur 2 5r en SDS-PAGE-gel av renad P.stipitis a-glukosinidas, rad 1 — proteinmark6rer (Fermantas #SM 0431), rad 2 — a-glukuronidas, 10 lig protein, rad 3 — a-glukuronidas, 20 lig; rad 4— proteinmarkor (SERVA #39216); Figur 3 är ett kromatogram over TLC-analysen av produkter bildade fran aldopentau- ronsyra (Xyl-Xyl(MeGIcA)-Xyl-Xyl) (A) och glukuronxylan (B) "under inverkan" av renad P. stipitis a-glukuronidas, A: pray: rad 1 och rad 8 — xylos och xylooligosackaridstandarder, 2 — aldopentauronsyra (Xyl-Xyl-(MeGIcA)-Xyl-Xyl), rad 3 — enzym blank, rad 4-7 — produkter av enzymreaktion efter 1, 10, 60 min respektive 18 h, B: pray: rad 1 och rad 5 — xylos och xylooligosackaridstandarder, rad 2 —glukuronxylan kontroll, rad 3 och rad 4— produkter av enzymreaktion efter 4 h respektive 18 h. In the drawings: Figure 1 is a summary of α-glucosinidase purification from the induction medium of P. stipitis CBS 6054; Figure 2 shows an SDS-PAGE gel of purified P. stipitis α-glucosinidase, row 1 - protein markers (Fermantase #SM 0431), row 2 - α-glucuronidase, 10 lig protein, row 3 - α-glucuronidase, 20 lig; row 4— protein markers (SERVA # 39216); Figure 3 is a chromatogram of the TLC analysis of products formed from aldopentauric acid (Xyl-Xyl (MeGIcA) -Xyl-Xyl) (A) and glucuronxylan (B) "under the influence" of purified P. stipitis α-glucuronidase, A : pray: row 1 and row 8 - xylose and xylooligosaccharide standards, 2 - aldopentauronic acid (Xyl-Xyl- (MeGIcA) -Xyl-Xyl), row 3 - enzyme blank, row 4-7 - products of enzyme reaction after 1, 10, 60 min and 18 h, B: pray: row 1 and row 5 - xylose and xylooligosaccharide standards, row 2 —glucuronxylan control, row 3 and row 4 — products of enzyme reaction after 4 h and 18 h, respectively.

Figur 4 är en sammanfattning av en BLAST-sokning utford med anvandning av en sekvens av P.stipitis. Sekvensen av mikroorganismer som anvands for inriktningen och konstruktionen av fylogenetiskt tra visas i fetstil; 7 537 4 Figur 5 är en schematisk representation av den homologa inriktningen av aminosyrasekvensen enligt P.stipitis CBS 6054 a-glukuronidas med de nio proteinsekvenserna Iran Aspergillus fumigatus A1293, Pyrenophora tritici-repentis Pt-1C-BFP, Neurospora crassa 0R74A, Gibberella zeae PH-1, Cellvibrio japonicus Ueda107, Coprinopsis cinerea okayama 7#130, Aspergillus oryzae RI B40, Bacteroides ovatus ATCC 8483, Streptomyces Pistinaespi- ralis ATCC 25486 som visade mer an 50% identitet; Figur 6 visar en sammanfattning av xylansubstrat anvanda for att utvardera enzymatisk substratspecificitet och avlagsningsgrad av xylansidokedjor; Figur 7 visar den experimentella uppsattningen av Box-Behnken for avlagsnande av 4-0- metyl-D-glukuronsyra -Iran bjorkxylan genom a-glu; Figur 8 visar en centrala kompositutformningen for effekt pa koncentration av xylan fran havrespalt och enzymdoser pa arabinosavlagsnande; Figur 9 visar ett stapeldiagram av innehallet (% OD-biomassa) av extraktamnen och aska av bagasse, tall (Pinus patula) och bambu (Bambusidae balcooa); Figur 10 visar ett stapeldiagram av Klasonlignin (% OD-biomassa) av bagasse, tall (Pinus patula) och bambu (Bambusidae balcooa); Figur 11 visar ett stapeldiagram av innehallet (%0D-biomassa) av cellulosa och pentosan av bagasse, tall (Pinus patula) och bambu (Bambusidae balcooa); Figur 12 visar ett stapeldiagram av xylanutbytet (% pentosan) extraherat med anvandning av ultrarening och etanolutfallningsprotokoll Iran bagasse, tall (Pinus patula) och bambu (Bambusidae balcooa); Figur 13 visar ett1-3C-CPMAS NMR fastfasspektrum uppvisande effekten av mild alkali- xylanextraktion pa integriteten av cellulosafibrer i (A) Pinus patula, (B) bagasse, (C) Euca- 8 537 4 lyptus grandis och (D) jattebambu. Spektret 1, 2 och 3 anger: r5material, fritt extraktamnesmaterial och material efter xylanextraktion och ** betecknar toppar for kolresonanser i glukosenheter av lagre ordnad cellulosa; Figur 14 visar en jamforelse av neutral sockerkomposition av lignocellulosamaterial fore (EF) och efter xylanextraktion (Pxyl) for (A) Pinus patula (tall), (B) bagasse (bag), (C) Eucalyptus grandis (EU) och (D) bambu (BM). Figure 4 is a summary of a BLAST search challenge using a sequence of P. stipitis. The sequence of microorganisms used for the alignment and construction of phylogenetic tra is shown in bold; Figure 5 is a schematic representation of the homologous alignment of the amino acid sequence of P. stipitis CBS 6054 α-glucuronidase with the nine protein sequences Iran Aspergillus fumigatus A1293, Pyrenophora tritici-repentis Pt-1C-BFP, Neurospora gassa 0 -1, Cellvibrio japonicus Ueda107, Coprinopsis cinerea okayama 7 # 130, Aspergillus oryzae RI B40, Bacteroides ovatus ATCC 8483, Streptomyces Pistinaespiralis ATCC 25486 which showed more than 50% identity; Figure 6 shows a summary of xylan substrates used to evaluate enzymatic substrate specificity and degree of deposition of xylan side chains; Figure 7 shows the experimental set-up of Box-Behnken for the removal of 4-O-methyl-D-glucuronic acid -Iran birch xylan by α-glu; Figure 8 shows a central composite design for effect on concentration of xylan from oat cleft and enzyme doses on arabinose removal; Figure 9 shows a bar graph of the content (% OD biomass) of the extracts and ash of bagasse, pine (Pinus patula) and bamboo (Bambusidae balcooa); Figure 10 shows a bar graph of Clason lignin (% OD biomass) of bagasse, pine (Pinus patula) and bamboo (Bambusidae balcooa); Figure 11 shows a bar graph of the content (% OD biomass) of cellulose and the pentosa of bagasse, pine (Pinus patula) and bamboo (Bambusidae balcooa); Figure 12 shows a bar graph of xylan yield (% pentosan) extracted using ultra purification and ethanol precipitation protocol Iran bagasse, pine (Pinus patula) and bamboo (Bambusidae balcooa); Figure 13 shows a 1-3 C-CPMAS NMR solid phase spectrum showing the effect of mild alkali xylan extraction on the integrity of cellulose fibers in (A) Pinus patula, (B) bagasse, (C) Eucalyptus grandis and (D) jatte bamboo. Spectrum 1, 2 and 3 indicate: r5material, free extract material and material after xylane extraction and ** denote peaks for carbon resonances in glucose units of lower ordered cellulose; Figure 14 shows a comparison of neutral sugar composition of lignocellulosic material before (EF) and after xylane extraction (Pxyl) for (A) Pinus patula (pine), (B) bagasse (bag), (C) Eucalyptus grandis (EU) and (D) bamboo (BM).

Figur 15 visar en sammanfattning av profilen for neutrala sockerarter och uronsyra av for- extraherad xylan. Figure 15 shows a summary of the profile for neutral sugars and uronic acid of pre-extracted xylan.

Figur 16 visar elueringsprofiler for xylan p5 HPAEC-PAD (Dionex) CarboPac P10-kolonn fr5n (A) monomera sockerarter, (B) xylitol, (C) bjorkxylan (Roth) och (D) xylan frAn havrespalt; Figur 17 visar elueringsprofilerna for xylan p5 HPAEC-PAD (Dionex) CArboPac-kolonn P frAn (A) milt alkaliextraherad H202-blekt bagasse (Bag B), (B) milt alkaliextraherad ultrarenad bagasse (Bag H) och (C) milt alkaliextraherad etanolutfalld bagasse (Bag L); Figur 18 visar elueringsprofilerna for xylan pa HPAEC-PAD (Dionex) CarboPac-kolonn P fr5n (A) Eucalyptus grandis H [EU H] och (B) Eucalyptus grandis L [EU L] (C) bambu och (D) Pin us patula; Figur 19 visar ett stapeldiagram av den olosliga fraktionen erhAllen efter 72% syrahydrolys av milt alkaliextraherad xylan H202-blekt bagasse (Bag B), ultrarenad bagasse (Bag Fib etanolutfalld bagasse (Bag L), bambu, ultrarenad E.grandis (EU H), etanolutfalld E.grandis (EU L) och P. patula (Pine) med referens till bjorkxylan (Roth); Figur 20 visar karakteriseringen av xylan genom (A) 1H-NMR och (B)13C-NMR-analys av bjorkxylan, (C)11-I-NMR och (D) 'C-NMR-analys av H202-blekt bagasse (Bag B) och (E)1H- NMR och (F)13H-NMR-analys av xylan fran havrespalt, Me betecknar metylgrupp fran glukuronsyra och Ac = Acetylgrupp, Ar = arabinosgrupp; 9 537 4 Figur 21 visar karakteriseringen av xylan genom (A) 11-I-NMR och (B)13C-NMR-analys av bagasse, (C)1-H-NMR och (D)13C-NMR-analys av E.grandis-xylan: I spektra (1) = Lopez- extraherad xylan (Bag L eller EU L), och (2) Hoije ultrarenad xylan (Bag H eller Eu H); Figur 22 visar karakteriseringen av xylan genom (A) 11-I-NMR och (B)13C-NMR-analyser av bambu, (C)1H-NMR och (D)13C-NMR-analyser av P.patula-xylan; Figur 23 visar FTIR-spektrum av xylan extraherad fran olika typer av lignocellulosamaterial Iran batten (iv) bjork**, (F) etanolutfalld bagasse [Bag L] (2), (E) ultrarenad bagasse [Bag H] (1), (D) xylan frail havrespalt *, (C) bambu, (B) etanolutfalld E.grandis [EU L] (2), (B) ultrarenad E. grandis [EU H] (1) och (A) P.patula; Figur 24 visar avlagsnandet av 4-0-MeGIcA genom AbfB och a-glu fran havrespalt/bjork, milt alkali for-extraherad bagasse Hoije (BH), H202-blekt bagasse (BB), bambu (BM) och Pinus patula (PP) xylan och genom a-glu Iran milt alkal-for-extraherad Eucalyptus grandi (EH), Eucalyptus grandis-gel (ES) extraherad fran massa; Figur 25 visar responsytdiagram for avlagsning av glukuronsyra som en funktion av (A) tid (h) och temperatur (°C) vid 16500 nKat g-1 substrat, (B) temperatur (°C) och enzymdos (nKat g-1 substrat) vid 9 h och (C) tid (h) och enzymdos (nKat g-1 substrat) vid 33,5°C; Figur 26 visar interaktionseffekter mellan tid, temperatur och enzymdos pa avlagsnande av glukuronsyra. De forsta kolonnerna uppifran visar interaktionen mellan temperatur (Temp) och tid, enzymdos (ABIB/a-glu) och tid, och enzymdos (a-glu) och temperatur. I den andra kolonnens hogra del visar cellen storleken och signifikansen av behandlingen och interaktionseffekter uppmatt genom storleken pa stapeldiagrammet. t(l44)-vardena visas i slutet av varje stapeldiagram i respektive Pareto-diagram. Den vertikala prickade linjen i Pareto-diagrammet är ett matt pa statistisk signifikans vid p=0,05; Figur 27 visar en sammanfattning av regressionskoefficienter for glukuronsyrafrislappning som en funktion av hydrolysparametrarna (kodad variabel); 537 4 SEQ. ID NO 1 Jr den harledda aminosyrasekvensen av a-glukuronidasgenen av P.stipitis, tillganglig i Genbank som accessionsnummer XP 001385893; och SEQ. ID NO 2 Jr DNA-sekvensen av a-glukuronidasgenen av P.stipitis, s5som den Jr tillgang- lig i Genbank som accessionsnummer XM 001385893 och publicerad P.stipitis- genomsekvensen (Vrargka et al 2007). Figure 16 shows elution profiles for xylan p5 HPAEC-PAD (Dionex) CarboPac P10 column from (A) monomeric sugars, (B) xylitol, (C) birch xylan (Roth) and (D) xylan from oat cleft; Figure 17 shows the elution profiles of xylan p5 HPAEC-PAD (Dionex) CArboPac column P from (A) mildly alkali-extracted H 2 O 2 bleached bagasse (Bag B), (B) mildly alkali-extracted ultra-purified bagasse (Bag H) and (C) mildly alkali metal extra bagasse (Bag L); Figure 18 shows the elution profiles for xylan on HPAEC-PAD (Dionex) CarboPac column P from (A) Eucalyptus grandis H [EU H] and (B) Eucalyptus grandis L [EU L] (C) bamboo and (D) Pin us patula ; Figure 19 shows a bar graph of the insoluble fraction obtained after 72% acid hydrolysis of mildly alkali-extracted xylan H 2 O 2 bleached bagasse (Bag B), ultra-purified bagasse (Bag Fib ethanol precipitated bagasse (Bag L), bamboo, ultra-purified E.grandis (EU H), ethanol precipitated E.grandis (EU L) and P. patula (Pine) with reference to birch xylan (Roth); Figure 20 shows the characterization of xylan by (A) 1 H-NMR and (B) 13 C-NMR analysis of birch xylan, (C ) 1 H-NMR and (D) 1 H-NMR analysis of H 2 O 2 -bleached bagasse (Bag B) and (E) 1 H-NMR and (F) 13 H-NMR analysis of xylan from oat column, Me represents methyl group from glucuronic acid and Ac = Acetyl group, Ar = arabinose group; Figure 21 shows the characterization of xylan by (A) 11-1 NMR and (B) 13 C-NMR analysis of bagasse, (C) 1-H-NMR and ( D) 13 C-NMR analysis of E.grandis xylan: In spectra (1) = Lopez-extracted xylan (Bag L or EU L), and (2) High ultra-purified xylan (Bag H or Eu H); Figure 22 shows the characterization of xylan by (A) 11-1 NMR and (B) 13 C-NMR analyzes of bam bu, (C) 1 H-NMR and (D) 13 C-NMR analyzes of P. patula-xylan; Figure 23 shows the FTIR spectrum of xylan extracted from different types of lignocellulosic materials Iran batten (iv) birch **, (F) ethanol precipitated bagasse [Bag L] (2), (E) ultra-purified bagasse [Bag H] (1), ( D) xylan frail oat split *, (C) bamboo, (B) ethanol precipitated E.grandis [EU L] (2), (B) ultrapureed E. grandis [EU H] (1) and (A) P.patula; Figure 24 shows the deposition of 4-0-MeGIcA by AbfB and a-glu from oat cleft / birch, mild alkali pre-extracted bagasse Hoije (BH), H202-bleached bagasse (BB), bamboo (BM) and Pinus patula (PP) xylan and by a-glu Iran mildly alkaline-for-extracted Eucalyptus grandi (EH), Eucalyptus grandis-gel (ES) extracted from pulp; Figure 25 shows response area diagrams for deposition of glucuronic acid as a function of (A) time (h) and temperature (° C) at 16500 nKat g-1 substrate, (B) temperature (° C) and enzyme dose (nKat g-1 substrate) at 9 h and (C) time (h) and enzyme dose (nKat g-1 substrate) at 33.5 ° C; Figure 26 shows interaction effects between time, temperature and enzyme dose on glucuronic acid deposition. The first columns above show the interaction between temperature (Temp) and time, enzyme dose (ABIB / a-glu) and time, and enzyme dose (a-glu) and temperature. In the right part of the second column, the cell shows the size and significance of the treatment and interaction effects measured by the size of the bar graph. The t (l44) values are displayed at the end of each bar chart in each Pareto chart. The vertical dotted line in the Pareto diagram is a measure of statistical significance at p = 0.05; Figure 27 shows a summary of regression coefficients for glucuronic acid release as a function of the hydrolysis parameters (coded variable); 537 4 SEQ. ID NO 1 Jr the deduced amino acid sequence of the α-glucuronidase gene of P. stipitis, available in Genbank as accession number XP 001385893; and SEQ. ID NO 2 The DNA sequence of the α-glucuronidase gene of P. stipitis, such as the Jr available in Genbank as accession number XM 001385893 and published P. stipitis genome sequence (Vrargka et al 2007).

Detaljerad beskrivning med hanvisning till ritningarna Uppfinningen avser en isolerad polypeptid som har a-glukuronidasaktivitet och har form5- gan att degradera glukuronxylanmolekyler som 5terfinns i vaxtbiomassa. Ovantat uppvisar denna polypeptid fordelar for enzymatisk aktivitet i degradering av glukuronxylanmolekyler som inte kan ses i andra enzym som tidigare rapporterats uppvisa a-glukuronidasaktivitet. Skana andra a-glukuronidaser Jr begransade i sin hydrolys av glykosidlankar av glukuronxylamolekyler eftersom de endast har form5gan att hydrolysera en glykosidlank- fling mellan en MeGIcA-rest och en terminal xylopyranosylrest. Daremot har den isolerade polypeptiden enligt uppfinningen befunnits vara ovantat kapabel att hydrolysera en glykosidlankning mellan en MeGIcA-rest och en icke-terminal xylopyranosylrest. Dessutom är aglukuronidasaktiviteten for den isolerade polypeptiden enligt uppfinningen brett applicer- bar till ett antal glukuronxylanmolekyler som erh5llits fr5n olika vaxtbiomassakallor. Detailed Description Referring to the Drawings The invention relates to an isolated polypeptide which has α-glucuronidase activity and is designed to degrade glucuronyl xylan molecules found in plant biomass. Unsurprisingly, this polypeptide exhibits benefits for enzymatic activity in the degradation of glucuronxylan molecules that cannot be seen in other enzymes previously reported to exhibit α-glucuronidase activity. Scanning other α-glucuronidases Jr limited in their hydrolysis of glycoside linkers of glucuronyl xylamolecules because they have only the ability to hydrolyze a glycoside linker between a MeGIcA residue and a terminal xylopyranosyl residue. In contrast, the isolated polypeptide of the invention has been found to be unexpectedly capable of hydrolyzing a glycoside linkage between a MeGIcA residue and a non-terminal xylopyranosyl residue. In addition, the aglucuronidase activity of the isolated polypeptide of the invention is widely applicable to a number of glucuronon xylan molecules obtained from various plant biomass sources.

