SE537305C2 - Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle - Google Patents
Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle Download PDFInfo
- Publication number
- SE537305C2 SE537305C2 SE1350508A SE1350508A SE537305C2 SE 537305 C2 SE537305 C2 SE 537305C2 SE 1350508 A SE1350508 A SE 1350508A SE 1350508 A SE1350508 A SE 1350508A SE 537305 C2 SE537305 C2 SE 537305C2
- Authority
- SE
- Sweden
- Prior art keywords
- combustion
- during
- injection
- fuel
- pressure
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1412—Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
- F02D35/024—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3827—Common rail control systems for diesel engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
537 30 Sammandrag Foreliggande uppfinning hanfor sig till ett forfarande for reglering av en forbranningsmotor (101), varvid namnda forbranningsmotor (101) innefattar atminstone en forbranningskammare (201) och organ (202) for tillfOrsel av bransle till namnda forbranningskammare (201), varvid forbranning i namnda forbranningskammare (201) sker i forbranningscykler. Forfarandet är kannetecknat av att: under en forsta forbranningscykel, faststalla atminstone ett forsta parametervarde avseende en storhet vid fOrbranning i namnda forbranningskammare (201), baserat pa namnda forsta parametervarde, estimera en representation av en under namnda forsta forbranningscykel och I namnda forbranningskammare (201) resulterande tryckamplitud, och baserat pa namnda estimerade tryckamplitud reglera efterfoljande forbranning. Uppfinningen avser aven ett system och ett fordon. The present invention relates to a method of controlling an internal combustion engine (101), said combustion engine (101) comprising at least one combustion chamber (201) and means (202) for supplying fuel to said combustion chamber (201), wherein combustion in the said combustion chamber (201) takes place in combustion cycles. The method is characterized by: during a first combustion cycle, determining at least one first parameter value for a quantity in combustion in said combustion chamber (201), based on said first parameter value, estimating a representation of one during said first combustion cycle and in said combustion chamber (201) resulting pressure amplitude, and based on said estimated pressure amplitude regulate subsequent combustion. The invention also relates to a system and a vehicle.
Description
537 30 FORFARANDE OCR SYSTEM FOR REGLERING AV EN FORBRANNINGSMOTOR GENOM REGLERING AV FORBRANNINGEN I EN FORBRANNINGSKAMMARE UNDER PAGAENDE FORBRANNINGSCYKEL Uppfinningens omrade Foreliggande uppfinning hanfor sig till forbranningsmotorer, och i synnerhet till ett forfarande for reglering av en forbranningsmotor enligt ingressen till patentkravet 1. Uppfinningen avser aven ett system och ett fordon, liksom ett datorprogram och en datorprogramprodukt, vilka implementerar forfarandet enligt uppfinningen. FIELD OF THE INVENTION Field of the Invention systems and a vehicle, as well as a computer program and a computer program product, which implement the method according to the invention.
Uppfinningens bakgrund Nedanstaende bakgrundsbeskrivning utgor bakgrundsbeskrivning for uppfinningen, och behover saledes inte nodvandigtvis utgora kand teknik. Background of the Invention The following description of the invention constitutes a background description of the invention, and thus does not necessarily constitute a prior art.
Betraffande fordon i allmannet och Atminstone i viss man tunga fordon i synnerhet sker standigt en utveckling i jakt pa bransleeffektivitet och minskade avgasutslapp. Pa grund av t.ex. Okade myndighetsintressen avseende fororeningar och luftkvalitet i t.ex. stadsomraden har utslappsstandarder och regler framtagits i manga jurisdiktioner. Vid framfOrande av tunga fordon, sasom lastfordon, bussar och dyl. har ocksa fordonsekonomin med tiden fatt ett alit storre genomslag pa lonsamheten i den verksamhet dar fordonet anvands. Forutom fordonets anskaffningskostnad utgars de huvudsakliga utgiftsposterna for lopande drift av lon till fordonets forare, kostnader for reparationer och underhAll samt bransle for framdrivning av fordonet. Saledes at det mom vart och ett av dessa omraden viktigt att i mojligaste man forsoka reducera kostnaden. 1 537 30 Forutom ekonomiska/miljomassiga aspekter enligt ovan finns det aven ytterligare aspekter som bor beaktas vid konstruktion av fordon. T.ex. är forarkomforten viktig, kanske i synnerhet vid tunga fordon, och stort arbete laggs ocksa ofta pa forarmiljon. I detta ingar bland annat arbete med ljudkomfort, dvs. minimering/optimering av framforallt oonskat ljud/buller som foraren utsatts for vid framforande av fordonet, dar starka eller pa annat satt storande ljud kan inverka negativt pa forarens framforande av fordonet, t.ex. genom att orsaka stress och/eller trotthet. Concerning vehicles in general and At least in some heavy vehicles in particular, there is a constant development in pursuit of industry efficiency and reduced exhaust emissions. Due to e.g. Increased government interests regarding pollution and air quality in e.g. urban areas, emission standards and rules have been developed in many jurisdictions. When driving heavy vehicles, such as lorries, buses and the like. Over time, the vehicle economy has also had a major impact on the profitability of the business in which the vehicle is used. In addition to the vehicle's acquisition cost, the main expense items for current operation of wages for the vehicle's driver, costs for repairs and maintenance as well as industry for propulsion of the vehicle are included. Thus, it is important for each of these areas to try to reduce the cost as much as possible. 1 537 30 In addition to economic / environmental aspects as above, there are also additional aspects that should be taken into account when designing vehicles. For example. Driver comfort is important, perhaps especially for heavy vehicles, and a lot of work is also often put into driver millions. This includes work with sound comfort, ie. minimization / optimization of, above all, unwanted noise / noise to which the driver is exposed when driving the vehicle, where loud or otherwise disturbing noises can have a negative effect on the driver's driving of the vehicle, e.g. by causing stress and / or fatigue.
En annan en aspekt utgors av det ljud fordonet avger till sin omgivning, dvs. hur fordonets framfart ljudmassigt upplevs i den omgivning fordonet framfors. T.ex. kan det aven i detta avseende finnas lagar och regler som reglerar tillatna ljudemissioner fran fordon. Another aspect is the sound the vehicle emits to its surroundings, ie. how the vehicle's progress is audibly experienced in the environment in which the vehicle is driven. For example. In this respect, there may also be laws and regulations that regulate permissible sound emissions from vehicles.
Sammanfattning av uppfinningen Det är ett syfte med foreliggande uppfinning att tillhandahalla ett forfarande for reglering av en forbranningsmotor. Detta syfte uppnas med ett farfarande enligt patentkrav 1. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of controlling an internal combustion engine. This object is achieved by a process according to claim 1.
Foreliggande uppfinning hanfor sig till ett farfarande far reglering av en forbranningsmotor, varvid namnda forbranningsmotor innefattar Atminstone en forbranningskammare och organ for tillforsel av bransle till namnda forbranningskammare, varvid forbranning i namnda forbranningskammare sker i forbranningscykler. Forfarandet är kannetecknat av att: - under en forsta farbranningscykel, faststalla atminstone ett forsta parametervarde avseende en storhet vid forbranning i namnda forbranningskammare, 2 537 30 - baserat pA namnda forsta parametervarde, estimera en representation av en under namnda forsta forbranningscykel och I namnda fOrbranningskammare resulterande tryckamplitud, sasom en maximal tryckamplitud, och - baserat pa namnda estimerade tryckamplitud, reglera efterfoljande forbranning. The present invention relates to a method of controlling an internal combustion engine, said internal combustion engine comprising at least one combustion chamber and means for supplying fuel to said combustion chamber, wherein combustion in said combustion chamber takes place in combustion cycles. The method is characterized by: - during a first combustion cycle, determining at least one first parameter value for a quantity during combustion in said combustion chamber, based on said first parameter value, estimating a representation of a result during a first combustion cycle and in said combustion result. pressure amplitude, such as a maximum pressure amplitude, and - based on the said estimated pressure amplitude, regulate subsequent combustion.
Sasom har namnts ovan utgor de ljud som genereras vid framfOrande av fordon, och som manga ganger i stor utstrackning betraktas som oOnskat buller, en viktig parameter inte bara i en stravan att astadkomma en god forarmiljo, utan ocksa sett fran den omgivning i vilken fordonet fardas. As mentioned above, the sounds generated when driving a vehicle, and which are often widely regarded as unwanted noise, are an important parameter not only in the effort to achieve a good driving environment, but also in terms of the environment in which the vehicle is driven. .
Vid fordon forekommer, sAsom är }cant, manga ljud/bullerkallor, och en huvudkalla utgors av forbranningsmotorn. Det ljud som en forbranningsmotor ger upphov till beror i stor utstrackning av forbranningen i forbranningsmotorns forbranningskammare, och framfOrallt av det satt pa vilket trycket forandras under forbranningen. Det uppkomna ljudet kommer Atminstone delvis att bero pA den maximala tryckamplitud, dvs. det maximala tryck, som uppstar under forbranningen. Ljud uppstar aven av tryckforandringar, och di I synnerhet nar trycket stiger hastigt. In vehicles, as is the case, many noises / noises are made, and one main source is the internal combustion engine. The noise produced by an internal combustion engine depends to a large extent on the combustion in the combustion chamber of the internal combustion engine, and in particular on the manner in which the pressure changes during combustion. The resulting sound will at least partly depend on the maximum pressure amplitude, ie. the maximum pressure that arises during combustion. Noise is also caused by pressure changes, and especially when the pressure rises rapidly.
Enligt foreliggande uppfinning regleras forbranningen med avseende pi den trycknivA som uppstar under forbranningen, sasom t.ex. medelst en reglering som syftar till att begransa det maximala tryck som kan uppstA under en forbranning (forbranningscykel). According to the present invention, the combustion is regulated with respect to the pressure level that arises during the combustion, such as e.g. by means of a control which aims to limit the maximum pressure that can arise during a combustion (combustion cycle).
Enligt en utforingsform regleras aven det satt pi vilket trycket forandras vid forbranningen, i synnerhet vid en pagaende tryckokning, och di i synnerhet en reglering som syftar till att begransa den maximala tryckforandringshastighet som uppstar vid forbranningen. 3 537 30 Regleringen av forbranningen kan vara anordnad att utforas individuellt for varje cylinder, och forbranningen kan regleras for en efterfoljande forbranningscykel baserat pa information frAn en eller flera foregaende forbranningscykler. According to one embodiment, the mode in which the pressure changes during combustion is also regulated, in particular during an ongoing pressure increase, and in particular a regulation which aims to limit the maximum pressure change rate which arises during combustion. The control of the combustion may be arranged to be carried out individually for each cylinder, and the combustion may be regulated for a subsequent combustion cycle based on information from one or more preceding combustion cycles.
Enligt en utforingsform estimeras en representation den maximala tryckamplitud som forvantas resultera under en forbranningscykel, varvid forbranningen for en efterfoljande forbranningscykel regleras baserat pa denna estimering, och varvid regleringen vid efterfoljande forbranningscykel kan anpassas ftir att undvika t.ex. en oonskat hog tryckamplitud. According to one embodiment, a representation is estimated the maximum pressure amplitude that is expected to result during a combustion cycle, wherein the combustion for a subsequent combustion cycle is regulated based on this estimation, and wherein the regulation at subsequent combustion cycle can be adjusted to avoid e.g. an undesirably high pressure amplitude.
Enligt en utforingsform regleras en pagaende forbranning under en forbranningscykel, varvid uppfinningen tillhandahaller en reglering av en pAgAende forbranningsprocess dar reglering kan utforas under pagaende forbranning i syfte att t.ex. forhindra en oonskat hog tryckamplitud fran att uppsta. According to one embodiment, an ongoing combustion is regulated during a combustion cycle, wherein the invention provides a control of an ongoing combustion process where control can be performed during ongoing combustion in order to e.g. prevent an undesired high pressure amplitude from occurring.
Regleringen enligt foreliggande uppfinning kan Astadkommas genom att under en forsta del av en forbranningscykel faststalla ett parametervarde avseende en storhet vid forbranningen, sAsom t.ex. ett i forbranningskammaren radande tryck. Baserat pa detta parametervarde, sasom sAledes t.ex. rAdande tryck, kan sedan ett forvantat maximalt tryck (maximal tryckamplitud) estimeras, varvid forbranningen under en efterfoljande del av forbranningscykeln kan regleras med avseende pa forvantad maximal tryckamplitud. Enligt en utforingsform estimeras aven en forvantad maximal tryckokningshastighet, varvid reglering aven kan ske med avseende pa detta. The control according to the present invention can be achieved by establishing during a first part of a combustion cycle a parameter value regarding a quantity in the combustion, such as e.g. a pressure radiating in the combustion chamber. Based on this parameter value, as Thus e.g. Releasing pressure, a expected maximum pressure (maximum pressure amplitude) can then be estimated, whereby the combustion during a subsequent part of the combustion cycle can be regulated with respect to the expected maximum pressure amplitude. According to one embodiment, an expected maximum pressure increase rate is also estimated, whereby regulation can also take place with respect to this.
Forbranningen kan t.ex. regleras genom att faststalla en insprutningsstrategi for tillampning vid en efterfoljande insprutning under forbranningscykeln, varvid vid faststallandet av insprutningsstrategi en fOrvantad maximal tryckamplitud kan estimeras, varvid en insprutningsstrategi, 4 537 30 sasom t.ex. en insprutningsstrategi av ett flertal insprutningsstrategier, kan valjas, dar en insprutningsstrategi valjs som inte forvantas resultera i en oonskad tryckutveckling under forbranningen. T.ex. kan en insprutningsstrategi valjas som forvantas resultera i en maximal tryckamplitud som understiger nagot tillampligt gransvarde far det maximala trycket, dar detta gransvarde uppgar till nAgot tillampligt maximalt tryck som t.ex. forvantas resultera i en avgiven ljudniva som i sin tur understiger flagon tillamplig ljudniva, eller uppfyller annat kriterium betraffande avgivet ljud. The combustion can e.g. is regulated by establishing an injection strategy for application in a subsequent injection during the combustion cycle, whereby in determining the injection strategy an expected maximum pressure amplitude can be estimated, whereby an injection strategy, such as e.g. an injection strategy of a plurality of injection strategies, can be selected, where an injection strategy is chosen which is not expected to result in an undesired pressure development during combustion. For example. If an injection strategy can be chosen that is expected to result in a maximum pressure amplitude that is less than the applicable spruce value for the maximum pressure, where this spruce value amounts to some applicable maximum pressure such as e.g. expected to result in a sound output level which in turn is below the applicable sound level of the flag, or meets another criterion regarding sound output.
