SE537284C2 - Dynamic utilization of available catalytic performance - Google Patents
Dynamic utilization of available catalytic performance Download PDFInfo
- Publication number
- SE537284C2 SE537284C2 SE1350824A SE1350824A SE537284C2 SE 537284 C2 SE537284 C2 SE 537284C2 SE 1350824 A SE1350824 A SE 1350824A SE 1350824 A SE1350824 A SE 1350824A SE 537284 C2 SE537284 C2 SE 537284C2
- Authority
- SE
- Sweden
- Prior art keywords
- exhaust gas
- gas treatment
- treatment device
- catalytic performance
- physical
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/02—Catalytic activity of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/04—Filtering activity of particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/18—Ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/08—Parameters used for exhaust control or diagnosing said parameters being related to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
- F01N2900/1404—Exhaust gas temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
- F01N2900/1411—Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1621—Catalyst conversion efficiency
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/103—Oxidation catalysts for HC and CO only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Sammandrag Fareliggande uppfinning tillhandahaller ett f5rfarande och ett system for utnyttjande av en verklig tillganglig katalytisk prestanda ri,ct for en avgasbehandlingsanordning vilken innefattar atminstone ett substrat med katalytisk belaggning. En fysikalisk katalytisk prestanda riphys som avgasbehandlingsanordningen har innan den tagits i bruk bestams baserat atminstone pa ett flode F och pa en temperatur T for avgaserna. En forsamring ndeg av den fysikaliska katalytiska prestandan efter att avgasbehandlingsanordningen tagits i bruk bestams sedan baserat pa atminstone ett ackumulerat utnyttjande av varvtal a och moment M f5r motorn. Den verkliga tillgangliga katalytiska prestandan hact faststalls genom att reducera den fysikaliska katalytiska prestandan nphys med forsamringen n - ■deg r flact — riphysrideg • En utnyttjandeenhet Or anordnad att utnyttja denna verkliga tillgangliga katalytiska prestanda nact• Summary The present invention provides a method and system for utilizing truly accessible catalytic performance in an exhaust gas treatment apparatus which comprises at least one catalytic coating substrate. A physical catalytic performance riphys that the exhaust gas treatment device has before it is put into use is determined based on at least one flow F and on a temperature T for the exhaust gases. A decrease in the physical catalytic performance after the exhaust gas treatment device is put into service is then determined based on at least an accumulated utilization of speed a and torque M for the engine. The actual available catalytic performance hact is determined by reducing the physical catalytic performance nphys with the pre-assembly n - ■ deg r flact - riphysrideg • A utilization unit Or arranged to utilize this actual available catalytic performance nact •
Description
537 284 Sammandrag Fareliggande uppfinning tillhandahaller ett f5rfarande och ett system for utnyttjande av en verklig tillganglig katalytisk prestanda ri,ct for en avgasbehandlingsanordning vilken innefattar atminstone ett substrat med katalytisk belaggning. Summary The present invention provides a method and system for utilizing true available catalytic performance in an exhaust gas treatment apparatus which comprises at least one catalytic coating substrate.
En fysikalisk katalytisk prestanda riphys som avgasbehandlingsanordningen har innan den tagits i bruk bestams baserat atminstone pa ett flode F och pa en temperatur T for avgaserna. En forsamring ndeg av den fysikaliska katalytiska prestandan efter att avgasbehandlingsanordningen tagits i bruk bestams sedan baserat pa atminstone ett ackumulerat utnyttjande av varvtal a och moment M f5r motorn. Den verkliga tillgangliga katalytiska prestandan hact faststalls genom att reducera den fysikaliska katalytiska prestandan nphys med forsamringen n - ■deg r flact — riphysrideg • En utnyttjandeenhet Or anordnad att utnyttja denna verkliga tillgangliga katalytiska prestanda nact• 537 284 DYNAMISKT UTNYTTJANDE AV TILLGANGLIG KATALYTISK PRESTANDA Tekniskt omrade Fareliggande uppfinning avser ett farfarande far utnyttjande av en verklig tillganglig katalytisk prestanda nact far en avgasbehandlingsanordning enligt ingressen till patentkrav 1 och ett system for utnyttjande av en verklig tillganglig katalytisk prestanda nact far en avgasbehandlingsanordning enligt ingressen till patentkrav 20. A physical catalytic performance riphys that the exhaust gas treatment device has before it is put into use is determined based on at least one flow F and on a temperature T for the exhaust gases. A decrease in the physical catalytic performance after the exhaust gas treatment device is put into service is then determined based on at least an accumulated utilization of speed a and torque M for the engine. The actual available catalytic performance hact is determined by reducing the physical catalytic performance nphys with the pre-assembly n - ■ deg r flact - riphysrideg • A utilization unit Or arranged to utilize this actual available catalytic performance nact • 537 284 DYNAMIC UTILIZATION USE The invention relates to a process for utilizing an actual available catalytic performance nact for an exhaust gas treatment device according to the preamble of claim 1 and a system for utilizing an actual available catalytic performance nact for an exhaust gas treatment device according to the preamble of claim 20.
Fareliggande uppfinning avser ocksa ett datorprogram och en datorprogramprodukt, vilka implementerar farfarandet enligt uppfinningen. The present invention also relates to a computer program and a computer program product, which implement the method according to the invention.
Bakgrund Faljande bakgrundsbeskrivning utgar en beskrivning av bakgrunden till foreliggande uppfinning, vilken inte maste utgara tidigare kand teknik. Background The following background description is a description of the background to the present invention, which must not be based on prior art.
Far att uppfylla radande krav pa avgasrening ar dagens motorfordon vanligtvis forsedda med en avgasbehandlingsanordning, vilken renar avgaser avgivna av motorn innan de slapps ut ur fordonet. Detta galler sjalvklart aven andra anordningar och farkoster innefattande motorer, sasom exempelvis fartyg och flygplan. I detta dokument beskrivs uppfinningen exemplifierad i ett motorfordon, men fackmannen inser att uppfinningen aven kan tillampas pa vasentligen alla andra anordningar och farkoster innefattande forbranningsmotorer. In order to meet current requirements for exhaust gas cleaning, today's motor vehicles are usually equipped with an exhaust gas treatment device, which cleans the exhaust gases emitted by the engine before they are released from the vehicle. This of course also applies to other devices and vehicles including engines, such as ships and aircraft. This document describes the invention exemplified in a motor vehicle, but those skilled in the art will appreciate that the invention may also be applied to substantially all other devices and vehicles including internal combustion engines.
I figur 1 visas schematiskt ett motor- och avgasreningssystem 1 vilket ar farsett med en forbranningsmotor 2 och en avgasledning 3. Avgaser vilka lamnar farbranningsmotorn 2 rar sig i en avgasledning 3 i form av avgasfloden 21, 22, 23 i avgasledningens olika delar och trader ut i omgivningen via ett avgasutlopp 30. I avgasledningen 3 dr en 1 537 284 avgasbehandlingsanordning 4 anordnad. En styrenhet 13 är inrattad att erhalla matvarden fran gassensorer 11, 12 for koncentrationer far amnen i avgaserna, dar dessa senscrer exempelvis kan vara placerade i en forsta del av avgasledningen 3a uppstroms avgasbehandlingsanordningen 4 och i en andra del av avgasledningen 3b nedstroms avgasbehandlingsanordningen 4. Figure 1 schematically shows an engine and exhaust purification system 1 which is fitted with an internal combustion engine 2 and an exhaust line 3. Exhaust gases which leave the internal combustion engine 2 travel in an exhaust line 3 in the form of the exhaust river 21, 22, 23 in the different parts of the exhaust line and exit in the surroundings via an exhaust outlet 30. In the exhaust line 3 there is an exhaust gas treatment device 4 arranged. A control unit 13 is arranged to obtain the food value from gas sensors 11, 12 for concentrations of the substances in the exhaust gases, where these sensors can for instance be located in a first part of the exhaust line 3a upstream of the exhaust treatment device 4 and in a second part of the exhaust line 3b downstream of the exhaust treatment device 4.
Avgasbehandlingsanordningen 4 kan utgoras av en enskild avgasbehandlingsenhet eller en uppsattning av tva eller flera seriekopplade och/eller parallellkopplade avgasbe- handlingsenheter, dar respektive avgasbehandlingsenhet exempelvis utgors av en katalysator eller ett partikelfilter. I det illustrerade exemplet innefattar avgasbehandlingsanordningen 4 en oxidationskatalysator 5, ett partikelfilter 6 och en reduktionskatalysator 7 anordnade i serie med varandra med partikelfiltret 6 belaget mellan oxidationskatalysatorn 5 och reduktionskatalysatorn 7. Dock maste sasom namnts ovan inte avgasbehandlingsanordningen 4 innefatta var och en av oxidationskatalysatorn 5, partikelfiltret 6 och re- duktionskatalysatorn 7, utan kan i olika utforanden innefatta en eller flera av en oxidationskatalysator, ett partikelfilter och en reduktionskatalysator. The exhaust gas treatment device 4 may consist of a single exhaust gas treatment unit or a set-up of two or more series-connected and / or parallel-connected exhaust gas treatment units, where the respective exhaust gas treatment unit consists, for example, of a catalyst or a particulate filter. In the illustrated example, the exhaust gas treatment device 4 comprises an oxidation catalyst 5, a particulate filter 6 and a reduction catalyst 7 arranged in series with each other with the particulate filter 6 coated between the oxidation catalyst 5 and the reduction catalyst 7. However, as mentioned above, the exhaust gas treatment device 4 the particulate filter 6 and the reduction catalyst 7, but may in various embodiments comprise one or more of an oxidation catalyst, a particulate filter and a reduction catalyst.