Foreliggande uppfinning ger en isolerad polypeptid som har en aminosyrasekvens som är aminosyrasekvensen enligt SEQ. ID NO 1; eller en som är vasentligen Ilk den, s5 att en sekvens som är 5tminstone 95% homolog med SEQ. ID NO 1 eller del darav, 5tminstone 85% homolog med SEQ. ID NO 1 eller del darav; 5tminstone 75% homolog med SEQ. ID NO 1 eller del darav; 5tminstone 65% homolog med SEQ ID NO 1 eller del darav; 5tminstone 50% homolog med SEQ. ID NO 1 eller del clarav; en funktionell variant av flagon av dessa aminosyrasekvenser. Identiteten for den isolerade polypeptiden av fullangd kan bekraftas med referens till dess molekylvikt av omkring 120 kDa, med anvandning av tekniker s5som SDS-PAGE eller a-glukuronidasaktivitetsanalys for identifieringen av biologiskt aktiva fragment av polypeptiden. 11 537 4 Polypeptiden Jr typiskt isolerad Ira' n induktionsmediet av en odling av Pichia stipitis CBS 6054, aven om det kommer att inses att andra mikrober uttryckande vasentligen liknande polypeptider som aven kan anvandas. S5dana mikrober inklude ra r Schizophyllum commune, Aspergillus davatus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus terreus, Aspergillus oryzae, Sderotinia sderotiorum, Botryotinia fuckeliana, Pyrenophora tritici-repentis, Neurospora crassa, Gibberella zeae, Podospora anserina, Coprinopsis cinerea okayama, Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibriojaponicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus och Streptomyces pristinaespiralis. The present invention provides an isolated polypeptide having an amino acid sequence which is the amino acid sequence of SEQ. ID NO 1; or one that is substantially similar to that of a sequence that is at least 95% homologous to SEQ. ID NO 1 or part thereof, 5 at least 85% homologous to SEQ. ID NO 1 or part thereof; At least 75% homologous to SEQ. ID NO 1 or part thereof; At least 65% homologous to SEQ ID NO 1 or part thereof; At least 50% homologous to SEQ. ID NO 1 or part clarav; a functional variant of the flake of these amino acid sequences. The identity of the full-length isolated polypeptide can be confirmed with reference to its molecular weight of about 120 kDa, using techniques such as SDS-PAGE or α-glucuronidase activity assay for the identification of biologically active fragments of the polypeptide. The polypeptide Jr is typically isolated from the induction medium of a culture of Pichia stipitis CBS 6054, although it will be appreciated that other microbes expressing substantially similar polypeptides may also be used. S5dana microbes include ra r Schizophyllum commune, Aspergillus davatus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus terreus, Aspergillus oryzae, Sderotinia sderotiorum, Botryotinia fuckeliana, Pyrenophora crippina, Gypsies, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibriojaponicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus and Streptomyces pristinaespiralis.

Eftersom polypeptiden utsondras i induktionsmediet av den mikrobiella odlingen, kan olika kromatografiska tekniker anvandas for att isolera polypeptiden fr5n induktionsmediet s5som anjon-utbyteskromatografi, hydrofob kromatografi och anjon-utbyteskromatografi. Polypeptiden Jr typiskt isolerad fra'n induktionsmediet genom att forst separera mikrobiell biomassa fr5n induktionsmediet, fraktionera induktionsmediet genom anjon- utbyteskromatografi for att erh51Ia ett fOrsta elueringsmedel; fraktionera det forsta elueringsmedlet genom hydrofob interaktionskromatografi for att erhAlla ett andra elueringsmedel; fraktionera det andra elueringsmedlet genom anjon-utbyteskromatografi for att erhalla ett tredje elueringsmedel; och fraktionera det tredje elueringsmedlet ge- nom anjon-utbyteskromatografi for att erh51Ia en fraktion innefattande den isolerade polypeptiden. Ytterligare steg for koncentrering av en eller flera av induktionsmediet; det forsta elueringsmedlet; det andra elueringsmedlet; det tredje elueringsmedlet; och fraktionen innefattande den isolerade polypeptiden utftirs ocks5. Since the polypeptide is secreted into the induction medium of the microbial culture, various chromatographic techniques can be used to isolate the polypeptide from the induction medium such as anion exchange chromatography, hydrophobic chromatography and anion exchange chromatography. The polypeptide is typically isolated from the induction medium by first separating microbial biomass from the induction medium, fractionating the induction medium by anion exchange chromatography to obtain a first eluent; fractionating the first eluent by hydrophobic interaction chromatography to obtain a second eluent; fractionating the second eluent by anion exchange chromatography to obtain a third eluent; and fractionating the third eluent by anion exchange chromatography to obtain a fraction comprising the isolated polypeptide. Additional steps for concentrating one or more of the induction medium; the first eluent; the second eluent; the third eluent; and the fraction comprising the isolated polypeptide is also excreted.

Den isolerade polypeptiden enligt uppfinningen kan tillhandahAllas i formen av en vasent- ligen berikad beredning av polypeptiden. En vasentligen berikad beredning som framstallts enligt uppfinningen betyder i allmanhet att de overvagande proteinarterna eller -komponenterna enligt beredningen Jr polypeptiden enligt SEQ. IDNO 1, eller en vasentligen liknande. Det kommer emellertid att inses att mer renade former av den vasentligen berikade beredningen innefattas inom ramen for uppfinning, sasom beredningar innefat- tande 5tminstone 75% av polypeptiden; beredningar innefattande 5tminstone 80% av 12 537 4 polypeptiden; beredningar innefattande 5tminstone 90% av polypeptiden. En vasentligen berikad beredning framstalld enligt uppfinningen hanvisar ocks5 i allmanhet till den vasentliga fr5nvaron av biologiskt aktiva enzym med form5gan att hydrolysera huvudkedjan i en glukuronxylanmolekyl. The isolated polypeptide of the invention may be provided in the form of a substantially enriched formulation of the polypeptide. A substantially enriched formulation prepared according to the invention generally means that the predominant protein species or components of the formulation are the polypeptide of SEQ. IDNO 1, or a substantially similar one. However, it will be appreciated that more purified forms of the substantially enriched formulation are included within the scope of the invention, such as formulations comprising at least 75% of the polypeptide; preparations comprising at least 80% of the polypeptide; preparations comprising at least 90% of the polypeptide. A substantially enriched formulation prepared according to the invention also generally refers to the essential presence of biologically active enzymes capable of hydrolyzing the backbone of a glucuronoxylan molecule.

Exempel 1 Material och metoder P.stipitis-stammar och dess kultiyering P.stipitis CBS 6054 odlades i flaskor i medium innehallande YNB (Difco, 6,7 g/1), L-asparagin (2 g/1), KH2PO4 (5 g/l) och kolkalla (glukuronxylan fr5n glukos eller bjorktra, 10 g/l) vid en temperatur av 30°C och en omrorning av 180 rpm. Exponentiellt tillvaxta celler skordades vid en celldensitet av 0,15-0,20 mg/ml (torr vikt). a-glukuronidassubstrat och produkter Deacetylerad glukuronxylan extraherades fr5n s5gdamm [Ebringerova et al, 1967, Holzforschung 21:74-77], aldotetra-uronsyra Xyl(MeGIcA)Xyl-Xyl, den kortaste syraprodukten av glukuronxylanhydrolys genom familj 10-endoxylanaser, och aldopentauronsyra Xyl-Xyl (MeGIcA)Xyl-Xyl, den kortaste produkten av glukuronxylanhydrolys genom familj 11- endoxylanaser framstalldes s5som beskrivits tidigare [Biely et al., 1997, J. Biotechno. 57:151-166]. 4-0-metyl-F-glukuronsyra (MeGIcA) framstalldes genom omestring av dess metylester genom S.commune glukuronoylesteraser [panikova och Biely, 2006, FEBS Lett. 580:4597-4601]. Example 1 Materials and Methods P. Stipitis Strains and Their Cultivation P. Stipitis CBS 6054 were grown in vials in medium containing YNB (Difco, 6.7 g / l), L-asparagine (2 g / l), KH 2 PO 4 (5 g / l) and carbonaceous (glucuronoxylan from glucose or birch bark, 10 g / l) at a temperature of 30 ° C and a stirring of 180 rpm. Exponentially grown cells were harvested at a cell density of 0.15-0.20 mg / ml (dry weight). α-glucuronidase substrate and products Deacetylated glucuronxylan was extracted from sawdust [Ebringerova et al., 1967, Holzforschung 21: 74-77], aldotetrauronic acid Xyl (MeGIcA) -Xyl (MeGIcA) Xyl-Xyl, the shortest product of glucuronoxyl anhydrolysis by family 11 endoxylanases, was prepared as previously described [Biely et al., 1997, J. Biotechno. 57: 151-166]. 4-O-methyl-F-glucuronic acid (MeGIcA) was prepared by transesterification of its methyl ester by S.commune glucuronoyl esterases [panikova and Biely, 2006, FEBS Lett. 580: 4597-4601].

P.stipitis a-glukuronidasframstallning i fronyaron ay xylan Enzymet, vilket blev ett foremal for rening, framstalldes i induktionsexperiment vilka utfordes enligt foljande: celler fr5n exponentiell fas odlade i ett YNB-medium med 1% glukos samlades in genom centrifugering, tvattades tv5 g5nger med basalt YNB-medium (utan kolkalla) och suspenderades i samma medium forsett med 0,5 mg/ml xylooligosack- aridblandning (XYLO-OLIGO 70, Suntory Limited, Japan) och 0,33 mg/ml av metyl-13-xylo- 13 537 4 pyranosid. Cellkoncentrationen var 0,6-0,8 mg/ml torr vikt (105°C). Efter 24 h inkubation p5 en skakmaskin (180 rpm) vid 30°C under 24 h centrifugerades blandningen och den klara supernatanten anvand for rening av extracellular a-glukuronidas vilken saminducerades med endo-13-1,4-xylanas. P. Stipitis α-glucuronidase preparation in fronyaron ay xylan The enzyme, which became a formula for purification, was prepared in induction experiments which are challenged as follows: cells from exponential phase grown in a YNB medium with 1% glucose were collected by centrifugation, washed with basalt YNB medium (without carbon cold) and suspended in the same medium supplemented with 0.5 mg / ml xylooligosaccharide mixture (XYLO-OLIGO 70, Suntory Limited, Japan) and 0.33 mg / ml of methyl-13-xylo-13 537 4 pyranoside. The cell concentration was 0.6-0.8 mg / ml dry weight (105 ° C). After 24 hours of incubation on a shaker (180 rpm) at 30 ° C for 24 hours, the mixture was centrifuged and the clear supernatant used to purify extracellular α-glucuronidase which was co-induced with endo-13-1.4-xylanase.

Rening av P.stipitis-a-glukuronidas Det klara induktionsmediet (600 ml) koncentrerades 300-faldigt p5 Amicon 10 kDa gransmembran. De utsondrade proteinerna fraktionerades forst genom anjon-utbyteskromatografi p5 en HiTrap DEAE-FF-kolonn (GE Healthcare, Sverige) med anvandning av eluering iomed NaCI-gradient (0-1,0 M) i 50 mM natriumfosfatbuffert (pH 7,0). Fraktioner innehAl- lande a-glukuronidas, eluerade som en topp mellan 0,2-0,26 M NaCI, forenades, koncentrerades och avsaltades, ekvilibrerades sedan i 50 mM acetatbuffert (pH 4,0) inneh5llande 2M (NH4)2SO4. Det erhAllna elueringsmedlet Aterupplostes genom hydrofob interaktionskromatografi pa en butyl-FF-kolonn (5 ml) (GE Healthcare) eluerad med en minskande gradient av (NH4)2SO4 i samma buffert. a-glukuronidas eluerades vid en koncentration av mellan 1,1 och 0,61 M (NH4)2SO4. Fraktionerna som har a-glukuronidasaktivitet forenades, avsaltades, koncentrerades och Aterupplostes genom tv5 ytterligare jonutbyteskromatografisteg med anvandning av en Tricorn MonoQ 5/50GL kolonn (Amersham, UK) (polystyren/divinylbensen). I det fOrsta steget ekvilibrerades kolonnen med 50 mM natrium- acetatbuffert (pH 4,0) och eluerades med en okande gradient av NaCI (0-1,0 M). I det andra elueringssteget ersattes acetatbufferten med 50 mM natriumfosfatbuffert (pH 7,0). Fraktioner som har a-glukuronidasaktivitet avsaltades och koncentrerades genom membranfiltrering p5 Microcon (10 kDa grans, Millipore Co., USA). Purification of P. Stipitis-α-glucuronidase The clear induction medium (600 ml) was concentrated 300-fold p5 Amicon 10 kDa spruce membrane. The secreted proteins were first fractionated by anion exchange chromatography on a HiTrap DEAE-FF column (GE Healthcare, Sweden) using elution with a NaCl gradient (0-1.0 M) in 50 mM sodium phosphate buffer (pH 7.0). Fractions containing α-glucuronidase, eluting as a peak between 0.2-0.26 M NaCl, were combined, concentrated and desalted, then equilibrated in 50 mM acetate buffer (pH 4.0) containing 2M (NH 4) 2 SO 4. The resulting eluent was redissolved by hydrophobic interaction chromatography on a butyl FF column (5 ml) (GE Healthcare) eluting with a decreasing gradient of (NH 4) 2 SO 4 in the same buffer. α-glucuronidase was eluted at a concentration of between 1.1 and 0.61 M (NH 4) 2 SO 4. The fractions having α-glucuronidase activity were combined, desalted, concentrated and redissolved by two additional ion exchange chromatography steps using a Tricorn MonoQ 5 / 50GL column (Amersham, UK) (polystyrene / divinylbenzene). In the first step, the column was equilibrated with 50 mM sodium acetate buffer (pH 4.0) and eluted with an increasing gradient of NaCl (0-1.0 M). In the second elution step, the acetate buffer was replaced with 50 mM sodium phosphate buffer (pH 7.0). Fractions having α-glucuronidase activity were desalted and concentrated by membrane filtration p5 Microcon (10 kDa grans, Millipore Co., USA).

Sekvensanalys av renat protein Renad a-glukuronidas Aterupplostes genom SDS PAGE p5 10% akrylamidgeler och elektroblottades pa ett polyvinylidendifluoridmembran (Millipore Corp., USA). Sekvensen for de 15 N-terminala aminosyrorna bestamdes med anvandning av en HP G105A-proteinsekvenserare (Hewlett Packard, Palo Alto, Ca, USA). 14 537 4 a-glukuronidasanalys Reningsfraktioner som har a-glukuronidasaktiviet identifierades kvalitativt genom TLCanalys med anvandning av en kiselgel (Merck kiselgel 60 p5 aluminiumplattor) i etylacetatattiksyra:1-propanol:myrsyra:vatten (26:10:5:1:15, baserat p5 volym). Narvaron av fri MeGIcA harledd frAn alduronsyra (10 mg/ml) eller glukuronxylan (2%) upplost 10,05 M natriumacetatbuffert (pH 4,4) indikerade a-glukuronidasaktivitet. Enzymet anvandes vanligtvis vid koncentration 50 lig protein/ml. Sequence analysis of purified protein Purified α-glucuronidase was redissolved by SDS PAGE on 5% acrylamide gels and electroblotted onto a polyvinylidene difluoride membrane (Millipore Corp., USA). The sequence of the 15 N-terminal amino acids was determined using an HP G105A protein sequencer (Hewlett Packard, Palo Alto, Ca, USA). 14 537 4 α-glucuronidase assay Purification fractions having the α-glucuronidase activity were qualitatively identified by TLC analysis using a silica gel (Merck silica gel 60 p5 aluminum plates) in ethyl acetate acetic acid: 1-propanol: formic acid: water (1: 15, 5: 5, based p5 volume). The narvaron of free MeGIcA derived from alduronic acid (10 mg / ml) or glucuronxylan (2%) dissolved 10.05 M sodium acetate buffer (pH 4.4) indicated α-glucuronidase activity. The enzyme is usually used at a concentration of 50 μg protein / ml.

En kvantitativ analys baserad p5 bestamning av fri MeGIcA frigjord fr5n aldopentauronsyra (Xyl-Xyl(MeGIcA)-Xyl-Xyl, 10 mg/ml) eller glukuronxylan frAn bjorktra (2%) enligt forfaran- det beskrivet av Milner och Avigad [Milner och Avigad, 1967, Carbohyd. Res. 4:359-361] anvandes for att detektera substrat och produkter med a-glukuronidasaktivitet. Substratet och produkterna detekterades med anvandning av N-(naftyletylendiamin) dihydrokloridreagens [Buonias, 1980, Anal. Biochem. 106:291-295]. Reagenset är brunt till fargen i narvaron av MeGIcA och lila till fargen i narvaron av xylosinnehAllande foreningar. Prote- inprov (1-10 ig, beroende p5 renhet) inkuberades under 10-60 min i 0,1 ml reaktionsblandning inneh5llande substratet i 50 mM acetatbuffert (pH 4,4). Reaktionen stoppades genom tillsats av 0,3 ml kopparreagens och kokning under 10 min vid 100°C, foljt av tillsats av 0,2 ml Nelsonreagens och 0,4 ml vatten. Absorbansen mattes vid 600 nm med anvand- ning av kalibrering med GIcA. En enhet a-glukuronidas definierades som mangden enzym producerande 1 iffnol uronsyra p5 1 min frAn aldopentauronsyra (Xyl-Xyl(MeGIcA)-Xyl-Xyl. A quantitative assay based on the determination of free MeGIcA released from aldopentauronic acid (Xyl-Xyl (MeGIcA) -Xyl-Xyl, 10 mg / ml) or glucuronxylan from birchwood (2%) according to the procedure described by Milner and Avigad [Milner and Avigad , 1967, Carbohyd. Res. 4: 359-361] was used to detect substrates and products with α-glucuronidase activity. The substrate and products were detected using N- (naphthylethylenediamine) dihydrochloride reagent [Buonias, 1980, Anal. Biochem. 106: 291-295]. The reagent is brown to the color in the narvaron of MeGIcA and purple to the color in the narvaron of xylose-containing compounds. Protein samples (1-10 μg, depending on purity) were incubated for 10-60 minutes in 0.1 ml of reaction mixture containing the substrate in 50 mM acetate buffer (pH 4.4). The reaction was stopped by adding 0.3 ml of copper reagent and boiling for 10 minutes at 100 ° C, followed by the addition of 0.2 ml of Nelson reagent and 0.4 ml of water. The absorbance was matted at 600 nm using GIcA calibration. One unit of α-glucuronidase was defined as the amount of enzyme producing 1-phenol uronic acid p5 1 min from aldopentauronic acid (Xyl-Xyl (MeGIcA) -Xyl-Xyl.

Proteinbesttimning Proteinkoncentration bestamdes enligt forfarandet fr5n Bradford [Bradford, 1976, Anal. Protein determination Protein concentration was determined according to the method of Bradford [Bradford, 1976, Anal.