FOrfarandet enligt foreliggande uppfinning kan t.ex. implementeras med hjalp av en eller flera FPGA (Field-Programmable Gate Array)- kretsar, och/eller en eller flera ASIC (application-specific integrated circuit)-kretsar, eller andra typer av kretsar som kan hantera onskad berakningshastighet. The method of the present invention can e.g. implemented using one or more FPGAs (Field-Programmable Gate Array) circuits, and / or one or more ASIC (application-specific integrated circuit) circuits, or other types of circuits that can handle the desired computational speed.
Ytterligare kannetecken for foreliggande uppfinning och fordelar darav kommer att framga ur foljande detaljerade beskrivning av exempelutforingsformer och de bifogade ritningarna. Additional features of the present invention and advantages thereof will become apparent from the following detailed description of exemplary embodiments and the accompanying drawings.
Kort beskrivning av ritningar Fig. lA visar schematiskt ett fordon vid vilket foreliggande uppfinning kan anvandas. Brief Description of the Drawings Fig. 1A schematically shows a vehicle in which the present invention can be used.
Fig. 1B visar en styrenhet i styrsystemet for det i fig. 1A visade fordonet. Fig. 1B shows a control unit in the control system of the vehicle shown in Fig. 1A.
Fig. 2visar forbranningsmotorn vid det i fig. lA visade fordonet mer i detalj. Fig. 2 shows the internal combustion engine of the vehicle shown in Fig. 1A in more detail.
Fig. 3visar ett exempelforfarande enligt foreliggande uppfinning. 537 30 Fig. 4visar ett exempel pa ett estimerat tryckspar for en forbranning, samt ett faktiskt tryckspar fram till en forsta vevvinkelposition. Fig. 3 shows an exemplary method according to the present invention. Fig. 4 shows an example of an estimated pressure pair for a combustion, and an actual pressure pair up to a first crank angle position.
Fig. 5A-B visar ett exempel pa reglering vid situationer med fler an tre insprutningar. Figs. 5A-B show an example of control in situations with more than three injections.
Fig. 6visar ett exempel pa en MPC-reglering. Fig. 6 shows an example of an MPC control.
Detaljerad beskrivning av utforingsformer Fig. lA visar schematiskt en drivlina i ett fordon 100 enligt en utforingsform av foreliggande uppfinning. Drivlinan innefattar en forbranningsmotor 101, vilken pa ett sedvanligt satt, via en pa forbranningsmotorn 101 utgaende axel, vanligtvis via ett svanghjul 102, är fOrbunden med en vaxellada 103 via en koppling 106. Detailed Description of Embodiments Fig. 1A schematically shows a driveline in a vehicle 100 according to an embodiment of the present invention. The driveline comprises an internal combustion engine 101, which in a conventional manner, via a shaft extending on the internal combustion engine 101, usually via a flywheel 102, is connected to a gearbox 103 via a coupling 106.
Forbranningsmotorn 101 styrs av fordonets styrsystem via en styrenhet 115. Likasa styrs kopplingen 106, vilken t.ex. kan utgoras av en automatiskt styrd koppling, och vaxelladan 103 av fordonets styrsystem med hjalp av en eller flera tillampliga styrenheter (ej visat). Naturligtvis kan fordonets drivlina aven vara av annan typ sasom t.ex. av en typ med konventionell automatvaxellada eller av en typ med en manuellt vaxlad vaxellada etc. The internal combustion engine 101 is controlled by the vehicle's control system via a control unit 115. Likewise, the clutch 106, which e.g. can be constituted by an automatically controlled clutch, and the gearbox 103 of the vehicle's control system by means of one or more applicable control units (not shown). Of course, the vehicle's driveline can also be of another type such as e.g. of a type with conventional automatic gearbox or of a type with a manually geared gearbox etc.
En fran vaxelladan 103 utgaende axel 107 driver drivhjul 113, 114 pa sedvanligt satt via slutvaxel och drivaxlar 104, 105. I fig. lA visas endast en axel med drivhjul 113, 114, men pa sedvanligt satt kan fordonet innefatta fler an en axel forsedd med drivhjul, liksom aven en eller flera ytterligare axlar, sasom en eller flera stodaxlar. Fordonet 100 innefattar vidare ett avgassystem med ett efterbehandlingssystem 200 for sedvanlig behandling (rening) av avgasutslapp resulterande fran forbranning i fOrbranningsmotorns 101 forbranningskammare (t.ex. cylindrar). 6 537 30 Vidare är forbranningsmotorer vid fordon av den i fig. lA visade typen ofta forsedda med styrbara injektorer for att tillfora onskad branslemangd vid onskad tidpunkt i fOrbranningscykeln, sasom vid en specifik kolvposition (vevvinkelgrad) i fallet med en kolvmotor, till forbranningsmotorns forbranningskammare. A shaft 107 emanating from the gearbox 103 drives drive wheels 113, 114 in the usual manner via end shaft and drive shafts 104, 105. Fig. 1A shows only one shaft with drive wheels 113, 114, but in the usual way the vehicle can comprise more than one shaft provided with drive wheels, as well as one or more additional axles, such as one or more stand axles. The vehicle 100 further includes an exhaust system with a post-treatment system 200 for conventional treatment (purification) of exhaust emissions resulting from combustion in the combustion chamber of the internal combustion engine 101 (eg, cylinders). Furthermore, internal combustion engines in vehicles of the type shown in Fig. 1A are often provided with controllable injectors to supply the desired amount of fuel at the desired time in the combustion cycle, as at a specific piston position (crank angle degree) in the case of a piston engine, to the internal combustion engine.
I fig. 2 visas schematiskt ett exempel pa ett bransleinsprutningssystem for den i fig. 1A exemplifierade forbranningsmotorn 101. Bransleinsprutningssystemet utgors av ett s.k. Common Rail-system, men uppfinnlngen är lika tillamplig vid andra typer av insprutningssystem. I fig. 2 visas endast en cylinder/forbranningskammare 201 med en i cylindern verkande kolv 203, men forbranningsmotorn 101 utgOrs i foreliggande exempel av en sexcylindrig forbranningsmotor, och kan allmant utgOras av en motor med ett godtyckligt antal cylindrar/forbranningskammare, sasom t.ex. ett godtyckligt antal cylindrar/forbranningskammare i intervallet 1-20 eller annu fler. Forbranningsmotorn innefattar vidare atminstone en respektive injektor 202 for varje forbranningskammare (cylinder) 201. Varje respektive injektor anvands saledes for insprutning (tillforsel) av bransle i en respektive forbranningskammare 201. Alternativt kan tva eller flera injektorer per forbranningskammare anvandas. Injektorerna 202 är individuellt styrda av respektive och vid respektive injektor anordnade aktuatorer (ej visat), vilka baserat pa mottagna styrsignaler, sasom t.ex. fran styrenheten 115, styr oppning/stangning av injektorerna 202. Fig. 2 schematically shows an example of a fuel injection system for the internal combustion engine 101 exemplified in Fig. 1A. The fuel injection system consists of a so-called Common Rail systems, but the invention is equally applicable to other types of injection systems. Fig. 2 shows only a cylinder / combustion chamber 201 with a piston 203 acting in the cylinder, but the internal combustion engine 101 is in the present example a six-cylinder internal combustion engine, and can generally be constituted by an engine with an arbitrary number of cylinders / combustion chamber, such as e.g. . any number of cylinders / combustion chambers in the range 1-20 or more. The combustion engine further comprises at least one respective injector 202 for each combustion chamber (cylinder) 201. Each respective injector is thus used for injection (supply) of fuel into a respective combustion chamber 201. Alternatively, two or more injectors per combustion chamber may be used. The injectors 202 are individually controlled by respective actuators (not shown) arranged at the respective injector, which are based on received control signals, such as e.g. from the control unit 115, controls the opening / closing of the injectors 202.
Styrsignalerna for styrning av aktuatorernas oppning/stangning av injektorerna 202 kan genereras av nagon tillamplig styrenhet, sasom i detta exempel av motorstyrenheten 115. The control signals for controlling the opening / closing of the actuators of the injectors 202 can be generated by any applicable control unit, as in this example by the motor control unit 115.
Motorstyrenheten 115 faststaller saledes den mangd bransle som 7 537 30 faktiskt skall insprutas vid nagon given tidpunkt, t.ex. baserat pa radande driftsforhallanden hos fordonet 100. The motor control unit 115 thus determines the amount of fuel that is actually to be injected at a given time, e.g. based on the prevailing operating conditions of the vehicle 100.
Det i fig. 2 visade insprutningssystemet utgOrs alltsa av ett s.k. Common Rail-system, vilket innebar att samtliga injektorer (och darmed forbranningskammare) forsOrjs med bransle fran ett gemensamt bransleror 204 (Common Rail), vilket med hjalp av en branslepump 205 fylls med bransle fran en bransletank (ej visad) samtidigt som branslet i raret 204, ocksa med hjalp av branslepumpen 205, trycksatts till ett visst tryck. Det i det gemensamma roret 204 hogt trycksatta branslet insprutas sedan i forbranningsmotorns 101 forbranningskammare 201 vid oppning av respektive injektor 202. Flera oppningar/stangningar av en specifik injektor kan utforas under en och samma fOrbranningscykel, varvid saledes flera insprutningar kan utfaras under en forbranningscykels forbranning. Vidare är varje forbranningskammare forsedd med en respektive trycksensor 206 for avgivande av signaler av ett i forbranningskammaren radande tryck till t.ex. styrenheten 115. Trycksensorn kan t.ex. vara piezo-baserad och bor vara sa pass snabb att den kan avge vevvinkelupplosta trycksignaler, sasom t.ex. vid var 10:e, var 5:e eller vane vevvinkelgrad eller annat tillampligt intervall, sasom t.ex. an oftare. The injection system shown in Fig. 2 thus consists of a so-called Common Rail system, which meant that all injectors (and thus combustion chambers) were supplied with fuel from a common fuel line 204 (Common Rail), which with the help of a fuel pump 205 was filled with fuel from a fuel tank (not shown) at the same time as the fuel in the furnace. 204, also with the aid of the fuel pump 205, is pressurized to a certain pressure. The highly pressurized fuel in the common tube 204 is then injected into the combustion chamber 201 of the internal combustion engine 101 at the opening of the respective injector 202. Several openings / rods of a specific injector can be made during one and the same combustion cycle, thus several injections can be made during one combustion cycle. Furthermore, each combustion chamber is provided with a respective pressure sensor 206 for emitting signals of a pressure radiating in the combustion chamber to e.g. the control unit 115. The pressure sensor can e.g. be piezo-based and should be so fast that it can emit crank angle-resolved pressure signals, such as e.g. at every 10, every 5th or habit crank angle degree or other applicable interval, such as e.g. an oftare.
Med hjalp av system av den i fig. 2 visade typen kan fOrbranningen under en forbranningscykel i en forbranningskammare styras i stor utstrackning, t.ex. genom utnyttjande av multipla insprutningar, dar insprutningstidpunkter och/eller varaktighet for respektive insprutning kan regleras, och dar data fran t.ex. trycksensorerna 206 kan tas i beaktande vid regleringen. With the aid of systems of the type shown in Fig. 2, the combustion during a combustion cycle in a combustion chamber can be controlled to a large extent, e.g. by utilizing multiple injections, where injection times and / or duration for each injection can be regulated, and where data from e.g. the pressure sensors 206 can be taken into account in the control.
Enligt en utforingsform av foreliggande uppfinning regleras forbranningen for en efterfoljande forbranningscykel baserat pa en foregaende forbranningscykel, dvs. berakningen fran en 8 537 30 foregaende forbranningscykel anvands vid reglering av en efterfoljande forbranningscykel. Enligt en utforingsform av uppfinningen anpassas t.ex. insprutningstidpunkter och/eller varaktighet for respektive insprutning och/eller insprutad branslemangd under en pagaende forbranningscykel baserat pa data fran den pagaende fOrbranningscykeln. According to an embodiment of the present invention, the combustion of a subsequent combustion cycle is regulated based on a previous combustion cycle, i.e. the calculation from a previous combustion cycle is used in controlling a subsequent combustion cycle. According to an embodiment of the invention, e.g. injection times and / or duration of the respective injection and / or injected industry volume during an ongoing combustion cycle based on data from the current combustion cycle.
Sasom har namnts ovan kommer det ljud som drift av en forbranningsmotor allmant ger upphov till i stor utstrackning att bero av forbranningen i forbranningsmotorns forbranningskammare, och i synnerhet av det satt pa vilket trycket forandras under forbranningen. Enligt uppfinningen regleras fOrbranningen framforallt med avseende pa det maximala tryck som tillats uppsta i forbranningskammaren under forbranningen. Enligt en utforingsform regleras aven den maximala tryckderivatan vid forbranningen, dvs. den maximala hastighet med vilken trycket forandras, och da i synnerhet vid tryckokning. As mentioned above, the noise which the operation of an internal combustion engine generally gives rise to depends to a large extent on the combustion in the combustion chamber of the internal combustion engine, and in particular on the manner in which the pressure changes during combustion. According to the invention, the combustion is regulated above all with respect to the maximum pressure that is allowed to arise in the combustion chamber during the combustion. According to one embodiment, the maximum pressure derivative is also regulated during combustion, ie. the maximum speed at which the pressure changes, and in particular at pressure boiling.
I fig. 3 visas ett exempelforfarande 300 enligt foreliggande uppf inning, dar forfarandet enligt foreliggande exempel är anordnat att utforas av den i fig. 1A-B visade motorstyrenheten 115. Fig. 3 shows an exemplary method 300 according to the present invention, in which the method according to the present example is arranged to be performed by the motor control unit 115 shown in Figs. 1A-B.