Avgasbehandlingsanordningen 4 kan alltsa innefatta en eller flera katalysatorer, dar dessa katalysatorer kan vara en oxidationskatalysator (DOC; Diesel Oxidation Catalyst), ett katalytiskt partikelfilter (CDPF; Catalytic Diesel Particle Filter), en reduktionskatalysator (SCR; Selective Catalytic Reduction) och en ammoniakoxidationskatalysator (ASC; Ammonia Slip Catalyst eller AMOX; AMmonia OXidation catalyst). The exhaust gas treatment device 4 can thus comprise one or more catalysts, where these catalysts can be an oxidation catalyst (DOC), a catalytic particulate filter (CDPF), a catalytic diesel particulate filter (SCR) and an ammonia oxide (SCR). ASC; Ammonia Slip Catalyst or AMOX; AMmonia OXidation catalyst).
Katalysatorer Or anordnade i avgasledningen far att astadkomma katalytisk omvandling av miljafarliga bestandsdelar i 2 537 284 avgaserna till mindre miljafarliga dmnen. En metod som tagits i bruk for att astadkomma en effektiv katalytisk omvandling bygger IDA insprutning av ett reduktionsmedel i avgaserna uppstroms katalysatorn. En sadan reduktionskatalysator 7 kan exempelvis vara av ovan ndmnda SCR-typ. En SCR-katalysator reducerar selektivt koncentrationen kvaveoxider NO i avgaserna. Has en SCR-katalysator insprutas vanligtvis ett reduktionsmedel i form av urea eller ammoniak in i avgaserna uppstrams den reducerande katalysatorn, exempelvis i en tredje mellanliggande del 3c av avgasledningen, vilken är belagen uppstrams reduktionskatalysatorn 7 och nedstrams oxidationskatalysatorn 5 och partikelfiltret 6. Vid insprutningen av urea i avgaserna bildas ammoniak och det är denna ammoniak som utgar reduktionsdmnet vilket bidrar till den katalytiska omvandlingen i SCR-katalysatorn. Ammoniaken ackumuleras i katalysatorn genom adsorption pa aktiva sdten i katalysatorn, varvid i avgaserna farekommande kvdveoxider NO omvandlas till kvdve och vatten da dessa i katalysatorn bringas i kontakt med denna ackumulerade ammoniak p1 de aktiva sdtena i katalysatorn. Catalysts Or arranged in the exhaust line enable the catalytic conversion of environmentally hazardous constituents in the 2,537,284 exhaust gases into less environmentally hazardous substances. One method used to achieve efficient catalytic conversion is based on the IDA injection of a reducing agent into the exhaust gases upstream of the catalyst. Such a reduction catalyst 7 may, for example, be of the above-mentioned SCR type. An SCR catalyst selectively reduces the concentration of nitrogen oxides NO in the exhaust gases. When an SCR catalyst is usually injected, a reducing agent in the form of urea or ammonia is injected into the exhaust gases, the reducing catalyst is tightened, for example in a third intermediate part 3c of the exhaust line, which is coated, the reduction catalyst 7 is tightened and the oxidation catalyst 5 and particulate filter 6 are tightened. urea in the exhaust gases ammonia is formed and it is this ammonia that gives off the reduction substance which contributes to the catalytic conversion in the SCR catalyst. The ammonia accumulates in the catalyst by adsorption on the active sites in the catalyst, whereby in the exhaust gases dangerous nitrogen oxides NO are converted to nitrogen and water when these in the catalyst are brought into contact with this accumulated ammonia on the active sites in the catalyst.
Vid anvdndning av en SCR-katalysator 7 i kombination med dose-ring av reduktionsmedel i form av urea eller ammoniak styrs insprutningen av reduktionsmedlet 51 att en anskad omvandling av kvaveoxider NO erhalls utan att alit for stora mangder ofarbrukad ammoniak medfoljer avgaserna ut ur reduktionskatalysatorn 7 och darigenom avges till omgivningen. En ammoniakoxidationskatalysator AMOX 8 kan har utnyttjas som oxidationskatalysator for att minska denna emission och innefattas dl i avgasbehandlingsanordningen 4. En ammoniakoxidationskatalysator kan aven utnyttjas som oxidations- och reduktionskatalysator for att kunna utnyttja den reducerande katalysatorn 7 mera offensivt. Det är tidigare 3 537 284 kdrit att i ett system for styrning av insprutningen av reduktionsmedel utnyttja berakningsvarden fran en berdkningsmodell som, under beaktande av de fOrvantade reaktionerna i reduktionskatalysatorn 7 under radande driftfOrhallanden, kontinuerligt faststdller aktuella tillstand i katalysatorn. When using an SCR catalyst 7 in combination with dosing of reducing agent in the form of urea or ammonia, the injection of the reducing agent 51 is controlled so that a desired conversion of nitrogen oxides NO is obtained without excessive amounts of unused ammonia accompanying the exhaust gases out of the reduction catalyst 7 and thereby emitted to the environment. An ammonia oxidation catalyst AMOX 8 may have been used as an oxidation catalyst to reduce this emission and is included in the exhaust gas treatment device 4. An ammonia oxidation catalyst can also be used as an oxidation and reduction catalyst in order to be able to use the reducing catalyst 7 more aggressively. It is previously 3,537,284 kdrit to use in a system for controlling the injection of reducing agent the calibration value from a calcification model which, taking into account the expected reactions in the reduction catalyst 7 under radiating operating conditions, continuously determines the current state of the catalyst.
Kortfattad beskrivning av uppfinningen Den prestanda som kan levereras av ett avgasbehandlingssystem, exempelvis i form av omvandlingsgrad av kvdveoxider NOR, har en inverkan pa brdnsleforbrukningen far motorn och darmed dven pa en kundnytta i form av driftskostnad. Brief description of the invention The performance that can be delivered by an exhaust gas treatment system, for example in the form of conversion rate of nitrogen oxides NOR, has an impact on the fuel consumption of the engine and thus also on a customer benefit in the form of operating costs.
Det finns ett samband mellan prestandan far avgasbehandlingssystemet och brdnsleeffektiviteten fOr en farbrdnningsmotor, en sa kallad NOR/BSFC (Break Specific Fuel Consumption) kompromiss. Detta samband anger att det fOr ett givet system finns en direkt positiv koppling mellan producerade kvdveoxider NO och brdnsleeffektiviteten BSFC. pa motsvarande sdtt finns en negativ koppling mellan en producerad partikelmassa PM och brdnsleeffektiviteten Be. There is a link between the performance of the exhaust gas treatment system and the fuel efficiency of an internal combustion engine, a so-called NOR / BSFC (Break Specific Fuel Consumption) compromise. This relationship indicates that for a given system there is a direct positive connection between produced nitrogen oxides NO and the fuel efficiency BSFC. in the corresponding way, there is a negative connection between a produced particulate mass PM and the fuel efficiency Be.
Detta är bakgrunden till det utbredda anvandandet av SCR- katalysatorer vid avgasbehandling ddr man avser att brdnsleoch partikeloptimera motorn mot ett straff i mdngden producerade kvdveoxider NOR. Dessa kvdveoxider NO reduceras sedan i avgasbehandlingsanordningen. Genom ett integrerat synsdtt vid motor- och avgasbehandlingssystemets design, ddr motor och avgasbehandling kompletterar varandra, kan en hog effektivitet uppnas tillsammans med laga emissioner av bade partiklar och kvaveoxider NOR. This is the background to the widespread use of SCR catalysts in exhaust gas treatment where it is intended to fuel and particle optimize the engine against a penalty in the amount of nitrogen oxides produced NOR. These nitrogen oxides NO are then reduced in the exhaust gas treatment device. Through an integrated approach to the design of the engine and exhaust gas treatment system, where the engine and exhaust gas treatment complement each other, a high efficiency can be achieved together with low emissions of both particles and nitrogen oxides NOR.
Katalytiska avgasbehandlingssystem, innefattande vdsentligen alla avgasbehandlingsanordningar med katalytisk beldggning pa atminstone ett substrat, sasom exempelvis en SCR-katalysator, 4 537 284 riskerar att fOrlora prestanda over tid, eftersom den katalytiska prestandan for avgasbehandlingsanordningar fOrsdmras pa grund av att de katalytiska heldggningarna deaktiveras Over tid. Frdmst sker denna fOrsdmring/degenerering som en funktion av den temperatur och de kemiska dmnen de katalytiska komponenterna/substraten utsdtts fOr. Catalytic exhaust gas treatment systems, including essentially all catalytic exhaust gas treatment devices on at least one substrate, such as an SCR catalyst, are likely to lose performance over time, as the catalytic performance of exhaust gas treatment devices is degraded due to overheating. Primarily, this spoilage / degeneration occurs as a function of the temperature and chemical substances to which the catalytic components / substrates are exposed.
I tidigare kanda losningar designas ofta katalytiska avgasbehandlingsanordningar, exempelvis innefattande en SCR- katalysator, med avsikten att aven en aldrad avgasbehandlingsanordning ska kunna tillhandahalla rimliga emissioner. Darfor antas att dessa avgasbehandlingsanordningar Over tiden har en schablonmdssig deaktivering/aldring. In prior art solutions, catalytic exhaust gas treatment devices are often designed, for example including an SCR catalyst, with the intention that even an aged exhaust gas treatment device should be able to provide reasonable emissions. Therefore, it is assumed that these exhaust gas treatment devices over time have a standard deactivation / aging.