Biochem. 72, 248-254] med anvandning av bovint serumalbumin som standard. Protein- molekylvikt uppskattades med anvandning av SDS-PAGE (Laemmli, 1970, Nature 227:680685] och jamforelse med liknande aterupplosta oflackade proteinmolekylviktsmarkorer (FERMENTAS, Kanada) och fargade proteinmarkorer (SERVA, GmnH). IEF utfordes p5 Multiphor-II-system (GE Healthcare, Sverige) med anvandning av SERVALYT PRECOTES 3-6 forgjuten gel och IEF-markorer 3-10 (SERVA, GmbH). 537 4 Resultat Isolering av a-glukuronidas En ny a-glukuronidas observerades under tillvaxt av flera P.stipitis-stammar p5 olika typer av xylan. Den hogsta tillvaxten av jasten observerades p5 glukuronxylan. Aven om glukuronxylan utnyttjades som den huvudsakliga kolkallan till begransad grad IA den jamfors med utnyttjan- det av D-xylos, D-glukos eller 6-1,4-xylooligosackarider, fanns det inte nagon ackumulering av sura oligosackarider i mediet. Alla fragment som slappts fria fr5n glukuronxylan var helt utnyttjade, vilket antydde att jasten utsondrade en a-glukuronidas till mediet. Analys av tillvaxtmediet av jasten efter tillvaxt p5 glukuronxylan avslojade stark a-glukuronidasaktivitet. Biochem. 72, 248-254] using bovine serum albumin as standard. Protein molecular weight was estimated using SDS-PAGE (Laemmli, 1970, Nature 227: 680685] and compared with similar redissolved unflaked protein molecular weight markers (FERMENTAS, Canada) and colored protein markers (SERVA, GmnH). IEF challenged p5 Multiphor-II system ( GE Healthcare, Sweden) using SERVALYT PRECOTES 3-6 precast gel and IEF markers 3-10 (SERVA, GmbH) 537 4 Results Isolation of α-glucuronidase A new α-glucuronidase was observed during the growth of several P. stipitis strains p5 different types of xylan The highest growth of the yeast was observed p5 glucuronxylan Although glucuronxylan was used as the main carbon source to a limited degree IA it was compared with the use of D-xylose, D-glucose or 6-1,4-xylooligose , there was no accumulation of acid oligosaccharides in the medium. All fragments released from glucuronxylan were fully utilized, indicating that the yeast secreted an α-glucuronidase into the medium. one of the yeast after growth of p5 glucuronxylan revealed strong α-glucuronidase activity.

Det delvis renade enzymet befanns ha formAgan att ta bort forgreningar p5 glukuronxylan och frisatta MeGIcA Iran alduronsyra i vilka MeGIcA var lankad till interna xylopyranosylrester. Enzymet kunde inte renas fr5n ett delvis anvant glukuronxylanmedium, eftersom narvaron av xylanrester okade viskositeten has det koncentrerade mediet och storde enzymreningen. The partially purified enzyme was found to be capable of removing branches of glucuronxylan and released MeGIcA Iran alduronic acid in which MeGIcA was linked to internal xylopyranosyl residues. The enzyme could not be purified from a partially used glucuronene xylan medium because the presence of xylan residues increased the viscosity of the concentrated medium and increased the enzyme purification.

Den extracellulara a-glukuronidasen var emellertid framg5ngsrikt renad fr5n mediet d den tvattades, glukostillvaxta celler Iran exponentiell fas inkuberades i ett syntetiskt medium forsett med en blandning av xylobios, xylotrios och mety1-6-D-xylopyranosid, vilka Jr inducerare av xylanolytiska enzym i P.stipitis. Niv5n av extracellular a-glukuronidas inducerad under dessa betingelser var 0,015 U/ml, vilket representerade ungefar 20% av aktiviteten som observerades under inkubering av celler med 1% glukuronxylan. Denna niv5 av a-glukuronidas var tillracklig for dess rening fr5n induktionsmediumet inneh51- lande enbart dialyserbara naringskomponenter. Enzymet renades framgangsrikt fran ett koncentrerat induktionsmedium med anvandning av en kombination av jonutbyte och hydrofob interaktionskromatografi (figur 1). Enzymet sonderdelades till ett enda band genom analys med SDS PAGE, motsvarande ett protein med ungefar 120 kDa (figur 2) och en tillracklig renhet for att anvandas for N-terminal aminosyrasekvensanalys. However, the extracellular α-glucuronidase was successfully purified from the medium when it was washed, glucose-grown cells Iran exponential phase were incubated in a synthetic medium provided with a mixture of xylobiosis, xylotriosis and methyl 1-6-D-xylopyranoside, which .stipitis. The level of extracellular α-glucuronidase induced under these conditions was 0.015 U / ml, which represented approximately 20% of the activity observed during incubation of cells with 1% glucuronxylan. This level of α-glucuronidase was sufficient for its purification from the induction medium containing only dialyzable nutrient components. The enzyme was successfully purified from a concentrated induction medium using a combination of ion exchange and hydrophobic interaction chromatography (Figure 1). The enzyme was probed into a single band by analysis by SDS PAGE, corresponding to a protein of approximately 120 kDa (Figure 2) and of sufficient purity to be used for N-terminal amino acid sequence analysis.

Katalytiska egenska per hos P.stipitis-a-glukuronidas Det renade a-glukuronidaset befanns vara vasentligen fritt frAn endoxylaner eller 13- xylosidasaktivitet. Den enda reaktion som uppvisades genom enzymet med aldopentau- ronsyra med strukturen Xyl-Xyl(MeGIcA)-Xyl-Xyl* eller med bjork-glukuronxylan var 16 537 4 frigorandet av MeGIcA-rester (figur 3). Enzymet frisatte ocks5 MeGIcA fr5n aldotetrauronsyra Xyl(MeGIcA)-Xyl-Xyl* (inte visad) vilken p5 liknande satt fungerar som ett substrat for familj 67 av a-glukuronidaser (Biely, 2003, Xylanolytic enzymes, In:Handbook of Food Enzymology, sid. 879-916, Marcel Dekker, Inc. NY). Den initalt klara glukuronxylanlosning- en uppvisade okad opalescens och okad viskositet beroende p5 tillrackligt avlagsnande av forgreningar. Mangden uronsyra som frislappts fran bjorkved-glukuronxylan genom enzymet efter en I5ngtidsbehandling var 0,35 kmol per 1 mg glukuronxylan, vilket representerar 75% av det totala MeGIcA-innealet i polysackariden. Catalytic Properties of P. Stipitis α-Glucuronidase The purified α-glucuronidase was found to be substantially free of endoxylanes or 13-xylosidase activity. The only reaction shown by the enzyme with aldopenturonic acid having the structure Xyl-Xyl (MeGIcA) -Xyl-Xyl * or with birch-glucuronxylan was the release of MeGIcA residues (Figure 3). The enzyme also released MeGIcA from aldotetrauronic acid Xyl (MeGIcA) -Xyl-Xyl * (not shown) which similarly acts as a substrate for family 67 of α-glucuronidases (Biely, 2003, Xylanolytic enzymes, In: Handbook of Food Enzymology, p. 879-916, Marcel Dekker, Inc. NY). The initially clear glucuronoxyl solution showed increased opalescence and increased viscosity due to sufficient branch removal. The amount of uronic acid released from birchwood-glucuronxylan by the enzyme after a long-term treatment was 0.35 kmol per 1 mg of glucuronxylan, representing 75% of the total MeGIcA inneal in the polysaccharide.

Optimala betingelser for enzymaktivitet Det optimala pH-vardet for enzymaktivitet befanns vara 4,4. Vid pH 4,0 och pH 5,5 representerade aktiviteten 26,5% respektive 51,6% av aktiviteten vid det optimala pH-vardet. Den optimala temperaturen for enzymaktiviteten var 60°C (18,43 U/mg vid polymerformig glukuronxylan), men proteinet befanns vara ostabilt vid denna temperatur, med 50% aktivitetsforlust i 30 min. Proteinet befanns vara stabilt under 5tminstone 3h vid 40°C, med specifik aktivitet p5 glukuronxylan 3,01 U/mg. pl-vardet for a-glukuronidas beraknat fr5n sekvens (ExPASy online ProtParam-verktyg) var 4,64, men isoelektrisk fokuseringsdata indikerade att proteinets pl-varde var narmare 4,0. Optimal conditions for enzyme activity The optimal pH value for enzyme activity was found to be 4.4. At pH 4.0 and pH 5.5, the activity represented 26.5% and 51.6%, respectively, of the activity at the optimum pH value. The optimum temperature for the enzyme activity was 60 ° C (18.43 U / mg with polymeric glucuronxylan), but the protein was found to be unstable at this temperature, with a 50% loss of activity for 30 minutes. The protein was found to be stable for at least 3 hours at 40 ° C, with specific activity on glucuronxylan 3.01 U / mg. The pI value of α-glucuronidase calculated from sequence (ExPASy online ProtParam tool) was 4.64, but isoelectric focusing data indicated that the pI value of the protein was closer to 4.0.

N-terminal aminosyrasekvens och homologianalys Edman-analys av renad a-glukuronidas avslojade en aminosyrasekvens inkluderande den N-terminala LGGLQNIVFKNSKDD-sekvensen vilken exakt motsvarade P.stipitis-genen XP 0013855930 som harletts fr5n den tillgangliga genomsekvensen for P.stipitis, med borjan vid aminosyra nummer 19, kodande ett protein med okand funktion men som har lik- nande molekylmassa som den isolerade a-glukuronidasen (SEQ. ID NO 1). Den del av genen som kodar de forsta 19 aminosyrorna motsvarar uppenbart enzymets utsondrade signalsekvens, vilken inte är skyddad i det fullt utvecklade extracellulara proteinet innefattande 957 aminosyror. N-terminal amino acid sequence and homology analysis Edman analysis of purified α-glucuronidase revealed an amino acid sequence including the N-terminal LGGLQNIVFKNSKDD sequence which exactly corresponded to the P. stipitis gene XP 0013855930 which has been deduced from the available amino acid sequence, number 19, encoding a protein with unknown function but which has a similar molecular mass as the isolated α-glucuronidase (SEQ. ID NO 1). The portion of the gene encoding the first 19 amino acids apparently corresponds to the secreted signal sequence of the enzyme, which is not protected in the fully developed extracellular protein comprising 957 amino acids.

En BLAST-sokning genomfordes med anvandning av sekvensen for P.stipitis a-glukuronidas vilken avslojade liknande gener i genomen for m5nga andra mikroorganismer, mestadels 17 537 4 svampar. Listan p5 mikroorganismer med ortologer av P.stipitis a-glukuronidas-genen som har identitet som Jr hogre an 34% och likhet som är h6gre an 51% visas i figur 4. Alla ortologer motsvarar proteiner med omkring 1000 aminosyror, vilket motsvarar en molekylmassa av omkring 120 kDa, i alla avseenden är det proteiner med okand funktion. Den hogsta identiteten (54%) och den hogsta likheten (69%) uppvisades av gensekvensen for Aspergillus davatus. A BLAST search was performed using the sequence of P. stipitis α-glucuronidase which revealed similar genes in the genome of many other microorganisms, mostly fungi. The list of microorganisms with orthologs of the P. stipitis α-glucuronidase gene having an identity higher than 34% and similarity higher than 51% is shown in Figure 4. All orthologs correspond to proteins with about 1000 amino acids, which corresponds to a molecular mass of about 120 kDa, in all respects it is proteins with unknown function. The highest identity (54%) and the highest similarity (69%) were shown by the gene sequence for Aspergillus davatus.

Inriktningen av atta valda homologa sekvenser (visade i fetstil i figur 4) med P-stipitis aglukuronidas-sekvensen visas i figur 5. Inriktningen visar 6 bevarade glutaminsyrarester och 12 bevarade aspartamsyrarester, av vilka tv5 kan vara aminosyran som är inblandad i katalys av reaktionen. Dessutom bevaras 3 tyrosiner och 6 tryptofaner. Om den aroma- tiska aminosyran är ytexponerad kan de spela en viktig roll i igenkannandet av xylanhuvudkedjan som en av betingelserna for enzymet att verka p5 polymersubstratet. The alignment of eight selected homologous sequences (shown in bold in Figure 4) with the β-stipitis aglucuronidase sequence is shown in Figure 5. The alignment shows 6 conserved glutamic acid residues and 12 conserved aspartic acid residues, of which tv5 may be the amino acid involved in catalysis of the reaction. In addition, 3 tyrosines and 6 tryptophans are preserved. If the aromatic amino acid is surface exposed, they may play an important role in the recognition of the xylan backbone as one of the conditions for the enzyme to act on the polymer substrate.

P.stipitis-enzymet frisatter MeGIcA-rester som är lankade till terminal- eller inre xylopy- ranosylrester av glukuronxylan och aldouronsyror genererade fran polysackariden under inverkan av endoxylanaser. Sekvensen for P.stipitis CBS 6054 är fylogenetiskt avlagsnad frAn bAde GH-familj 67 och 4. The P. stipitis enzyme releases MeGIcA residues that are linked to terminal or internal xylopyranosyl residues of glucuronxylan and aldouronic acids generated from the polysaccharide under the action of endoxylanases. The sequence for P. stipitis CBS 6054 is phylogenetically derived from both GH families 67 and 4.

Den xylosfermenterande jasten Pichia stipitis är unik p5 det sattet att den ocks5 har en begransad formAga att utnyttja xylan som en kolkalla. Jasten befanns foretradesvis hydro- lysera glukuronxylan fr5n lovtra, mojligen beroende p5 att uppsattningen i dess xylanolytiska enzym är begransat till framstallningen av endast tre enzymer, endo13-1,4-xylanas, a-glukuronidas och 13-xylosidas. Denna egenskap has det xylanolytiska systemet for jast motsvarar dess naturliga miljo, d.v.s. den for matsmaltningskanalen has Passalide-skalbag- gar som ater p5 biomassa fr5n lovtrad rika p5 acetylglukuronxylan. Under tillvaxt p5 denna deacetylerade glukuronxylan utsondrades de tv5 forsta enzymen genom jasten till tillvaxtmediet och ingen ackumulering av sura oligosackarider (alduronsyror) kunder darfor ske under tillvaxt p5 denna kalkälla. Nivan av utsondrat endoxylanas genom denna jast har tidigare befunnits vara s5 I5g att den inte uppmuntrat vidare studier av det xylanolytiska 18 537 4 systemet hos denna jastart. Det är darfor overraskande att denna daliga xylanas utsondrar en ny och anvandbar a-glukuronidas. The xylosfermenting yeast Pichia stipitis is unique in that it also has a limited form of utilizing xylan as a carbon cold. The yeast was found to preferentially hydrolyze glucuronxylan from lovtra, possibly due to the fact that the uptake in its xylanolytic enzyme is limited to the production of only three enzymes, endo13-1.4-xylanase, α-glucuronidase and 13-xylosidase. This property has the xylanolytic system for yeast corresponding to its natural environment, i.e. the one for the digestive tract has Passalide beetles which feed on biomass from lovtrad rich in acetylglucuronexylan. During growth of this deacetylated glucuronxylan, the first enzymes were secreted by the yeast into the growth medium and no accumulation of acidic oligosaccharides (alduronic acids) could occur during growth of this calcium source. The level of secreted endoxylanase by this yeast has previously been found to be such that it did not encourage further studies of the xylanolytic system of this yeast species. It is therefore surprising that this depleted xylanase secretes a new and useful α-glucuronidase.

Den nya beskrivna typen av a-glukuronidas har formagan att frigora MeGIcA-rester Iran polymersubstrat. Dess verkan pa aldotetrauronsyra Xyl(MeGIcA)Xyl-Xyl, den kortaste syraproduk- ten Iran glukuronxylanhydrolys genom familj 10 endoxylanaser bekraftar att den nya familjen a-glukuronidase uppvisar katalytisk aktivitet for G H 67-enzym. Den N-terminala aminosyrasekvensen for a-glukuronidas av S.commune passade inte ihop med nagon sekvens for enzymerna grupperade i den nya familjen. The newly described type of α-glucuronidase has the ability to release MeGIcA residues from Iran polymer substrates. Its action on aldotetrauronic acid Xyl (MeGIcA) Xyl-Xyl, the shortest acid product Iran glucuronoxylanhydrolysis by family endoxylanases confirms that the new α-glucuronidase family exhibits catalytic activity for G H 67 enzyme. The N-terminal amino acid sequence of α-glucuronidase by S.commune did not match any sequence for the enzymes grouped in the new family.

Formagan hos detta nya a-glukuronidasenzym att avgrena glukuronxylan tros inverka pa de fysiokemiska egenskaperna hos polysackariden. Deacetylering av acetylglukuronxylan eller avlagsnandet av sidokedjor hos a-L-arabinofuranosyl i arabinoxylan foreslas minska losligheten hos polysackariderna och eventuellt resultera i utfallningen av avgrenade polymerer. Behandling av vaxtbiomassa med anvandning av det nya a-glukuronidasen- zymet som beskrivits har, forelas minska forlusten av glukuronxylan i kokningen av vatskor som skapas under pappersframstallning och maximera bevarandet av glukuronxylan i fibermatrisen. The ability of this new α-glucuronidase enzyme to branch off glucuronxylan is believed to affect the physicochemical properties of the polysaccharide. Deacetylation of acetylglucuronexylan or the removal of side chains of α-L-arabinofuranosyl in arabinoxylan is suggested to reduce the looseness of the polysaccharides and possibly result in the precipitation of branched polymers. Treatment of plant biomass using the new α-glucuronidase enzyme described has been proposed to reduce the loss of glucuronxylan in the boiling of liquids created during papermaking and maximize the preservation of glucuronxylan in the fiber matrix.

Avlagsnandet av metylglukuronsyra och glukuronsyra fran glukuronxylan forvantas skapa kompositioner som har anvandbara appliceringar i pappers- och massaindustrin och det farmaceutiska omradet. Okade mangder glukuronxylan i pappersframstallningen bidrar inte enbart till bevarande av vaxtbiomassa i papperstillverkningsprocesser, utan kan aven ge unika egenskaper i pappersstyrka, pappersbelaggning och bevarande av tryckfarg. Aterutfallningen av glukuroxylan kan anvandas i det farmaceutiska omradet for belaggning av mediciner for att Oka deras lagringsformaga och underlatta vid langsam frisattning av medicinska foreningar. Hydrolysen av glukuronxylan genom synergistiska aktiviteter hos a-glukuronidas tillsammans med p-xylanaser och 13-xylosidaser kan frisatta fermenterbara sockerarter Iran glukuronxylan for ombildning till handelsvaror, sasom etanol, laktat och andra finkemikalier. 19 537 4 EXEMPEL 2 Material och metoder Statistisk analys Om inte annat anges utfordes prov trefaldigt. Analys av varians (ANOVA) inkluderande provmedel och standardavvikelser utfordes med anvandning av Microsoft Excel och Statistica 2007. The removal of methyl glucuronic acid and glucuronic acid from glucuronxylan is expected to create compositions that have useful applications in the paper and pulp industry and the pharmaceutical field. Increased amounts of glucuronxylan in papermaking not only contribute to the conservation of plant biomass in papermaking processes, but can also provide unique properties in paper strength, paper coating and ink retention. The re-precipitation of glucuroxylan can be used in the pharmaceutical field for coating drugs to increase their storage capacity and facilitate the slow release of medical compounds. The hydrolysis of glucuronxylan by synergistic activities of α-glucuronidase together with β-xylanases and 13-xylosidases can release fermentable sugars Iran glucuronxylan for conversion to commercial products, such as ethanol, lactate and other fine chemicals. 19 537 4 EXAMPLE 2 Materials and methods Statistical analysis Unless otherwise stated, tests are challenged three times. Analysis of variance (ANOVA) including test means and standard deviations is challenged using Microsoft Excel and Statistica 2007.