Allmant bestar styrsystem i moderna fordon av ett kommunikationsbussystem bestaende av en eller flera kommunikationsbussar for att sammankoppla ett antal elektroniska styrenheter (ECU:er) sasom styrenheten, eller controller, 115, och olika pa fordonet anordnade komponenter. Sasom är kant kan dylika styrsystem innefatta ett stort antal styrenheter, och ansvaret for en specifik funktion kan vara uppdelat pa fler an en styrenhet. Generally, control systems in modern vehicles consist of a communication bus system consisting of one or more communication buses for interconnecting a number of electronic control units (ECUs) such as the control unit, or controller, 115, and various components arranged on the vehicle. As an edge, such control systems may comprise a large number of control units, and the responsibility for a specific function may be divided into more than one control unit.
For enkelhetens skull visas i fig. 1A-B, endast motorstyrenheten 115 i vilken foreliggande uppfinning är implementerad i den visade utforingsformen. Uppfinningen kan 9 537 30 dock Allen implementeras i en for foreliggande uppfinning dedikerad styrenhet, eller helt eller delvis i en eller flera andra vid fordonet redan befintliga styrenheter. Med tanke pa den hastighet med vilken berdkningar enligt foreliggande uppfinning utfors kan uppfinningen vara anordnad att implementeras i en styrenhet som är sdrskilt avpassad for realtidsberakningar av typen enligt nedan. Implementering av fOreliggande uppfinning har visat att t.ex. ASIC- och FPGAlosningar är ldmpade for och vd1 klarar av berakningar enligt foreliggande uppfinning. For the sake of simplicity, in Figs. 1A-B, only the motor control unit 115 in which the present invention is implemented in the embodiment shown is shown. However, the invention may be implemented in a control unit dedicated to the present invention, or in whole or in part in one or more other control units already present in the vehicle. In view of the speed at which calculations according to the present invention are carried out, the invention can be arranged to be implemented in a control unit which is specially adapted for real-time calculations of the type as below. Implementation of the present invention has shown that e.g. ASIC and FPGA solutions are attenuated and vd1 can handle calculations according to the present invention.
Styrenhetens 115 (eller den/de styrenheter vid vilken/vilka foreliggande uppfinning är implementerad) funktion enligt foreliggande uppfinning kan, forutom att bero av sensorsignaler fran trycksensorn 202, t.ex. bero av signaler fran andra styrenheter eller sensorer. Allmdnt gdller att styrenheter av den visade typen normalt är anordnade att ta emot sensorsignaler fran olika delar av fordonet, liksom fran olika pa fordonet anordnade styrenheter. The function of the control unit 115 (or the control unit (s) to which the present invention is implemented) according to the present invention may, in addition to being dependent on sensor signals from the pressure sensor 202, e.g. depend on signals from other controllers or sensors. In general, control units of the type shown are normally arranged to receive sensor signals from different parts of the vehicle, as well as from different control units arranged on the vehicle.
Styrningen styrs ofta av programmerade instruktioner. Dessa programmerade instruktioner utgors typiskt av ett datorprogram, vilket ndr det exekveras i en dator eller styrenhet astadkommer att datorn/styrenheten utfor onskad styrning, sasom forfarandesteg enligt foreliggande uppfinning. The control is often controlled by programmed instructions. These programmed instructions typically consist of a computer program, which when executed in a computer or control unit causes the computer / control unit to perform the desired control, such as the process steps of the present invention.
Datorprogrammet utgar vanligtvis del av en datorprogramprodukt, cid" datorprogramprodukten innefattar ett tilldmpligt lagringsmedium 121 (se fig. 1B) med datorprogrammet lagrat pa namnda lagringsmedium 121. Ndmnda digitala lagringsmedium 121 kan t.ex. utgoras av nagon ur gruppen: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash-minne, EEPROM (Electrically Erasable PROM), en harddiskenhet, etc., och vara anordnat i eller i forbindelse med styrenheten, varvid 537 30 datorprogrammet exekveras av styrenheten. Genom att dndra datorprogrammets instruktioner kan saledes fordonets upptradande i en specifik situation anpassas. The computer program usually forms part of a computer program product, cid "the computer program product comprises a suitable storage medium 121 (see Fig. 1B) with the computer program stored on said storage medium 121. The said digital storage medium 121 may, for example, be constituted by someone from the group: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically Erasable PROM), a hard disk drive, etc., and be arranged in or in connection with the control unit, whereby the computer program is executed. By changing the instructions of the computer program, the behavior of the vehicle in a specific situation can thus be adapted.
En exempelstyrenhet (styrenheten 115) visas schematiskt i fig. 1B, varvid styrenheten i sin tur kan innefatta en berakningsenhet 120, vilken kan utgoras av t.ex. nagon lamplig typ av processor eller mikrodator, t.ex. en krets for digital signalbehandling (Digital Signal Processor, DSP), en eller flera FPGA (Field-Programmable Gate Array)- kretsar eller en eller flera kretsar med en forutbestamd specifik funktion (Application Specific Integrated Circuit, ASIC). Berakningsenheten 120 är forbunden med en minnesenhet 121, vilken tillhandahaller berdkningsenheten 120 t.ex. den lagrade programkoden och/eller den lagrade data berakningsenheten 1 behover for att kunna utfora berakningar. Berdkningsenheten 120 är dven anordnad att lagra del- eller slutresultat av berakningar i minnesenheten 121. An exemplary control unit (control unit 115) is shown schematically in Fig. 1B, wherein the control unit may in turn comprise a calculating unit 120, which may be constituted by e.g. any suitable type of processor or microcomputer, e.g. a Digital Signal Processor (DSP), one or more Field-Programmable Gate Array (FPGAs) circuits or one or more circuits with an Application Specific Integrated Circuit (ASIC) function. The calculating unit 120 is connected to a memory unit 121, which provides the calculating unit 120 e.g. the stored program code and / or the stored data calculation unit 1 need to be able to perform calculations. The bending unit 120 is then arranged to store partial or final results of calculations in the memory unit 121.
Vidare är styrenheten forsedd med anordningar 122, 123, 124, 125 for mottagande respektive sandande av in- respektive utsignaler. Dessa in- respektive utsignaler kan innehalla vagformer, pulser, eller andra attribut, vilka av anordningarna 122, 125 for mottagande av insignaler kan detekteras som information for behandling av berakningsenheten 120. Anordningarna 123, 124 for sandande av utsignaler är anordnade att omvandla berakningsresultat fran berakningsenheten 120 till utsignaler for overforing till andra delar av fordonets styrsystem och/eller den/de komponenter for vilka signalerna är avsedda. Var och en av anslutningarna till anordningarna far mottagande respektive sandande av in- respektive utsignaler kan utgoras av en eller flera av en kabel; en databuss, sasom en CAN-bus (Controller Area Network bus), en MOST-bus (Media Oriented Systems 11 537 30 Transport), eller flagon annan busskonfiguration; eller av en tradlos anslutning. Furthermore, the control unit is provided with devices 122, 123, 124, 125 for receiving and transmitting input and output signals, respectively. These inputs and outputs may contain waveforms, pulses, or other attributes, which of the input signals 122, 125 for receiving input signals may be detected as information for processing the calculation unit 120. The devices 123, 124 for transmitting output signals are arranged to convert calculation results from the calculation unit. 120 to output signals for transmission to other parts of the vehicle control system and / or the component (s) for which the signals are intended. Each of the connections to the devices receiving and transmitting input and output signals, respectively, may be one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), a MOST bus (Media Oriented Systems 11 537 30 Transport), or flag other bus configuration; or by a wireless connection.
Ater till det i fig. 3 visade forfarandet 300 startar forfarandet i steg 301, dar det faststalls huruvida den uppfinningsenliga regleringen av forbranningsprocessen ska utforas. Den uppfinningsenliga regleringen kan t.ex. vara anordnad att utfOras kontinuerligt sá fort forbranningsmotorn 101 startas. Alternativt kan regleringen vara anordnad att utforas t.ex. sá lange som forbranningsmotorns forbranning inte ska regleras enligt nagot annat kriterium. T.ex. kan det finnas situationer dar det är onskvart att reglering utfOrs baserat pa andra faktorer an avgivet ljud i forsta hand. Enligt en utfOringsform utfOrs samtidig reglering av forbranningen med avseende pa avgivet ljud vid forbranningen och atminstone en ytterligare reglerparameter. T.ex. kan en avvagning goras, dar reglerparametrarnas prioritering vid uppfyllnad av onskat regleringsresultat t.ex. kan vara anordnad att styras enligt flagon tillamplig kostnadsfunktion. Returning to the process 300 shown in Fig. 3, the process starts in step 301, where it is determined whether the control according to the invention of the combustion process is to be carried out. The regulation according to the invention can e.g. be arranged to be carried out continuously as soon as the internal combustion engine 101 is started. Alternatively, the regulation can be arranged to be performed e.g. as long as the combustion engine combustion is not to be regulated according to any other criterion. For example. there may be situations where it is undesirable for regulation to be carried out based on factors other than the sound emitted in the first place. According to one embodiment, control of the combustion is performed simultaneously with respect to emitted sound during combustion and at least one additional control parameter. For example. a balancing can be made, where the prioritization of the control parameters when fulfilling the desired control result e.g. may be arranged to be controlled according to the flag applicable function function.
Forfarandet enligt fOreliggande uppfinning utgors ants& av ett forfarande for reglering av forbranningsmotorn 101 under det att fOrbranning sker i namnda forbranningskammare 201 i forbranningscykler. Sasom är kant är termen forbranningscykel definierad som de steg en forbranning vid en forbranningsmotor innefattar, sasom t.ex. tvataktsmotorns tva takter respektive fyrtaktsmotorns fyra takter. Termen innefattar aven cykler dar inget bransle faktiskt insprutas, men dar forbranningsmotorn arida drivs vid nagot varvtal, sasom av fordonets drivhjul via drivlinan vid t.ex. slapning. Dvs. aven cm ingen insprutning av bransle utfors sker fortfarande en forbranningscykel for t.ex. varje tva vary (vid fyrtaktsmotor), eller t.ex. vane vary (tvataktsmotor), som forbranningsmotorns utgaende axel 12 537 30 roterar. Det motsvarande galler aven andra typer av forbranningsmotorer. The method according to the present invention consists in a method for controlling the internal combustion engine 101 while combustion takes place in said combustion chamber 201 in combustion cycles. As is edge, the term combustion cycle is defined as the steps a combustion at an internal combustion engine includes, such as e.g. the two-stroke engine's two-stroke engine and the four-stroke engine's four-stroke engine, respectively. The term also includes cycles where no fuel is actually injected, but where the internal combustion engine is driven at a certain speed, such as by the vehicle's drive wheel via the driveline at e.g. relaxation. Ie. even if no injection of fuel is carried out, a combustion cycle still takes place for e.g. every two vary (for four-stroke engine), or e.g. vane vary (two-stroke engine), which rotates the output shaft 12 537 30 of the internal combustion engine. The same applies to other types of internal combustion engines.
I steg 302 faststalls huruvida en forbranningscykel her eller kommer att paborjas, och nar sa är fallet fortsatter forfarandet till steg 303 samtidigt som en parameter i representerande insprutningsnummer satts lika med ett. In step 302, it is determined whether or not a combustion cycle will be started here, and when so, the process proceeds to step 303 while a parameter in the representative injection number is set equal to one.
I steg 303 faststalls ett insprutningsschema/regleralternativ som forvantas resultera i en under forbranningscykeln onskad tryckutveckling, sasom t.ex. ett insprutningsschema som forvantas begransa den maximala tryckamplituden i forbranningskammaren under forbranningscykelns forbranning. In step 303, an injection scheme / control alternative is established which is expected to result in a desired pressure development during the combustion cycle, such as e.g. an injection scheme that is expected to limit the maximum pressure amplitude in the combustion chamber during the combustion cycle combustion.
Allmant (jailer att tillforseln av mangden bransle bade avseende mangd och pa vilket satt, dvs. de en eller flera bransleinsprutningar som ska utforas under forbranningscykeln normalt är pa forhand definierade, t.ex. i beroende av det arbete (vridmoment) som fOrbranningsmotorn ska utratta under forbranningscykeln, eftersom forandring av det faststallda insprutningsschemat inte utfors under en pagaende forbranningscykel enligt kand teknik. FOrutbestamda insprutningsscheman kan t.ex. finnas tabellerade i fordonets styrsystem for ett stort antal driftsfall, sasom olika motorvarvtal, olika begarda arbeten, olika forbranningslufttryck etc., dar tabellerad data t.ex. kan ha framtagits genom tillampliga prov/matningar vid t.ex. utveckling av forbranningsmotor och/eller fordon, varvid tillampligt insprutningsschema/regleralternativ kan valjas utifran radande forhallanden, och dar insprutningsschemat kan valjas eller vara pa forhand avpassat for att t.ex. resultera i en forvantad maximal tryckamplitud som understiger nagot tillampligt tryckgransvarde. 13 537 30 Dessa insprutningsscheman/regleralternativ kan utgoras av insprutningarnas antal respektive egenskaper i form av t.ex. tidpunkt (vevvinkellage) for start av insprutning, insprutningens langd, insprutningstryck etc., och alltsa finnas lagrade for ett stort antal driftsfall i fordonets styrsystem, och t.ex. vara framraknade/uppmatta med malet att resultera i en maximal tryckamplitud som understiger nagot tillampligt tryck. Insprutningarna kan aven vara framtagna i syfte att uppfylla aven andra mal, sasom att avge onskat arbete, resultera i en viss maximal varmeforlust, viss avgastemperatur etc., varvid insprutningarna sAledes kan vara framtagna baserat pa en viktning av flera parametrar. General (jailer that the supply of the amount of fuel both in terms of quantity and in what way, ie the one or more fuel injections to be performed during the combustion cycle are normally predefined, eg depending on the work (torque) that the internal combustion engine is to perform during the combustion cycle, since changes to the established injection schedule are not performed during an ongoing combustion cycle according to prior art.For-specific injection schedules may, for example, be tabulated in the vehicle control system for a large number of operating cases, such as different engine speeds, different working conditions, different combustion air pressures, etc. where tabulated data may, for example, have been produced by appropriate tests / feeds in, for example, the development of an internal combustion engine and / or vehicle, whereby an appropriate injection schedule / control alternative can be selected based on prevailing conditions, and where the injection schedule may be selected or pre-adapted for to, for example, result in an expected maximum pressure amplitude that is less than the applicable pressure gauge value. 13 537 30 These injection schemes / control alternatives can consist of the number and properties of the injections in the form of e.g. time (crank angle law) for start of injection, length of injection, injection pressure, etc., and thus are stored for a large number of operating cases in the vehicle's control system, and e.g. be protruded / fed with the grind to result in a maximum pressure amplitude that is less than the applicable pressure. The injections can also be developed for the purpose of fulfilling other goals as well, such as delivering the desired work, resulting in a certain maximum heat loss, a certain exhaust temperature, etc., whereby the injections can thus be produced based on a weighting of several parameters.