Till en viss del kan prestandan has avgasbehandlingsanordningen okas genom att Oka substratvolymerna, vilket speciellt minskar de forluster som beror av ojdmn fordelning av avgasflodet genom substratet. Samtidigt ger en storre substratvolym ett storre mottryck, vilket motverkar eventuella vinster i brdnslefarbrukning fran den hOgre omvandlingsgraden pa grand av den okade prestandan. To a certain extent, the performance of the exhaust gas treatment device can be increased by increasing the substrate volumes, which in particular reduces the losses due to uneven distribution of the exhaust gas flow through the substrate. At the same time, a larger volume of substrate gives a greater back pressure, which counteracts any gains in fuel consumption from the higher degree of conversion due to the increased performance.
Det Or saledes viktigt att kunna utnyttja avgasbehandlingsanordningen optimalt, exempelvis genom att undvika overdimensionering. It is therefore important to be able to make optimal use of the exhaust gas treatment device, for example by avoiding oversizing.
I nagra tidigare kdnda losningar har SCR-katalysatorn alltsa dimensionerats enligt en metodik ddr man tar hajd fOr en viss fOrsdmring till fOljd av aldring. En mapp i styrenheten kan hdr till exempel ange omvandlingsgraden far SCR-katalysatorn som funktion av flOde och temperatur has avgaserna, ddr vdrdena i denna mapp Or schablonmdssigt ldgre On vad som maximalt skulle kunnat omvandlas av en helt ny SCR-katalysator far att infora aldrings. Alternativt bestdms 537 284 prestanda for SCR-katalysatorn baserat pa en mindre katalysator an den som sedan kommer att utnyttjas som avgasbehandlingsanordning for motorn, exempelvis i ett fordon. Detta innebar ocksa att den prestanda SCR-katalysatorn har som ny aldrig tillats att till fullo utnyttjas. In some previously known solutions, the SCR catalyst has thus been dimensioned according to a methodology in which a certain amount of damage is taken into account as a result of aging. A folder in the control unit can here, for example, indicate the degree of conversion if the SCR catalyst as a function of flow and temperature has the exhaust gases, where the values in this folder are standardly lower than what could be converted by a completely new SCR catalyst to introduce aging. Alternatively, the performance of the SCR catalyst is determined based on a smaller catalyst than that which will then be used as an exhaust gas treatment device for the engine, for example in a vehicle. This also meant that the performance SCR catalyst, like new, has never been allowed to be fully utilized.
Det Or ett syfte med foreliggande uppfinning att optimera den utnyttjade katalytiska prestandan i avgasbehandlingsanordningen Over tiden. It is an object of the present invention to optimize the utilized catalytic performance of the exhaust gas treatment device over time.
Detta syfte uppnas genom det ovan namnda farfarandet enligt den kannetecknande delen av patentkrav 1. Syftet uppnas Oven av det ovan namnda systemet enligt den kannetecknande delen av patentkrav 20. Syftet uppnas Oven genom ovan namnda datorprogram och datorprogramprodukt. This object is achieved by the above-mentioned method according to the characterizing part of claim 1. The object is achieved above by the above-mentioned system according to the characterizing part of claim 20. The object is achieved above by the above-mentioned computer program and computer program product.
Enligt foreliggande uppfinning faststalls en fysikalisk katalytisk prestanda riphys vilken avgasbehandlingsanordningen har nar den Or ny. Den fysikaliska katalytiska prestandan riphys faststalls baserat atminstone pa ett flode F och pa en temperatur T far avgaser vilka passerar genom avgasbehandlingsanordningen. Sedan faststalls en fOrsamring rid„ av den fysikaliska katalytiska prestandan efter att avgasbehandlingsanordningen 4 tagits i bruk. Denna fOrsamring ildeg baseras IDA dtminstone ett ackumulerat utnyttjande av varvtal a och moment M for motorn. Den verkliga tillgangliga katalytiska prestandan qact kan sedan faststallas genom att reducera den fysikaliska katalytiska prestandan hphys med farsamringen fl - ■cleg r flact — nphysrideg • En utnyttjandeenhet Or anordnad att utnyttja denna verkliga tillgangliga katalytiska prestanda Genom uppfinningen erhalls en dynamiskt faststalld verklig tillganglig katalytisk prestanda flact, vilken kan utnyttjas for att styra motor- och eller avgasbehandlingssystem pa ett mer 11 act r exempelvis vid styrning av motorn. 6 537 284 optimerat sift in vad tidigare har varit majligt. Till skillnad fran tidigare kanda losningar kan har den verkliga ildringen/forsamringen av den katalytiska prestandan utnyttjas. Detta är en star fordel jamfort med det schablonmassigt antagna Aldrandet i tidigare lasningar, vilket foretradesvis har baserats pa degraderande korstilar, exempelvis tung drift pi hog hajd, som ger hag avgastemperatur samt hag bransle- och oljeforbrukning, for att skapa sakerhets/eller avgasbehandlingssystem. Dock utsatts endast ett fatal av fordonen i en fordonsflotta av denna degraderande karstil, vilket gor att de katalytiska belaggningarna far resten av fordonen, det vill saga de som inte utsatts far den degraderande karstilen, i onodan antas ha deaktiverats mycket mer in de verkligen har deaktiverats. Detta leder till en icke-optimal styrning av motor och/eller avgasbehandlingssystem. Denna icke-optimala tidigare utnyttjade styrning resulterar i en mindre bransleeffektiv och mindre kundoptimerad styrning in den som tillhandahills av fareliggande uppfinning. According to the present invention, a physical catalytic performance riphys is established which the exhaust gas treatment device has when it is new. The physical catalytic performance of riphys is determined based on at least one flood F and on a temperature T gets exhaust gases which pass through the exhaust treatment device. Then, a deterioration in the physical catalytic performance is established after the exhaust gas treatment device 4 is put into operation. This assembly is based on IDA at least an accumulated utilization of speed a and torque M for the engine. The actual available catalytic performance qact can then be determined by reducing the physical catalytic performance hphys with the hazard ring fl - ■ cleg r flact - nphysrideg • A utilization unit Or arranged to utilize this actual available catalytic performance The invention provides a dynamically determined actual available catalytic available , which can be used to control engine and / or exhaust treatment systems on a more 11 act r for example when controlling the engine. 6,537,284 optimized sift in what has previously been possible. Unlike previous known solutions, the actual expansion / accumulation of the catalytic performance can be utilized. This is a major advantage over the standard assumed Aging in previous readings, which has preferably been based on degrading crossover styles, such as heavy operation at high altitudes, which provides high exhaust gas temperature and high fuel and oil consumption, to create safety and / or exhaust gas treatment systems. However, only a fatal of the vehicles in a vehicle fleet were exposed to this degrading vessel style, which means that the catalytic coatings get the rest of the vehicles, that is to say those who were not exposed to the degrading vessel style, are inadvertently assumed to have been much more deactivated. . This leads to a non-optimal control of the engine and / or exhaust gas treatment system. This non-optimal previously utilized control results in a less industry efficient and less customer optimized control than that provided by the present invention.
Detta innebar att nyttjandegraden enligt uppfinningen kan styras mot avgasbehandlingsanordningens verkliga prestanda nact pi ett flexibelt sift. Om avgasbehandlingsanordningen Or relativt ny och formar leverera exempelvis 98 % omvandlingsgrad av motorns producerade kvaveoxider NOx ger den pa grund av sambandet mellan prestandan och bransleeffektiviteten, den sA kallad NOx/BSFC kompromissen, storsta mojliga kundnytta am den verkliga prestandan hact, enligt exemplet 98 %, kan utnyttjas till fullo. This meant that the utilization rate according to the invention can be controlled against the actual performance of the exhaust gas treatment device in a flexible sieve. If the exhaust gas treatment device is relatively new and forms to deliver, for example, 98% conversion of the engine's produced nitrogen oxides NOx, due to the relationship between performance and industry efficiency, the so-called NOx / BSFC compromise, gives the greatest possible customer benefit in real performance hact, according to example 98%, can be fully utilized.
Om denna avgasbehandlingsanordning utsatts for termisk eller kemisk belastning som gor att det endast farmar leverera 94 % efter en viss tid sa är detta nivan styrsystemen ska reglera 7 537 284 mot for att inte riskera otillatna emissioner. Det Or dock enligt uppfinningen lika viktigt att inte underskatta den tillgangliga omvandlingsgraden, det viii saga den verkliga prestanda fl - 'act am avgasbehandlingsanordningen inte utsatts for degraderande kOrstil. If this exhaust gas treatment device is subjected to a thermal or chemical load which means that only farms deliver 94% after a certain time, this is the level the control systems must regulate 7 537 284 against in order not to risk unauthorized emissions. However, according to the invention it is equally important not to underestimate the degree of conversion available, since the actual performance of the exhaust gas treatment device has not been subjected to degrading driving style.
Foreliggande uppfinning kommer att leda till att fordon som population kommer att uppvisa en mera kOrstilsberoende bransleforbrukning, dar bransleforbrukningen totalt sett Or lagre. Detta majliggors eftersom en majoritet av fordonen, motsvarande vasentligen alla de fordon som inte utsatts for degraderande karstil, tillatas utnyttja mer av sin hogpresterande och clamed branslebesparande avgasbehandling. The present invention will lead to vehicles as a population showing a more style-dependent fuel consumption, where the fuel consumption overall is lower. This is possible because a majority of the vehicles, corresponding to essentially all the vehicles that have not been subjected to degrading vessel style, are allowed to make more use of their high-performance and clamed industry-saving exhaust gas treatment.