Optimering av xylanextraktion for analys av a-glukuronidasaktivitet Selektiviteten och effektiviteten hos de tv5 milda alkalixylanextraktionsmetoderna som lanades fran Hoije et al. [2005, Carbohydr. Polym. 61:266-275] och De Lopez et al. [1996, Biomass and Bioenergy, 10:(4):201-211] utvarderades for potentiell anvandning i integrerad produktion av vasentligen rena xylanbiopolymerer och massaframstallning fran r5varan som i allmanhet finns i Sydafrika. Utvarderingen baserades pa fern faktorer enligt foljande: (1) xylanextraktionseffektivitet, (2) polymerisationsgrad och substituering, (3) kemisk komposition for det extraherade xylanet, (4) renhet for det extraherade xylanet, och (5) den strukturella integriteten och kemiska kompositionen for r5materialet efter xylanextraktion. En sammanfattning av xylansubstraten som anvands for utvardering av enzymatisk substratspecificitet och grad av avlagsnande av xylansidokedjor visas i figur 6. Optimization of xylane extraction for analysis of α-glucuronidase activity The selectivity and efficiency of the mild alkalixylane extraction methods borrowed from Hoije et al. [2005, Carbohydr. Polym. 61: 266-275] and De Lopez et al. [1996, Biomass and Bioenergy, 10: (4): 201-211] were evaluated for potential use in the integrated production of substantially pure xylan biopolymers and pulp production from the raw material commonly found in South Africa. The evaluation was based on four factors as follows: (1) xylane extraction efficiency, (2) degree of polymerization and substitution, (3) chemical composition of the extracted xylan, (4) purity of the extracted xylan, and (5) the structural integrity and chemical composition of r5material after xylane extraction. A summary of the xylan substrates used to evaluate enzymatic substrate specificity and degree of removal of xylan side chains is shown in Figure 6.

Ramaterialbestamning Ravaran som a nva ndes inkluderar Eucalyptus (Eucalyptus grandis), tall (Pinus patula), jattebambu (Bambusa balcooa) och sockerror (Saccharum officinarum L) bagassee. Flis av E.grandis tillhandaholls av "The Transvaal Wattle Cooperatives" fr5n Piet Retif, Mpuma- langaprovinsen, medan P.patu/a-traden skordades fr5n Stellenbosch universitets skogsod- lingar i Western Cape-provinsen i Sydafrika. Jattebambustammar (plantor som var 1,5 5r) tillhandaholls fran fardigvuxna odlingar placerade i Paarl i Western Cape-provinsen i Sydafrika. Bagasse var en biprodukt fr5n sockertillverkningsindustrin som donerades av TBS Company placerat i Nkomaziregionen i syclostra Lewveld i Mpumalangaprovinsen i Sydaf- rika. Xylan fran havrespalt (Sigma), bjorkxylan (Roth) och mild alkaliextraherad H202-blekt 537 4 bagassexylan (donerat av Prof. A.M.F. Milagres, University of Sao Paulo, Brasilien) anvandes som referensxylaner. Raw material designation The raw material used includes Eucalyptus (Eucalyptus grandis), pine (Pinus patula), jatte bamboo (Bambusa balcooa) and sugar cane (Saccharum officinarum L) bagassee. Wood chips from E.grandis were supplied by "The Transvaal Wattle Cooperatives" from Piet Retif, Mpumalanga Province, while the P.patu / a trade was harvested from Stellenbosch University's forest plantations in the Western Cape province of South Africa. Jatte bamboo stems (plants that were 1.5 5r) were supplied from mature plantations located in Paarl in the Western Cape province of South Africa. Bagasse was a by-product of the sugar manufacturing industry donated by TBS Company located in the Nkomazi region of the Cyclostra Lewveld in the province of Mpumalanga in South Africa. Xylan from oat clef (Sigma), birch xylan (Roth) and mild alkali-extracted H 2 O 2 bleached 537 4 bagassexylan (donated by Prof. A.M.F. Milagres, University of Sao Paulo, Brazil) were used as reference xylans.

Material frAn rAvaran bereddes for analys enligt TAPPI-testmetoderna (TAPP!, T264 cm-97 (2002-2003)) och NREL Laboratory Analyctial Procedures (NREL LAP) [Hammes et al., 2005, Laboratory Analytical Procedure (LAP), version 2005, NREL Biomass Program, National Bioenergy Center]. Flis harledda fr5n de olika r5varorna torkades till ett fuktinnehAll (mc) av z: 10% och konditionerades darefter till en relativ fuktighet av 55% vid 20°C under minst 24 h innan ytterligare storleksreducering. Flisen storleksreducerades successivt genom Condux hammarkvarn, en Retch och en Wiley laboratoriekvarn och fraktionerades genom siktning med anvandning av staplingsbara siktar (ASTM) av 850 pm/20 maskstorlek, 425 pm/40 maskstorlek och 250 pm/60 maskstorlek med lock och v5gsk51. Partiklarna som passerade genom 425 pm/40 maskstorlek men som kvarholls p5 en 250 pm/60 maskstorlek samlades in for kemisk kompositionsanalys och de som kvarholls p5 425 pm/40 mask- storlek anvandes for xylanextraktion. Fuktinneh5llet i r5varan bestamdes med anvandning av National Renewable energy Laboratory Analytical Procedura (NREL LAP) for bestamning av total mangd fast massa i biomassan [Hammes et al., 2005, Laboratory Analytical Procedure (LAP), NREL Biomass Program, National Bioenergy Center]. Det procentuella fuktinnehallet beraknades som en procentandel av ugnstorr (o.d.) vikt for biomassa. Materials from the raw material were prepared for analysis according to the TAPPI test methods (TAPP !, T264 cm-97 (2002-2003)) and NREL Laboratory Analytical Procedures (NREL LAP) [Hammes et al., 2005, Laboratory Analytical Procedure (LAP), version 2005 , NREL Biomass Program, National Bioenergy Center]. Chips derived from the various raw materials were dried to a moisture content (mc) of z: 10% and then conditioned to a relative humidity of 55% at 20 ° C for at least 24 hours before further size reduction. The chips were successively reduced in size by Condux hammer mill, a Retch and a Wiley laboratory mill and fractionated by sieving using stackable sieves (ASTM) of 850 μm / 20 mesh size, 425 pm / 40 mesh size and 250 pm / 60 mesh size with lid and v5gsk51. The particles that passed through 425 μm / 40 mesh size but were retained p5 a 250 μm / 60 mesh size were collected for chemical composition analysis and those retained p5 425 μm / 40 mesh size were used for xylane extraction. The moisture content of the raw material was determined using the National Renewable Energy Laboratory Analytical Procedure (NREL LAP) to determine the total amount of solid mass in the biomass [Hammes et al., 2005, Laboratory Analytical Procedure (LAP), NREL Biomass Program, National Bioenergy Center]. The percentage moisture content was calculated as a percentage of kiln dry (o.d.) weight for biomass.

Extraktamnen bestamdes i tv5 sekventiella steg, startande med cyklohexan/etanol (2:1) foljt av varmvattenextraktion, med anvandning av soxhlet-anordning. Bada extraktionerna utf6rdes enligt TAPPI testmetod T264 om-88 och NREL LAP-metoder [Suiter et al., 2005, Analytical Procedure (LAP), version 2006, National Biomass Program, National Bioenergy Center]. Extraktamnena kvantifierades p5 en fuktfri bas. The extracts were determined in two sequential steps, starting with cyclohexane / ethanol (2: 1) followed by hot water extraction, using a soxhlet apparatus. Both extractions were performed according to TAPPI test method T264 om-88 and NREL LAP methods [Suiter et al., 2005, Analytical Procedure (LAP), version 2006, National Biomass Program, National Bioenergy Center]. The extracts were quantified on a moisture-free base.

Innehall av Klasonlignin (syraoloslig) i ravaran bestamdes foljande en NREL LAP-metod f6r bestamning av strukturella kolhydrater och lignin i biomassa [Suiter et al., 2005, Analytical Procedure (LAP), version 2006, National Biomass Program, National Bioenergy Center] och TAPP! testprocedurer (1249 cm-85). Klasonligninet beraknades p5 ugnstorr massa. 21 537 4 Innealet av Seifertcellulosa bestarndes enligt de analytiska metoder som sammanfattats av Browning [1967, Methods of wood chemistry, Vol. II Interscience publishers] och Fengel och Wegner [1989, Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Tyskland]. Material fritt fr5n extraktamnen med en vikt av 1,1 g ugnstorrt behandlades med en blandning av acetylaceton (6 ml), dioxin (2 ml) och 32% HCI (2 ml) i en rundkolv foljt av inkubation i ett kokande vattenbad under 30 min. Behandlade prov overfordes kvantitativt till forvagda sinterglasdeglar for vakuumfiltrering och tvattning. Aterstoden tvattades successivt med 100 ml vardera av metanol cyklodioxan, varmvatten (80°C), metanol och dietyleter och torkades darefter vid 105°C under 2h. Inneh5llet av Seifertcel- lulosa definierades som den torra vikten av den torkade Aterstoden presenterad som procentandel av material fritt frAn extraktamnen. The content of Clason lignin (acid-insoluble) in the raw material was determined following a NREL LAP method for the determination of structural carbohydrates and lignin in biomass [Suiter et al., 2005, Analytical Procedure (LAP), version 2006, National Biomass Program, National Bioenergy Center] and TAPP! test procedures (1249 cm-85). The clasonic lignin was calculated on an oven-dry mass. 21 537 4 The inneal of Seifertcellulosa was stocked according to the analytical methods summarized by Browning [1967, Methods of wood chemistry, Vol. II Interscience publishers] and Fengel and Wegner [1989, Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany]. Materials free from the extracts weighing 1.1 g were oven dried and treated with a mixture of acetylacetone (6 ml), dioxin (2 ml) and 32% HCl (2 ml) in a round bottom flask followed by incubation in a boiling water bath for 30 minutes. . Treated samples were quantitatively transferred to pretreated sintered glass crucibles for vacuum filtration and washing. The residue was washed successively with 100 ml each of methanol cyclodioxane, hot water (80 ° C), methanol and diethyl ether and then dried at 105 ° C for 2 hours. The content of Seifertcellulose was defined as the dry weight of the dried Aterstoden presented as a percentage of material free from the extracts.

Monomer sockerkomposition av syrahydrolysatet analyserades efter lagring vid -20°C under minst 24 h. Analysen utfordes i anjonutbyteskromatografi med hog prestanda kopplat till pulserande amperometrisk detektering (HPAEC-PAD, Dionex) utrustad med en gradientpump GP50, en Carbopac PA 10-kolonn (4 mm x 250 mm) och elektrokemisk detektor (ED40). Datauppfoljning och analys utfordes med anvandning av PEAKNET mjukvarupaket. Elueringsmedlen var 250 mM NaOH och Milli-Q-vatten i forhAllandet 1,5:98,5 vid en flodeshastighet av 1m1Natriumacetat (1M Na0Ac) elueringsmedel anvandes d5 sura sockerarter (glukuron/metylglukuronsyra) analyserades. Proven filtrera- des p5 filter med 0,22 tim porstorlek innan analys p5 HPAEC-PAD. Kvantiteten av sockerarterna bestamdes fran standardkurva av respektive analytisk grad av socker (arabinos, rhaminos, galaktos, glukos, mannos, xylos och glukuronsyra). Mangden socker presenterades som en procentandel relativt den ugnstorra (o.d.) vikten for substratet. Pentosanin- neh5llet i r5varan bestamdes enligt TAPP! standardmetoder for matning av pentosan i tra och massa (T223 cm-84). XylaninnehAllet beraknades fr5n en standardkurva av ugnstorr biomassa [Xyl = xyl x cf, dar: Xyl = xylaninnehall (mg), xyl = xylosinnehall (mg), cf = korrigeringsfaktor (0,88)]. 22 537 4 Askinneh5llet bestamdes genom en termogravimetrisk metod. Lignocellulosaprov (0,5 g) forbrandes till aska i en Muffleugn vid 575 ± 25°C under 4 h eller till dess att en konstant vikt erholls. AskinnehAll beraknades som en procentandel av initial ugnstorr biomassa. Monomer sugar composition of the acid hydrolyzate was analyzed after storage at -20 ° C for at least 24 hours. The analysis is challenged in high performance anion exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD, Dionex) equipped with a GP50 gradient pump, a Carbopac PA 10 column mm x 250 mm) and electrochemical detector (ED40). Data follow-up and analysis are challenged with the use of PEAKNET software packages. The eluents were 250 mM NaOH and Milli-Q water in a ratio of 1.5: 98.5 at a flow rate of 1 ml of sodium acetate (1M NaOAc) eluent using acidic sugars (glucuronide / methylglucuronic acid) was analyzed. The samples were filtered p5 filter with 0.22 h pore size before analysis p5 HPAEC-PAD. The quantity of sugars was determined from the standard curve of the respective analytical grade of sugar (arabinose, rhaminos, galactose, glucose, mannose, xylose and glucuronic acid). The amount of sugar was presented as a percentage relative to the oven dry (o.d.) weight of the substrate. The pentosanine content of the raw material was determined according to TAPP! standard methods for feeding the pentosan in tra and pulp (T223 cm-84). The xylan content was calculated from a standard curve of kiln dry biomass [Xyl = xyl x cf, where: Xyl = xylan content (mg), xyl = xylose content (mg), cf = correction factor (0.88)]. The ash content was determined by a thermogravimetric method. Lignocellulose sample (0.5 g) is incinerated to ash in a muffle furnace at 575 ± 25 ° C for 4 hours or until a constant weight is obtained. Ash content was calculated as a percentage of initial kiln-dry biomass.

Xylanextraktion och karakterisering Extraktion av xylan fran ravaran utfordes med anvandning av tva milda alkaliextraktionsmetoder beskrivna i sektion 2.9 ovan. Hoije-metoden involverade xylanextraktion efter ultrarening med anvandning av membrandialys (MWCO 12-14 kDa) medan Lopezmetoden involverade fraktionering av hydrolysaten genom etanolutfallning. I b5da metoderna ut- fordes xylanextraktion utan tidigare avlagsnande av losningsmedel och varmvattenex- traktamnen. Extrakt koncentrerades innan ultrafiltrering eller fraktionering till en tredjedel av den initiala volymen med anvandning av en roterande for5ngare (Rotavapor Buchi R-124, Schweiz) under vakuum vid 40°C. Extraktionseffektiviteten definierades som utbytet av xylan per teoretiskt innehall av pentosaner i materialet. Lopezmetoden begransades till extraktion av xylan endast fr5n E.grandis och bagasse. Xylane extraction and characterization Extraction of xylan from the raw material is challenged using two mild alkali extraction methods described in section 2.9 above. The Hoije method involved xylane extraction after ultra-purification using membrane dialysis (MWCO 12-14 kDa) while the Lopez method involved fractionation of the hydrolysates by ethanol precipitation. In both methods, xylane extraction was performed without prior removal of solvents and hot water extracts. Extracts were concentrated before ultrafiltration or fractionation to one third of the initial volume using a rotary evaporator (Rotavapor Buchi R-124, Switzerland) under vacuum at 40 ° C. The extraction efficiency was defined as the yield of xylan per theoretical content of pentosanes in the material. The Lopez method was restricted to extraction of xylan only from E.grandis and bagasse.

Strukturen och den kemiska sammansattningen av rAvaran fore xylanextraktion analyserades for och efter xylanextraktion genom fasttillstAnd 13C-karnmagnetisk resonans tvar- polarisering/MaGIcAl vinkelrotation (13C-NMR CP/MAS) p5 en Varian VNMRS 500 vid diameter fastfast-NMR-spektrometer med en driftfrekvens av 125 MHz for 1-3C, med anvandning av en 6 mm T3-sondtemperatur av 25°C. Torra pray laddades i 6 mm zirkoniumoxidrotorer for analys. Spektrum samlades in med anvandning av tvarpolarisering och rotation i magisk vinkel (magic angle spinning) (CP/MAS). Rotationshastigheten var .5 kHz, proton 90°-pulsen var 5 [is, kontaktpulsen 1500 is och fordrojningen mellan repetitioner S. Kemiska skift bestamdes relativt TMS genom att satta nedstromstoppen for en extern diamantreferens till 38,3 ppm. Kolresonanserna i fastfas-NMR-spektrum tilldelades enligt Larsson et al. [1999, Solid State Nuclear Magnetic Resonance 15:31-40], Renard och Jarvis [1999, Plant Physiology 119:1315-1322], Lahaye et al. [2003, Carbohydrate Research 338:1559-1569]; Atalla och Isogai [2005, Recent developments in spectroscopic and chemical characterisation of cellulose, In Dumitriu, S (red) Marcel Dekker, New York, sid. 123-157], Virkki et al [2005, Carbohydrate Polymers 59:357-366], Geng et al. [2006, 23 537 4 International Journal of Polymer Characterization 11: 209-226] och Oliviera et al. [2008, Chemical composition and lignin structural features of banana plant leaf sheath and rachis, In Hu, T.Q.Q. (red) kapitel 10:171-188]. The structure and chemical composition of the raw material before xylane extraction were analyzed before and after xylane extraction by solid state 13C nuclear magnetic resonance cross-polarization / MaGIcAl angular rotation (13C-NMR CP / MAS) p5 a Varian VNMRS 500 at diameter fixed frequency NMR frequency 125 MHz for 1-3C, using a 6 mm T3 probe temperature of 25 ° C. Dry pray was loaded into 6 mm zirconia rotors for analysis. Spectrum was collected using TV polarization and magic angle spinning (CP / MAS). The rotation speed was .5 kHz, the proton 90 ° pulse was 5 [ice, the contact pulse 1500 ice and the delay between repetitions S. Chemical shifts were determined relative to TMS by setting the downstream peak for an external diamond reference to 38.3 ppm. The carbon resonances in the solid phase NMR spectrum were assigned according to Larsson et al. [1999, Solid State Nuclear Magnetic Resonance 15: 31-40], Renard and Jarvis [1999, Plant Physiology 119: 1315-1322], Lahaye et al. [2003, Carbohydrate Research 338: 1559-1569]; Atalla and Isogai [2005, Recent developments in spectroscopic and chemical characterization of cellulose, In Dumitriu, S (ed) Marcel Dekker, New York, p. 123-157], Virkki et al [2005, Carbohydrate Polymers 59: 357-366], Geng et al. [2006, 23,537 International Journal of Polymer Characterization 11: 209-226] and Oliviera et al. [2008, Chemical composition and lignin structural features of banana plant leaf sheath and rachis, In Hu, T.Q.Q. (ed) chapter 10: 171-188].