Enligt foreliggande utforingsform tillampas darfor i steg 303 ett dylikt fOrutbestamt insprutningsschema, dar detta forutbestamda insprutningsschema saledes valjs, t.ex. genom tabelluppslagning, baserat pa radande fOrhallanden och onskat av forbranningsmotorn utrattat arbete, dar det onskade (begarda) utrattade arbetet normalt styrs (begars) av nagon overordnad/annan process, sasom t.ex. baserat pa en begaran om drivkraft fran fordonets fOrare och/eller ett farthAllningssystem. According to the present embodiment, therefore, in step 303, such a predetermined injection schedule is applied, where this predetermined injection schedule is thus selected, e.g. by table look-up, based on prevailing conditions and desired work done by the internal combustion engine, where the desired (requested) done work is normally controlled (requested) by some superior / other process, such as e.g. based on a request for propulsion from the driver of the vehicle and / or a cruise control system.
Enligt en utforingsform faststalls ett insprutningsschema som resulterar i att Atminstone halften av onskat arbete utrattas for att sakerstalla att inte det utrattade arbetet kan regleras till alltfor lag nivA. According to one embodiment, an injection schedule is established which results in at least half of the desired work being exhausted to ensure that the exhausted work cannot be regulated to excessively low level.
Enligt en utforingsform faststalls insprutningsschemat helt enligt t.ex. de nedan visade berakningarna, dar t.ex. olika pa forhand definierade insprutningsscheman kan jamforas med varandra for att faststalla ett mest foredraget insprutningsschema, men i det nedan exemplifierade berakningsexemplet tillampas dock berakningarna forst efter 14 537 30 det att insprutning har paborjats under forbranningscykeln. Eftersom specifika antagna forhallanden sannolikt resulterar i samma foredragna insprutningsschema vane gang kan det vara fordelaktigt att infor en forbranningscykel valja ett insprutningsschema genom nagon typ av uppslagning och darmed minska berakningsbelastningen, varvid berakning enligt nedan saledes utfors forst efter det att insprutning har paborjats. Forutom nedanstaende exempel pa hur insprutningsschemat kan faststallas kan alternativt andra modeller med motsvarande funktion tillampas. According to one embodiment, the injection schedule is determined entirely according to e.g. the calculations shown below, where e.g. different pre-defined injection schedules can be compared with each other to determine a most preferred injection schedule, but in the calculation example exemplified below, the calculations are applied only after injection has been started during the combustion cycle. Since specific assumed ratios are likely to result in the same preferred injection schedule as usual, it may be advantageous to select an injection schedule for a combustion cycle by some type of look-up and thereby reduce the calculation load, calculating as follows only after injection has been started. In addition to the following examples of how the injection schedule can be determined, other models with a corresponding function can alternatively be applied.
Enligt foreliggande utfOringsform faststalls saledes i steg 303 ett forutbestamt insprutningsschema vid forbranningscykelns borjan, varvid reglering enligt uppfinningen utfors forst efter det att bransleinsprutning har paborjats under forbranningscykeln, sasom fOrst efter det att atminstone en insprutning har utforts under forbranningscykeln, eller efter det att en insprutning atminstone har paborjats. Thus, according to the present embodiment, in step 303, a predetermined injection schedule is established at the beginning of the combustion cycle, control according to the invention being performed only after fuel injection has been started during the combustion cycle, such as only after at least one injection has been performed during the combustion cycle or at least has been paborjats.
Bransleinsprutning utfors alltsa normalt enligt ett forutbestamt schema, dar ett flertal insprutningar kan vara anordnade att utforas under en och samma forbranningscykel. Detta medfor att insprutningarna kan vara forhallandevis korta. T.ex. forekommer insprutningssystem med 5-10 bransleinsprutningar/forbranning, men antalet bransleinsprutningar kan aven vara betydligt stOrre an sa, sasom t.ex. i storleksordningen 100 bransleinsprutningar under en forbranningscykel. Antalet mojliga insprutningar styrs allmant av snabbheten hos de organ med vilka insprutning utfors, dvs. i fallet med Common Rail -system av hur snabbt injektorerna kan oppnas stangas. 537 30 Enligt foreliggande exempel utfors Atminstone tva bransleinsprutningar inspi under en och samma forbranningscykel, men sAsom har namnts och sAsom framgAr nedan kan flera insprutningar vara anordnade att utforas, liksom aven endast en. Thus, fuel injection is normally performed according to a predetermined schedule, where a plurality of injections may be arranged to be performed during one and the same combustion cycle. This means that the injections can be relatively short. For example. Injection systems with 5-10 fuel injections / combustion occur, but the number of fuel injections can also be significantly larger than that, such as e.g. on the order of 100 fuel injections during a combustion cycle. The number of possible injections is generally controlled by the speed of the organs with which the injection is performed, ie. in the case of Common Rail systems of how quickly the injectors can be opened shut down. 537 30 According to the present example, at least two fuel injections are performed during one and the same combustion cycle, but as has been mentioned and as shown below, several injections can be arranged to be performed, as well as only one.
Insprutningsschemat är saledes i foreliggande exempel faststallt pA forhand i syfte att erhalla en tryckutveckling som uppfyller uppsatta kriterier med avseende pa den maximala tryckamplitud som uppstAr vid forbranningen. En forsta insprutning inspi utfors, och i steg 304 faststalls huruvida namnda forsta insprutning inspl har utforts, och om sá ar fallet fortsatter forfarandet till steg 305, dar det faststalls huruvida samtliga insprutningar i har utfOrts. Eftersom sA annu inte är fallet i foreliggande exempel fortsatter forfarandet till steg 306 samtidigt som i raknas upp med ett for nasta insprutning. Vidare faststalls genom utnyttjande av trycksensorn 206 kontinuerligt, sasom med tillampliga intervall, t.ex. varje 0,1-10 vevvinkelgrader, rAdande tryck i forbranningskammaren. The injection scheme is thus in the present example determined in advance in order to obtain a pressure development which meets set criteria with regard to the maximum pressure amplitude that arises during combustion. A first injection is performed, and in step 304 it is determined whether said first injection has been performed, and if so, the procedure proceeds to step 305, where it is determined whether all the injections have been performed. Since sA is not yet the case in the present example, the process proceeds to step 306 while being straightened up with a next injection. Furthermore, by using the pressure sensor 206, it is determined continuously, as at applicable intervals, e.g. every 0.1-10 crank angle degrees, increasing pressure in the combustion chamber.
ForbranningsfOrloppet kan allmant beskrivas med den tryckforandring i forbranningskammaren som forbranningen ger upphov till. Tryckforandringen under en fOrbranningscykel kan representeras med ett tryckspAr, dvs. en representation av hur trycket i forbranningskammaren varierar/fOrandras under forbranningen. SA lange som forbranningen fortskrider sAsom forvantat kommer trycket i forbranningskammaren att vara lika med det initialt estimerade, men sA snart trycket avviker frAn det estimerade trycket kommer ocksA det satt pA vilket trycket har forandrats, och darmed med stor sannolikhet ocksa den maximala tryckamplitud som kommer att uppsta under forbranningen, att avvika fran estimerade varden. Dessutom kommer efterfoljande del av forbranningscykeln, och darmed 16 537 30 tryckforandring, att paverkas pa grund av att forandrade fOrhallanden i forbranningskammaren jamfort med forvantade forhallanden rader vid t.ex. en efterfoljande insprutning. The combustion process can be generally described with the pressure change in the combustion chamber that the combustion gives rise to. The pressure change during a combustion cycle can be represented by a pressure gauge, ie. a representation of how the pressure in the combustion chamber varies / changes during combustion. As the combustion progresses as expected, the pressure in the combustion chamber will be equal to the initially estimated, but as soon as the pressure deviates from the estimated pressure, it will also be set to which the pressure has changed, and thus in all probability also the maximum pressure amplitude that will arise during combustion, to deviate from the estimated value. In addition, the subsequent part of the combustion cycle, and thus pressure change, will be affected due to changed conditions in the combustion chamber compared to expected conditions at e.g. a subsequent injection.
Om fOrbranningen efter den forsta insprutningen inspl saledes har forflutit precis sasom forvantat kommer forhallandena i forbranningskammaren att motsvara de med insprutningen avsedda forhallandena, likasa kommer den hittills resulterande tryckforandringen (trycksparet enligt nedan) i forbranningskammaren att motsvara den forvantade tryckfOrandringen fram till denna punkt. SA snart forhallandena avviker fran de avsedda forhallandena kommer dock tryckforandringen under fOrbranningen att avvika fran den forvantade tryckforandringen. Likasa kommer aven efterfoljande del av forbranningen att paverkas eftersom de i forbranningskammaren radande forhallandena, t.ex. med avseende pa tryck/temperatur, vid nasta insprutning inte kommer att motsvara forvantade forhallanden. If the combustion after the first injection has thus proceeded exactly as expected, the conditions in the combustion chamber will correspond to the conditions intended for the injection, as well as the resulting pressure change (pressure pair as below) in the combustion chamber will correspond to the expected pressure point. However, as soon as the conditions deviate from the intended conditions, the pressure change during combustion will deviate from the expected pressure change. Likewise, the subsequent part of the combustion will also be affected because the conditions prevailing in the combustion chamber, e.g. with respect to pressure / temperature, at the next injection will not correspond to expected conditions.
I praktiken kommer ocksa de verkliga tryckforandringarna under forbranningen (trycksparet) av naturliga skal med stor sannolikhet att avvika fran det predikterade trycksparet under forbranningens gang pa grund av t.ex. avvikelser fran den modellerade forbranningen. Detta askadliggors i fig. 4, dar ett predikterat tryckspar 401 for ett exempelinsprutningsschema visas (mycket schematiskt), dvs. det forvantade trycksparet for forbranningskammaren nar insprutning utfors enligt den valda insprutningsprofilen. Denna prediktering av trycksparet kan t.ex. utforas sasom beskrivs nedan. In practice, the actual pressure changes during the combustion (pressure pair) of natural shells will also in all probability deviate from the predicted pressure pair during the combustion process due to e.g. deviations from the modeled combustion. This is illustrated in Fig. 4, where a predicted pressure pair 401 for an example injection scheme is shown (very schematically), i.e. the expected pressure pair for the combustion chamber when injection is performed according to the selected injection profile. This prediction of the pressure pair can e.g. performed as described below.
I fig. 4 visas aven ett faktiskt tryckspar 402 fram till vevvinkelpositionen cp, vilken utgOr radande position efter det att namnda forsta forbranning har utforts. I steg 306 17 537 30 faststalls trycket p(pli forbranningskammaren genom utnyttjande av trycksensorn 206 efter det att den forsta insprutningen inspihar utforts, vid vevvinkelpositionen pl. Foretradesvis faststalls trycket i forbranningskammaren vasentligen kontinuerligt, sAsom t.ex. vid varje vevvinkelgrad, vane tiondels vevvinkelgrad eller med annat lampligt intervall under hela forbranningen. SAsom kan ses i fig. 4 avviker det faktiska tryckspAret fram till pi frAn det estimerade tryckspAret 401, likasA avviker det faktiska trycket pi vid pi frAn det estimerade trycket n ,91_est enligt tryckspAret 401. Det ovanstAende innebar att det hittills resulterande maximala trycket ocksA har avvikit frAn forvantat maximalt tryck fram till vevvinkelpositionen 91. Fig. 4 also shows an actual pressure pair 402 up to the crank angle position cp, which constitutes a rowing position after the first combustion has been carried out. In step 306, the pressure p (pli of the combustion chamber is determined by using the pressure sensor 206 after the first injection has been performed), at the crank angle position p1. Preferably, the pressure in the combustion chamber is determined substantially continuously, such as at each crank angle, As can be seen in Fig. 4, the actual pressure gauge deviates up to pi from the estimated pressure gauge 401, as well as the actual pressure pi at pi deviates from the estimated pressure n, 91_est according to the pressure gauge 401. The above meant that the resulting maximum pressure has also deviated from the expected maximum pressure up to the crank angle position 91.
Eftersom trycket ppli forbranningskammaren efter det att den forsta insprutningen inspi har utforts skiljer sig frAn motsvarande estimerade tryck p(pl_est vid vevvinkelpositionen pi kommer forhAllandena i forbranningskammaren vid tidpunkten for nastkommande insprutning insp2 att skilja sig frAn predikterade forhAllanden, varfor ocksA efterfoljande forbranning kommer att avvika frAn den predikterade forbranningen om det tidigare faststallda insprutningsschemat fortfarande skulle anvandas. SAledes är det inte ails sakert att onskad begransning av den maximala tryckamplituden kommer att uppnAs under forbranningscykeln. Darmed är det heller inte sakert att det är det ursprungligen faststallda insprutningsschemat som utgor det mest foredragna insprutningsschemat vid stravan att uppnA en forbranning med onskad begransning av tryckamplituden. Since the pressure on the combustion chamber after the first injection has been carried out differs from the corresponding estimated pressure on (pl_est at the crank angle position pi, the conditions in the combustion chamber at the time of the next injection insp2 will differ from predicted conditions after which different conditions will occur). thus, it is not certain that the desired limitation of the maximum pressure amplitude will be achieved during the combustion cycle, so it is not certain that it is the originally established injection scheme that constitutes the most preferred injection scheme. at the penalty of achieving a combustion with the desired limitation of the pressure amplitude.