Det dynamiska faststallandet av den verkliga tillgangliga katalytiska prestandan gact enligt uppfinningen mojliggor darfor en optimering av emissioner och branslefOrbrukning. The dynamic determination of the actual available catalytic performance of the gact according to the invention therefore enables an optimization of emissions and fuel consumption.
Kortfattad figurforteckning Uppfinningen kommer att belysas narmare nedan med ledning av de bifogade ritningarna, (Jar lika hanvisningsbeteckningar anvands fOr lika delar, och van: Figur 1 visar ett motor- och avgasbehandlingssystem, Figur 2 visar flodesschema for forfarandet enligt uppfinningen, Figurerna 3a-c visar prestandamappar, Figur 4 visar flodesschema for forfarandet enligt en utforingsform av uppfinningen, och Figur 5 visar en styrenhet. 8 537 284 Beskrivning av foredragna utforingsformer Figur 2 visar ett flodesschema for ett forfarande enligt foreliggande uppfinning. I ett forsta steg 201 av forfarandet faststalls en fysikalisk katalytisk prestanda qphys avgasbehandlingsanordningen 4 har haft innan den tagits i bruk. Denna fysikaliska katalytiska prestanda qphys beror av atminstone ett flode F for avgaserna och en temperatur T for avgaserna. Enligt en utforingsform av uppfinningen beror den fysikaliska katalytiska prestandan qphys aven av ett forhallande mellan kvavemonoxid NO och kvavedioxid NO2 i avgaserna cm avgasbehandlingsanordningen 4 innefattar en reduktionskatalysator vars prestanda paverkas av detta forhallande. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further elucidated below with reference to the accompanying drawings, (The same reference numerals are used for like parts, and used: Figure 1 shows an engine and exhaust gas treatment system, Figure 2 shows a flow chart of the process of the invention, Figures 3a-c show Figure 4 shows a flow chart of the method according to an embodiment of the invention, and Figure 5 shows a control unit.8 537 284 Description of preferred embodiments Figure 2 shows a flow chart of a method according to the present invention. In a first step 201 of the method a physical catalytic performance qphys exhaust gas treatment device 4 has had before its use.This physical catalytic performance qphys depends on at least one flue F for the exhaust gases and one temperature T for the exhaust gases.According to one embodiment of the invention, the physical catalytic performance qphys also depends on a ratio of nitrogen monoxide NO and nitrogen dioxide NO2 in the exhaust gases in the exhaust gas treatment device 4 comprise a reduction catalyst whose performance is affected by this ratio.
I ett andra steg 202 av farfarandet faststalls en fOrsamring rideg av den fysikaliska katalytiska prestandan efter avgasbehandlingsanordningen 4 tagits i bruk. Denna forsamring beror som namnts ovan av den temperatur och de kemiska amnen de katalytiska komponenterna/substraten i avgasbehandlingsanordningen 4 utsatts for. Denna fOrsamring beror av utnyttjat varvtaloch moment M fOr motorn 2, varfor fOrsamringen kan faststallas baserat pa atminstone ett ackumulerat utnyttjande av varvtal O och moment M. Enligt en utforingsform av uppfinningen baseras faststallandet av farsamringen rideg aven pa ett lufttryck P, det viii saga pa ett atmosfarstryck, avgasbehandlingsanordningen 4 upplever under utnyttjandet som ackumulerar utnyttjande av varvtal co och moment M. In a second step 202 of the process, a deterioration is determined in the physical catalytic performance after the exhaust gas treatment device 4 has been put into operation. This pre-assembly depends, as mentioned above, on the temperature and the chemical substances to which the catalytic components / substrates in the exhaust gas treatment device 4 are exposed. This pre-assembly depends on the utilized speed and torque M for the engine 2, so that the pre-assembly can be determined based on at least an accumulated utilization of speed 0 and torque M. According to an embodiment of the invention, the determination of the torque ring is also based on an air pressure P. atmospheric pressure, the exhaust gas treatment device 4 experiences during utilization which accumulates utilization of speed co and torque M.
I ett tredje steg 203 av farfarandet faststalls den verkliga tillgangliga katalytiska prestandan risst genom att reducera den tidigare faststallda fysikaliska katalytiska prestandan riphys med den faststallda fOrsamringen n - 'deg11 act — riphysrideg • Detta kan ses som en dynamiskt faststalld verklig tillganglig 9 537 284 katalytisk prestanda fl act, Vi lken erhalls genom att reducera den fysikaliska katalytiska prestandan riphys med en dynamiskt faststalld forsamring rideg av den fysikaliska katalytiska prestandan. In a third step 203 of the process, the actual available catalytic performance ris is determined by reducing the previously determined physical catalytic performance riphys with the established pre-assembly n - 'deg11 act - riphysrideg • This can be seen as a dynamically determined actual available 9 537 284 catalytic performance fl act, Vi lken obtained by reducing the physical catalytic performance riphys with a dynamically determined assembly rideg of the physical catalytic performance.
I ett fjarde steg 204 av farfarandet utnyttjas den verkliga tillgangliga katalytiska prestandan fl act, exempelvis for att optimera funktionen far motor 2 och/eller avgasbehandlingsanordningen 4. Har kan enligt en utforingsform av foreliggande uppfinning vasentligen hela den verkliga tillgangliga katalytiska prestandan hact for avgasbehandlingsanordningen 4 utnyttjas av avgasbehandlingsanordningen vid dess behandling av avgaser. In a fourth step 204 of the process, the actual available catalytic performance is used, for example to optimize the function of the engine 2 and / or the exhaust gas treatment device 4. According to an embodiment of the present invention, substantially all of the actual available catalytic performance can be used for the exhaust treatment device 4. of the exhaust gas treatment device in its exhaust gas treatment.
Att kunna utnyttja den verkliga tillgangliga katalytiska prestandan nact for avgasbehandlingsanordningen maximalt är en stor fardel jamfor med tidigare kanda utnyttjanden av avgasbehandlingsanordningar. Being able to utilize the actual available catalytic performance nact for the exhaust gas treatment device to the maximum is a large advantage compared to previous known uses of exhaust gas treatment devices.
Enligt en utfaringsform av foreliggande uppfinning utnyttjas den verkliga tillgangliga katalytiska prestandan riact for att faststalla en kvarvarande driftstid far avgasbehandlingsanordningen och/eller for att faststalla ett serviceintervall far avgasbehandlingsanordningen. Harigenom kan fOreliggande uppfinning utnyttjas for att tillfOrlitligt bestamma nar service och/eller byte av avgasbehandlingsanordningen ska gOras. Detta sakerstaller att driftsstopp undviks vilket innebar en avsevard kundnytta. According to an embodiment of the present invention, the actual available catalytic performance is used directly to determine a residual operating time for the exhaust gas treatment device and / or to determine a service interval for the exhaust gas treatment device. Thereby, the present invention can be used to reliably determine when to service and / or replace the exhaust gas treatment device. This means that downtime is avoided, which meant a considerable customer benefit.
Sasom framgar ovan beskriver, enligt en modell av avgasbehandlingsanordningen 4, den fysikaliska katalytiska prestandan flphys den prestanda avgasbehandlingsanordningen 4 bar innan den tagits i bruk, det viii saga nar den är ny. Enligt modellen ar den verkliga katalytiska prestanda rk_ct motsvarande prestanda efter det att avgasbehandlingsanordningen 4 tagits i 10 537 284 bruk, det viii saga nar den inte langre dr fly och dess katalytiska prestanda har borjat forsamras. Enligt en utfaringsform av uppfinningen beskriver den fysikaliska katalytiska prestanda riphys en reduktion av kvaveoxider NO namnda avgasbehandlingsanordning 4 tillhandahaller innan avgasbehandlingsanordningen tagits i bruk. Den verkliga tillgängiiga katalytiska prestanda flact beskriver da en reduktion av kvaveoxider NO som avgasbehandlingsanordningen 4 tillhandahaller efter avgasbehandlingsanordningen tagits i bruk. As stated above, according to a model of the exhaust gas treatment device 4, the physical catalytic performance flphys describes the performance of the exhaust gas treatment device 4 bar before it is put into use, that is to say when it is new. According to the model, the actual catalytic performance is equivalent to the performance after the exhaust gas treatment device 4 has been put into operation, that is to say when it is no longer running and its catalytic performance has begun to deteriorate. According to an embodiment of the invention, the physical catalytic performance of riphys describes a reduction of nitrogen oxides NO said exhaust gas treatment device 4 provides before the exhaust gas treatment device is put into use. The actual available catalytic performance flact then describes a reduction of nitrogen oxides NO provided by the exhaust gas treatment device 4 after the exhaust gas treatment device has been put into use.