De extraherade xylanproven analyserades med fastfas1-3C-karnmagnetisk resonans tvarpo- larisering/MaGIcAl vinkelrotation (13C-NMR CP/MAS) och vatske-13C och1H-NMR och Fourier Transform Infrared (FTIR) spektroskopi. Xylanproven utsattes for en 13C- och en 11-INMR-korning antingen pa en Varian !nova 400 eller 600 NMR-spektrometer. 1-3C-NMRspektrum samlades in med anvandning av en 1,3s foljningstid och 1s pulsfordrojning vid °C. 13C-spektrat samlades in over natt (minimum 19000 scanningar).1-1-1-NMR-spektra samlades in efter filtrering av provet med en 4,8 s foljningstid vid 50°C. 'I-1-spektrum samlades in med 64 scanningar och for-mattnad av HDO-toppar. 13C- och1H-NMR-spektrum tolkades enligt inriktning av karakteristiska signaler for relaterad ravara presenterat av Ebringerova et al. [1988, Carbohydrate Polymers 37:231-230], Vignon och Gey [1998, Carbohydrate Research 307: 107-111], Renard och Jarvis [1999, Plant Physiology 119: 1315-1322], Teleman et al. [2002, Carbohydrate Research 337: 373-377], Grondahl etal. [2003, Carbohydr. Polym. 53: 359-366], Lahaye et al. [2003, Carbohydrate Research 338: 1559-1569], Sun et al. [2004, Carbohydrate Research 339: 291-300; Polym. Degrad. and Stability 84: 331-337; Carbohydrate Polymers 56: 195-204], Sims och Newman [2006, Carbohydrate Polymers 63: 379-384]; Habibi och Vignon [2005, Carbohydrate Research 340: 1431-1436], Pinto et al. [2005, Carbohydrate Polymers 60: 489-497], Geng etal. [2006, International Journal of Polymer Characterization 11: 209-226], Maunu [2008. 13C CPMAS NMR Studies of wood, cellulose fibers, and derivatives. In Hu, T.O. (red)], Shao et al. [2008, Wood Science Technology 42: 439-451]. The extracted xylan samples were analyzed by solid phase 1-3 C nuclear magnetic resonance transpolarization / MaGIcAl angular rotation (13 C-NMR CP / MAS) and liquid 13 C and 1 H-NMR and Fourier Transform Infrared (FTIR) spectroscopy. The xylan samples were subjected to a 13 C and an 11 INMR grain on either a Variable 400 or 600 NMR spectrometer. The 13 C-NMR spectrum was collected using a 1.3s tracking time and a 1s pulse displacement at ° C. 13 C spectra were collected overnight (minimum 19000 scans). 1-1-1 NMR spectra were collected after filtering the sample with a 4.8 s tracking time at 50 ° C. I-1 spectrum was collected with 64 scans and pre-fed HDO peaks. The 13 C and 1 H NMR spectra were interpreted according to the orientation of characteristic signals for related raw material presented by Ebringerova et al. [1988, Carbohydrate Polymers 37: 231-230], Vignon and Gey [1998, Carbohydrate Research 307: 107-111], Renard and Jarvis [1999, Plant Physiology 119: 1315-1322], Teleman et al. [2002, Carbohydrate Research 337: 373-377], Grondahl et al. [2003, Carbohydr. Polym. 53: 359-366], Lahaye et al. [2003, Carbohydrate Research 338: 1559-1569], Sun et al. [2004, Carbohydrate Research 339: 291-300; Polym. Degrad. and Stability 84: 331-337; Carbohydrate Polymers 56: 195-204], Sims and Newman [2006, Carbohydrate Polymers 63: 379-384]; Habibi and Vignon [2005, Carbohydrate Research 340: 1431-1436], Pinto et al. [2005, Carbohydrate Polymers 60: 489-497], Geng et al. [2006, International Journal of Polymer Characterization 11: 209-226], Maunu [2008. 13C CPMAS NMR Studies of wood, cellulose fibers, and derivatives. In Hu, T.O. (ed)], Shao et al. [2008, Wood Science Technology 42: 439-451].

FTIR-spektroskopi, torra fasta prov av xylanet registrerades pa en Nexus 670-spektrometer fran Thermo Nicolet med Smart Golden Gate ATR mattillbehor installerat. Detta enkelreflekterande mattillbehor uppvisar en diamant-ATR-kristall bunden till en volframkarbidsupport utrustad med ZnSe-fokuseringslinser. Spektret samlades in Over spektralomradet 4000 till 650 cm 1 med anvandning av 16 scanningar vid 6 cm 1 upplosning och kalibrerades mot en tidigare registrerad bakgrund. Thermo Nicolets OMNIC® mjukvara anvandes for att 24 537 4 samla in och bearbeta det infraroda spektret. Spektrumsignaler for FTIR tolkades enligt kannetecknande band presenterade i Fengel och Wegener (1989); Sun et al (2004); Xu et al (2000), Sims och Newman (2006). FTIR spectroscopy, dry solid samples of the xylan were recorded on a Nexus 670 spectrometer from Thermo Nicolet with Smart Golden Gate ATR food accessories installed. This single reflective food accessory features a diamond ATR crystal bonded to a tungsten carbide support equipped with ZnSe focusing lenses. The spectra were collected over the spectral range 4000 to 650 cm 1 using 16 scans at 6 cm 1 resolution and calibrated against a previously recorded background. Thermo Nicolets OMNIC® software was used to collect and process the infrared spectrum. Spectrum signals for FTIR were interpreted according to pitcher bands presented in Fengel and Wegener (1989); Sun et al (2004); Xu et al (2000), Sims and Newman (2006).

Polymerisationsgraden for de extraherade xylanfraktionerna utvarderades p5 HPAEC (Dionex) med anvandning aven CarbopacTM PA100 kolonn (4 x 25 mm) och en vaktkolonn, och elektrokemisk detektor (ED40) for pulserad amfoterisk detektering (PAD). PA 100- kolonnen separerar monomerer och oligomerer upp till en polymerisationsgrad (DP) 10 vilket vanligtvis elueras inom en retentionstid av 25 min. HPAEC PA100-kolonner baserar sin separation p5 substituteringsgraden, d.v.s. ju langre retentionstid desto hogre DP eller substitueringsgrad (Combined CarboPac manual, sid 52-56). Prov (10 ill) injicerades till kolonnen och eluerades med heliumavgasad 0,25M NaOH, Milli-O. H20 och 1M Na0Ac vid en flodeshastighet av 1 mlmin-1. Elueringsprofiler for proven refererade till elueringsprofiler far monomera sockerarter (arabinos, raminos, galaktos, glukos, xylos och mannos) och polymert xylan (xylan fr5n bjork och havrespalt) och H202-blekt bagasse. Prov med lagre toppintesitet < 20 nC eller inga toppar eluerade inom retentionstiden om 25 min ans5gs polymera med DP>10 sockerenheter. The degree of polymerization of the extracted xylan fractions was evaluated on HPAEC (Dionex) using a CarbopacTM PA100 column (4 x 25 mm) and a guard column, and an electrochemical detector (ED40) for pulsed amphoteric detection (PAD). The PA 100 column separates monomers and oligomers up to a degree of polymerization (DP) which is usually eluted within a retention time of 25 minutes. HPAEC PA100 columns base their separation on the degree of substitution, i.e. the longer the retention time, the higher the DP or degree of substitution (Combined CarboPac manual, pages 52-56). Samples (10 μl) were injected into the column and eluted with helium degassed 0.25M NaOH, Milli-O. H 2 O and 1M NaOAc at a flow rate of 1 mlmin-1. Elution profiles for the samples referred to elution profiles for monomeric sugars (arabinose, raminose, galactose, glucose, xylose and mannose) and polymeric xylan (xylan from birch and oat column) and H2 O2-bleached bagasse. Samples with lower peak intensity <20 nC or no peaks eluted within the retention time of 25 minutes were considered polymeric with DP> 10 sugar units.

Kompositionen av neutrala sockerarter i extraherade xylanprov bestamdes pa HPAEC-PAD (Dionex) p5 Carbopac PA 10-kolonn efter mild syrahydrolys beskriven av Yang et al. [2005, LWT 38:677-682]. Prov (0,1 g) placerades i Schott-flaskor (50 ml) till vilka 1 ml 72% H202 tillsattes. Blandningen inkuberades vid 30°C i ett vattenbad under 1 h. Avjoniserat vatten (30 ml) tillsattes efter autoklavering vid 121°C under 1 h. Proven kyldes till rumstemperatur innan filtrering. Filterkakan torkades vid 105°C for bestamning av 5terst5ende Klason- lignin. Den vatskeformiga fraktionen filtrerades genom ett filter med porstorleken 0,22 p.m innan den utsattes for HPAEC-PAD (Dionex) p5 Carbopac PA 10-kolonn. Monomera sockerarter kvantifierades fr5n standardgrafer av analytisk grad (arabinos, raminos, galaktos, glukos, xylos och mannos). Det totala inneh5llet av neutrala sockerarter i proven presenterades jamfort med den initiala ugnstorra xylanmassan. 537 4 Bestamning av uronsyrakomposition InnehAll av uronsyrakomposition i xylanproven och rAvaran kvantifierades med anvand- ning av kromatografiska och kolorimetriska metoder.I den kromatografiska metoden anvandes en tvAstegs syrahydrolysmetod fr5n Prof. A.M.F. Milagres vid University of So Paulo i Brasilien. Xylanprov (150 mg ugnstorr mass) hydrolyserades i 0,75 ml av 72% (vikt/ vikt) H2SO4 i McCartney-flaskor. Blandningen inkuberades vid 45°C under 7 min i ett vattenbad efter vilket 22,5 ml destillerat vatten tillsattes. Flaskorna tacktes lost och autoklaverades vid 121°C under 30 min. Efter kylning till rumstemperatur separerades den vatskeformiga fraktionen genom vakuumfiltrering genom glasmikrofiberfilter (GF/A-Whatman). The composition of neutral sugars in extracted xylan samples was determined on HPAEC-PAD (Dionex) p5 Carbopac PA 10 column after mild acid hydrolysis described by Yang et al. [2005, LWT 38: 677-682]. Samples (0.1 g) were placed in Schott flasks (50 ml) to which 1 ml of 72% H 2 O 2 was added. The mixture was incubated at 30 ° C in a water bath for 1 hour. Deionized water (30 ml) was added after autoclaving at 121 ° C for 1 hour. The samples were cooled to room temperature before filtration. The filter cake was dried at 105 ° C to determine the residual Clasonic lignin. The liquid fraction was filtered through a 0.22 μm pore filter before being subjected to the HPAEC-PAD (Dionex) p5 Carbopac PA 10 column. Monomeric sugars were quantified from standard graphs of analytical grade (arabinose, raminose, galactose, glucose, xylose and mannose). The total content of neutral sugars in the samples was presented in comparison with the initial oven-sized xylan mass. 537 4 Determination of uronic acid composition The content of uronic acid composition in the xylan samples and the raw material was quantified using chromatographic and colorimetric methods. The chromatographic method used a two-step acid hydrolysis method from Prof. A.M.F. Milagres at the University of So Paulo in Brazil. Xylan sample (150 mg oven dry mass) was hydrolyzed in 0.75 ml of 72% (w / w) H 2 SO 4 in McCartney flasks. The mixture was incubated at 45 ° C for 7 minutes in a water bath after which 22.5 ml of distilled water was added. The bottles were unloaded and autoclaved at 121 ° C for 30 minutes. After cooling to room temperature, the liquid fraction was separated by vacuum filtration through a glass microfiber filter (GF / A-Whatman).

Den vatskeformiga fraktionen filtrerades ytterligare genom ett 0,22 lim filter och Wills fruset over natt vid -20°C innan analys avseende glukuronsyrainneh511 med anvandning av HPAEC-PAD (Dionex) p5 Carbopac PA 10-kolonn. Kvantifiering av uronsyra baserades p5 standardgrafer for glukuronsyra (Sigma). Uronsyraforluster under autoklavering togs det hansyn till genom autoklaverad glukuronsyra vid 121°C under 1 h i 4% H2504.1 den kalori- metriska metoden anvandes karbazol-svavelsyraanalys frAn Li et al. [2007, Carbohydr. Res. 342 (11):1442-1449]. Total uronsyrakoncentration bestamdes frAn standardkurvgrafer for D-galakturonsyra (Merck) och i !Ada metoderna presenterades uronsyrainnehAll som procentandel av den initiala xylanmangden. The liquid fraction was further filtered through a 0.22 μm filter and Wills frozen overnight at -20 ° C before analysis for glucuronic acid content 511 using HPAEC-PAD (Dionex) p5 Carbopac PA 10 column. Quantification of uronic acid was based on standard graphs for glucuronic acid (Sigma). Uric acid losses during autoclaving were taken into account by autoclaved glucuronic acid at 121 ° C for 1 hour in 4% H2504.1. The calorimetric method used carbazole-sulfuric acid analysis from Li et al. [2007, Carbohydr. Res. 342 (11): 1442-1449]. Total uric acid concentration was determined from standard curve graphs for D-galacturonic acid (Merck) and in the following methods uronic acid content was presented as a percentage of the initial xylan amount.

Avlagsning av xylansidokedjor Graden av selektivt avlagsnande av sidogrupper p5 4-0-metylglukuronsyra (4-0-MeGIcA) genom a-D-glukuronidas hos Schizophyllum commune (a-glu) bestamdes med anvandning av xylan som harletts frAn Eucalyptus grandis, Pinus patula, Bambusa balcooa och bagassee frAn Sydafrika. a-glu frAn S.Commune utvarderades for selektivt avlagsnande av 4-0-MeGIcA-sidokedjor fran xylan harlett fran kallor for lovtra, barrtra och gras (inkluderande spannmal) med mAlet att utveckla en kontrollerad enzymatisk teknologi for diversifiering av funktionella xylanegenskaper. Effekterna p5 hydrolystid, temperatur och specifik dosering av enzym- xylan p5 avlagsnandet av 4-0-MedIcA-sidokedjor, och efterfoljande modifiering av viskosi- tet, loslighet, utfallning och aggregering av xylan understiktes darfor. Xylanprov ersatta 26 537 4 med sidokedjor for arabinos och/eller 4-0-metylglukuronsyra (4-0-MeGIcA) (Figur 7), xylan frAn havrespalt (Sigma) och bjorkxylan (Roth) utnyttjades som modellxylan. Xylanlosning (1% vikt/volym) for varje material bereddes i avjoniserat vatten (dH20). Xylanet som uppvisade begransad loslighet i vatten bereddes forst genom upplosning i etanol och efterfoljande varmning enligt de Wet et al. [2008, Appl. Microbiol. Biotechnol. 77:975- 983]. Xylanlosningar tillverkades i bulk och lagrades i ampuller vid -20°C. Xylan fran havrespalt (Sigma) med en sockerkomposition av 10:15:75 (arabinos:glukos:xylos) och bjorkxylan (Roth) med sockerkomposition av 8,3:1,4:89,3 (4-0-MeGIcA:glukos och xylos) [Kormelik och Voragen, 1993, Carbohydr. Res. 249:345-353] tillverkad p5 liknande satt anvan- des som modellxylan. Enzymet som anvandes var a-D-glukuronidas (a-glu) med specifik aktivitet = 300 nKat me renad ran Schizophyllum commune av vildtyp (VTT-D-88361-ATCC 38548 (donerad av Prof. Matti Siika-aho vid VTT Biotechnology Institute i Finland)) for selektivt avlagsnande av 4-0-metyl-D-glukuronsyra/D-glukuronsyrasidogrupper. Enzymalikvoterna lagrades vid 4°C. Deposition of xylan side chains The degree of selective deposition of side groups p5 4-0-methylglucuronic acid (4-0-MeGIcA) by αD-glucuronidase in Schizophyllum commune (a-glu) was determined using xylan harletted from Eucalyptus balis, Pinucalyptus grandis, and bagassee from South Africa. a-glu from S.Commune was evaluated for selective removal of 4-0-MeGIcA side chains from xylan harlett from calves for lovtra, conifer and grass (including grain) with the aim of developing a controlled enzymatic technology for diversification of functional xylan properties. The effects on hydrolysis time, temperature and specific dosage of enzyme xylan on the removal of 4-O-MedIcA side chains, and subsequent modification of viscosity, solubility, precipitation and aggregation of xylan were therefore underestimated. Xylan samples replaced with side chains for arabinose and / or 4-O-methylglucuronic acid (4-O-MeGIcA) (Figure 7), xylan from oat cleft (Sigma) and birch xylan (Roth) were used as model xylan. Xylan solution (1% w / v) for each material was prepared in deionized water (dH 2 O). The xylanate which showed limited solubility in water was first prepared by dissolving in ethanol and subsequent heating according to de Wet et al. [2008, Appl. Microbiol. Biotechnol. 77: 975-983]. Xylan solutions were made in bulk and stored in ampoules at -20 ° C. Xylan from oat column (Sigma) with a sugar composition of 10:15:75 (arabinose: glucose: xylose) and birch xylan (Roth) with sugar composition of 8.3: 1.4: 89.3 (4-0-MeGIcA: glucose and xylose) [Kormelik and Voragen, 1993, Carbohydr. Res. 249: 345-353] made p5 similarly used as model xylan. The enzyme used was α-D-glucuronidase (α-glu) with specific activity = 300 nKat with purified wild-type Schizophyllum commune (VTT-D-88361-ATCC 38548 (donated by Prof. Matti Siika-aho at VTT Biotechnology Institute in Finland) ) for selective removal of 4-O-methyl-D-glucuronic acid / D-glucuronic acid side groups. The enzyme aliquots were stored at 4 ° C.

En xylanlosning (1% vikt/volym) beredd fr5n 4-0-MeGIcA-substituerade substrat behandlades med a-glu (9000 nKat g-1) i 5 ml reaktionsvolymer bestAende av 2,5 ml av substratet och okades upp till 5 ml med 0,05M acetatbuffert, pH 4,8. Reaktionerna fortskred under 16 h vid 2C. A xylan solution (1% w / v) prepared from 4-O-MeGIcA-substituted substrates was treated with α-glu (9000 nKat g-1) in 5 ml reaction volumes consisting of 2.5 ml of the substrate and boiled up to 5 ml with 0.05M acetate buffer, pH 4.8. The reactions proceeded for 16 hours at 2C.

Sockerfrisattning frAn 4-0-MeGIcA-sidokedjor analyserades med anvandning av (HPAECPAD) pa Carbopac PA 10-kolonn eluerad med helium avgasad Mill-Q. H20, 250 mM NaOH och 1M Na0Ac (endast for sura sockerarter). G-glukuronsyra anvandes som standardsocker. Oloslighet, utfallning och aggregering av xylanhydrogeler bekraftades genom visuell inspektion (tagna fotografier) och kvantifierades genom att mata viskositeten med an- vandning av Rheometer (MCR501). Graden av xylanutfallning kvantifierades genom att bestamma restxylos i losning med anvandning av fenol-svavelanalys for totalt socker [Dubois et al., 1956, Annul. Chem. 28 (3):350-356]. Sugar release from 4-0 MeGIcA side chains was analyzed using (HPAECPAD) on Carbopac PA 10 column eluted with helium degassed Mill-Q. H 2 O, 250 mM NaOH and 1M NaOAc (acidic sugars only). G-glucuronic acid was used as the standard sugar. Insolubility, precipitation and aggregation of xylan hydrogels were confirmed by visual inspection (photographs taken) and quantified by feeding the viscosity using a Rheometer (MCR501). The degree of xylan precipitation was quantified by determining residual xylose in solution using phenol-sulfur analysis for total sugar [Dubois et al., 1956, Annul. Chem. 28 (3): 350-356].