I steg 307 faststalls huruvida forvantad maximal tryckamplitud pmax_pred forvantas overstiga nagot tillampligt tryckgransvarde p_thres dar detta kan vara pA forhand bestamt och aven vara anordnat att variera i beroende av ovriga forhallanden sAsom aktuell last, fordonshastighet etc. SA lange som sá inte är 18 537 30 fallet Atergar forfarandet till steg 304 for utforande av nasta insprutning, varvid sedan ny estimering av p utfors. Om, daremot, pmax_pred forvantas overstiga p_thres fortsatter forfarandet till steg 308 far att faststalla ett insprutningsschema pa nytt i syfte att reglera tryckamplituden, sasom t.ex. med malet att forsoka begransa tryckamplituden till att inte overstiga p_thres. Regleringen kan t.ex. utforas enligt de nedan visade berakningarna, alternativt enligt andra tillampliga berakningar med motsvarande syfte, och upprepas enligt nedan under pagaende forbranningscykel for att vid behov forandra insprutningsschemat under pagaende forbranning om de i forbranningskammaren faktiskt radande forhallandena avviker fran predikterade forhallanden, sasom efter varje insprutning, eller under pagaende insprutning. In step 307 it is determined whether the expected maximum pressure amplitude pmax_pred is expected to exceed any applicable pressure test value p_thres where this may be predetermined and also be arranged to vary depending on other conditions such as current load, vehicle speed etc. SA lange as is not the case 18 537 30 Returns the procedure to step 304 for performing the next injection, then performing a new estimation of p. If, on the other hand, pmax_pred is expected to exceed p_thres, the procedure proceeds to step 308 to establish an injection scheme again in order to regulate the pressure amplitude, such as e.g. with the grind to try to limit the pressure amplitude to not exceed p_thres. The regulation can e.g. performed according to the calculations shown below, alternatively according to other applicable calculations with a corresponding purpose, and repeated as below during the ongoing combustion cycle to change the injection schedule during ongoing combustion if necessary if the conditions actually radiating in the combustion chamber deviate from predicted conditions, as after each injection during ongoing injection.
Vid estimeringen av forvantad maximal tryckamplitud enligt uppfinningen kan t.ex. tillampas en modell, vilken beskriver den tryckforandring som uppstar under forbranningen. Denna modell kan vara av olika typ, och t.ex. utgoras av en dpdV datadriven modell sasom t.ex.= f(poia,Ujnjectiongtrategy,y,), dt dar Poiä utgor trycket vid foregaende bestamning, uinjection strategy utgor styrsignal, dvs. insprutningsschema, Cfl y utgor allmant varmekapacitetskvoten, dvs. 7=-===, dar C7v Cp-R C och/eller C, finns allmant framtagna och tabellerade fOr olika molekyler, och genom att forbranningskemin är kand kan dessa tabellerade varden anvandas tillsammans med forbranningskemin for att darmed berakna vardera molekyls (t.ex. vatten, kvave, syre etc.) inverkan pa t.ex. det totala C -vardet, varvid detta kan bestammas for berakningarna ovan 19 537 30 med god noggrannhet, pa forhand eller under t.ex. pagaende forbranning. Alternativt kan Cp och eller CC approximeras pa tillampligt satt. dV utgor forbranningskammarens volymforandring med tiden, dt vilken t.ex. kan faststallas med hjalp av V(v) utgor forbrdnningskammarens volym som funktion av vevvinkel, kan med fordel finnas tabellerad i styrsystemets minne alternativt beraknas pa tillampligt satt, varvid aven dtp dV kan beraknas, och darmed ocksa TIT genom att multiplicera med forbranningsmotorns radande varvtal. dp Saledes kan tryckets forandringshastighetrepresenteras av dt en dylik modell, vilken kan framtas genom att faststalla resultat for ett stort antal inparametrar, varvid 1/2 sedan kan dt tabelleras for ett start antal forhallanden, sasom olika last, varvtal, lufttryck etc., sasom är kant for fackmannen mom teknikomradet. Genom att sedan ackumulera (integrera) dp over dt tiden kan trycket p i forbranningskammaren estimeras, och genom att for varje bestamning av dp aven bestamma trycket p och dt genom att jamfora erhallet tryck p med tidigare under estimeringen erhallet maximalt tryck p, varvid det 1-15g-re av dessa varden lagras som nytt maximalt tryck, kan maximalt tryck p under forbranningen estimeras, varvid reglering kan utforas am det vid regleringen faststalls att trycket forvantas overstiga ett troskelvdrde. When estimating the expected maximum pressure amplitude according to the invention, e.g. a model is applied, which describes the pressure change that occurs during combustion. This model can be of different types, and e.g. is made up of a dpdV data-driven model such as = f (poia, Ujnjectiongtrategy, y,), dt dar Poiä is the pressure at the previous determination, uinjection strategy is the control signal, ie. injection schedule, Cfl y generally constitutes the heat capacity ratio, ie. 7 = - ===, where C7v Cp-R C and / or C, are generally developed and tabulated for different molecules, and since the combustion chemistry is known, these tabulated values can be used together with the combustion chemistry to thereby calculate each molecule (t. eg water, nitrogen, oxygen, etc.) impact on e.g. the total C -value, whereby this can be determined for the calculations above with good accuracy, in advance or during e.g. ongoing combustion. Alternatively, Cp and or CC can be approximated appropriately. dV constitutes the volume change of the combustion chamber with time, dt which e.g. can be determined with the aid of V (v) constitutes the volume of the combustion chamber as a function of crank angle, can advantageously be tabulated in the control system memory or alternatively calculated in a suitable way, whereby also dtp dV can be calculated, and thus also TIT by multiplying by the combustion engine's radiating speed. dp Thus, the rate of change of pressure can be represented by dt such a model, which can be produced by determining results for a large number of input parameters, whereby 1/2 then dt can be tabulated for a starting number of ratios, such as different loads, speeds, air pressures, etc., as is edge for the professional mom technical area. By then accumulating (integrating) dp over dt time, the pressure in the combustion chamber can be estimated, and by for each determination of dp also determining the pressure p and dt by comparing the obtained pressure p with earlier during the estimation obtained the maximum pressure p, whereby the 1- 15g of these values are stored as a new maximum pressure, the maximum pressure during combustion can be estimated, whereby regulation can be performed if it is determined during the regulation that the pressure is expected to exceed a threshold value.
Ett annat alternativ, vilket utgor det alternativ som tillampas i foreliggande exempel, är nyttjande av en fysikalisk modell Over tryckets p forandring vid forbranning i 537 30 forbranningskammaren. Denna modell kan utgoras av nAgon tillamplig modell, och enligt foreliggande exempel tillampas en varmefrigorelseekvation enligt nedan. Another alternative, which constitutes the alternative applied in the present example, is the use of a physical model of the change in pressure during combustion in the combustion chamber. This model can be made of any applicable model, and according to the present example, a heat release equation is applied as below.
Estimering av tryckets p variation under forbranningen kan utforas enligt foljande. Det i forbranningskammaren radande trycket p kan faststallas genom utnyttjande av namnda trycksensor, varvid kontinuerliga sensorsignaler kan ge uppmatta varden for trycket p vid tillampligt tata intervall/vevvinkelgrader. Vidare kan, t.ex. nar tryckforandringshastigheten ocksa beaktas, dE estimeras for den dt del av forbranningen som redan har forflutit, och varvid en faktisk maximal tryckforandringshastighet kan estimeras for den del av forbranningen som redan har forflutit baserat pa faktiska tryckdata. Estimation of the variation in pressure during combustion can be performed as follows. The pressure p radiating in the combustion chamber can be determined by using said pressure sensor, whereby continuous sensor signals can give the measured value of the pressure p at appropriately taken intervals / crank angular degrees. Furthermore, e.g. when the pressure change rate is also taken into account, it is estimated for that part of the combustion which has already passed, and an actual maximum pressure change rate can be estimated for the part of the combustion which has already passed based on actual pressure data.
Tryckforandringen kan faststallas som funktion av tid, sAsom dp enligt ovan, men kan aven uttryckas i vevvinkelgrader p, dvs. dt dP vilket innebar en eliminering av dcp forbranningsmotorvarvtalsberoendet vid berakningarna. The pressure change can be determined as a function of time, such as dp as above, but can also be expressed in crank angle degrees p, ie. dt dP which meant an elimination of the dcp internal combustion engine dependence in the calculations.
I de fall aven tryckforandringshastigheten tas hansyn till vid regleringen kan onskad maximal tryckforandringshastighet dcp t.ex. finnas lagrad for olika varvtal n for att darmed t.ex. representera en onskad tryckforandring Over tiden. Alternativt kant.ex. faststallas enligt nedan och sedan multipliceras tic() dp med forbranningsmotorns varvtal n for att erhAlla TIT Foreliggande uppfinning stravar efter att vid behov aktivt minska den maximala tryckamplituden i forbranningskammaren, vilket kan utfOras genom att estimera forvantad maximal tryckamplitud for efterfoljande del av forbranningscykeln, dar 21 537 30 t.ex. en maximal forvantad tryckamplitud kan faststallas, varvid forbranningen kan regleras i syfte att halla den maximala tryckamplituden under flagon tillamplig tryckamplitud. In cases where the pressure change speed is also taken into account in the regulation, the desired maximum pressure change speed dcp can e.g. is stored for different speeds n so that e.g. represent a desired pressure change Over time. Alternatively edge.ex. The present invention strives to actively reduce, if necessary, the maximum pressure amplitude in the combustion chamber, which can be performed by estimating the expected maximum pressure amplitude for the subsequent part of the combustion cycle, where 21 537 30 e.g. a maximum expected pressure amplitude can be determined, whereby the combustion can be regulated in order to keep the maximum pressure amplitude below the flag applicable pressure amplitude.
Detta betyder ocksa att tryckamplituden kan estimeras for ett flertal olika scenarier vid forbranningen, sasom olika insprutningsscheman, dar respektive insprutningsschema kommer att ge upphov till ett specifikt tryckspar, sasom t.ex. det i fig. 4 visade trycksparet, och darmed aven olika maximala tryckamplituder under forbranningen. This also means that the pressure amplitude can be estimated for a number of different scenarios during combustion, such as different injection schedules, where the respective injection schedule will give rise to a specific pressure pair, such as e.g. the pressure pair shown in Fig. 4, and thus also different maximum pressure amplitudes during combustion.
Vid estimering av trycksparet kan en modell av forbranningen nyttjas, och, sasom är kant for fackmannen, kan forbranningen modelleras enligt ekv. (1): dQ = Kcaltbrate (Q fuel — Q)(1) , dar Kcal ibrate anvands for att kalibrera modellen. K —calibrate utgors av en konstant som vanligtvis är i storleksordningen 01, men kan aven vara anordnad att anta andra varden, och vilken faststalls individuellt cylinder for cylinder eller for en viss motor eller motortyp, och beror i synnerhet pa utformningen av injektorernas munstycken (spridare). When estimating the pressure pair, a model of the combustion can be used, and, as is the edge for the person skilled in the art, the combustion can be modeled according to eq. (1): dQ = Kcaltbrate (Q fuel - Q) (1), where Kcal ibrate is used to calibrate the model. K -calibrate consists of a constant which is usually of the order of 01, but may also be arranged to assume second values, and which is determined individually cylinder by cylinder or for a particular engine or engine type, and depends in particular on the design of the injectors nozzles (diffusers ).
Qfl utgor energivardet for insprutad branslemangd, Q utgor fOrbrand energimangd. Forbranningen dQ ar saledes proportionell mot insprutad branslemangd minus hittills forbrukad branslemangd. Forbranningen dQ kan alternativt modelleras genom utnyttjande av annan tillamplig modell, dar t.ex. aven andra parametrar kan tas hansyn till. T.ex. kan forbranningen aven utgora en funktion som beror av en modell Over den turbulens som uppstar vid tillforsel av luft/bransle, vilket kan paverka forbranningen i olika grad i beroende av tillford mangd luft/bransle. 22 537 30 Betraffande bransleinjektionerna kan dessa t.ex. modelleras som en summa av stegfunktioner: U =(tinj . start )k)(1)(t(tinj. end )k)(2) k =0 Bransleflodet matt i tillford massa m vid en insprutning k, dvs. hur branslet kommer in i forbranningskammaren under tidsfonstret u nar insprutningen utfors, uttryckt i den tid som forloper under det vevvinkelgrad p -intervall som injektorn är oppen, for en specifik injektion k kan modelleras som: dm dt = f (m)u(3) dar m utgor insprutad branslemangd, och f(m) t.ex. beror av insprutningstryck etc. f(m) kan t.ex. vara uppmatt eller estimerat pa forhand. Qfl is the energy value for injected industry volume, Q is the fuel energy volume. The combustion dQ is thus proportional to the injected amount of fuel minus the amount of fuel consumed so far. The combustion dQ can alternatively be modeled by using another applicable model, where e.g. other parameters can also be taken into account. For example. the combustion can also constitute a function that depends on a model Over the turbulence that arises during the supply of air / fuel, which can affect the combustion to varying degrees depending on the amount of air / fuel supplied. 22 537 30 Regarding the industry injections, these can e.g. is modeled as a sum of step functions: U = (tinj. start) k) (1) (t (tinj. end) k) (2) k = 0 Bransleflodet matt in tillford mass m at an injection k, ie. how the fuel enters the combustion chamber during the time window u when the injection is performed, expressed in the time that elapses during the crank angle degree p -interval that the injector is open, for a specific injection k can be modeled as: dm dt = f (m) u (3) where m constitutes injected industry volume, and f (m) e.g. depends on injection pressure etc. f (m) can e.g. be measured or estimated in advance.
Energivardet 0 ,LHV for branslet, sasom diesel eller bensin, finns allmant angivet, varvid sadan allman angivelse kan anvandas. Energivardet kan aven finnas specifikt angivet av t.ex. branslets tillverkare, eller vara approximerat for t.ex. ett land eller en region. Energivardet kan aven vara anordnat att uppskattas av fordonets styrsystem. Med energivardet kan ekv. (1) losas och varmefrigorelsen Q allteftersom forbranningen forts krider bestammas. The energy value 0, LHV for the industry, such as diesel or petrol, is generally stated, whereby such a general statement can be used. The energy value can also be specifically specified by e.g. industry's manufacturers, or be approximated for e.g. a country or region. The energy value can also be arranged to be estimated by the vehicle's control system. With the energy value, eq. (1) is released and the heat release Q as the combustion proceeds is determined.
Vidare kan, genom utnyttjande av en prediktiv varmefrigorelseekvation, tryckforandringen i forbranningskammaren under hela forbranningen estimeras som: (dQy p dV) (y-1)( 4) dP = cicp y—1 thp I v 23 537 30 , dar y utgor varmekapacitetskvoten enligt ovan. Furthermore, by using a predictive heat release equation, the pressure change in the combustion chamber during the entire combustion can be estimated as: (dQy p dV) (y-1) (4) dP = cicp y — 1 thp I v 23 537 30, where y constitutes the heat capacity ratio according to above.