I tidigare kanda utnyttjanden har en schablonmassigt reducerad prestandamapp utnyttjats. Figur 3a visar ett ickebegransande exempel pa en sadan tidigare utnyttjad prestandamapp. I mappen listas schablonmassigt reducerad katalytisk prestanda fl prior 'prior art som funktion av avgasflode F och avgastemperatur T. Vardena i mappen motsvarar andelen (i procent) kvaveoxider NO som tas bort av avgasbehandlingsanordningen 4 da avgaserna strammar genom den. Sasom namnts ovan har har denna schablonmassigt reducerade prestanda n ,prior art bestamts till ett sa lagt varde att kompensation for aldrande av den katalytiska formagan har sakerstallts. Detta gar i och for sig att den katalytiska formagan mycket sallan overskattas, men det gar ocksa att den katalytiska fOrmAgan istallet ofta underskattas. Underskattning av den katalytiska formagan leder till suboptimering av motor- och eller avgassystem sasom beskrivits ovan. In previous known uses, a standard reduced performance folder has been used. Figure 3a shows a non-limiting example of such a previously utilized performance map. The portfolio lists standard reduced catalytic performance fl prior 'prior art as a function of exhaust flow F and exhaust temperature T. The values in the portfolio correspond to the proportion (in percent) of nitrogen oxides NO that are removed by the exhaust gas treatment device 4 as the exhaust gases flow through it. As mentioned above, this standard reduced performance, prior art has been determined to such an extent that compensation for aging of the catalytic form has been provided. This in itself means that the catalytic capacity is very often overestimated, but it is also possible that the catalytic capacity is often underestimated instead. Underestimation of the catalytic shape leads to sub-optimization of engine and / or exhaust systems as described above.
Enligt foreliggande uppfinning faststalls den fysikaliska katalytiska prestandan riphys for avgasbehandlingsanordningen 4, det vill saga den prestanda nphys avgasbehandlingsanordningen 4 hade innan den togs i bruk. Dessa fysikaliska katalytiska prestanda flphys kan samlas i en mapp far denna fysikaliska katalytiska prestandan - ,phys dar denna fysikaliska katalytiska 11 537 284 prestanda riphys listas (i procent) for fladet F och temperaturen T hos avgaserna. Ett ickebegransande exempel pa en sadan mapp visas i figur 3b. According to the present invention, the physical catalytic performance of the riphys for the exhaust gas treatment device 4 is determined, that is, the performance of the exhaust gas treatment device 4 before it was put into service. These physical catalytic performance flphys can be collected in a folder for this physical catalytic performance -, where this physical catalytic performance riphys is listed (in percent) for the surface F and the temperature T of the exhaust gases. A non-limiting example of such a folder is shown in Figure 3b.
Baserat pa den fysikaliska katalytiska prestandan n,hys och pa en faststdlld forsdmring fldeg av den fysikaliska katalytiska prestanda riphys bestams sedan den verkliga tillgangliga katalytiska prestandan riaat. Den verkliga tillgdngliga katalytiska prestandan riact (i procent) kan sedan ocksa samlas i en mapp. Ett ickebegramsande exempel pa en sadan mapp visas i figur 3c. Based on the physical catalytic performance n, hys and on a fixed increase followed by the physical catalytic performance riphys then determined the actual available catalytic performance riaat. The actual available catalytic performance riact (in percent) can then also be grouped in a folder. A non-limiting example of such a folder is shown in Figure 3c.
Om mappen i figur 3c far den verkliga tillgdngliga katalytiska prestandan 'Tact som har bestdmts enligt fareliggande uppfinning jamfors med mappen i figur 3a for den schablonmdssigt reducerade prestandan n - 'prior art S OM tidigare har anvdnts kan relativt enkelt konstateras att ett medelvdrde for den verkliga tillgdngliga katalytiska prestandan ITact som har bestdmts enligt fareliggande uppfinning är hogre an ett medelvdrde for den schablonmdssigt reducerade prestandan art. Detta beror pa att den schablonmdssigt reducerade prestandan n - ■prior art har givits vdrden sa att en schablonmdssig sdkerhets, medan den verkliga tillgdngliga katalytiska prestandan nacir faststdlls dynamiskt baserat pa ett dynamiskt faststallt aldrande for den katalytiska fOrmagan hos avgasbehandlingsanordningen 4. Exempelvis är den schablonmassigt reducerade prestandan n - ■prior art faststalld baserad pa ett antagande am att exempelvis en katalytiskt degraderande korning/korstil kommer att tillampas pa ett fordon innefattande avgasbehandlingsanordningen far att en tillracklig sakerhets, dar exempelvis en degraderande karning innefattar korning pa hag hajd med tung last. Dock kors en majoritet av fordonen i mindre degraderande korcykler, qprior 12 537 284 det viii saga pa lagre hojd och/eller med lattare last, vilket gor att den schablonmassigt reducerade prestandan n - corior art ar lagre an den egentligen skulle behava vara, varigenom en optimering av motor och/e11er avgasbehandling inte dr majlig. If the map in Figure 3c has the actual available catalytic performance 'Tact which has been determined according to the present invention is compared with the map in Figure 3a for the standard reduced performance n -' prior art S IF previously used it can be relatively easily stated that an average value for the actual The available catalytic performance of ITact which has been determined according to the present invention is higher than the mean of the standard reduced performance species. This is because the standard reduced performance n - ■ prior art has been given the value of a standard safety, while the actual available catalytic performance nacir is determined dynamically based on a dynamically determined aging of the catalytic capacity of the exhaust gas treatment device. performance n - ■ prior art determined based on an assumption that, for example, a catalytically degrading grain / cross style will be applied to a vehicle comprising the exhaust gas treatment device provides a sufficient safety, where for example a degrading grain includes grain at high load. However, a majority of the vehicles cross in less degrading cork cycles, which is said to be at a lower height and / or with a lighter load, which means that the standard reduced performance n - corior type is lower than it should actually be, whereby a optimization of engine and / or exhaust treatment not possible.
Med andra ord har, sasom framgar av den verkliga tillgangliga katalytiska prestandan qact i figur 3c i jamforelse med den schablonmassigt reducerade prestandan qprioo- art i figur 3a, tidigare kanda losningar underutnyttjat den katalytiska prestandan. Enligt foreliggande uppfinning kan den dynamiskt faststallda tillgangliga katalytiska prestandan qact utnyttjas vid vane tillfalle. In other words, as can be seen from the actual available catalytic performance qact in Figure 3c in comparison with the standard reduced performance qprioo- art in Figure 3a, previously known solutions have underused the catalytic performance. According to the present invention, the dynamically determined available catalytic performance qact can be utilized as usual.
Sjalvklart är det sa att vardena far den enligt fareliggande uppfinning faststallda verkliga tillgangliga katalytiska prestandan qact i figur 3c efter en lang tid av utnyttjande av avgasbehandlingsanordningen kommer att narma sip vardena far den schablonmassigt reducerade prestandan qprior aro i figur 3a. Dock kan enligt fareliggande uppfinning motor och/eller avgassystemen mer optimalt utnyttja avgasbehandlingsanordningen pa grund av battre utnyttjande av dess katalytiska fOrmaga under tiden fran det att avgasbehandlingsanordningen tas i bruk till dess att den verkliga tillgangliga katalytiska prestandan riact Pr lika lag som den schablonmassigt reducerade prestandan 11,-1„,rt. Of course, the values of the actual available catalytic performance determined in accordance with the present invention qact in Figure 3c after a long period of use of the exhaust gas treatment device will approach the values of the standard reduced performance qprior aro in Figure 3a. However, according to the present invention, the engine and / or exhaust systems can more optimally utilize the exhaust gas treatment device due to better utilization of its catalytic capacity during the time from the exhaust gas treatment device being put into operation until the actual available catalytic performance is equal to the standard reduced performance 11. , -1 „, rt.
Enligt en utfaringsform av foreliggande uppfinning utgars farsamringen rideci av den fysikaliska katalytiska prestandan efter att avgasbehandlingsanordningen 4 tagits i bruk atminstone delvis av en termisk deaktivering. Alltsa per det ackumulerade utnyttjandet av avgasbehandlingsanordningen 4, det viii saga ett ackumulerat/filtrerat utnyttjande av varvtal o och moment M for motorn 2, upphov till en termisk deaktivering av namnda avgasbehandlingsanordningen 4. Har kan 13 537 284 denna fOrsamring rideg faststallas genom att aven ta hansyn till det transienta beteendet has temperaturen T for avgaserna som passerar igenom avgasbehandlingsanordning 4. Utseendet has dessa transienter paverkas av en termisk troghet for avgasbehandlingsanordningen 4, vilket kan utnyttjas da forsamringen rideg av den fysikaiiska kataiytiska prestandan faststalls. Aven modeller for den termiska massan has avgasbehandlingsanordningen kan har utnyttjas vid faststallandet. Far att faststalla den termiska lasten, vilken resulterar i den termiska deaktiveringen, Over tiden kan temperaturtransienten filtreras och/eller integreras. According to an embodiment of the present invention, the hazard ring is derived from the physical catalytic performance after the exhaust gas treatment device 4 has been put into use at least in part by a thermal deactivation. Thus, per the accumulated utilization of the exhaust gas treatment device 4, the viii saga an accumulated / filtered utilization of speed o and torque M for the engine 2, gives rise to a thermal deactivation of the said exhaust gas treatment device 4. Has 13 537 284 this operation can be fixed by also taking In view of the transient behavior, the temperature T of the exhaust gases passing through the exhaust gas treatment device 4. The appearance of these transients is affected by a thermal inertia of the exhaust gas treatment device 4, which can be used when the assembly is determined by the physical performance. Models for the thermal mass of the exhaust gas treatment device may also have been used in the determination. If the thermal load is determined, which results in the thermal deactivation. Over time, the temperature transient can be filtered and / or integrated.