Ett Box-Behnken statistiskt designat trefaktorexperiment med 3 centrala punkter som utgor totalt 15 korningar k6rdes tv5 g5nger: Statistica 7.0 mjukvaruprogram (StatSoft, Inc., 27 537 4 1984-2005) anvandes for design och analys med anvandning av responsytmetod (response surface method, RSM) s5som visas i figur 8. Regressions- och ANOVA-analyser utfordes for att bestamma storleken och signifikansen for individuella och interagerande effekter av hydrolysparametrarna p5 viskositeten. Optimala forh5llanden bestamdes med anvandning av onskvardhetsfunktionen. Responsytdiagram anpassades med ett andra gradens poly- nom enligt foljande: 2= 6o ÷ 61X1-I- 622X22 622X22 63X3 633X32 £ varvid: Z=viskositet (mPa.$), [30+ 131 13n = linjar regressionskoefficient, ,".••••• [jinn = kvadratisk regressionskoefficient, E= fel, och Xl, X2, x3= hydrolystid, temperatur och enzymxylanspecifik dos. A Box-Behnken statistically designed three-factor experiment with 3 central points totaling 15 grains was run twice: Statistica 7.0 software program (StatSoft, Inc., 27 537 4 1984-2005) was used for design and analysis using response surface method, RSM) as shown in Figure 8. Regression and ANOVA assays are challenged to determine the magnitude and significance of individual and interacting effects of the hydrolysis parameters on viscosity. Optimal conditions were determined using the adversity function. Response area diagrams were fitted with a second degree polynomial as follows: 2 = 6o ÷ 61X1-I- 622X22 622X22 63X3 633X32 £ whereby: Z = viscosity (mPa. $), [30+ 131 13n = lines regression coefficient,, ". •• ••• [jinn = quadratic regression coefficient, E = error, and X1, X2, x3 = hydrolysis time, temperature and enzyme xylan-specific dose.

Optimala tillstand for avlagsnande av sidokedja De optimala kombinationsniv5erna for hydrolysparametrar bestamdes: tid, temperatur och dosering av a-D-glukuronidas for avlagsnande av sidokedja fran 4-0 metylglukuron- syra. Optimal side chain deposition conditions The optimal combination levels for hydrolysis parameters were determined: time, temperature and dosage of α-D-glucuronidase to remove side chain from 4-0 methylglucuronic acid.

Effekten av xylansats, enzymsats, hydrolystid och temperatur, och deras interaktion p5 aglu-avlagsnande av sidokedjor frAn 4-0-MeGIcA fr5n havrespalt- och bjorkxylan, bestamdes med anvandning av responsytmetod (RSM). Tid, temperatur och enzymxylan specifik dosering utgjorde den oberoende variabeln medan raden av sidokedjeavlagsnande och viskositetsandring bildade de beroende variablerna. Mjukvaruprogrammet Statistica 7.0 (StatSoft, Inc., 1984-2005) anvandes for design och analys av experimenten. Statistisk analys inkluderade regression och ANOVA-analys. Pareto-diagramkurvor anvandes for att visa storleks- och signifikanseffekter medan onskvardheten och profilerande funktioner anvandes for att bestamma optimal sattpunkt for hydrolysparametrarna. Xylan fr5n havre- spalt (1% vikt/volym) bereddes enligt de Wet et al. [2008, App!. Microbiol. Biotechnol. 77: 975-983]. Losningen tillverkades i bulk och lagrades i ampuller vid -2C. a-D-glukuronidas (a-glu) renades fr5n Schizophyllum commune av vildtyp (VTT-D-88362- ATCC 38548) med specifik aktivitet av 300 nKat mg-1 (donerad av Prof. Matti Siika-aho p5 VTT Biotechnology Institute i Finland), anvandes for selektivt avlagsnande av 4-0-metyl-D-glukuronsyra/sido- 28 537 4 kedjegrupper av D-glukuronsyra. Enzymalikvoterna lagrades vid 42C. D-glukuronsyra (Sigma) anvandes som standardsockerarter. The effect of xylan charge, enzyme charge, hydrolysis time and temperature, and their interaction on aglu-removal of side chains from 4-0-MeGIcA from oat clef and birch xylan, were determined using the response surface method (RSM). Time, temperature and enzyme xylan specific dosage constituted the independent variable while the series of side chain deposition and viscosity change formed the dependent variables. The software program Statistica 7.0 (StatSoft, Inc., 1984-2005) was used for design and analysis of the experiments. Statistical analysis included regression and ANOVA analysis. Pareto diagram curves were used to show size and significance effects while the unobtrusiveness and profiling functions were used to determine the optimal setpoint for the hydrolysis parameters. Xylan from oat column (1% w / v) was prepared according to de Wet et al. [2008, App !. Microbiol. Biotechnol. 77: 975-983]. The solution was made in bulk and stored in ampoules at -2C. αD-glucuronidase (α-glu) was purified from wild-type Schizophyllum commune (VTT-D-88362- ATCC 38548) with specific activity of 300 nKat mg-1 (donated by Prof. Matti Siika-aho p5 VTT Biotechnology Institute in Finland), was used for the selective removal of 4-O-methyl-D-glucuronic acid / side chain groups of D-glucuronic acid. The enzyme aliquots were stored at 42 ° C. D-glucuronic acid (Sigma) was used as the standard sugar.

Optimering av hydrolysparametrar Optimala sattpunkter for tid, temperatur och enzymdosering av a-glu-avlagsnande fr5n 4- 0-MegIcA fr5n xylan fran bjork bestamdes i en Box-Behnken statistisk trefaktordesign med 3 centrala punkter utgorande totalt 15 korningar i duplikat. Hydrolysparametrar testades var och en vid tv5 niv5er och medelpunkten med de hogsta, mellersta och lagsta niv5erna noterades som 1, 0 respektive -1. Temperaturen testades vid 2C och 2C, tid vid 1 h och 16 h, enzymdosering av a-glu var 2000 nKat g' och18000 nKat g-1. De centrala punk- terna for temperatur och tid var 2C och 8,5 h, medan den specifika doseringen av a-glu- xylan var 360000 nKatrespektive 11000 nKatVariablerna var kodade enligt ekva- tionen: — Xdar: [x, = kodat varde for variabel, X, = naturligt varde, AX, =skalningsfaktor (halva omr5det for de oberoende variablerna som utgjorde tid, temperatur och specifik dosering av enzymxylan)]. 4-0-MegIcA-sidokedjor analyserades med anvandning av (HPAEC-PAD) p5 Carbopac PA -kolonn eluerad med heliumavgasad Mill-Q H20, 250 mM NaOH och 1M Na0Ac (endast for sura sockerarter). D-glukuronsyra anvandes som en standardsockerart. Optimization of hydrolysis parameters Optimal setpoints for time, temperature and enzyme dosing of α-glu deposition from 4-0-MegIcA from xylan from birch were determined in a Box-Behnken statistical three-factor design with 3 central points totaling 15 grains in duplicate. Hydrolysis parameters were each tested at two levels and the midpoints with the highest, middle and lowest levels were noted as 1, 0 and -1, respectively. The temperature was tested at 2C and 2C, time at 1 hour and 16 hours, enzyme dosage of α-glu was 2000 nKat g 'and 18000 nKat g-1. The central points for temperature and time were 2C and 8.5 h, while the specific dosage of α-glucylane was 360000 nKatrespective 11000 nKatVariables were coded according to the equation: - Xdar: [x, = coded value for variable , X, = natural value, AX, = scaling factor (half the range of the independent variables that constituted time, temperature and specific dosage of enzyme xylan)]. 4-0 MegIcA side chains were analyzed using (HPAEC-PAD) p5 Carbopac PA column eluted with helium degassed Mill-Q H 2 O, 250 mM NaOH and 1M NaOAc (for acidic sugars only). D-glucuronic acid was used as a standard sugar.

Responsytdiagrammet anpassades med ett andra gradens polynom som inkluderade bade linjara och kvadratiska interaktioner enligt foljande: Z A is 4.):3 4- Afirr-z iftz43-v..1 fl..44 + 2X1-X,1 4' A :11-1' xl 4- A .3:-.Tot: 4- APcp-t4-xi AuxIxi'fcKvic + 44 Anytii +6 dar: Z=respons (grad av sidokedjeavlagsnande), Bo + 131 13n = Iinjär regressionskoeffici- ent, 1311 13nn = kvadratisk regressionskoefficient, Xi, X2, x3= hydrolystid, temperatur och enzymxylanspecifik dos eller xylan och enzymlast, E= fel. 29 537 4 RESULTAT Extraktion och karakterisering ay xylan fran lignocellulosamaterial Den kemiska kompositionen for bagasse, tall (Pinus patula) och bambu (Bambusidae balcooa) visas i figurerna 9-11. Bagasse hade det hogsta innehAllet av aska (8,6%) och extraktamnen i losningsmedel (6,2%) (figur 9), lignin (30,0%) (figur 10), cellulosa (53,80%) och pentosaner (22,00%) (figur 11). B5de E.grandis och P.patula hade inneh5llav aska och extraktamnen som var lagre an 3% (figur 9). P. patula uppvisade emellertid den lagsta pentosanniv5n (8,49%). CellulosanivAn i E.grandis och bambu var i omr5det av 40.43% (figur 11) medan lignininnehAllet var omkring 23% (figur 10). Extraktion av xylan frAn P.patula, bagasse, E.grandis och bambu genom Hoije-metoden gay extraktionseffektivitetsvarden av 71,20, 65,50, 35,20 respektive 20,20% (figur 12) medan extraktion av xylan frAn bagasse och E.grandis med anvandning av Lopez-metoden gay extraktionseffektivitetsvarden av 28,00 respektive 12,00% (figur 12). 13C-CP/MAS NMR-fastfasspektrum for obearbetad, extraktamnesfri och xylanextraherad rest av P. patula-, bagasse-, E.grandis- och bambumaterial uppvisade karakteristiska signaler harstammande frAn de sex kolresonanserna for vattenfri glukosring i cellulosa vilket overfordes enligt Atalla och Isogai [2005, Recent developments in spectroscopic and chemical characteri- sation of cellulose. In Dumitriu, S. (red.) Marcel Dekker, New York, sid. 123-157] (figurer 13A- D, spektrum 1). Med borjan vid byre delen av spektret C6 for den primara alkoholgruppen vid kemiskt skift (5) 60-70 ppm och resonanser for ett kluster av C2, C3 och C5 fran ringkolen, andra an de som ankrar glykosidlanken, uppvisades vid 5 70-81 ppm, C4-resonansen vid 5 8193 ppm och Cl vid 5 102-108 ppm. Dessutom visades typiska dubbletter i C4- och C6-resonan- ser (over omr5det) som representerade cellulosa i mindre ordnad form (amorf) och cellulosa i ordnad form (kristallin) (nedre omrAdet) (Atalla och lsogai, 2005) i spektret over alla lignocellulosaravarumaterial (figurer 13A-D). Dubbletter for C6 i spektrat for P. patula (figur 13A, spektrum 1) var emellertid mer upplosta an i bagasse (figur 13B), E.grandis (figur 13C) och bambu (figur 13D). Karakteristiska signaler for acetylgrupper vid 5 20-22 ppm, alifatiska grupper vid 30-40 ppm, metyl (CH3) uppkommande fran ligninrester vid 50-60 ppm, Cl fran arabinosrester vid 5 110-120 ppm, aromatiska foreningar fr5n ligninrester vid 5 140-160 ppm 537 4 och C6 fr5n uronsyrarester eller karbonylgrupper vid 5 170-190 ppm var dessutom i enlighet med Liitia etal. [2001, Holzforschung SS: 503-510]; Maunu [2002, Progress in Nuclear Magnetic Response Spectroscopy 40: 151-174]; La haye etal. [2003, Carbohydrate Research 338: 1559-1569]; Oliveira et al. [2008, Chemical composition and lignin structural features of banana plant leaf sheath and rachis. In Hu, T.Q. (red). kapitel 10: 171-188] identifierade i spektret for obearbetat ramaterial (figurer 13A-D, spektrum 1). 13C-CP/MAS NMR-spektrum for r5varan i vilka extraktamnen avlagsnats uppvisade andringar i linje- och kluvet monster for signaler i det ovre omr5det av C4 och C6 och resonanserna mellan 5 81-93; 60-70 respektive 20-22 ppm (figurer 13A-D, spektrum 2). Medan 13C-CP/MAS NMR-spektrum for r5vara fr5n vilken xylan har avlagsnats uppvisade forsvinnande eller reduktion i intensiteten av signaler harrorande Iran acetylgrupper, alifatiska grupper, metylgrupper, aromatiska grupper, C6 Iran uron/karbonylgrupper vid 5 20-22, 30-40, 50-60, 140-160 respektive 170-190 ppm (figurer 13A-D, spektrum 3). 1-3C-CP/MAS NMR-spektrum for bagasse fr5n vilken xylan har avlagsnats uppvisade skarpare signaler speciellt i resonans mellan 5 30 och 40 ppm, vilka harstammade fr5n alifatiska grupper (Oliveira, 2008) och komplett forsvinnande av resonanser uppst5ende fr5n metylgrupper vid 5 40-50 ppm (figur 13B, spektrum 3). Medan det i 1-3C-CP/MAS NMRspektrum for P.patula, E.grandis och bambu noterades en reducerad intensitet for signalen fr5n metylgrupper (figur 13A, C, D, spektrum 3). The response area diagram was fitted with a second degree polynomial that included both linear and quadratic interactions as follows: ZA is 4.): 3 4- Afirr-z iftz43-v..1 fl..44 + 2X1-X, 1 4 'A: 11 -1 'xl 4- A .3: -. Tot: 4- APcp-t4-xi AuxIxi'fcKvic + 44 Anytii +6 dar: Z = response (degree of side chain removal), Bo + 131 13n = Linear regression coefficient, 1311 13nn = quadratic regression coefficient, Xi, X2, x3 = hydrolysis time, temperature and enzyme xylan-specific dose or xylan and enzyme load, E = error. 29 537 4 RESULTS Extraction and characterization of xylan from lignocellulosic material The chemical composition of bagasse, pine (Pinus patula) and bamboo (Bambusidae balcooa) is shown in Figures 9-11. Bagasse had the highest content of ash (8.6%) and the extracts in solvents (6.2%) (Figure 9), lignin (30.0%) (Figure 10), cellulose (53.80%) and pentosanes ( 22.00%) (Figure 11). Both E.grandis and P.patula contained ash and the extracts were less than 3% (Figure 9). However, P. patula showed the lowest pentosan level (8.49%). The cellulose level in E.grandis and bamboo was in the range of 40.43% (Figure 11) while the lignin content was about 23% (Figure 10). Extraction of xylan from P.patula, bagasse, E.grandis and bamboo by the Hoije method gay extraction efficiency values of 71.20, 65.50, 35.20 and 20.20% respectively (Figure 12) while extraction of xylan from Bagasse and E .grandis using the Lopez method gay extraction efficiency values of 28.00 and 12.00% respectively (Figure 12). 13C-CP / MAS NMR solid phase spectrum for crude, extract-free and xylan-extracted residues of P. patula, bagasse, E.grandis and bamboo material showed characteristic signals derived from the six carbon resonances of anhydrous glucose ring in cellulose which were 2005, Recent developments in spectroscopic and chemical characterization of cellulose. In Dumitriu, S. (ed.) Marcel Dekker, New York, p. 123-157] (Figures 13A-D, spectrum 1). Starting at the upper part of the spectrum C6 for the primary alcohol group at chemical shift (5) 60-70 ppm and resonances for a cluster of C2, C3 and C5 from the ring carbon, other than those anchoring the glycoside link, were shown at 5- 70-81 ppm , The C4 resonance at 5,8193 ppm and Cl at 5,102-108 ppm. In addition, typical duplicates in C4 and C6 resonances (over the range) representing cellulose in less orderly form (amorphous) and cellulose in orderly form (crystalline) (lower range) (Atalla and lsogai, 2005) were shown in the spectrum over all lignocellulosic raw material (Figures 13A-D). However, duplicates of C6 in the spectrum of P. patula (Figure 13A, spectrum 1) were more resolved than in bagasse (Figure 13B), E.grandis (Figure 13C) and bamboo (Figure 13D). Characteristic signals for acetyl groups at 20-22 ppm, aliphatic groups at 30-40 ppm, methyl (CH3) arising from lignin residues at 50-60 ppm, Cl from arabinose residues at 5-110-120 ppm, aromatic compounds from lignin residues at 5 160 ppm 537 4 and C6 from uronic acid residues or carbonyl groups at 170-190 ppm were also in accordance with Liitia et al. [2001, Wood Research SS: 503-510]; Maunu [2002, Progress in Nuclear Magnetic Response Spectroscopy 40: 151-174]; La haye etal. [2003, Carbohydrate Research 338: 1559-1569]; Oliveira et al. [2008, Chemical composition and lignin structural features of banana plant leaf sheath and rachis. In Hu, T.Q. (ed). Chapter 10: 171-188] identified in the spectrum of unprocessed raw material (Figures 13A-D, spectrum 1). 13 C-CP / MAS NMR spectra of the material in which the extracts were deposited showed changes in line and cleaved samples for signals in the upper region of C4 and C6 and the resonances between 81-93; 60-70 and 20-22 ppm, respectively (Figures 13A-D, spectrum 2). While the 13 C-CP / MAS NMR spectrum of the product from which xylan has been precipitated showed disappearance or reduction in the intensity of signals involving Iran acetyl groups, aliphatic groups, methyl groups, aromatic groups, C6 Iran uron / carbonyl groups at , 50-60, 140-160 and 170-190 ppm, respectively (Figures 13A-D, spectrum 3). 1-3C-CP / MAS NMR spectra for bagasse from which xylan has been deposited showed sharper signals especially in resonance between 5 and 40 ppm, which originated from aliphatic groups (Oliveira, 2008) and complete disappearance of resonances arising from methyl groups at 5 40-50 ppm (Figure 13B, spectrum 3). While in the 1-3C-CP / MAS NMR spectrum of P.patula, E.grandis and bamboo, a reduced intensity of the signal from methyl groups was noted (Figure 13A, C, D, spectrum 3).

Den initiala glukosniv5n i extraktamnesfri bagasse, bambu, P.patula och E.grandis var 68,0, 66,0, 61,0 respektive 59,0. Vid xylanextraktion med anvandning av Hoije-metoden okade glukosandelen i ravarorna till 75,0, 76,0, 65,0 respektive 79,0% medan xyloskoncentrationen minskade fr5n 14,0 till 10,0%, 27,0 till 25%, 35 till 19%, 30,0 till 22,0% i P.patula, bagasse, E.grandis respektive bambu (figur 14A-D). Dessutom motsvarar xy- lanextraktionen en minskning i arabinos- och galaktosinneh511 i all r5vara (figur 14A-d). The initial glucose levels in extract-free bagasse, bamboo, P.patula and E.grandis were 68.0, 66.0, 61.0 and 59.0, respectively. During xylan extraction using the Hoije method, the glucose content of the raw materials increased to 75.0, 76.0, 65.0 and 79.0%, respectively, while the xylose concentration decreased from 14.0 to 10.0%, 27.0 to 25%. to 19%, 30.0 to 22.0% in P.patula, bagasse, E.grandis and bamboo, respectively (Figure 14A-D). In addition, xylan extraction corresponds to a decrease in arabinose and galactose content in all raw materials (Figure 14A-d).

Konventrationen av mannos (16,0%) som endast var detekterbar i P.patu/a-r5varan okade till 18% i xylanextraherad rest (figur 14A). Narvaron av uronsyror var detekterbar i alla fyra r5varumaterialen i lignocellulosan (figur 15). Det hogsta och lagsta uronsyrainneh5llet hittades i E.grandis- respektive bagasse-r5varor (figur 15). 31 537 4 Elueringsprofilerna for extraherade xylanfraktioner hanvisades till elueringsprofilen for de monomera sockerarterna (arabinos, raminos, galaktos, glukos, xylos och mannos), xylitolsocker, xylan frSn bjork, xylan frSn havrespalt och H202-blekt bagasse (Bag B). HPAEC-PADkromatogrammet (Dinoex) visade att de monomera sockerarterna inkluderande xylitol eluera- des p5 CarboPac PA 100-kolonn med en retentionstid av 5 min (figur 16A och B). Mellan 0 och 3 min visade elueringsprofilen for xylan fran havrespalt en hogintensitets-topp med detektionssvar > 300 nC vilket motsvarar retentionstiden for xylitol (figur 16D). I annat fall uppvisades endastkintensitetstoppar (detektionssvar av < 20 nC) mellan 3 och 6 min p5 kromatogrammet for b5de xylan fr5n bjork och xylan fr5n havrespalt. Daremot uppvisade kromatogrammet for H202-blekt bagassexylan (Bag B) multipla toppar av hog intensitet med detektionssvar av over 100 nC, upptradande vid retentionstider mellan 2 och 30 min (figur 17A). Kromatogrammen for b5de Hoije- och Lopezextraherad xylan upp-visade I5gintensitetstoppar (<20 nC) inom 25 min retentionstid (figur 17B och C). Bland den extraherade xylanproven var toppar motsvarande xylitol narvarande i kromatogrammen for xylan fran E.grandis (figur 18A), bambu (figur 18C) och P.patula (figur 18D), vilka extraherats genom Hoije-metoden. The concentration of mannose (16.0%) detectable only in the P.patu / a r5 product increased to 18% in xylan-extracted residue (Figure 14A). The presence of uronic acids was detectable in all four raw materials in the lignocellulose (Figure 15). The highest and lowest uronic acid content were found in E.grandis and bagasse products, respectively (Figure 15). 31 537 4 The elution profiles for extracted xylan fractions were referred to the elution profile for the monomeric sugars (arabinose, raminose, galactose, glucose, xylose and mannose), xylitol sugar, xylan from birch, xylan from oat split and H2O2-Black. The HPAEC-PAD chromatogram (Dinoex) showed that the monomeric sugars including xylitol were eluted in the p5 CarboPac PA 100 column with a retention time of 5 min (Figure 16A and B). Between 0 and 3 minutes, the elution profile of xylan from oat cleft showed a high intensity peak with a detection response> 300 nC which corresponds to the retention time of xylitol (Figure 16D). Otherwise, only intensity peaks (detection response of <20 nC) were shown between 3 and 6 min on the chromatogram for both xylan from birch and xylan from oat column. In contrast, the chromatogram of H 2 O 2 bleached bagassexylan (Bag B) showed multiple high intensity peaks with detection responses above 100 nC, occurring at retention times between 2 and 30 min (Figure 17A). The chromatograms for both Hoije and Lopeze extracted xylan showed light intensity peaks (<20 nC) within 25 minutes of retention time (Figures 17B and C). Among the extracted xylan samples, peaks corresponding to xylitol were present in the chromatograms of xylan from E.grandis (Figure 18A), bamboo (Figure 18C) and P.patula (Figure 18D), which were extracted by the Hoije method.

Xylosinneh5llav xylan fr5n E.grandis extraherad genom Hoije-metoden (EU H), bambu, bagasse extraherad genom Hoije-metoden (Bag H) och P. patula var 92,00, 79,50, 71,00 respektive 61,30% (figur 15). Daremot var xylosinnehallet i xylan fran bjork och havrespalt 80,00 respektive 87,20% (figur 15). Andelen arabinos i xylanfraktioner fr5n Bag H, P.patula och bambu var 17,45, 15,50 respektive 10,50% (figur 15). Aven am kommersiell xylan Irk] havrespalt har rapporterats ha 10% arabinos (Sigma) visade denna studie arabinosinnehall av 7,4% (figur 15). Omkring 2,30% glukos var narvarande i xylanfraktion fr5n EU H, medan 13,20% glukos var narvarande i xylanfraktioner frAn P.patula (figur 15). Dessutom inneholl EU-H 4,45% galaktos och sp5r av raminos och arabinos (figur 15). Totalt uronsyrainnehAll av uronsyrainnehAll i xylan fr5n EU H, bambu och P.patula var 12,83, 11,20 och 11,54% medan xylan fran bagasse inneholl 8,5% (figur 15). Xylose content xylan from E.grandis extracted by the Hoije method (EU H), bamboo, bagasse extracted by the Hoije method (Bag H) and P. patula were 92.00, 79.50, 71.00 and 61.30%, respectively ( figure 15). On the other hand, the xylose content of xylan from birch and oat column was 80.00 and 87.20%, respectively (Figure 15). The proportions of arabinose in xylan fractions from Bag H, P.patula and bamboo were 17.45, 15.50 and 10.50% respectively (Figure 15). Even am commercial xylan Irk] oat cleft has been reported to have 10% arabinose (Sigma), this study showed arabinose content of 7.4% (Figure 15). About 2.30% glucose was present in xylan fraction from EU H, while 13.20% glucose was present in xylan fractions from P.patula (Figure 15). In addition, EU-H contained 4.45% galactose and traces of raminose and arabinose (Figure 15). Total uronic acid content of uronic acid content in xylan from EU H, bamboo and P.patula was 12.83, 11.20 and 11.54% while xylan from bagasse contained 8.5% (Figure 15).

Xylanfraktioner extraherade genom Hoije-metoden, clA de utsattes for mild syrahydrolys (72% H202), gay mellan 16 och 55% olosliga rester (figur 19). Den hogsta andelen syraolos- liga rester, 55%, erholls fr5n xylan extraherad fr5n P.patula med anvandning av Hoije- 32 537 4 metoden. De syraolosliga resterna fr5n xylan fr5n bagasse extraherad genom Lopezmeto- den (Bag L) var 16% medan referensmaterialet, xylan fr5n bjork, hade 3,5% (figur 19). Xylan fractions extracted by the Hoije method, clA they were subjected to mild acid hydrolysis (72% H 2 O 2), gay between 16 and 55% insoluble residues (Figure 19). The highest proportion of acid-insoluble residues, 55%, is obtained from xylan extracted from P. patula using the Hoije method. The acid-insoluble residues from xylan from bagasse extracted by the Lopez method (Bag L) were 16%, while the reference material, xylan from birch, had 3.5% (Figure 19).

Strukturella ktinnetecken hos extraherad xylan Spektrum for 11-1-NMR ochl3C-NMR for referensxylan fr5n bjork, H202-blekt bagasse och xylan fran havrespalt uppvisade karakteristiska signaler for proton- och kolresonans (figur 20A-D). Spektret for 1H-NMR for den extraherade xylanen uppvisade karakteristiska protonsignaler fr5n xylos, 4-0-metylglukuronsyra och arabinosenheter vid kemiska skift (5) mellan 3,3 och 5,7 ppm (figur 20-22). I protonsignalerna i 1-1-1-NMR for xylos i xylanfraktio- nerna fr5n bagasse extraherade genom Hoije- (Bag H) och Lopezmetoderna (Bag L) uppvi- sades vid 5 4,44/4,45, 3,50, 3,67 och 4,01 ppm (figur 21A). Enligt Vignon och Gey [1998, Carbohydrate Research 307: 107-111] motsvarar s5dana signaler H1, H3, H4 respektive H5 p5 xylosenheter substituerad med 4-0-metylglukuronsyra lankad vid 0-2. Dessutom uppvisade protonspektret for Lopezextraherad bagasse (Bag L) och Hoije-extraherad bagasse (Bag H) protonresonanser fr5n D-xylopyranosylenhetsrester substituerade med 4-0-metyl- glukuronsyra vid 0-2 och acetylgrupp vid 0-3 vid 5 4,72, 3,76/3,75, 3,97/3,96 ppm som motsvarar H1, H2 respektive H4 av P-D-xylopyranosylenheterna (figur 21A). Structural ktin signs of extracted xylan Spectrum for 11-1-NMR and 13 C-NMR for reference xylan from birch, H 2 O 2 -bleached bagasse and xylan from oat clef showed characteristic signals for proton and carbon resonance (Figure 20A-D). The 1 H-NMR spectrum of the extracted xylan showed characteristic proton signals from xylose, 4-O-methylglucuronic acid and arabinose units at chemical shifts (5) between 3.3 and 5.7 ppm (Figure 20-22). In the proton signals of the 1-1-1 NMR for xylose in the xylan fractions from bagasse extracted by the Hoije (Bag H) and Lopez methods (Bag L) were shown at δ 4.44 / 4.45, 3.50, 3 , 67 and 4.01 ppm (Figure 21A). According to Vignon and Gey [1998, Carbohydrate Research 307: 107-111], such signals correspond to H1, H3, H4 and H5 p5 xylose units substituted with 4-O-methylglucuronic acid linked at 0-2. In addition, the proton spectra of Lopee-extracted bagasse (Bag L) and Hoije-extracted bagasse (Bag H) showed proton resonances from D-xylopyranosyl moiety substituted with 4-0-methylglucuronic acid at 0-2 and acetyl group at 0-3 at 5.72, 3 , 76 / 3.75, 3.97 / 3.96 ppm corresponding to H1, H2 and H4, respectively, of the PD-xylopyranosyl units (Figure 21A).

Protonspektra for xylan extraherad fran E.grandis genom Lopezmetoden (EU L) och Hoije- metoden (EU H) uppvisade signaler vid 5 4,48, 3,96/3,99, 3,63/3,68 och 3,50/3,52 ppm uppst5ende fr5n xylosenheter substituerade med 4-0-metylglukuronsyra (figur 21C). Enligt Sims och Newman (2006) kan Adana kemiska skift harstamma fran D-xylopyranosylenhetsrester substituerade med 4-0-metylglukuronsyra vid 0-2 och acetylgrupp vid 03. I samma spektra var protonsignaler harstammande fr5n H1 och H3 for 4-0-metylgluku- ronsyrarester synliga vid 5 5,48/5,49/5,46 ppm och mellan 1,06 och 1,54 ppm 5 5,16 och 3,63 ppm (figur 21C). I protonspektret for bambu och P.patula uppvisades signaler for 4-0- metylglukuronsyrarester vid 5,47/5,48 ppm (figur 21A och C). SAclana signaler kan upptrada vid 5 5,16 och 3,63 ppm [Sun et al., 2004, Carbohydrate Research 339: 291-300, Polym. Degrad. and Stability 84: 331-337, Carbohydrate Polymers 56: 195-204; Ebringe- rova etal., 1998, Carbohydrate Polymers 37: 231-239]. Protonspektret for extraherad xylan uppvisade ytterligare karakteristiska signaler harstammande fr5n C-2-lankad ara- 33 537 4 binos till xylosenheter [Hoije et al.,2005, Carbohydr. Polym. 61: 266-275; Ebringerova et al., 1998, Carbohydrate Polymers 37: 231-239]. I protonspektret for Bag H och Bag L identifierades C2-lankad arabions vid 5 5,58, 5,60, 4,29/4,30 ppm (figur 21A och C). Narvaron av arabinos i protonspektret for xylan fr5n bambu och P.patula var i enlighet med Ebringerova et al. (1998) och Vignon och Gey (1998) identifierade inter alia, vid ,58/5,59 ppm respektive 5,47/5,48 ppm (figur 22A och C). Arabinossignaler var narvarande i protonspektret for EU L och EU H vid 5 mellan 3,83 och 3,85 ppm (figur 21C) medan narvaron av 0-2-lankade acetylgrupper vilka, baserat p5 Shao et al. [2008, Wood Science Technology 42:439-451]; Hoije et al.(2005) Sun et al. (2004); Ebringerova et al. (1998); Vig non och Gey (1998) supra identifierades vid 5 4-2,4 ppm (figur 20-22). Dessu- torn uppvisades breda signaler associerade med aromatiska och fenolforeningar harstammande fr5n ligninrester [Hoije et al., 200supra; Xu et al., 2006, Carbohydrate Research and Oliveira etal., 2008, Chemical composition and lignin structural features of banana plant leaf sheath and rachis. In Hu, T.O. (red), kapitel 10: 171-188] mellan 5 6,5 och 7,9 ppm i protonspektret for den extraherade xylanen (figur 21 och 22). Proton spectra of xylan extracted from E.grandis by the Lopez method (EU L) and the Hoije method (EU H) showed signals at 4.48, 3.96 / 3.99, 3.63 / 3.68 and 3.50 / 3.52 ppm arising from xylose units substituted with 4-O-methylglucuronic acid (Figure 21C). According to Sims and Newman (2006), Adana chemical shifts may be derived from D-xylopyranosyl moiety residues substituted with 4-O-methylglucuronic acid at 0-2 and acetyl group at 03. In the same spectra, proton signals were derived from H1 and H3 for 4-0-methylglucuronic acid residues visible at 5.48 / 5.49 / 5.46 ppm and between 1.06 and 1.54 ppm 5.16 and 3.63 ppm (Figure 21C). In the proton spectrum of bamboo and P. patula, signals for 4-O-methylglucuronic acid residues were shown at 5.47 / 5.48 ppm (Figures 21A and C). SAclana signals can occur at 5.16 and 3.63 ppm [Sun et al., 2004, Carbohydrate Research 339: 291-300, Polym. Degrad. and Stability 84: 331-337, Carbohydrate Polymers 56: 195-204; Ebringrova et al., 1998, Carbohydrate Polymers 37: 231-239]. The proton spectrum of extracted xylan showed additional characteristic signals derived from C-2-linked arabinos to xylose units [Hoije et al., 2005, Carbohydr. Polym. 61: 266-275; Ebringerova et al., 1998, Carbohydrate Polymers 37: 231-239]. In the proton spectrum of Bag H and Bag L, C2-linked arabions were identified at 5.58, 5.60, 4.29 / 4.30 ppm (Figures 21A and C). The presence of arabinose in the proton spectrum of xylan from bamboo and P. patula was in accordance with Ebringerova et al. (1998) and Vignon and Gey (1998) identified inter alia, at, 58 / 5.59 ppm and 5.47 / 5.48 ppm, respectively (Figures 22A and C). Arabino signals were present in the proton spectrum of EU L and EU H at between 3.83 and 3.85 ppm (Figure 21C) while the presence of 0-2-linked acetyl groups which, based on p5 Shao et al. [2008, Wood Science Technology 42: 439-451]; Hoije et al. (2005) Sun et al. (2004); Ebringerova et al. (1998); Vig non and Gey (1998) supra were identified at 4-2.4 ppm (Figure 20-22). In addition, broad signals associated with aromatic and phenolic compounds derived from lignin residues were exhibited [Hoije et al., 200 supra; Xu et al., 2006, Carbohydrate Research and Oliveira et al., 2008, Chemical composition and lignin structural features of banana plant leaf sheath and rachis. In Hu, T.O. (ed.), Chapter 10: 171-188] between 6.5 and 7.9 ppm in the proton spectrum of the extracted xylan (Figures 21 and 22).

Karakteristiska kolresonanser fr5n de fem kolen i (14)lankade [3-D-xylopyranosylrester mellan 5 103 och 62 ppm var reflekterade i 1-3C-NMR-spektrum for extraherade xylanfraktioner (figur 21 och 22). I kolspektret for xylanfraktioner fran E.grandis upptrader resonanser harstammande fr5n C1 fr5n xylosenheter med C2-lankade arabinosgrupper vid 5 z 102,33 ppm medan de fr5n Cl, C2, C3, C4 och C5 for arabinofuranosylrester uppvisade vid 5 z 108, 81,7, 78, 85,5 och 62 ppm (figur 21D). I spektret sags arabinosassocierade kolsignaler i EU H och EU L vid 5 61,81/ 61,59 ppm (figur 21D). I Bag L och Bag H uppvisades de identifierade arabinosignalerna baserat p5 Vignon och Gey (1998) supra vid 5 112,50/ 111,56 och 89,31 ppm vilket motsvarar Cl respektive C2 av C-2-lankade arabinosrester (figur 21B). Cl-, C2- och C4-resonanser horande till arabinofuranosylrester monosubstituerade xylosenheter vid 0-3 (Ebringerove et al., 1998, supra) var narvarande il3C-NMR-spektrat for bade bambu och P.patula vid 5 108,60/108,33 ppm, 81,71/81,42 ppm respektive 85,72/85,43 ppm (figur 22B och D). Narvaron av 4-0- metylglukuronsyrarester i de extraherade xylanfraktionerna var uppenbart fr5n karakteristiska kolsignaler som harstam-mar fran Cl, C4, C6 och C5 vid 5 mellan 97 och 100 ppm, 83 och 84 ppm, 179-172 ppm respektive 59 och 61 ppm (Haibibi och Vignon, 2005, Carbohydrate Research 34 537 4 340:1431-1436; Xu et al., 2000, supra; Ebringerova et al., 1998, supra) (figur 21 och 22). Narvaron av acetyl, fenol- och aromatiska grupper uppst5ende fr5n ligninforeningar, och hexossocker var identifierade i1-3C NMR-spektrat fr5n de extraherade xylanfraktionerna. Dessutom identifierades acetylgrupper i alla xylanfraktioner mellan 5 21-24 ppm (figur 21 och 22). Fr5nvaron av acetylgrupper var emellertid uppenbart i1-3C NMR-spektrat for xylan fr5n bjork (figur 20B) och H202-blekt bagasse (Bag B)(figur 20D). Metoxylgrupperna som antyder narvaron av ligninforeningar [Ebringerova et al., 1998, supra, Sun et al., 2004, supra, Xu et al., 2006 supra; maunu, 2008,13C CPMAS NMR Studies of wood, cellulose fibers and derivatives. In Hu, T.Q. (red)] identifierades i 1-3C NMR-spektrat vid 5 56,62/ 56,58 ppm (figur 21 och 22). Ligninforeningarna, speciellt de lankade till arabinosylsidokedjor genom ferulsyrabryggor, reflekterades av kolsigna- ler vid 5 140-160 ppm och 116,6-117,08 ppm (figur 21 och 22). Andra ligninforeningar associerade med ferul- eller p-kumarsyragrupper och av -CH3- i ArCOCH3(Maunu, 2002, Progress in Nuclear Magnetic Response Spectroscopy 40: 151-174; Sun et al., 2004, supra) s5gs vid 5 26-49 ppm, vid 5 115,38 och 5 17,55/17,69 ppm i Bag L (figur 21B, spektrum 1) xylanfraktioner fran bambu och P.patula (figur 22B och D). Narvaron av hexossocker s5som galaktos eller glukos [Sun et al., 2004 supra] var uppenbart i1-3C NMR-spektrum, speciellt for EU H och EU Lvid 5 mellan 69 och 71 ppm (figur 21B). Characteristic carbon resonances of the five carbons in (14) linked [3-D-xylopyranosyl residues between 5,103 and 62 ppm were reflected in the 1-3 C-NMR spectrum of extracted xylan fractions (Figures 21 and 22). In the carbon spectrum of xylan fractions from E.grandis, resonances derived from C1 occur from xylose units with C2-linked arabino groups at 5 z 102.33 ppm while those from C1, C2, C3, C4 and C5 for arabinofuranosyl residues showed at 5 z 108, 81.7 , 78, 85.5 and 62 ppm (Figure 21D). In the spectrum, arabinose-associated carbon signals in EU H and EU L are said at 5 61.81 / 61.59 ppm (Figure 21D). In Bag L and Bag H, the identified arabino signals based on p5 were shown. C1, C2 and C4 resonances belonging to arabinofuranosyl residues monosubstituted xylose units at 0-3 (Ebringerove et al., 1998, supra) were present in the 13 C-NMR spectrum of both bamboo and P. patula at 108.60 / 108. 33 ppm, 81.71 / 81.42 ppm and 85.72 / 85.43 ppm, respectively (Figures 22B and D). The presence of 4-O-methylglucuronic acid residues in the extracted xylan fractions was evident from characteristic carbon signals derived from C1, C4, C6 and C5 at between 97 and 100 ppm, 83 and 84 ppm, 179-172 ppm and 59 and 61 ppm, respectively. (Haibibi and Vignon, 2005, Carbohydrate Research 34 537 4 340: 1431-1436; Xu et al., 2000, supra; Ebringerova et al., 1998, supra) (Figures 21 and 22). The presence of acetyl, phenol and aromatic groups arising from lignin compounds, and hexose sugar were identified in the 1-3 C NMR spectra from the extracted xylan fractions. In addition, acetyl groups were identified in all xylan fractions between 21-24 ppm (Figures 21 and 22). However, the presence of acetyl groups was evident in the 1-3 C NMR spectrum of xylan from birch (Figure 20B) and H 2 O 2 -bleached bagasse (Bag B) (Figure 20D). The methoxyl groups suggesting the narvaron of lignin compounds [Ebringerova et al., 1998, supra, Sun et al., 2004, supra, Xu et al., 2006 supra; maunu, 2008,13C CPMAS NMR Studies of wood, cellulose fibers and derivatives. In Hu, T.Q. (red)] was identified in the 1-3 C NMR spectrum at 56.62 / 56.58 ppm (Figures 21 and 22). The lignin compounds, especially those linked to arabinosyl side chains by ferulic acid bridges, were reflected by carbon signals at 140-160 ppm and 116.6-117.08 ppm (Figures 21 and 22). Other lignin compounds associated with ferulic or β-coumaric acid groups and of -CH3- in ArCOCH3 (Maunu, 2002, Progress in Nuclear Magnetic Response Spectroscopy 40: 151-174; Sun et al., 2004, supra) were found at 26-49 ppm , at 5,115.38 and 17.55 / 17.69 ppm in Bag L (Figure 21B, Spectrum 1) xylan fractions from bamboo and P.patula (Figures 22B and D). The presence of hexose sugars such as galactose or glucose [Sun et al., 2004 supra] was evident in the 1-3 C NMR spectrum, especially for EU H and EU Lvid 5 between 69 and 71 ppm (Figure 21B).

FTIR-spektrum av extraherade xylanfraktioner visade karakteristiska band for xylanrester, vilka inkluderade [3-glykosidlankar reflekterade vid .-. 897 cm-1 (figur 23). S5dan signal var emellertid fr5nvarande i FTIR-spektrat for extraherad xylan Iran P.patula. Dessutom uppvisade spektret av extraherad xylan signaler i bandregionen mellan 1600 och 1200 cm-' (figur 23), vilket enligt Fengel och Wegener [1989, Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Tyskland] Jr en region associerad med aromatiska foreningar som harstammar fr5n ligningfraktioner. Band uppst5ende Iran syringylring levande med CAr-OCH3 och metoxylgrupper i lignin reflekterades vid 1329 cm-1 och 15911595, och 1460-1461 cm-1 i spektret for E.grandis och bambu (figur 23). Xylanfraktioner fr5n bagasse, Bag H och Bag L inneholl signaler av varierande intensiteter i v5glangdsregionen 1600-1200 cm och spektra for Bag L reflekterade ett relativt starkt intensitetsband for C-H-strackande vibrationer vid 2919 cm 1 (figur 23). FTIR-spektret for EU L uppvisade tv5 starka signaler relaterade till ligninforeningar vid 1591 och 1379 cm-1 medan det i EU 537 4 H-spektret s5gs multipla band av lagre styrka i omr5det 1600-1200 cm-1, speciellt vid 1595, 1461 och 1329 cm-1- (figur 23). FTIR spectra of extracted xylan fractions showed characteristic bands for xylan residues, which included [3-glycoside linkers reflected at .-. 897 cm-1 (Figure 23). However, such a signal was present in the FTIR spectrum of extracted xylan Iran P.patula. In addition, the spectrum of extracted xylan signals in the band region between 1600 and 1200 cm -1 (Figure 23), which according to Fengel and Wegener [1989, Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany] Jr. showed a region associated with aromatic associations arising from equation fractions. Bands arising from Iran oxygen ring living with CAr-OCH3 and methoxyl groups in lignin were reflected at 1329 cm-1 and 15911595, and 1460-1461 cm-1 in the spectrum of E.grandis and bamboo (Figure 23). Xylan fractions from bagasse, Bag H and Bag L contained signals of varying intensities in the range region 1600-1200 cm and spectra for Bag L reflected a relatively strong intensity band for C-H stretching vibrations at 2919 cm 1 (Figure 23). The FTIR spectrum for EU L showed strong signals related to lignin compounds at 1591 and 1379 cm-1, while in the EU 537 4 H spectrum multiple bands of lower strength were seen in the range 1600-1200 cm-1, especially at 1595, 1461 and 1329 cm-1 (Figure 23).

Kontrollerat enzymatiskt avlagsnande av sidokedjor fain lignocellulosaravaror Det renade a-glukuronidaset (a-glu) frAn Schizophyllum commune avlagsnade 1,2 mg g-14- 0-MegicA (1,3% tillganglig uronsyra) fran xylan fran bjork, medan omkring 1,6 mg g-1 4-0- MegIcA (2% tillgangliga uronsyror) frislapptes fr5n BH-xylanfraktioner (figur 24). Proportionen 4-0-MegIcA avlagsnad frAn Eucalyptus grandis-xylan, extraherad genom Hoijemetoden (EH), och fr5n Eucalyptus grandis-xylangel (ES) var omkring 1,3 mg g substrat-1 (figur 24). Det lagsta av a-glu-avlagsnandet frAn 4-0-MegIcA var <0,6 mg g substrat-1 frAn H202-blekt bagasse (BB)(figur 24). Controlled enzymatic removal of side chains from lignocellulosic products The purified α-glucuronidase (α-glu) from Schizophyllum commune removed 1.2 mg g-14-0-MegicA (1.3% available uronic acid) from xylan from birch, while about 1.6 mg g-1 4-0- MegIcA (2% available uronic acids) was released from BH-xylan fractions (Figure 24). The proportion of 4-0-MegIcA derived from Eucalyptus grandis-xylan, extracted by the Hoijem method (EH), and from Eucalyptus grandis-xylangel (ES) was about 1.3 mg g of substrate-1 (Figure 24). The lowest α-glu deposition rate from 4-0-MegIcA was <0.6 mg g of substrate-1 from H 2 O 2 bleached bagasse (BB) (Figure 24).

Bestamning av optimala betingelser for avidgsnande av sidokedjor Ytresponsdiagram for avlagsnande av glukuronsyra (4-0-MegIcA) fran xylan fran bjork genom a-glu reflekterade p5 liknande satt b5de linpra och kvadratiska forh5llanden med hydrolystid, temperatur och specifik dosering a-glu-xylan. Maximalt 350 kg g-1 substrat av 4-0-MegIcA avlagsnades fr5n bjork genom a-glu vid xylanspecifik dosering mellan 16500 och 18000 nkat g substrat-1 d5 hydrolys utfordes for varaktighet av mellan 9 och 10,2 h vid temperaturer mellan 33,5 och 42°C (figur 25A-C). Determination of Optimal Conditions for Side Chain Removal Surface Response Diagrams for Depletion of Glucuronic Acid (4-0-MegIcA) from xylan from birch by α-glu were similarly reflected in both linear and quadratic ratios of hydrolysis time, temperature and specific dosage of α-glu-xylan. A maximum of 350 kg of g-1 substrate of 4-0-MegIcA was removed from birch by α-glu at xylan-specific dosage between 16500 and 18000 nkat g of substrate-1 d5 hydrolysis is challenged for a duration of between 9 and 10.2 hours at temperatures between 33, 5 and 42 ° C (Figure 25A-C).

Hydrolysparametrarna uppvisade signifikanta effekter p5 avlagsnande av 4-0-MegIcA frAn xylan fran bjork genom a-glu och var i fallande magnitud, fran linjara effekter fran a-glu — xylanspecifik dosering [a-glu, nKatig (L)], temperatur [Temp (L)] och kvadratisk effekt p5 temperatur [Temp (Q)](figur 26, Paretodiagram]. Den enda signifikanta interaktionseffek- ten p5 avlagsnandet av 4-0-MegIcA fr5n xylan fr5n bjork genom a-glu var &An den linjara effekten av hydrolystid och den kvadratiska effekten av temperatur [tid (L) genom temperatur (Q)](figur 26, Paretodiagram). De optimala installningspunkterna for a-glu-avlagsning av 4-0-MegIcA var mellan 9h och 10,2 h, 33,5 och 42°C och 16500 och 18000 nKat g sub-strati. Regressionskoefficienterna for variabeln i andra gradens polynommodell anpassad till responsytdiagram for 4-0-MegIcA-avlagsning som en funktion av tid, temperatur och enzymdos gay en regressionskoefficient R2 av 0,90 (R2 justerat = 0,81)(figur 27). 36 The hydrolysis parameters showed significant effects on removal of 4-0-MegIcA from xylan from birch by a-glu and were in decreasing magnitude, from linear effects from a-glu - xylan-specific dosage [a-glu, nKatig (L)], temperature [Temp (L)] and quadratic effect on temperature [Temp (Q)] (Figure 26, Pareto diagram] The only significant interaction effect on the removal of 4-0-MegIcA from xylan from birch by a-glu was & An the linear effect of hydrolysis time and the quadratic effect of temperature [time (L) through temperature (Q)] (Figure 26, Pareto diagram) The optimal installation points for α-glu deposition of 4-0-MegIcA were between 9 h and 10.2 h, 33 , 5 and 42 ° C and 16500 and 18000 nCat g substrati The regression coefficients of the variable in the second degree polynomial adapted to the response surface diagram for 4-0 MegIcA deposition as a function of time, temperature and enzyme dose gay a regression coefficient R2 of 0, 90 (R2 adjusted = 0.81) (Figure 27)

Claims (8)

41
1. An isolated polypeptide having oi-glucuronidase activity and that can degrade a glucuronoxylan molecule by hydrolysis of a glycosidic Iinkage between a l\/leGlcA 5 residue and a non-terminal xylopyranosyl residue.
2. An isolated polypeptide having an amino acid sequence selected from the following group: the amino acid sequence of SEQ ID NO 1; an amino acid sequence at least 95% homologous to SEQ ID NO 1 or part 10 thereof;iii. an amino acid sequence at least 85% homologous to SEQ ID NO 1 or partthereof;iv. an amino acid sequence at least 75% homologous to SEQ ID NO 1 or partthereof; and15 v. a functional variant of any one of amino acid sequences listed in i-iv.
3. An isolated polypeptide having an amino acid sequence selected from thefollowing group:i. an amino acid sequence at least 65% homologous to SEQ ID NO 1 or partthereof;20 ii. an amino acid sequence at least 50% homologous to SEQ ID NO 1 or part thereof; and a functional variant of any one of amino acid sequences listed in i and ii.
4. The isolated polypeptide according to either claim 2 or claim 3, wherein the polypeptide is a biologically active fragment of the polypeptide. P1928PCOO(An enzyme with a-glucuronidase activity) 42
5. An isolated polynucleotide encoding a polypeptide according to any one of claims1 to 4, the polynucleotide having a nucleotide sequence selected from thefollowing group: i. the nucleotide sequence of SEQ ID NO 2; 5 ii. a nucleotide sequence at least 95% homologous to SEQ ID NO 2 or part thereof; iii. a nucleotide sequence at least 85% homologous to SEQ ID NO 2 or part thereof; and iv. a nucleotide sequence at least 75% homologous to SEQ ID NO 2 or part 10 thereof.
6. A method of isolating a polypeptide according to any one of claims 1 to 4, themethod including the steps of i. culturing a microbe capable of expressing the polypeptide in induction medium; and15 ii. isolating the polypeptide from the induction medium.
7. The method of isolating a polypeptide according to claim 6, wherein the step ofisolating the polypeptide from the induction medium is carried out using one ormore of anion-exchange chromatography, hydrophobic chromatography, andanion-exchange chromatography. 20
8. The method of isolating a polypeptide according to either claim 6 or claim 7,wherein the microbe is selected from the group including Pichia stipitis,Schizophyllum commune, Aspergillus clavatus, Neosartorya fischeri, Aspergillusfumigatus, Aspergillus terreus, Aspergillus oryzae, Sclerotinia sclerotiorum,Botryotinia fuckeliana, Pyrenophora tritici-repentis, Neurospora crassa, Gibberella 25 zeae, Podospora anserina, Coprinopsis cinerea okayama, Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var. neoformans, Cellvibrio P1928PCOO(An enzyme with a-glucuronidase activity) 10. 11. 12. 43 japonicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus, and Streptomyces pristinaespiralis. The method of isolating the polypeptide according to claim 8, wherein the microbeis Pichia stipitis CBS 6054. A substantially enriched preparation of a polypeptide according to any one of claims 1 to 4. A substantially enriched preparation according to claim 10, wherein thepolypeptide is obtained from a culture of a microbe selected from the groupincluding Schizophyllum commune, Aspergillus clavatus, Neosartorya fischeri,Aspergillus fumigatus, Aspergillus terreus, Aspergillus oryzae, Sclerotiniasclerotiorum, Botryotinia fuckeliana, Pyrenophora tritici-repentis, Neurosporacrassa, Gibberella zeae, Podospora anserina, Coprinopsis cinerea okayama,Magnaporthe grisea, Fusarium sporotrichioides, Cryptococcus neoformans var.neoformans, Cellvibrio japonicus, Saccharophagus degradans, Opitutus terrae, Phaeosphaeria nodorum, Bacteroides ovatus, and Streptomyces pristinaespiralis. A substantially enriched preparation according to claim 11, wherein the polypeptide is obtained from a culture of Pichia stipitis CBS 6054. P1928PCOO(An enzyme with a-glucuronidase activity)
SE1150989A 2009-03-31 2010-03-31 Process for enzymatic hydrolysis of glucuronoxylane SE537440C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA200908321 2009-03-31
PCT/IB2010/000724 WO2010113020A1 (en) 2009-03-31 2010-03-31 An enzyme with alpha-glucuronidase activity

Publications (2)

Publication Number Publication Date
SE1150989A1 SE1150989A1 (en) 2011-12-21
SE537440C2 true SE537440C2 (en) 2015-04-28

Family

ID=42827523

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1150989A SE537440C2 (en) 2009-03-31 2010-03-31 Process for enzymatic hydrolysis of glucuronoxylane

Country Status (5)

Country Link
BR (1) BRPI1006779A2 (en)
FI (1) FI126843B (en)
SE (1) SE537440C2 (en)
WO (1) WO2010113020A1 (en)
ZA (1) ZA201107541B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2580248A4 (en) * 2010-06-08 2014-08-06 Univ Stellenbosch An enzymatic method of producing a hydrogel from xylan
ES2802807T3 (en) 2013-02-04 2021-01-21 Dsm Ip Assets Bv Carbohydrate degrading polypeptide and its uses

Also Published As

Publication number Publication date
SE1150989A1 (en) 2011-12-21
ZA201107541B (en) 2012-11-28
BRPI1006779A2 (en) 2019-09-24
WO2010113020A1 (en) 2010-10-07
FI126843B (en) 2017-06-15
FI20116061A (en) 2011-10-28

Similar Documents

Publication Publication Date Title
EP2580249A1 (en) Modification of xylan
Akpinar et al. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials
Tuomivaara et al. Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature
Gullón et al. Production, refining, structural characterization and fermentability of rice husk xylooligosaccharides
EP2796561B1 (en) Method for producing lignin degradation product
Oliveira et al. Lignin plays a key role in determining biomass recalcitrance in forage grasses
CN109641973A (en) GH10 zytase, GH62 arabinofuranosidase, grinding method and other application
Khaleghipour et al. Extraction of sugarcane bagasse arabinoxylan, integrated with enzymatic production of xylo-oligosaccharides and separation of cellulose
EP3438263A1 (en) Trichoderma fungus having mutant-type bxl1 gene and method for producing xylooligosaccharide and glucose by using same
EA029050B1 (en) Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars
CN108699578A (en) The enzymatic activity of cracking performance polysaccharide monooxygenase
Akpinar et al. Enzymatic processing and antioxidant activity of agricultural waste autohydrolysis liquors
Makarova et al. Enzymatic hydrolysis of cellulose from oat husks at different substrate concentrations
Mallek-Fakhfakh et al. Enzymatic hydrolysis of pretreated Alfa fibers (Stipa tenacissima) using β-d-glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation
Chimphango et al. Isolation, characterization and enzymatic modification of water soluble xylans from Eucalyptus grandis wood and sugarcane bagasse
Ortega et al. Soaking and ozonolysis pretreatment of sugarcane straw for the production of fermentable sugars
Boukari et al. In vitro model assemblies to study the impact of lignin− carbohydrate interactions on the enzymatic conversion of xylan
Hu et al. Integrating genetic-engineered cellulose nanofibrils of rice straw with mild chemical treatments for enhanced bioethanol conversion and bioaerogels production
SE537440C2 (en) Process for enzymatic hydrolysis of glucuronoxylane
EP2307554B1 (en) Process for oxidizing lignocellulosic material employing a Marasmius scorodonius peroxidase
EP2643357B1 (en) A method to increase the molecular weight of wood mannans and xylans comprising aromatic moieties
Zhou et al. Effect of hot water pretreatment severity on the degradation and enzymatic hydrolysis of corn stover
Murano et al. Evaluation of steam explosion as pretreatment in agar extraction from Gracilaria dura (C. Agardh) J. Agardh (Gracilariaceae, Rhodophyta)
US9845365B2 (en) Method for making pentoses and pentose-based soluble oligo/polysaccharides from cereal grain involving debranning technology
Han et al. Effect of [EMIM] Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification

Legal Events

Date Code Title Description
NUG Patent has lapsed