Trycket p i forbranningskammaren kan erhAllas genom integrering av ekv. (4)enligt: dQ y dVvy—l)chp P Pinitial f dP = Pinitialy 1 P clip) (5) Dar Pinitiat utgor ett initialt tryck, vilket innan pAbo rjan av forbranningens komprimeringssteg t.ex. kan utgoras av omgivningstrycket vid fOrbranningsmotorer utan turbo, eller ett rAdande forbranningslufttryck vid en motor med turbo. Nar estimering utfors vid en senare tidpunkt under forbranningscykeln, sAsom estimering i steg 307 efter det att en insprutning har utforts, kan n rinitial utgoras av det dA rAdande och med hjalp av trycksensorn 206 faststallda trycket, dvs. P(pi i foreliggande exempel. SAledes kan bAde trycket p (och aven tryckderivatan) i forbranningskammaren estimeras for hela forbranningen, dvs. en forvantad kurva motsvarande kurvan 401 i fig. 4 kan estimeras. The pressure p in the combustion chamber can be obtained by integrating eq. (4) according to: dQ y dVvy — l) chp P Pinitial f dP = Pinitialy 1 P clip) (5) Dar Pinitiat constitutes an initial pressure, which before the start of the compression step of the combustion e.g. may be due to the ambient pressure of non-turbocharged internal combustion engines, or a prevailing combustion air pressure of a turbocharged engine. When estimation is performed at a later time during the combustion cycle, such as estimation in step 307 after an injection has been performed, n rinitial can be made from the dA rAdande and with the aid of the pressure sensor 206 determined the pressure, i.e. Thus, both the pressure p (and also the pressure derivative) in the combustion chamber can be estimated for the whole combustion, i.e. a related curve corresponding to the curve 401 in Fig. 4 can be estimated.
SAledes kan genom utnyttjande av ekv. (4) p, antingen som funktion av vevvinkel eller tid genom att multiplicera med varvtal enligt ovan, estimeras for Aterstoden av forbranningscykeln, eller aven for en hel forbranningscykel om estimeringen utfors innan bransleinsprutning pAborjas, varvid p vid vane iterering av ekvationerna 4-5 kan jamforas med p_thres for att faststalla huruvida trycket p forvantas overstiga p_thres under forbranningen. SAledes behover inte det faktiskt maximala tryck som forvantas uppsta estimeras, utan estimeringen kan, enligt en utforingsform, avbrytas sá snart det konstaterats att p forvantas overstiga p_thres under forbranningen. 24 537 30 Alternativt kan det maximala tryck som forvantas uppnas under estimeringen erhallas genom att utfOra integreringen sa lange som p (k+1)>p (k), dar k, k+1 etc. utgor pa varandra foljande tidpunkter/vevvinkelpositioner. Sa lange som trycket stiger fortsatts saledes integreringen, medan integreringen kan avbrytas nar p (k+1)‹p (k), eftersom trycket dá har borjat sjunka. Det maximala trycket kan sedan jamforas med trOskelvardet p_thres. Thus, by utilizing eq. (4) p, either as a function of crank angle or time by multiplying by speed as above, is estimated for the remainder of the combustion cycle, or also for an entire combustion cycle if the estimation is performed before fuel injection pAborges, where p by habit iteration of equations 4-5 can be compared with p_thres to determine whether the pressure on is expected to exceed p_thres during combustion. Thus, the actual maximum pressure expected to arise does not need to be estimated, but the estimation can, according to one embodiment, be interrupted as soon as it is found that p is expected to exceed p_thres during combustion. 24 537 30 Alternatively, the maximum pressure expected to be reached during the estimation can be obtained by performing the integration as long as p (k + 1)> p (k), where k, k + 1 etc. are consecutive times / crank angle positions. As long as the pressure rises, the integration thus continues, while the integration can be interrupted when p (k + 1) ‹p (k), since the pressure has then begun to drop. The maximum pressure can then be compared with the threshold value p_thres.
Om sa ä.r fallet fortsatter forfarandet enligt ovan till steg 308 for att faststalla en fly insprutningsstrategi, eftersom reglering av trycket i forbranningskammaren t.ex. kan utforas genom att reglera bransleinsprutningen, och genom att i steg 308 utfora estimering av trycket for ett antal olika insprutningsscheman med t.ex. varierande insprutningstidpunkter och/eller insprutningslangder och/eller antal insprutningar och/eller tider mellan insprutningarna kan estimerade maximala tryckamplituder for olika insprutningsalternativt jamforas och saledes ett insprutningsschema faststallas som am mojligt medfor att dp_thres understigs under forbranningen, foretradesvis med bivillkoret att onskat utrattat arbete pa forbranningsmotorns utgaende axel fortfarande erhalls. If so, the procedure as above proceeds to step 308 to establish an escape injection strategy, since regulating the pressure in the combustion chamber e.g. can be performed by regulating the industry injection, and by performing in step 308 estimating the pressure for a number of different injection schedules with e.g. varying injection times and / or injection lengths and / or number of injections and / or times between injections, estimated maximum pressure amplitudes for different injection alternatives can be compared and thus an injection schedule established as possible to reduce dp_thres during combustion, preferably by shaft still retained.
Saledes kan det aven faststallas ett vid forbranningen begart arbete, vilket t.ex. kan vara bestamt av nagot overordnad process som t.ex. är ansvarig for fordonets framdrivning, varvid regleringen kan ha som krav att det resulterande arbetet vid forbranning vasentligen motsvarar namnda begarda arbete, eller atminstone en delmangd darav, sasom t.ex. atminstone halften av begart arbete. Thus, it is also possible to establish a work requested during the combustion, which e.g. may be determined by a somewhat superior process such as is responsible for the propulsion of the vehicle, whereby the regulation may have as a requirement that the resulting work in combustion essentially corresponds to the requested work, or at least a part of it, such as e.g. at least half of the work requested.
Saledes kan i steg 308 faststallas ett insprutningsschema, sasom ett insprutningsschema bland ett flertal definierade 537 30 insprutningsscheman, dar detta insprutningsschema kan faststallas individuellt cylinder for cylinder baserat pa sensorsignaler fran atminstone en trycksensor i respektive forbranningskammare. Thus, in step 308, an injection schedule may be established, such as an injection schedule among a plurality of defined 537 injection schedules, where this injection schedule may be determined individually cylinder by cylinder based on sensor signals from at least one pressure sensor in each combustion chamber.
Betraffande namnda insprutningsscheman kan det t.ex. finnas ett flertal pa forhand definierade insprutningsscheman, varvid berakningar av ovanstaende typ kan utforas for vart och ett av dessa tillgangliga insprutningsscheman. Alternativt kan berakningarna utforas for de insprutningsscheman som av flagon anledning mest sannolikt anses resultera i Onskat lag tryckamplitud. Regarding the mentioned injection schedules, it can e.g. there are a plurality of predefined injection schedules, whereby calculations of the above type can be performed for each of these available injection schedules. Alternatively, the calculations can be performed for the injection schedules that for flagon reason are most likely to result in the desired law pressure amplitude.
Hittills har hela insprutningsscheman for resterande forbranning utvarderats, men utvarderingen kan aven vara anordnad att utforas for enbart den kommande insprutningen efter en foregaende insprutning, varvid senare insprutningar kan hanteras efterhand. Det i steg 308 valda insprutningsschemat kan saledes utgoras av enbart den nastkommande insprutningen. Until now, entire injection schedules for residual combustion have been evaluated, but the evaluation can also be arranged to be performed for only the next injection after a previous injection, whereby later injections can be handled afterwards. The injection scheme selected in step 308 can thus consist of only the next injection.
Nar insprutningsschema har valts i steg 308 atergar forfarandet till steg 304 for utforande av nasta insprutning, varvid aven denna ger upphov till en forbranning, och clamed en varmefrigorelse och ett tryckspar, där Aven detta sannolikt kommer att avvika fran det pa forhand predikterade trycksparet. Detta betyder ocksa att forbranningen Aven vid efterfoljande insprutningar sannolikt kommer att paverkas av radande forhallanden i forbranningskammaren nar insprutningen paborjas. Once the injection scheme has been selected in step 308, the process returns to step 304 for performing the next injection, which also gives rise to a combustion, and clamed a heat release and a pressure pair, where also this is likely to deviate from the previously predicted pressure pair. This also means that the combustion Even in subsequent injections is likely to be affected by radiating conditions in the combustion chamber when the injection is started.
Saledes kan i steg 308, efter det att en efterfOljande insprutning her utforts, Ater en ny insprutningsstrategi for aterstaende insprutningar, alternativt den pafoljande insprutningen, beraknas med hjalp av ovanstaende ekvationer, 26 537 30 varvid forfarandet sedan atergar till steg 304 for utforande av efterfOljande bransleinsprutning enligt den nya insprutningsstrategi som framraknats i steg 308, fortfarande med hansyn tagen till det arbete som ska utforas under forbranningen, vilket alltsa normalt styrs av flagon overordnad process, t.ex. som svar pa en begaran om en viss drivkraft fran fordonets forare alternativt annan funktion i fordonets styrsystem, sasom t.ex. en farthallarfunktion. Regleringen kan saledes vara anordnad att utforas efter varje insprutning och nar sedan samtliga insprutningar i har utfOrts atergar forfarandet fran steg 305 till steg 301 for reglering av en efterfoljande forbranningscykel. Enligt en utforingsform avbryts dock forfarandet sa snart forbranningens maximala tryck har uppnatts, vilket kan bestammas enligt nedan. Det under forbranningen avgivna ljudet beror framforallt av tryckuppbyggnaden och i mindre utstrackning av den efterfoljande trycksankningen. Av denna anledning kan regleringen saledes avbrytas nar forbranningens maximala tryck har uppnatts. Thus, in step 308, after a subsequent injection is performed here, a new injection strategy for the remaining injections, alternatively the subsequent injection, can be calculated by means of the above equations, whereby the procedure then returns to step 304 for performing subsequent injection. according to the new injection strategy developed in step 308, still taking into account the work to be performed during the combustion, which is thus normally controlled by the flake overriding process, e.g. in response to a request for a certain driving force from the vehicle's driver or another function in the vehicle's steering system, such as e.g. a cruise control function. The control can thus be arranged to be carried out after each injection and when all the injections have been carried out, the procedure returns from step 305 to step 301 for controlling a subsequent combustion cycle. According to one embodiment, however, the process is stopped as soon as the maximum pressure of the combustion has been reached, which can be determined as below. The sound emitted during combustion depends above all on the pressure build-up and to a lesser extent on the subsequent pressure drop. For this reason, the control can thus be interrupted when the maximum pressure of the combustion has been reached.
Vid de ovanstaende berakningarna anvands efter varje insprutning aktuell tryckbestamning p9igenom utnyttjande av trycksensorn 206 som n rinitial enligt ovan for att Anyo prediktera maximal tryckamplitud for att vid behov faststalla ett nytt insprutningsschema utefter de nu radande forhallandena i forbranningskammaren, men nu saledes med data som erhallits ytterligare en bit in i forbranningen. Dvs. Pi efter den forsta forbranningen och pa motsvarande satt faststallda p9, for efterfoljande insprutningar, varvid saledes forandras vid berakningar under forbranningscykeln, och varvid bransleinsprutningen anpassas efter radande forhallanden efter varje insprutning, med fOljd att insprutningsschemat kan forandras efter varje insprutning. In the above calculations, after each injection, the current pressure determination is used by using the pressure sensor 206 as the initial as above to predict any pressure amplitude to determine, if necessary, a new injection schedule according to the now prevailing conditions in the combustion chamber, but now further data obtained a bit into the combustion. Ie. Pi after the first combustion and correspondingly set p9, for subsequent injections, thus changing in calculations during the combustion cycle, and whereby the fuel injection is adapted to radiating conditions after each injection, with the consequence that the injection schedule can change after each injection.
Pinitial 27 537 30 Foreliggande uppfinning tillhandahaller saledes ett forfarande som anpassar forbranningen allteftersom forbranningen fortskrider, och innefattar allmant att baserat pa ett forsta parametervarde som faststalls efter det att en forsta del av forbranningen har genomforts reglera efterfoljande del av forbranningen under en och samma forbranningscykel, varvid forbranningen regleras med avseende pa det maximala trycket under forbranningsprocessen. The present invention thus provides a method which adapts the combustion as the combustion proceeds, and generally comprises, based on a first parameter value determined after a first part of the combustion has been carried out, regulating subsequent part of the combustion during one and the same combustion cycle, wherein the combustion is regulated with respect to the maximum pressure during the combustion process.
Enligt ovan kan maximal tryckamplitud saledes estimeras for ett flertal olika alternativa insprutningsscheman for aterstaende insprutningar, varvid ett insprutningsschema som resulterar i den mest fordelaktiga, sasom t.ex. den lagsta, tryckamplituden kan valjas vid utforande av nastfoljande insprutning. I de fall flera insprutningsscheman/regleralternativ uppfyller uppsatta villkor kan andra parametrar anvandas for att valja vilket av dessa som ska anvandas. Det kan Aven finnas andra anledningar till att samtidigt reglera aven baserat pa andra parametrar. T.ex. kan insprutningsschema, forutom baserat pa tryckamplitud, delvis valjas aven baserat pa ett eller flera av perspektiven tryckforandringshastighet, varmeforlust, avgastemperatur, utrattat arbete i forbranningskammaren, eller vid forbranningen genererade kvaveoxider som ytterligare kriterium, dar sadan bestamning kan utforas enligt nagon av de nedan angivna parallella patentansokningarna. Specifikt visas i den parallella ansokan "FORFARANDE OCH SYSTEM FOR REGLERING AV EN FORBRANNINGSMOTOR I" (svensk patentansokan, ansokningsnummer: 1350506-0) ett forfarande for att baserat pa en estimerad maximal tryckforandringshastighet reglera efterfoljande forbranning. According to the above, maximum pressure amplitude can thus be estimated for a number of different alternative injection schemes for the remaining injections, whereby an injection scheme which results in the most advantageous, such as e.g. the lowest pressure amplitude can be selected when performing the next injection. In cases where several injection schemes / control alternatives meet the set conditions, other parameters can be used to select which of these is to be used. There may also be other reasons for simultaneously regulating also based on other parameters. For example. In addition to pressure amplitude, in addition based on one or more of the perspectives pressure change rate, heat loss, exhaust temperature, exhaust work in the combustion chamber, or nitrogen oxides generated during combustion as additional criteria, such determination can be performed according to any of the parallels given below. patent applications. Specifically, the parallel application "PROCEDURE AND SYSTEM FOR CONTROLING AN COMBUSTION ENGINE I" (Swedish patent application, application number: 1350506-0) shows a procedure for regulating subsequent combustion based on an estimated maximum pressure change rate.