Resultat och erfarenheter fran tester visar att en viktig parameter for aldringen av reduktionskatalysatorer är den termiska last som komponenterna utsatts for. Enligt fareliggande uppfinning kan den termiska deaktiveringen av avgasbehandlingsanordningen 4 faststallas genom analys av utnyttjat varvtal a och moment M far motorn 2, vilket, tillsammans med styrsystemets noggranna loggning av avgastemperaturen, gor det mojligt att enligt uppfinningen uppskatta tillganglig prestanda. Detta betyder att styrsystem i exempelvis ett fordon, far vane fordonsindivid, kan anpassa utnyttjandegraden av katalysatorn, och clamed indirekt optimera branslefarbrukningen, efter den prestanda som systemet kan ieverera. Results and experience from tests show that an important parameter for the aging of reduction catalysts is the thermal load to which the components are exposed. According to the present invention, the thermal deactivation of the exhaust gas treatment device 4 can be determined by analyzing the utilized speed a and torque M of the engine 2, which, together with the control system's accurate logging of the exhaust temperature, makes it possible to estimate available performance. This means that control systems in, for example, a vehicle, accustomed to the individual vehicle, can adjust the degree of utilization of the catalyst, and clamed indirectly optimize the fuel consumption, according to the performance that the system can deliver.
I figur 4 visas schematiskt ett fladesschema far ett forfarande for faststallande av en forsamring rideg av den fysikaliska katalytiska prestandan for en avgasbehandlingsanordning 4 enligt en utforingsform av uppfinningen. De ingaende parametrarna for att bestamma den ackumulerade termiska deaktiveringen är motorns utnyttjade varvtal a och moment M, vilka tillhandahalls i ett forsta steg 401 av forfarandet. I ett forsta delsteg 411 for faststallande 14 537 284 av den termiska deaktiveringen bestams den termiska lasten genom ovan namnda filtrering och/eller integrering. I ett andra delsteg 412 for faststallande av den termiska deaktiveringen divideras den termiska lasten med ett dimensioneringskriterium 414, vilket kan utgOra en tid relaterad till den aldringsmapp som den totala deaktiveringsfaktorn multipliceras med fOr att faststalla den verkliga tillgangliga katalytiska prestandan nact. Detta kommer att beskrivas mer i detalj nedan. Figure 4 schematically shows a surface diagram of a method for determining a pre-assembly according to the physical catalytic performance of an exhaust gas treatment device 4 according to an embodiment of the invention. The input parameters for determining the accumulated thermal deactivation are the utilized speed a and torque M of the motor, which are provided in a first step 401 of the process. In a first sub-step 411 for determining the thermal deactivation 14 537 284, the thermal load is determined by the above-mentioned filtration and / or integration. In a second sub-step 412 for determining the thermal deactivation, the thermal load is divided by a dimensioning criterion 414, which may be a time related to the aging map by which the total deactivation factor is multiplied to determine the actual available catalytic performance nact. This will be described in more detail below.
I ett tredje delsteg 413 for faststallandet av den termiska deaktiveringen multipliceras den dividerade termiska lasten med en termisk viktningskoefficient k1, vilken anger hur stor del av deaktiveringen/aldrandet som beror av den termiska lasten. Denna dividerade och viktade termiska last utgor den termiska deaktiveringen, det vill saga det termiska bidraget till den totala deaktiveringskoefficienten, vilket alltsa är relaterat till forsamringen rideg av den fysikaliska katalytiska prestanda pa grund av den termiska lasten. In a third sub-step 413 for determining the thermal deactivation, the divided thermal load is multiplied by a thermal weighting coefficient k1, which indicates how much of the deactivation / aging depends on the thermal load. This divided and weighted thermal load constitutes the thermal deactivation, that is to say the thermal contribution to the total deactivation coefficient, which is thus related to the assembly due to the physical catalytic performance due to the thermal load.
Enligt en utfaringsform av foreliggande uppfinning utgar fOrsamringen rideg av den fysikaliska katalytiska prestandan efter att avgasbehandlingsanordningen 4 tagits i bruk atminstone delvis av en kemisk deaktivering. Alltsa ger det ackumulerade utnyttjandet av avgasbehandlingsanordningen 4, det vill saga ett ackumulerat/filtrerat utnyttjande av varvtalet a och momentet M for motorn 2, upphov till den kemiska deaktiveringen. Den kemiska deaktiveringen av avgasbehandlingsanordning kan vara relaterad till en bransleforbrukning och/eller en oljeforbrukning for motorn 2. According to an embodiment of the present invention, the contamination is based on the physical catalytic performance after the exhaust gas treatment device 4 has been put into use at least in part by a chemical deactivation. Thus, the accumulated utilization of the exhaust gas treatment device 4, i.e. an accumulated / filtered utilization of the speed a and the torque M for the engine 2, gives rise to the chemical deactivation. The chemical deactivation of an exhaust gas treatment device may be related to a fuel consumption and / or an oil consumption for the engine 2.
Bransleforbrukning loggas i exempelvis fordon och kan utnyttjas for att bestamma den kemiska belastningen. Detta kan vara sarskilt intressant far till exempel en 537 284 oxidationskatalysator DOC, vilken har en utsatt position i avgasbehandlingssystemet. Oxidationskatalysatorns DOC:ns egenskaper paverkar aven indirekt branslefOrbrukningen och omvandlingen av kvaveoxider NO genom dess oxidation av kavemonoxid NO till kvavedioxid NO2 samt dess fOrmaga att effektivt oxidera kolvaten. Fuel consumption is logged in, for example, vehicles and can be used to determine the chemical load. This may be of particular interest for example a 537 284 oxidation catalyst DOC, which has an exposed position in the exhaust gas treatment system. The properties of the oxidation catalyst DOC also indirectly affect the fuel consumption and conversion of nitrogen oxides NO through its oxidation of nitrogen monoxide NO to nitrogen dioxide NO2 and its ability to efficiently oxidize the hydrocarbons.
Aven detta visas schematiskt i fladesschemat i figur 4. De ingaende parametrarna for att bestamma den ackumulerade kemiska deaktiveringen är motorns utnyttjade varvtal o och moment M, vilka tillhandahalls i det forsta steget 401 av farfarandet. I ett forsta delsteg 421 fOr faststallande av den kemiska deaktiveringen bestams den kemiska lasten baserat pa ett bestammande av bransle och/eller oljefarbrukning far motorn 2. I ett andra delsteg 422 for faststallande av den kemiska deaktiveringen divideras den kemiska lasten med ett dimensioneringskriterium 424 motsvarande det 414 for den termiska lasten. This is also shown schematically in the surface diagram in Figure 4. The input parameters for determining the accumulated chemical deactivation are the engine speed o and torque M, which are provided in the first step 401 of the process. In a first sub-step 421 for determining the chemical deactivation, the chemical load is determined based on a determination of fuel and / or oil consumption by the engine 2. In a second sub-step 422 for determining the chemical deactivation, the chemical load is divided by a dimensioning criterion 424 corresponding to the 414 for the thermal load.
I ett tredje delsteg 423 for faststallandet av den kemiska deaktiveringen multipliceras den dividerade kemiska lasten med en kemisk viktningskoefficient kK, vilken anger hur star del av deaktiveringen/aldrandet som beror av den kemiska lasten. Exempelvis har dessa termiska kT och kemiska kK viktningskoefficienter varden sa att de ger en termisk overvikt, det viii saga att den termiska deaktiveringen dominerar den totala deaktiveringskoefficienten om avgasbehandlingsanordningen 4 utgors av en reduktionskatalysator. Pa motsvarande satt har de termiska kT och kemiska kK viktningskoefficienterna varden sa att de ger en kemisk overvikt, det viii saga att den kemiska deaktiveringen dominerar den totala deaktiveringskoefficienten om avgasbehandlingsanordningen 4 utgars av en oxidationskatalysator. 16 537 284 Den dividerade och viktade kemiska lasten utgOr den kemiska deaktiveringen, det viii saga det kemiska bidraget till den totala deaktiveringskoefficienten, vilket är relaterat till forsamringen rideg av den fysikaliska katalytiska prestandan pa grund av den kemiska lasten. In a third sub-step 423 for determining the chemical deactivation, the divided chemical load is multiplied by a chemical weighting coefficient kK, which indicates how much of the deactivation / aging depends on the chemical load. For example, these thermal kT and chemical kK weighting coefficients have the value said to give a thermal overweight, the viii saying that the thermal deactivation dominates the total deactivation coefficient if the exhaust gas treatment device 4 is constituted by a reduction catalyst. Correspondingly, the thermal kT and chemical kK weighting coefficients are such that they give a chemical predominance, that is to say that the chemical deactivation dominates the total deactivation coefficient if the exhaust gas treatment device 4 is formed by an oxidation catalyst. 16 537 284 The divided and weighted chemical load constitutes the chemical deactivation, that is to say the chemical contribution to the total deactivation coefficient, which is related to the assembly due to the physical catalytic performance due to the chemical load.
I ett fjarde step 404 for forfarandet for faststallande av farsamringen fldeg av den fysikaliska katalytiska prestanda far en avgasbehandlingsanordning 4 adderas den termiska deaktiveringen och den kemiska deaktiveringen, vilket resulterar i den totala deaktiveringskoefficienten. In a fourth step 404 of the process for determining the hazard combination due to the physical catalytic performance, an exhaust gas treatment device 4 is added the thermal deactivation and the chemical deactivation, which results in the total deactivation coefficient.
Den totala deaktiveringskoefficienten multipliceras sedan i ett femte step 405 for forfarandet med den ovan namnda Aldringsmappen. Denna Aldringsmapp beskriver hur forsamringen/aldrandet av den fysikaliska katalytiska prestandan ser ut exempelvis efter en fOrutbestamd tid, dar denna tid är relaterad till ovan namnda dimensioneringskriterium 414, 424. Till exempel kan Aldringsmappen innefatta varden motsvarande fOrsamringen efter 100 timmars last. I sà fall kan dimensioneringskriteriumet 414, 424 vara 100, vilket innebar att dimensioneringskriteriumet 414, 424 astadkommer en skalning av hur stor del av vardena i aldringsmappen som fOrsamringen rideg av den fysikaliska katalytiska prestandan motsvarar. Harigenom erhalls i ett sjatte step 406 av fOrfarandet fOrsamringen rideg av den fysikaliska katalytiska prestandan, vilken kan utnyttjas for att bestamma dynamiska varden for den tillgangliga katalytiska prestandan nact far avgasbehandlingsanordningen 4 enligt foreliggande uppfinning. The total deactivation coefficient is then multiplied in a fifth step 405 of the above-mentioned Aging Folder procedure. This Aging Folder describes what the pre-aging / aging of the physical catalytic performance looks like, for example, after a predetermined time, where this time is related to the above-mentioned dimensioning criteria 414, 424. For example, the Aging Folder may include the value corresponding to the pre-aging after 100 hours load. In that case, the dimensioning criterion 414, 424 may be 100, which means that the dimensioning criterion 414, 424 achieves a scaling of how large a part of the values in the aging folder corresponds to the deterioration of the physical catalytic performance. Thereby, in a sixth step 406 of the process, the deterioration of the physical catalytic performance is obtained, which can be used to determine the dynamic value of the available catalytic performance at the exhaust gas treatment device 4 according to the present invention.
Aldringsmappen motsvarar enligt en utfaringsform av uppfinningen den aldringsmapp som resulterar i den schablonmassigt reducerade prestandamappen som utnyttjats i 17 537 284 tidigare kanda losningar, det viii saga mappen visad i figur 3a. Det inses enkelt att de dynamiska vardena for den verkliga tillgangliga katalytiska prestandan nact vilka erhalls genom foreliggande uppfinning är storre an vardena i aldringsmappen anda till dessa att avgasbehandlingsanordningen 4 har utnyttjats den forutbestamda tid vilken aldringsmappens varden ar baserade pa, eftersom alla stegen i fOrfarandet innan den totala deaktiveringskoefficienten multipliceras med aldringsmappen i det femte steget 405 bestammer en skalning av Aldringsmappen, det viii saga bestammer hur star andel av vardena i Aldringsmappen som ska utnyttjas. Om till exempel den totala deaktiveringsfaktorn är lika med 80 % sa kommer vart och ett av vardena i aldringsmappen att multipliceras med 80 %. Alltsa kommer genom utnyttjande av fareliggande uppfinning en storre dela av avgasbehandlingsanordningens kapacitet att kunna utnyttjas, vilket ger ett mer optimerat utnyttjande av avgasbehandlingsanordningen och/eller ett mer bransleeffektivt motor- och avgasbehandlingssystem. According to an embodiment of the invention, the aging folder corresponds to the aging folder which results in the stencil-reduced performance folder used in previous known solutions, the viii saga folder shown in figure 3a. It will be readily appreciated that the dynamic values for the actual available catalytic performance obtained by the present invention are greater than the values in the aging portfolio in the sense that the exhaust gas treatment device 4 has been used for the predetermined time on which the aging portfolio values are based. the total deactivation coefficient is multiplied by the aging folder in the fifth step 405 determines a scaling of the aging folder, the viii saga determines what percentage of the values in the aging folder are to be used. For example, if the total deactivation factor is equal to 80%, then each of the values in the aging folder will be multiplied by 80%. Thus, by utilizing the present invention, a larger part of the capacity of the exhaust gas treatment device can be utilized, which provides a more optimized utilization of the exhaust gas treatment device and / or a more industry-efficient engine and exhaust gas treatment system.
Fackmannen inser att en metod for utnyttjande av en verklig tillganglig katalytisk prestanda nact for en avgashehandlingsanordning enligt fOreliggande uppfinning dessutom kan implementeras i ett datorprogram, vilket nar det exekveras i en dator Astadkommer att datorn utf5r metoden. Datorprogrammet utgor vanligtvis en del av en datorprogramprodukt 503, dar datorprogramprodukten innefattar ett lampligt digitalt lagringsmedium pa vilket datorprogrammet ar lagrat. Namnda datorldsbara medium bestar av ett lampligt minne, sAsom exempelvis: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash- minne, EEPROM (Electrically Erasable PROM), en harddiskenhet, etc. 18 537 284 Figur 5 visar schematiskt en styrenhet 500. Styrenheten 500 innefattar en berakningsenhet 501, vilken kan utgOras av vdsentligen nagon ldmplig typ av processor eller mikrodator, t.ex. en krets for digital signalbehandling (Digital Signal Processor, DSP), eller en krets med en fOrutbestdmd specifik funktion (Application Specific Integrated Circuit, ASIC). Berdkningsenheten 501 är f6rbunden med en, i styrenheten 500 anordnad, minnesenhet 502, vilken tillhandahaller berdkningsenheten 501 t.ex. den lagrade programkoden och/eller den lagrade data berakningsenheten 501 behaver for att kunna utfOra berdkningar. Berdkningsenheten 501 är dven anordnad att lagra del- eller slutresultat av berdkningar i minnesenheten 502. Those skilled in the art will appreciate that a method of utilizing an actual available catalytic performance for an exhaust gas treatment device according to the present invention may additionally be implemented in a computer program, which when executed in a computer ensures that the computer performs the method. The computer program usually forms part of a computer program product 503, wherein the computer program product comprises a suitable digital storage medium on which the computer program is stored. Said computer-recordable medium consists of a readable memory, such as, for example: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically Erasable PROM), a hard disk drive, etc Figure 5 schematically shows a control unit 500. The control unit 500 comprises a computing unit 501, which may be constituted by substantially any suitable type of processor or microcomputer, e.g. a Digital Signal Processor (DSP), or an Application Specific Integrated Circuit (ASIC). The storage unit 501 is connected to a memory unit 502 arranged in the control unit 500, which provides the storage unit 501 e.g. the stored program code and / or the stored data calculation unit 501 need to be able to perform calculations. The coverage unit 501 is then arranged to store partial or final results of coverage in the memory unit 502.
Vidare är styrenheten 500 forsedd med anordningar 511, 512, 513, 514 far mottagande respektive sdndande av in- respektive utsignaler. Dessa in- respektive utsignaler kan innehalla vagformer, pulser, eller andra attribut, vilka av anordningarna 511, 513 for mottagande av insignaler kan detekteras som information och kan omvandlas till signaler som kan behandlas av berakningsenheten 501. Dessa signaler tillhandahalls sedan berdkningsenheten 501. Anordningarna 512, 514 for sandande av utsignaler är anordnade att omvandla signaler erhallna fran berdkningsenheten 501 f6r skapande av utsignaler genom att t.ex. modulera signalerna, vilka kan averf6ras till andra delar av systemet. Furthermore, the control unit 500 is provided with devices 511, 512, 513, 514 for receiving and transmitting input and output signals, respectively. These input and output signals may contain waveforms, pulses, or other attributes, which of the input signals receiving devices 511, 513 may be detected as information and may be converted into signals which may be processed by the calculating unit 501. These signals are then provided to the calculating unit 501. The devices 512 , 514 for transmitting output signals are arranged to convert signals received from the bending unit 501 for creating output signals by e.g. modulate the signals, which can be transmitted to other parts of the system.
Var och en av anslutningarna till anordningarna for mottagande respektive sandande av in- respektive utsignaler kan utgoras av en eller flera av en kabel; en databuss, sasom en CAN-buss (Controller Area Network bus), en MOST-buss (Media Orientated Systems Transport bus), eller nagon annan busskonfiguration; eller av en tradlas anslutning. 19 537 284 En fackman inser att den ovan namnda datorn kan utgOras av berdkningsenheten 501 och att det ovan nOmnda minnet kan utgOras av minnesenheten 502. Each of the connections to the devices for receiving and transmitting input and output signals, respectively, may be one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), a MOST bus (Media Orientated Systems Transport bus), or any other bus configuration; or by a wired connection. One skilled in the art will appreciate that the above-mentioned computer may be constituted by the storage unit 501 and that the above-mentioned memory may be constituted by the memory unit 502.
AllmOnt bestar styrsystem i moderna fordon av ett kommunikationsbussystem bestaende av en eller flera kommunikationsbussar for att sammankoppla ett antal elektroniska styrenheter (ECU:er), eller controllers, och olika pa fordonet lokaliserade komponenter. Ett dylikt styrsystem kan innefatta ett stort antal styrenheter, och ansvaret for en specifik funktion kan vara uppdelat pa fler an en styrenhet. Fordon av den visade typen innefattar alltsa ofta betydligt fler styrenheter On vad som visas i figur 5, vilket är valkant for fackmannen mom teknikomradet. General control systems in modern vehicles consist of a communication bus system consisting of one or more communication buses for interconnecting a number of electronic control units (ECUs), or controllers, and various components located on the vehicle. Such a control system may comprise a large number of control units, and the responsibility for a specific function may be divided into more than one control unit. Vehicles of the type shown thus often comprise considerably more control units than what is shown in figure 5, which is the choice for the person skilled in the art.
Fareliggande uppfinning är i den visade utfOringsformen implementerad i styrenheten 500. Uppfinningen kan dock Oven implementeras helt eller delvis i en eller flera andra vid fordonet redan befintliga styrenheter eller i flagon for fareliggande uppfinning dedikerad styrenhet. In the embodiment shown, the dangerous invention is implemented in the control unit 500. The invention can, however, also be implemented in whole or in part in one or more other control units already existing at the vehicle or in the control unit dedicated to the dangerous invention.
Enligt en aspekt av fareliggande uppfinning tillhandahalls ett System for utnyttjande av en verklig tillgOnglig katalytisk prestanda 'Tact for en avgasbehandlingsanordning 4, dar avgasbehandlingsanordningen 4 innefattar atminstone ett substrat med katalytisk belaggning och behandlar avgaser fran motorn 2. Systemet innefattar en fastst011andeenhet anordnad far faststallande av en fysikalisk katalytisk prestanda qphys vilken avgasbehandlingsanordningen 4 har innan den tagits i bruk, det viii saga nar den är ny. Faststallandeenheten är anordnad att fastst011a den fysikaliska katalytiska prestandan Ilphys baserat Atminstone IDA ett flade F och pa en temperatur T for avgaser vilka passerar genom avgasbehandlingsanordningen 4. Systemet innefattar ocksa en farsamringsenhet anordnad att fastst011a en forsOmring rideg av den fysikaliska katalytiska 537 284 prestandan efter att avgasbehandlingsanordningen 4 tagits i bruk. Forsamringsenheten baserar faststallandet pi Atminstone ett ackumulerat/filtrerat utnyttjande av varvtal o och moment M for motorn 2. Systemet innefattar vidare en prestandaenhet anordnad att faststalla den verkliga tillgangliga katalytiska prestandan 'Tact genom att reducera den fysikaliska katalytiska prestandan flphys med fOrsamringen ridcgr nact = nphysrldcg • En utnyttjandeenhet är anordnad att utnyttja denna verkliga tillgangliga katalytiska prestanda nact- Fackmannen inser att systemet ovan kan modifieras enligt de olika utfaringsformerna av metoden enligt uppfinningen. Dessutom avser uppfinningen ett motorfordon, till exempel en lastbil eller en buss, innefattande Atminstone ett system som utnyttjar en verklig tillganglig katalytisk prestanda nact for en avgasbehandlingsanordning enligt uppfinningen. According to one aspect of the present invention, there is provided a system for utilizing a truly available catalytic performance. physical catalytic performance qphys which the exhaust gas treatment device 4 has before it is put into use, it viii say when it is new. The determining unit is arranged to determine the physical catalytic performance Ilphys based At least IDA a surface F and at a temperature T for exhaust gases which pass through the exhaust treatment device 4. The system also comprises a hazard collection unit arranged to determine a condition of the physical gas treatment according to the 4 put into use. The pre-assembly unit bases the determination on at least an accumulated / filtered utilization of speed o and torque M for the motor 2. The system further comprises a performance unit arranged to determine the actual available catalytic performance 'Tact by reducing the physical catalytic performance flphys with fOrsamg • ridphgrc A utilization unit is arranged to utilize this actual available catalytic performance. The person skilled in the art will recognize that the above system can be modified according to the various embodiments of the method according to the invention. In addition, the invention relates to a motor vehicle, for example a truck or a bus, comprising at least one system which utilizes a truly available catalytic performance nact for an exhaust gas treatment device according to the invention.
Foreliggande uppfinning är inte begransad till de ovan beskrivna utfaringsformerna av uppfinningen utan avser och innefattar alla utforingsformer mom de bifogade sjalvstandiga kravens skyddsomfAng. 21 The present invention is not limited to the above-described embodiments of the invention but relates to and includes all embodiments within the scope of the appended independent claims. 21
Claims (1)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1350824A SE537284C2 (en) | 2013-07-03 | 2013-07-03 | Dynamic utilization of available catalytic performance |
DE112014002472.4T DE112014002472B4 (en) | 2013-07-03 | 2014-06-10 | Dynamic use of available catalyst performance |
PCT/SE2014/050694 WO2015002590A1 (en) | 2013-07-03 | 2014-06-10 | Dynamical utilisation of available catalytic performance |
BR112015029613A BR112015029613A2 (en) | 2013-07-03 | 2014-06-10 | dynamic utilization of available catalytic performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1350824A SE537284C2 (en) | 2013-07-03 | 2013-07-03 | Dynamic utilization of available catalytic performance |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1350824A1 SE1350824A1 (en) | 2015-01-04 |
SE537284C2 true SE537284C2 (en) | 2015-03-24 |
Family
ID=52144053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1350824A SE537284C2 (en) | 2013-07-03 | 2013-07-03 | Dynamic utilization of available catalytic performance |
Country Status (4)
Country | Link |
---|---|
BR (1) | BR112015029613A2 (en) |
DE (1) | DE112014002472B4 (en) |
SE (1) | SE537284C2 (en) |
WO (1) | WO2015002590A1 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0786586A3 (en) * | 1996-06-21 | 1997-10-29 | Toyota Motor Co Ltd | Device for evaluating catalyst performance deterioration |
DE19800665C1 (en) * | 1998-01-10 | 1999-07-01 | Degussa | Method for operating a nitrogen oxide storage catalytic converter |
US6195986B1 (en) * | 1999-06-21 | 2001-03-06 | Ford Global Technologies, Inc. | Method and system for monitoring a catalytic converter |
US6866610B2 (en) * | 2001-03-30 | 2005-03-15 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and method for vehicle having internal combustion engine and continuously variable transmission, and control apparatus and method for internal combustion engine |
EP1544431B1 (en) * | 2003-12-15 | 2007-01-24 | Ford Global Technologies, LLC, A subsidary of Ford Motor Company | Method for estimation of the catalyst efficiency loss |
JP2008274835A (en) * | 2007-04-27 | 2008-11-13 | Mitsubishi Fuso Truck & Bus Corp | Deterioration diagnosis device for oxidation catalyst |
US8156729B2 (en) | 2007-12-20 | 2012-04-17 | Detroit Diesel Corporation | Variable engine out emission control roadmap |
EP2543840B1 (en) * | 2011-07-06 | 2015-01-28 | Ford Global Technologies, LLC | Method for estimating the actual efficiency of catalysts placed in an exhaust path of a combustion engine during the operation time |
-
2013
- 2013-07-03 SE SE1350824A patent/SE537284C2/en unknown
-
2014
- 2014-06-10 BR BR112015029613A patent/BR112015029613A2/en not_active Application Discontinuation
- 2014-06-10 WO PCT/SE2014/050694 patent/WO2015002590A1/en active Application Filing
- 2014-06-10 DE DE112014002472.4T patent/DE112014002472B4/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE112014002472T5 (en) | 2016-02-11 |
SE1350824A1 (en) | 2015-01-04 |
DE112014002472B4 (en) | 2019-07-18 |
WO2015002590A1 (en) | 2015-01-08 |
BR112015029613A2 (en) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101890838B1 (en) | Method and system for controlling nitrogen oxide emissions from a combustion engine | |
EP2611996B1 (en) | Methods for controlling the operation of a particulate filter | |
US9038370B2 (en) | Method for operating an exhaust emission control system having a SCR-catalyst and an upstream oxidation catalyst exhaust emission control component | |
SE540738C2 (en) | Method and system for controlling a sectional ammonia coverage degree profile for a scr catalyst | |
SE539133C2 (en) | Exhaust gas treatment system and method for treating an exhaust gas stream | |
CN101617109A (en) | Exhaust after treatment system (EATS) | |
CN109931129B (en) | Method and device for monitoring an exhaust gas aftertreatment system of an internal combustion engine | |
CN107975407B (en) | Method for regulating an exhaust gas aftertreatment device of an internal combustion engine | |
CN104929743A (en) | System to monitor regeneration frequency of particulate filter | |
US20140116027A1 (en) | Multi-leg aftertreatment system | |
EP2730759A1 (en) | Exhaust purification apparatus for internal combustion engine | |
KR20180041196A (en) | Method and system for first and second supply of additives to an exhaust stream from an internal combustion engine | |
EP2937534B1 (en) | System for purifying exhaust of internal combustion engine | |
US20130298529A1 (en) | System amd method for controlling an after-treatment component of a compression-ignition engine | |
SE539134C2 (en) | Exhaust gas treatment system and method for treating an exhaust gas stream | |
WO2014120070A1 (en) | Determination and utilization of exhaust gas back-pressure | |
EP2612002B1 (en) | Method and system for exhaust emission control | |
US10364727B2 (en) | Exhaust gas purification apparatus for an internal combustion engine | |
US12031464B2 (en) | Systems and methods for diagnosing component failure | |
SE537284C2 (en) | Dynamic utilization of available catalytic performance | |
EP2865857B1 (en) | Exhaust gas purification apparatus for internal combustion engine | |
CN113006910A (en) | Method for controlling an SCR catalytic converter | |
KR102158684B1 (en) | Systems and methods for use in calibrating the supply of additives to exhaust gas streams | |
KR102102411B1 (en) | Systems and methods for use in calibrating the supply of additives to the exhaust stream | |
CN108691630A (en) | The method and control device being monitored for the function to diesel particulate filter |