Vidare visar den parallella ansokan "FORFARANDE OCH SYSTEM FOR REGLERING AV EN FORBRANNINGSMOTOR II" (svensk patentansOkan, 28 537 30 ansokningsnummer: 1350507-8) ett forfarande for att under en forsta forbranningscykel reglera en pafoljande del av forbranning under namnda forsta forbranningscykel med avseende pa en vid namnda efterfoljande forbranning resulterande temperatur. Furthermore, the parallel application "PROCEDURE AND SYSTEM FOR REGULATING AN COMBUSTION ENGINE II" (Swedish patent application, 28 537 30 application number: 1350507-8) shows a procedure for regulating a subsequent part of combustion during a first combustion cycle during said first combustion cycle. a temperature resulting from said subsequent combustion.
Vidare visar den parallella ansokan "FORFARANDE OCH SYSTEM FOR REGLERING AV EN FORBRANNINGSMOTOR III" ett forfarande for att under en forsta forbranningscykel reglera forbranning under en pafoljande del av namnda forsta forbranningscykel med avseende pa ett vid forbranningen utrattat arbete. Furthermore, the parallel application "PROCEDURE AND SYSTEM FOR CONTROLLING AN COMBUSTION ENGINE III" shows a method for regulating combustion during a first combustion cycle during a subsequent part of said first combustion cycle with respect to a work performed during combustion.
Vidare visar den parallella ansokan "FORFARANDE OCH SYSTEM FOR REGLERING AV EN FORBRANNINGSMOTOR IV" ett forfarande for att under en forsta forbranningscykel reglera forbranning under en pafoljande del av namnda forsta forbranningscykel med avseende pa en representation av en vid namnda forbranning resulterande varmeforlust. Furthermore, the parallel application "PROCEDURE AND SYSTEM FOR CONTROLING AN COMBUSTION ENGINE IV" discloses a method for controlling combustion during a first combustion cycle during a subsequent part of said first combustion cycle with respect to a representation of a heat loss resulting from said combustion.
Vidare visar den parallella ansokan "FORFARANDE OCH SYSTEM FOR REGLERING AV EN FORBRANNINGSMOTOR VI" ett forfarande for att under en forsta forbranningscykel estimera ett forsta matt pa kvaveoxider resulterande vid forbranning under namnda forsta forbranningscykel, och baserat pa namnda forsta matt, reglera forbranning under en pafoljande del av namnda forsta forbranningscykel. Furthermore, the parallel application "PROCEDURE AND SYSTEM FOR CONTROLING AN COMBUSTION ENGINE VI" shows a method for estimating during a first combustion cycle a first mat of nitrogen oxides resulting from combustion during said first combustion cycle, and based on said first mat, regulating combustion during combustion. part of the said first combustion cycle.
Enligt foreliggande uppfinning anpassas saledes forbranningen under pagaende forbranning vid behov baserat pa avvikelser fran den predikterade forbranningen, och enligt en utforingsform utfors en utvardering av forbranningen vane gang en insprutning inspi har utforts sa Lange som ytterligare insprutningar ska utforas. 29 537 30 Enligt det ovan beskrivna forfarandet har insprutningsschemat vid forbranningscykelns borjan faststallts baserat pa tabellerade varden, men enligt en utforingsform kan insprutningsstrategin redan fore bransleinsprutningen paborjas faststallas pa ovan beskrivna satt, varvid saledes aven den forsta insprutningen utfors enligt ett enligt ovan faststallt insprutningsschema. According to the present invention, the combustion during adaptive combustion is thus adapted if necessary based on deviations from the predicted combustion, and according to one embodiment, an evaluation of the combustion is performed as soon as an injection has been performed as long as further injections are to be performed. According to the method described above, the injection schedule at the beginning of the combustion cycle has been determined based on tabulated values, but according to one embodiment the injection strategy can already be determined before the fuel injection is started in the manner described above, thus also the first injection is performed according to the above procedure.
Regleringen har hittills beskrivits pa ett satt dar egenskaperna for en nastkommande insprutning faststalls baserat pa radande fOrhallanden i forbranningskammaren efter den foregaende insprutningen. Regleringen kan dock aven vara anordnad att utforas kontinuerligt, varvid tryckbestamningar kan utforas med hjalp av trycksensorn aven under pagaende insprutning, och varvid insprutningsschemat kan beraknas och korrigeras andra fram till dess att nasta insprutning paborjas. Alternativt kan till och med den pagaende insprutningen paverkas av framraknade fOrandringar i insprutningsschemat aven vid de fall ett flertal kortare insprutningar utfors. T.ex. kan en pagaende insprutning avbrytas om tryckamplituden blir alltfor hog. Insprutningen kan aven utgoras av en enda langre insprutning, varvid forandringar av pagaende insprutning kontinuerligt kan utforas, t.ex. genom s.k. rate shaping, t.ex. genom att forandra oppningsarea hos insprutningsmunstycket och/eller det tryck med vilket bransle insprutas baserat pa estimeringar och uppmatta tryckvarden under insprutningen. Vidare kan bransletillforsel under forbranningen innefatta tva bransleinsprutningar, dar t.ex. endast den andra eller bada insprutningarna regleras t.ex. med hjalp av rate shaping. Rate shaping kan aven tillampas vid fallet dar tre eller fler insprutningar utfOrs. 537 30 Betraffande de insprutningsstrategier som skall utvarderas kan dessa framtagas pa olika satt. T.ex. kan olika fordelningar mellan insprutningar utvarderas, och t.ex. kan insprutad branslemangd omfordelas mellan efterfoljande insprutningar och/eller kan insprutningstidpunkten forandras for en eller flera pafoljande insprutningar, dar hansyn kan tas till ev. begransningar med avseende pa t.ex. minsta tillatna langd eller branslemangd for en bransleinsprutning. The regulation has hitherto been described in a manner in which the properties of a subsequent injection are determined based on prevailing conditions in the combustion chamber after the previous injection. However, the control can also be arranged to be performed continuously, whereby pressure determinations can be performed with the aid of the pressure sensor also during pagan injection, and whereby the injection schedule can be calculated and corrected by others until the next injection is started. Alternatively, even the ongoing injection can be affected by protruding changes in the injection schedule even in cases where a number of shorter injections are performed. For example. an ongoing injection can be interrupted if the pressure amplitude becomes too high. The injection can also consist of a single longer injection, whereby changes of ongoing injection can be performed continuously, e.g. by so-called rate shaping, e.g. by changing the opening area of the injection nozzle and / or the pressure at which the fuel is injected based on estimates and the measured pressure value during the injection. Furthermore, fuel supply during combustion can include two fuel injections, where e.g. only the second or both injections are regulated e.g. with the help of rate shaping. Rate shaping can also be applied in the case where three or more injections are performed. 537 30 Regarding the injection strategies to be evaluated, these can be developed in different ways. For example. different distributions between injections can be evaluated, and e.g. the injected amount of fuel can be redistributed between subsequent injections and / or the injection time can be changed for one or more subsequent injections, where the view can be taken to ev. restrictions with regard to e.g. minimum permitted length or industry quantity for an industry injection.
Istallet for att utvardera ett antal specifika insprutningsscheman kan forfarandet vara anordnat att utfora t.ex. ovanstaende berakningar for ett antal tankbara scenarier, dar berakningarna kan utforas for olika insprutningslangder/mangder/tider for de olika insprutningarna, med motsvarande forandringar i frigjord energi. Instead of evaluating a number of specific injection schedules, the method may be arranged to perform e.g. the above calculations for a number of conceivable scenarios, where the calculations can be performed for different injection lengths / quantities / times for the different injections, with corresponding changes in released energy.
Ju fler bransleinsprutningar som utfors under en forbranningscykel, desto fler parametrar kan forandras, samtidigt som utrattat arbete bor bibehallas. Vid ett stort antal insprutningar kan darfor regleringen bli forhallandevis komplex, eftersom ett stort antal parametrar kan varieras och darmed skulle behava utvarderas. T.ex. kan ett mycket stort antal insprutningar vara anordnade att utforas under en och samma forbranningscykel, sasom ett tiotal, eller t.o.m. ett hundratal insprutningar. The more industry injections that are carried out during a combustion cycle, the more parameters can be changed, while tired work should be maintained. With a large number of injections, therefore, the regulation can become relatively complex, since a large number of parameters can be varied and thus behavior would be evaluated. For example. a very large number of injections can be arranged to be performed during one and the same combustion cycle, such as a dozen, or even about a hundred injections.
Vid dylika situationer, och aven andra enligt ovan, kan det finnas flera vasentligen ekvivalenta insprutningsstrategier, vilka resulterar i vasentligen samma maximala tryckamplitud, eller som uppfyller uppstallda onskemal/krav pa tryckamplituden. Detta introducerar en oonskad komplexitet i berakningarna. 31 537 30 Enligt en utforingsform tillampas en reglering dar den i tiden narmast narliggande insprutningen/injektionen betraktas som en separat insprutning, och darefter foljande bransleinsprutningar som en enda ytterligare "virtuell" insprutning, varvid bransle kan fordelas mellan dessa "tva" insprutningar pa ett satt som medfor att det maximala trycket under den forsta forbranningen inte forvantas overstiga onskade nivaer. Detta exemplifieras i fig. 5A, dar insprutningen 501 motsvarar inspi enligt ovan, insprutningen 502 motsvarar insp2 enligt ovan, och dar resterande insprutningar 503-505 behandlas som en enda virtuell insprutning 506, dvs. insprutningen 506 behandlas som en insprutning med en branslemangd vasentligen motsvarande den sammanlagda branslemangden for insprutningarna 503-505, och dar fordelning kan ske mellan insprutningen 502 och den virtuella insprutningen 506. Genom att forfara pa detta satt behover den fOrskjutning som sker mellan insp2 och efterfoljande insprutningar inte fordelas specifikt mellan insprutningarna 503-505, utan fordelning sker i detta skede mellan insprutning 502 respektive den "virtuella" insprutningen 506. In such situations, and also others as above, there may be several essentially equivalent injection strategies, which result in essentially the same maximum pressure amplitude, or which meet set wish lists / requirements for the pressure amplitude. This introduces an undesirable complexity in the calculations. According to one embodiment, a control is applied where the nearest injection / injection is considered as a separate injection at the time, and subsequent industry injections as a single additional "virtual" injection, whereby fuel can be distributed between these "two" injections in one way. which means that the maximum pressure during the first combustion is not expected to exceed the desired levels. This is exemplified in Fig. 5A, where the injection 501 corresponds to inspi as above, the injection 502 corresponds to insp2 as above, and where the remaining injections 503-505 are treated as a single virtual injection 506, i.e. the injection 506 is treated as an injection with an industry quantity substantially corresponding to the total industry amount for the injections 503-505, and where distribution can take place between the injection 502 and the virtual injection 506. By proceeding in this way, the displacement which takes place between insp2 and subsequent injections is not specifically distributed between the injections 503-505, but is distributed at this stage between the injection 502 and the "virtual" injection 506, respectively.
Nar sedan insprutningen 502 har genomforts upprepas, vid behov, forfarandet precis som ovan med ny bestamning av insprutningsschema for att vid behov forsoka reducera tryckamplituden, men da med insprutningen 503 som separat insprutning, se fig. 5B, och insprutning 504, 505 utgor tillsammans en virtuell insprutning vid fordelning enligt ovan. After the injection 502 has been performed, if necessary, the procedure is repeated as above with a new determination of the injection schedule to try to reduce the pressure amplitude if necessary, but then with the injection 503 as a separate injection, see Fig. 5B, and the injection 504, 505 together form a virtual injection when distributed as above.
I fig. 5A utgors den virtuella insprutningen 506 av tre insprutningar, men sasom inses kan den virtuella insprutningen 506 fran borjan innefatta fler an tre insprutningar, sasom 10- tals insprutningar eller 100-tals insprutningar, i beroende av 32 537 30 hut mAnga insprutningar som avses att utforas under forbranningscykeln, varvid forfarandet upprepas till dess att samtliga insprutningar har utforts. Enligt en utforingsform avbryts dock forfarandet nar maximalt tryck har uppnatts och trycket i forbranningskammaren Ater har borjat sjunka eftersom den maximala tryckamplituden under forbranningen inte langre kan pAverkas. In Fig. 5A, the virtual injection 506 consists of three injections, but as will be appreciated, the virtual injection 506 may initially comprise more than three injections, such as 10 injections or 100 injections, depending on 32 537 30 injections is intended to be performed during the combustion cycle, the process being repeated until all the injections have been performed. According to one embodiment, however, the process is interrupted when the maximum pressure has been reached and the pressure in the combustion chamber Ater has begun to drop because the maximum pressure amplitude during combustion can no longer be affected.
Det at aven mojligt att nyttja t.ex. en MPC (Model Predictive Control)-reglering vid reglering enligt uppfinningen. It is also possible to use e.g. an MPC (Model Predictive Control) control when controlling according to the invention.
Ett exempel pA en MPC-reglering visas i fig. 6, dar referenskurvan 603 motsvarar forvantad tryckutveckling vid varmefrigorelsen under forbranningscykeln, dvs. resultatet av ekv. (5) ovan for valt insprutningsschema. Kurvan 603 kan t.ex. utgoras av en under forbranningscykeln realistiskt uppnAbar (lagsta)nivA for det maximala trycket vid aktuell last och radande varvtal, och kan t.ex. faststallas pa forhand, t.ex. genom tillampliga berakningar och/eller matningar pa motortypen, varvid dessa data kan lagras i styrsystemets minne som funktion av t.ex. varvtal och last. An example of an MPC control is shown in Fig. 6, where the reference curve 603 corresponds to expected pressure development at the heat release during the combustion cycle, i.e. the result of eq. (5) above for selected injection schedule. Curve 603 can e.g. consists of a (lowest) level realistically achievable during the combustion cycle for the maximum pressure at the current load and radiating speed, and can e.g. determined in advance, e.g. by applicable calculations and / or feeds on the motor type, whereby this data can be stored in the control system memory as a function of e.g. speed and load.
Detta medfor ocksa att fOrbranningen inte behover styras enbart mot ett vid vane tillfalle rAdande tryck, utan kan aven vara anordnad att styras mot ett forvantat maximalt tryck, sasom t.ex. kurvan 603 i fig. 6, varvid varje insprutning kan ha som syfte att resultera i en forbranning som motsvarar kurvan 603. This also means that the combustion does not have to be controlled only against a normal pressure, as is customary, but can also be arranged to be controlled against a expected maximum pressure, such as e.g. curve 603 in Fig. 6, each injection being intended to result in a combustion corresponding to curve 603.
Den heldragna kurvan 602 fram till tiden k representerar den faktiska utvecklingen av trycket som hittills har uppkommit och som har framraknas enligt ovan med hjalp av faktiska data frAn den vevvinkelupplosta tryckgivaren. Kurvan 601 representerar den estimerade, dvs. forvantade, utvecklingen for trycket i forbranningskammaren baserat pa predikterad 33 537 30 insprutningsprofil. Streckade insprutningar 605, 606, 607 representerar den predikterade styrsignalen, dvs. den insprutningsprofil som forvantas tillampas, och 608, 609 representerar redan utforda insprutningar. The solid curve 602 up to time k represents the actual development of the pressure which has hitherto arisen and which has been calculated as above with the aid of actual data from the crank angle-dissolved pressure sensor. Curve 601 represents the estimated, i.e. expected, the development of the pressure in the combustion chamber based on predicted injection profile. Dashed injections 605, 606, 607 represent the predicted control signal, i.e. the expected injection profile is applied, and 608, 609 represent already challenging injections.
Den predikterade insprutningsprofilen uppdateras med tillampliga mellanrum, sasom t.ex. efter varje utford insprutning, for att ná slutvardet som efterstravas och som ges av referenskruvan 603, och dar nasta insprutning faststalls baserat pa radande forhallanden i forhallande till den estimerade tryckutvecklingen. The predicted injection profile is updated at appropriate intervals, such as e.g. after each challenge injection, in order to reach the final value which is sought and given by the reference screw 603, and where the next injection is determined based on the prevailing conditions in relation to the estimated pressure development.
Saledes tillhandahaller foreliggande uppfinning ett forfarande som medger en mycket god reglering av ett forbranningsforlopp, och som anpassar forbranningen under pagaende forbranning for att erhalla en forbranning med reglerad tryckforandring och darmed associerat avgivet ljud. Thus, the present invention provides a method which allows a very good control of a combustion process, and which adapts the combustion during ongoing combustion to obtain a combustion with controlled pressure change and associated associated emitted sound.
Enligt ovan kan forbranningen regleras under en pagaende forbranningscykel. Enligt en utforingsform utfors dock estimeringen for en forbranningscykel, varvid sedan en efterfoljande forbranningscykel kan regleras baserat pa estimeringen for den foregaende forbranningscykeln. According to the above, the combustion can be regulated during an ongoing combustion cycle. According to one embodiment, however, the estimation for a combustion cycle is performed, whereby a subsequent combustion cycle can then be regulated based on the estimation for the previous combustion cycle.
Uppfinningen har ovan exemplifierats pa ett satt dar en trycksensor 206 anvands for att faststalla ett tryck i forbranningskammaren. Som alternativ till att anvanda trycksensorer kan istallet en (eller flera) andra sensorer nyttjas, sasom t.ex. hogupplosta jonstromsensorer, knacksensorer eller tojningsgivare, varvid trycket i forbranningskammaren kan modelleras genom utnyttjande av sensorsignaler fran dylika sensorer. Det är aven mojligt att kombinera olika typer av sensorer, t.ex. for att erhalla en sakrare estimering av trycket i forbranningskammaren, och/eller anvanda andra tillampliga sensorer, dar 34 537 30 sensorsignalerna omraknas till motsvarande tryck for anvandning vid reglering enligt ovan. The invention has been exemplified above in a manner in which a pressure sensor 206 is used to determine a pressure in the combustion chamber. As an alternative to using pressure sensors, one (or more) other sensors can be used instead, such as e.g. high-resolution ion current sensors, knock sensors or strain gauges, whereby the pressure in the combustion chamber can be modeled by using sensor signals from such sensors. It is also possible to combine different types of sensors, e.g. to obtain a more accurate estimation of the pressure in the combustion chamber, and / or to use other applicable sensors, where the sensor signals are converted to the corresponding pressure for use in control as above.
Vidare har i ovanstaende beskrivning endast bransleinsprutning reglerats. Istallet for att enbart reglera mangden tillfort bransle kan trycket vid forbranningen vara anordnat att regleras med hjalp av t.ex. avgasventiler, varvid insprutning kan utforas enligt forutbestamt schema, men dar avgasventilerna anvands for att reglera trycket i forbranningskammaren. Furthermore, in the above description, only industry injection has been regulated. Instead of only regulating the amount of fuel supplied, the pressure during combustion can be arranged to be regulated with the aid of e.g. exhaust valves, whereby injection can be performed according to a predetermined schedule, but where the exhaust valves are used to regulate the pressure in the combustion chamber.
Vidare kan regleringen utforas med flagon tillamplig typ av regulator, eller t.ex. med hjalp av tillstandsmodeller och tillstandsaterkoppling (exempelvis linjar programmering, LQGmetoden eller liknande). Furthermore, the control can be performed with the appropriate type of regulator, or e.g. with the help of state models and state feedback (eg line programming, the LQG method or similar).
Det uppfinningsenliga forfarandet for reglering av forbranningsmotorn kan aven kombineras med sensorsignaler fran andra sensorsystem dar upplosning pa vevvinkelniva inte ar tillganglig, sasom t.ex. annan tryckgivare, NOx-sensorer, NH3- sensorer, PM-sensorer, syresensorer och/eller temperaturgivare etc., vilka insignaler t.ex. kan anvandas som inparametrar vid estimering av t.ex. maximalt tryck genom utnyttjande av datadrivna modeller istallet for modeller av ovan beskrivna typ. The inventive method for controlling the internal combustion engine can also be combined with sensor signals from other sensor systems where resolution at the crank angle level is not available, such as e.g. other pressure sensors, NOx sensors, NH3 sensors, PM sensors, oxygen sensors and / or temperature sensors etc., which input signals e.g. can be used as input parameters when estimating e.g. maximum pressure by using data-driven models instead of models of the type described above.
Vidare har fOreliggande uppfinning ovan exemplifierats i anknytning till fordon. Uppfinningen ar dock aven tillamplig vid godtyckliga farkoster/processer dar forbranningsreglering enligt ovan är tillamplig, sasom t.ex. vatten- eller luftfarkoster med forbranningsprocesser enligt ovan. Furthermore, the present invention has been exemplified above in connection with vehicles. However, the invention is also applicable to arbitrary vehicles / processes where combustion control as above is applicable, such as e.g. water or aircraft with combustion processes as above.
Det skall ocksa noteras att systemet kan modifieras enligt olika utforingsformer av forfarandet enligt uppfinningen (och vice versa) och att foreliggande uppfinning inte pa nagot vis är begransad till de ovan beskrivna utfOringsformerna av 537 30 forfarandet enligt uppfinningen, utan avser och innefattar alla utforingsformer mom de bifogade sjalvstandiga kravens skyddsomfang. 36 It should also be noted that the system may be modified according to various embodiments of the method of the invention (and vice versa) and that the present invention is in no way limited to the above-described embodiments of the method of the invention, but relates to and includes all embodiments of the invention. attached the scope of protection of the independent requirements. 36
Claims (37)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1350508A SE537305C2 (en) | 2013-04-25 | 2013-04-25 | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
DE112014001770.1T DE112014001770B4 (en) | 2013-04-25 | 2014-04-24 | Method and system for controlling an internal combustion engine |
PCT/SE2014/050494 WO2014175820A1 (en) | 2013-04-25 | 2014-04-24 | Method and system for control of an internal combustion engine |
BR112015024987A BR112015024987A2 (en) | 2013-04-25 | 2014-04-24 | method and system for controlling an internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1350508A SE537305C2 (en) | 2013-04-25 | 2013-04-25 | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1350508A1 SE1350508A1 (en) | 2014-10-26 |
SE537305C2 true SE537305C2 (en) | 2015-03-31 |
Family
ID=51792223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1350508A SE537305C2 (en) | 2013-04-25 | 2013-04-25 | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
Country Status (4)
Country | Link |
---|---|
BR (1) | BR112015024987A2 (en) |
DE (1) | DE112014001770B4 (en) |
SE (1) | SE537305C2 (en) |
WO (1) | WO2014175820A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE539296C2 (en) * | 2013-04-25 | 2017-06-20 | Scania Cv Ab | Method and system for controlling an internal combustion engine by controlling the combustion in an internal combustion chamber during the current combustion cycle |
SE539031C2 (en) * | 2013-04-25 | 2017-03-21 | Scania Cv Ab | Method and system for controlling an internal combustion engine by controlling the combustion in an internal combustion chamber during the current combustion cycle |
SE537190C2 (en) * | 2013-04-25 | 2015-03-03 | Scania Cv Ab | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
SE537313C2 (en) * | 2013-04-25 | 2015-04-07 | Scania Cv Ab | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
SE537308C2 (en) * | 2013-04-25 | 2015-04-07 | Scania Cv Ab | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2844830B1 (en) * | 2002-09-23 | 2006-06-02 | Peugeot Citroen Automobiles Sa | SYSTEM FOR MONITORING THE OPERATION OF A DIESEL ENGINE OF A MOTOR VEHICLE |
FR2857410B1 (en) * | 2003-07-08 | 2005-10-14 | Peugeot Citroen Automobiles Sa | SYSTEM FOR MONITORING COMBUSTION NOISE OF A DIESEL ENGINE OF A MOTOR VEHICLE |
US7255090B2 (en) * | 2005-12-15 | 2007-08-14 | Ford Global Technologies, Llc | Compression ignition engine with pressure-based combustion control |
SE534864C2 (en) | 2007-03-15 | 2012-01-24 | Scania Cv Ab | Arrangement and procedure of a diesel engine |
DE102007045222A1 (en) | 2007-09-21 | 2008-03-06 | Daimler Ag | Internal combustion engine`s combustion chamber interior pressure signal correcting method, involves determining distribution of absolute cylinder pressure, and polytrophic exponent and offset pressure using kalman-filter |
JP5006947B2 (en) * | 2010-01-14 | 2012-08-22 | 本田技研工業株式会社 | Plant control equipment |
US8494757B2 (en) | 2010-08-17 | 2013-07-23 | GM Global Technology Operations LLC | Method for estimating and controlling accoustic noise during combustion |
SE539296C2 (en) | 2013-04-25 | 2017-06-20 | Scania Cv Ab | Method and system for controlling an internal combustion engine by controlling the combustion in an internal combustion chamber during the current combustion cycle |
SE539031C2 (en) | 2013-04-25 | 2017-03-21 | Scania Cv Ab | Method and system for controlling an internal combustion engine by controlling the combustion in an internal combustion chamber during the current combustion cycle |
SE537190C2 (en) | 2013-04-25 | 2015-03-03 | Scania Cv Ab | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
SE537313C2 (en) | 2013-04-25 | 2015-04-07 | Scania Cv Ab | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
SE537308C2 (en) | 2013-04-25 | 2015-04-07 | Scania Cv Ab | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle |
-
2013
- 2013-04-25 SE SE1350508A patent/SE537305C2/en not_active IP Right Cessation
-
2014
- 2014-04-24 BR BR112015024987A patent/BR112015024987A2/en not_active Application Discontinuation
- 2014-04-24 DE DE112014001770.1T patent/DE112014001770B4/en not_active Expired - Fee Related
- 2014-04-24 WO PCT/SE2014/050494 patent/WO2014175820A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2014175820A1 (en) | 2014-10-30 |
SE1350508A1 (en) | 2014-10-26 |
DE112014001770T5 (en) | 2016-01-14 |
DE112014001770B4 (en) | 2018-11-22 |
BR112015024987A2 (en) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1256577C (en) | Control apparatus for motor vehicle and storage medium | |
SE537305C2 (en) | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle | |
US7744504B2 (en) | Control apparatus of vehicle | |
CN102052186B (en) | Engine control system with algorithm for actuator control | |
SE1350509A1 (en) | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle | |
SE1350506A1 (en) | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle | |
US7561956B2 (en) | Method for controlling boost pressure in an internal combustion engine | |
DE102011102596A1 (en) | Engine idling control device | |
SE529742C2 (en) | Method for adjusting a look-up table and a system for controlling an injector of a cylinder in an internal combustion engine | |
US20100095929A1 (en) | Method and device for controlling an internal combustion engine | |
SE537308C2 (en) | Method and system for controlling an internal combustion engine through control of combustion in an internal combustion chamber during the current combustion cycle | |
WO2020216470A1 (en) | Engine control system | |
DE102011016517A1 (en) | Method and system for reducing turbo delay in an internal combustion engine | |
SE539031C2 (en) | Method and system for controlling an internal combustion engine by controlling the combustion in an internal combustion chamber during the current combustion cycle | |
US8996279B2 (en) | Method and system for optimizing fuel delivery to a fuel injected engine operating in power mode | |
SE1350507A1 (en) | Process and system for controlling an internal combustion engine II | |
KR102066644B1 (en) | Control device of internal combustion engine | |
JP5891797B2 (en) | Engine control device | |
JP2010216887A (en) | Engine simulator | |
WO2014007750A1 (en) | A method when driving a vehicle and a computer program for this, a system for implementing the method and a vehicle comprising the system | |
CN103732889A (en) | Method and device for monitoring a control unit for operating an engine system | |
JP7181943B2 (en) | Engine control device and engine control method | |
JP5742653B2 (en) | Engine control device | |
CN118574986A (en) | Control device and method for operating an internal combustion engine, operator device for operating a power supply system, internal combustion engine assembly and power supply system having such an internal combustion engine assembly | |
JP2012193636A (en) | Idling speed control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |