SE537144C2 - Estimation of an inertia for a condition in a vehicle - Google Patents

Estimation of an inertia for a condition in a vehicle Download PDF

Info

Publication number
SE537144C2
SE537144C2 SE1251366A SE1251366A SE537144C2 SE 537144 C2 SE537144 C2 SE 537144C2 SE 1251366 A SE1251366 A SE 1251366A SE 1251366 A SE1251366 A SE 1251366A SE 537144 C2 SE537144 C2 SE 537144C2
Authority
SE
Sweden
Prior art keywords
actual
vehicle
inertia
constitutes
vehicle system
Prior art date
Application number
SE1251366A
Other languages
Swedish (sv)
Other versions
SE1251366A1 (en
Inventor
Martin Evaldsson
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1251366A priority Critical patent/SE537144C2/en
Priority to DE112013005495.7T priority patent/DE112013005495T5/en
Priority to PCT/SE2013/051414 priority patent/WO2014088491A2/en
Publication of SE1251366A1 publication Critical patent/SE1251366A1/en
Publication of SE537144C2 publication Critical patent/SE537144C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/10Determining the moment of inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1353Moment of inertia of a sub-unit
    • B60W2040/1361Moment of inertia of a sub-unit the component being the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/0039Mathematical models of vehicle sub-units of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/0041Mathematical models of vehicle sub-units of the drive line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

537 144 Sammandrag Ett forfarande och ett system for skattning av en troghet / for ett tillstand i ett fordon presenteras, dar fordonet innefattar atminstone en regulator anordnad att reglera atminstone ett faktiskt tillstandsvarde Sacr mot atminstone ett respektive motsvarande referensvarde S„f. Enligt fOreliggande uppfinning innefattar systemet: en bestamningsenhet anordnad att bestamma atminstone ett faktiskt insvangningsforlopp Strans actfor namnda atminstone ett faktiska tillstandsvarde Sact mot namnda atminstone ett respektive motsvarande referensvarde Sref; en jamforelseenhet anordnad att utfora atminstone en jamfOrelse av namnda atminstone ett faktiska insvangningsforlopp Strans act med atminstone ett respektive motsvarande forvantat insvangningsforlopp Strans_exp ; och en skattningsenhet anordnad att skatta namnda treghet / baserat pa namnda atminstone en jamforelse. 537 144 Summary A procedure and a system for estimating a fidelity / for a condition in a vehicle are presented, wherein the vehicle comprises at least one regulator arranged to regulate at least one actual state value Sacr against at least one respective corresponding reference value S „f. According to the present invention, the system comprises: a determining unit arranged to determine at least one actual capture sequence Strans actfor said at least one actual state value Sact against said at least one respective corresponding reference value Sref; a comparison unit arranged to perform at least one comparison of the at least one actual capture sequence Strans act with at least one respective corresponding related capture sequence Strans_exp; and an estimating unit arranged to estimate said inertia / based on said at least one comparison.

Description

537 144 SKATTNING AV EN TRoGHET FOR ETT TILLSTAND I ETT FORDON Tekniskt omnide Foreliggande uppfinning avser ett forfarande for skattning av en traghet / for ett tillstand i ett system enligt ingressen till patentkrav 1. Foreliggande uppfinning avser Oven ett skattningssystem anordnat for skattning av en troghet / for ett tillstand i ett system enligt ingressen till patentkrav 38, samt ett datorprogram och en datorprogramprodukt, vilka implementerar forfarandet enligt uppfinningen. Technical invention The present invention relates to a method for estimating an inertia / for a condition in a system according to the preamble of claim 1. The present invention also relates to an estimation system arranged for estimating an inertia / for a state in a system according to the preamble of claim 38, and a computer program and a computer program product, which implement the method according to the invention.

Bakgrund Foljande bakgrundsbeskrivning utgar en beskrivning av bakgrunden till foreliggande uppfinning, vilken inte maste utgora tidigare kand teknik. Background The following background description is a description of the background to the present invention, which does not have to be prior art.

Reglersystem innefattande en eller flera regulatorer utnyttjas idag fOr styrning av en star mangd olika typer av system, exempelvis i ett fordon. Styrningen innefattar ofta att ett tillstand styrs mot ett referensvarde for tillstandet. Control systems comprising one or more controllers are currently used for controlling a large number of different types of systems, for example in a vehicle. The control often includes that a state is controlled against a reference value for the state.

Manga av de system som ska styras av sadana reglersystem har en trOghet /, sasom exempelvis en masstroghet, en termisk troghet K eller ett troghetsmoment J. Med troghet menas har och I detta dokument ett motstand mot forandring, exempelvis mot en rorelseforandring eller mot en temperaturforandring, vilket gor att forandringar inte sker momentant, det vill saga att forandringen sker Over en tidsperiod. Many of the systems to be controlled by such control systems have an inertia /, such as a mass inertia, a thermal inertia K or a moment of inertia J. By inertia is meant and in this document a resistance to change, for example to a change in motion or to a change in temperature , which means that changes do not take place momentarily, that is to say that the change takes place over a period of time.

Ett farthallningssystem Or ett exempel pa ett fordonssystem innefattande en troghet / relaterad till en fordonsmassa in, i vilket en eller flera regulatorer utnyttjas fOr att reglera en faktisk hastighet vaa fOr fordonet. Ett motorsystem är ett annat exempel pa ett system med en troghet / relaterad till ett 1 537 144 trOghetsmoment J for motorn i fordonet, i vilket en eller flera regulatorer utnyttjas fOr att reglera ett faktiskt varvtal waa fOr motorn. A cruise control system Or an example of a vehicle system comprising an inertia / related to a vehicle mass in, in which one or more regulators are used to regulate an actual speed vaa for the vehicle. An engine system is another example of a system with a fidelity / related to a torque moment J for the engine in the vehicle, in which one or more regulators are used to regulate an actual speed waa for the engine.

Ett annat exempel Or ett temperaturregleringssystem med en termisk trOghet K, ddr en faktisk temperatur Tact fOr en begrdnsad volym regleras genom utnyttjande av en eller flera regulatorer. Ett annat exempel är ett system fOr accelerationsbegrdnsning for ett fordon med en trOghet I relaterad till en fordonsmassa m, genom vilket en faktisk acceleration clact fOr fordon regleras av de en eller flera regulatorerna. I ett system for bromsning av ett fordon med en trOghet I relaterad till fordonsmassan m regleras den faktiska hastigheten vact for fordonet med de en eller flera regulatorerna. Another example Or a temperature control system with a thermal inertia K, where an actual temperature Tact for a limited volume is regulated by using one or more controllers. Another example is a system for acceleration limitation for a vehicle with an inertia I related to a vehicle mass m, through which an actual acceleration clact for vehicles is regulated by the one or more regulators. In a system for braking a vehicle with an inertia I related to the vehicle mass m, the actual speed vact for the vehicle is regulated by the one or more regulators.

Ett annat system Or ett system for kraftuttag vid Oppen drivlina i ett fordon, ddr motorvarvtalet for en motor i fordonet regleras, men ddr trOgheten I är relaterad ocks6 till utrustning som ansluts till kraftuttaget i fordonet. Sddan utrustning kan exempelvis innefatta pumpar, kranar eller annan utrustning som drivs via fordonets kraftuttag. Another system Or a system for PTO at the Open driveline in a vehicle, where the engine speed of an engine in the vehicle is regulated, but where the inertia I is also related6 to equipment connected to the PTO in the vehicle. Such equipment may, for example, include pumps, cranes or other equipment operated via the vehicle's power take-off.

Styrsystem utnyttjar, och Or ddrfOr beroende av tillgang till, ett antal parametrar fOr att kunna styra olika funktioner pd ett korrekt och effektivt sdtt. Exempel pa sddana parametrar, pd vilka styrsystemen baserar sina styrfunktioner, innefattar fordonsmassan iii, trOghetsmomentet J for motorn, den termiska trOgheten K for en begrdnsad volym och ett totalt trOghetsmoment _hot fOr motor och kraftuttag. Control systems use, and are therefore dependent on access to, a number of parameters to be able to control various functions in a correct and efficient way. Examples of such parameters, on which the control systems base their control functions, include the vehicle mass iii, the moment of inertia J of the engine, the thermal inertia K of a limited volume and a total moment of inertia _hot for engine and power take-off.

I detta dokument kommer bakgrunden och uppfinningen till relativt stor del att beskrivas sdsom implementerad i ett fordon. Dock Or foreliggande uppfinning generellt tilldmpbar 2 537 144 pa vdsentligen alla system i vilka ett tillstand med en troghet ska regleras mot ett referensvdrde, vilket inses av en fackman pa omradet. In this document, the background and invention will be described to a relatively large extent as being implemented in a vehicle. However, the present invention is generally applicable to substantially all systems in which a state of inertia is to be regulated to a reference value, as will be appreciated by one skilled in the art.

En vikt in has ett system, sasom en fordonsvikt, ddr fordonet kan utgoras av ett fordonstdg, utgor en viktig parameter i manga funktioner i ett fordons styrsystem. Fordonets vikt pdverkar fordonet avsevdrt i manga situationer, varfor det är mycket viktigt att korrekt kunna skatta denna vikt. Fordonets vikt ingar typiskt i modeller av fordonet, vilka anvdnds for diverse berdkningar och styrningar i fordonet. A weight in has a system, such as a vehicle weight, where the vehicle can be constituted by a vehicle day, constitutes an important parameter in many functions in a vehicle's control system. The weight of the vehicle affects the vehicle considerably in many situations, which is why it is very important to be able to correctly estimate this weight. The weight of the vehicle typically varies in models of the vehicle, which are used for various coatings and controls in the vehicle.

For ett fordon vilket kan transportera stora laster, sasom bussar, vilka kan transportera ett start antal mdnniskor, eller lastbilar, vilka kan transportera olika typer av laster med stora vikter, kan vikten variera avsevdrt. Till exempel vdger en olastad lastbil avsevdrt mindre an samma lastbil ndr den är maximalt lastad. En tom buss har ocksd avsevdrt mindre massa an samma buss ndr den är full med passagerare. For till exempel en personbil är variationerna for massan mindre an for fordon avsedda att transportera stora laster, men dven hdr kan skillnaden mellan en tom och en fullastad personbil, ddr den fullastade personbilen dven kan innefatta ett pdkopplat och lastat slap, vara relativt stora i forhdllande till personbilens laga vikt. For a vehicle which can transport large loads, such as buses, which can transport a starting number of people, or trucks, which can transport different types of loads with large weights, the weight can vary considerably. For example, an unladen truck weighs considerably less than the same truck when it is maximally loaded. An empty bus also has considerably less mass than the same bus when it is full of passengers. For a passenger car, for example, the variations for the mass are smaller than for vehicles intended to transport large loads, but even here the difference between an empty and a fully loaded passenger car, where the fully loaded passenger car can also include a coupled and loaded slap, can be relatively large in relation to the legal weight of the car.

Fordonsmassan m pdverkar ett kOrmotstand fOr fordonet, vilket gor att fordonets vikt är en viktig parameter till exempel for automatiskt vdxelval. Automatiskt vdxelval gOrs till exempel i en automatvdxlad manuell vaxellada, for vilken det är viktigt att kunna bestdmma ett aktuellt kOrmotstdnd och ddrmed vilken vdxel som skall vdljas vid ett aktuellt tillfdlle. Aven troghetsmomentet J for motorn är en viktig parameter vid vdxelval. 3 537 144 Hur en topografi fir ett vdgavsnitt piverkar fordonet dr aven starkt beroende av fordonets vikt, det viii saga av fordonets massa, eftersom vikten är avgorande fir hur mycket fordonet accelereras respektive retarderas av en nedfors- respektive uppforsbacke. Fordonets vikt dr ddrfor en viktig parameter aven i farthallare vilka tar hansyn till topografin fir ett vdgavsnitt, si kallade Look-Ahead-farthillare, dar storleken pi ett begirt motormoment vid ett tillfalle ar beroende av hur kommande vdgavsnitts topografi kommer att piverka fordonets hastighet. Naturligtvis ar fordonets vikt m och treghetsmomentet J fir motorn viktiga parametrar dven vid konventionell farthillning. The mass of the vehicle affects a driving resistance for the vehicle, which makes the weight of the vehicle an important parameter, for example for automatic gear selection. Automatic gear selection is done, for example, in an automatic geared manual gearbox, for which it is important to be able to determine a current gear resistance and thus which gear to select in a current case. The moment of inertia J for the motor is also an important parameter in shaft selection. 3 537 144 How a topography for a road section affects the vehicle also strongly depends on the weight of the vehicle, the viii saga of the vehicle's mass, since the weight is decisive for how much the vehicle is accelerated or decelerated by a downhill or uphill slope. The weight of the vehicle is therefore an important parameter even in speedometers which take into account the topography of a road section, called Look-Ahead speed bumpers, where the size of a desired engine torque at one time depends on how the next section of road section topography will affect the vehicle speed. Of course, the weight of the vehicle and the moment of inertia J for the engine are important parameters even at conventional speed.

Den termiska trogheten K dr en viktig parameter avseende vdsentligen alla typer av temperaturreglering, vilka piverkar exempelvis forar- och passagerarkomfort, samt sdkerhet i ett fordon. Bide forare av ett fordon och passagerare, exempelvis i en buss, bor slippa storas och kraftiga och icke inskade temperaturvariationer. Dessutom är det i sdkerhetsavseende viktigt att en av foraren Onskad hyttemperatur hills, di exempelvis hojd temperatur kan paverka en trotthet has fOraren. Fir kylutrymmen exempelvis i fordon ddr lasten skall forvaras och/eller transporteras vid en viss temperatur, exempelvis livsmedelstransporter, hr dven den termiska trogheten K avgbrande att erhilla en korrekt skattning av fir att en exakt temperaturreglering ska kunna tillhandahallas. The thermal inertia K is an important parameter regarding essentially all types of temperature control, which affect, for example, driver and passenger comfort, as well as safety in a vehicle. Bide drivers of a vehicle and passengers, for example in a bus, should avoid large and sharp and unrestrained temperature variations. In addition, in terms of safety, it is important that one of the driver's Desired cab temperature hills, in which, for example, high temperature can affect a fatigue has the driver. For cold rooms, for example in vehicles where the cargo is to be stored and / or transported at a certain temperature, for example food transports, the thermal inertia K is also determined to obtain a correct estimate so that an accurate temperature control can be provided.

Fir fordon ddr ett kraftuttag ska kunna tillhandahillas är det viktigt att den utrustning som ansluts till kraftuttaget i fordonet kan drivas av kraftuttaget, det viii saga att en motor i fordonet kan hilla ett vdsentligen konstant varvtal under kraftuttagskorningen. 4 537 144 Kortfattad beskrivning av uppfinningen Harefter beskrivs tidigare losningar och problem med dessa framst for skattning av fordonsvikten ni. Fackmannen inser att motsvarande problem finns for tidigare skattningar av massan for andra system an just fordon, samt for troghetsmomentet J for motorn, fOr den termiska trogheten K och fOr det totala troghetsmomentet Jtot som kravs for att driva utrustning ansluten till kraftuttaget, det vill saga for alla de trogheter / vilka skattas av foreliggande uppfinning. For vehicles where a power take-off can be provided, it is important that the equipment connected to the power take-off in the vehicle can be driven by the power take-off, the viii saying that an engine in the vehicle can maintain a substantially constant speed during the power take-off. BRIEF DESCRIPTION OF THE INVENTION Hereinafter, previous solutions and problems with these will be described primarily for estimating vehicle weight. The person skilled in the art realizes that similar problems exist for previous estimates of mass for systems other than vehicles, as well as for the moment of inertia J for the engine, for the thermal inertia K and for the total moment of inertia Jtot required to drive equipment connected to the power take-off. all the inertia / which are estimated by the present invention.

Det finns idag flera metoder vilka tillampas fOr att skatta fordonsmassan iii, det vill saga fordonets vikt in. En sadan metod utnyttjar information fran ett luftfjadringssystem i fordonet. Luftfjadringssystemet mater axeltryck pa alla axlar som har luftfjadring, och rapporterar denna last till en styrenhet, vilken baserat pa dessa laster kan berakna fordonets massa. Denna metod fungerar bra om alla axlar är luftfjadrade. Dock fungerar metoden otillfredsstallande, eller inte alls, om en eller flera axlar saknar luftfjadring. Denna metod är till exempel sarskilt problematisk i fordonstag innefattande slap eller trailers, vilka inte rapporterar axelbelastning. Detta kan relativt ofta forekomma da mer eller mindre okanda slap ofta kopplas pa fordonstaget vid nyttjande av fordonet. Denna metod är ocksa problematisk under drift av fordonet, eftersom axeltrycken varierar dá fordonet kor over ojamnheter i vagbanan, vilket kan leda till att viktskattningen blir felaktig pa grund av de skiftande axe ltrycken. There are today several methods which are applied to estimate the vehicle mass iii, that is to say the weight of the vehicle. Such a method uses information from an air suspension system in the vehicle. The air suspension system applies axle pressure to all axles that have air suspension, and reports this load to a control unit, which based on these loads can calculate the mass of the vehicle. This method works well if all axles are air-sprung. However, the method works unsatisfactorily, or not at all, if one or more axles lack air suspension. This method is, for example, particularly problematic in vehicle roofs including slaps or trailers, which do not report axle load. This can occur relatively often as more or less unknown slips are often connected to the vehicle roof when using the vehicle. This method is also problematic during operation of the vehicle, as the axle pressures vary as the vehicle crosses irregularities in the roadway, which can lead to the weight estimate being incorrect due to the varying axle pressures.

Andra kanda metoder fOr masskattning utgOrs av accelerationsbaserade masskattningar. Dessa utnyttjar att man kan rakna ut massan utifran en kraft motorn tillfor fordonet och en acceleration denna kraft resulterar i. Kraften fran 537 144 motorn är kdnd i fordonet, men for dessa metoder behover accelerationen mdtas eller skattas. Other known methods for mass estimation consist of acceleration-based mass estimates. These use the fact that one can shave the mass from a force the engine supplies to the vehicle and an acceleration this force results in. The force from 537 144 the engine is known in the vehicle, but for these methods the acceleration needs to be measured or estimated.

Enligt en metod skattas accelerationen genom att utfora en derivering av fordonets hastighet. Denna metod fungerar bra vid hoga accelerationer, det viii saga pd laga vdxlar i relativt laga farter, men det är en nackdel med metoden att den paverkas av vdglutningen, vilken nodvdndiggOr deriveringen, eftersom vdglutningen är en okdnd parameter for systemet. According to one method, the acceleration is estimated by performing a derivation of the vehicle speed. This method works well at high accelerations, it viii saga on low gears at relatively low speeds, but it is a disadvantage of the method that it is affected by the wind glut, which is necessary for the derivation, since the water glut is an unknown parameter for the system.

Enligt en annan metod skattas accelerationen med hjdlp av en accelerometer. Den accelerometerbaserade metoden har en fordel i att accelerationen mats direkt. Dock innefattar endast en begrdnsad mdngd av dagens fordon en accelerometer, vilket gor att denna metod inte är generellt applicerbar pa alla fordon. According to another method, the acceleration is estimated using an accelerometer. The accelerometer-based method has the advantage that the acceleration is fed directly. However, only a limited number of today's vehicles include an accelerometer, which means that this method is not generally applicable to all vehicles.

Den nuvarande accelerometerbaserade metoden lider ocksa av att accelerometersignalen är brusig, vilket minskar noggrannheten for metoden. The current accelerometer-based method also suffers from the noise meter signal being noisy, which reduces the accuracy of the method.

Enligt en annan metod skattas accelerationen under vdxling. Denna metod utnyttjar antagandet att kormotstandet är ofOrdndrat under en vdxling och jdmfOr ddrfor fordonets acceleration fore under och efter vdxling for att bestdmma fordonet vikt. Denna metod resulterar i mycket otillfredsstdllande skattningar av fordonsmassan. According to another method, the acceleration is estimated during rotation. This method uses the assumption that the choke resistance is unchanged during a shift and therefore for the vehicle's acceleration before and after shifting to determine the weight of the vehicle. This method results in very unsatisfactory estimates of the vehicle mass.

De accelerationsbaserade masskattningarna har generellt nackdelar i att vissa korforutsdttningar maste vara uppfyllda fer att en god skattning skall kunna utforas. Det är inte alls sdkert att dessa forutsdttningar uppfylls under en korning, varfOr en god masskattning da inte är mojlig. Till exempel krdver de accelerationsbaserade masskattningarna en fullgasacceleration pa laga vdxlar for att ge ett tillforlitligt resultat. Da en sadan fullgasacceleration inte 6 537 144 alltid intraffar under en korning, sasom am fordonet startar korningen i en nedforsbacke, till exempel fran en tankstation vid en pafart till en motorvag, och da med hjalp av nedforsbacken kan accelerera relativt lugnt for att sedan halla vasentligen en konstant hastighet under resten av farden, ger dessa metoder ofta inte en god skattning av fordonsvikten. The acceleration-based mass estimates generally have disadvantages in that certain chore conditions must be met in order for a good estimate to be performed. It is not at all certain that these preconditions will be met during a harvest, so a good mass estimate is then not possible. For example, the acceleration-based mass estimates require a full throttle acceleration on low gears to give a reliable result. Since such a full throttle acceleration does not always occur during a corn, as in the vehicle the corn starts on a downhill slope, for example from a petrol station at a junction to a motorway, and then with the help of the downhill slope can accelerate relatively calmly and then keep essentially a constant speed during the rest of the ride, these methods often do not give a good estimate of the vehicle weight.

Saledes är de tidigare kanda metoderna for masskattning inte alltid mojliga att tillampa och/eller tillhandahaller inte tillforlitliga skattningar for alla korningar. Thus, the prior art methods for mass estimation are not always possible to apply and / or do not provide reliable estimates for all grains.

Aven tidigare kanda losningar for skattning av den termiska trogheten K och av det totala troghetsmomentet J0 relaterat till kraftuttag är bristfalliga. Det totala troghetsmomentet _hot for kraftuttagettypiskt okant, eftersom utrustning av skiftande typ kan anslutas till detta kraftuttag, dar fordonet inte kan kanna till eller vara forberett for all denna okanda utrustning av skiftande typ. Dessa ger undermaliga skattningar och/eller skattningar vilka kraver ett start tillskott i komplexitet i fordonet. Even known solutions for estimating the thermal inertia K and of the total moment of inertia J0 related to power take-off are deficient. The total moment of inertia _hot for power take-off typical unknown, since equipment of varying type can be connected to this power take-off, where the vehicle can not detect or be prepared for all this unknown equipment of different type. These give substandard estimates and / or estimates which require an initial addition in the complexity of the vehicle.

Det är ett syfte med foreliggande uppfinning att tillhandahalla ett forfarande och ett system for skattning av trogheter vilket loser ovan namnda problem med tidigare kanda skattningar. It is an object of the present invention to provide a method and a system for estimating inertia which solves the above-mentioned problems with prior art estimates.

Detta syfte uppnas genom det ovan namnda forfarandet enligt den kannetecknande delen av patentkrav 1. Syftet uppnas aven genom ovan namnda system enligt kannetecknande delen av patentkrav 38, samt av ovan namnda datorprogram och datorprogramprodukt. This object is achieved by the above-mentioned method according to the jug-drawing part of claim 1. The object is also achieved by the above-mentioned system according to the j-drawing part of claim 38, and by the above-mentioned computer program and computer program product.

Genom foreliggande uppfinning utnyttjas en analys av ett faktiskt insvangningsforlopp Strans actfor atminstone ett 7 537 144 faktiskt tillstandsvarde Sact mot atminstone ett respektive motsvarande referensvarde Sw for att skatta en troghet / for ett tillstand i ett system. Genom att jamfara utseendet far detta atminstone ett faktiska insvangningsforlopp S trans _act med atminstone ett respektive motsvarande forvantat insvangningsforlopp Strans_expl Vilket har ett utseende som forutsatter korrekta skattningar av tillstandet, kan alltsa enligt fareliggande uppfinning tragheten / for tillstandet skattas. The present invention utilizes an analysis of an actual capture process Strans actfor at least one actual state value Sact against at least one respective corresponding reference value Sw to estimate an inertia / for a state in a system. By comparing the appearance, this gets at least an actual capture process S trans _act with at least one respective corresponding expected capture process Strans_expl Which has an appearance that presupposes correct estimates of the condition, can thus according to the present invention the inertia / for the condition be estimated.

Detta ger en mycket exakt skattning av tillstandet, vilken Oven Or robust eftersom systemen pa vilken skattningen baseras Or val definierade. Skattningen kan implementeras med ett mycket litet tillskott i kostnad och komplexitet for systemet. This gives a very accurate estimate of the condition, which Oven Or robust because the systems on which the estimate is based Or choices defined. The estimation can be implemented with a very small addition in cost and complexity for the system.

Enligt en utforingsform kan troghetsskattningen enligt foreliggande uppfinning utnyttjas for att skatta en massa in relaterad till systemet, sasom exempelvis en fordonsmassa. Harigenom erhalls tillforlitliga skattningar av massan exempelvis av fordonsmassan i ett fordon, vilka kommer kunna utnyttjas av en star mangd system och funktioner i fordonet, sasom vid exempelvis farthallning och vaxelval. Harigenom kan bransleforbrukningen for fordonet minskas och/eller prestandan far fordonet Okas, eftersom val underbyggda och valgrundade val kan goras i dessa system, vilka totalt sett kan sanka bransleforbrukningen och/eller Oka prestandan. According to one embodiment, the fidelity estimation according to the present invention can be used to estimate a mass related to the system, such as for example a vehicle mass. As a result, reliable estimates of the mass are obtained, for example, of the vehicle mass in a vehicle, which will be able to be utilized by a large number of systems and functions in the vehicle, such as, for example, speed control and gear selection. As a result, the fuel consumption of the vehicle can be reduced and / or the performance improved by the vehicle Okas, as choices based and choice-based choices can be made in these systems, which in total can reduce the fuel consumption and / or increase the performance.

Enligt en utforingsform kan troghetsskattningen enligt foreliggande uppfinning utnyttjas for att skatta en motors troghetsmoment J, varigenom exempelvis bransleforbrukningen for ett fordon kan minskas och/eller prestandan for fordonet kan okas, eftersom val underbyggda och valgrundade val kan goras i dessa system far exempelvis farthallning och vaxelval. 8 537 144 Enligt en utforingsform kan troghetsskattningen enligt foreliggande uppfinning utnyttjas for att skatta termisk treghet K for avgransade volymer, varigenom temperaturstyrning av exempelvis en kontorslokal, ett kylrum, en fOrarhytt eller ett lastutrymme kan regleras mycket exakt baserat pa kunskapen om den termiska trogheten K. Okad komfort for kontorspersonal och fOrare samt saker transport av exempelvis livsmedel kan hOrigenom sakerstallas. According to one embodiment, the fidelity estimate according to the present invention can be used to estimate an engine's moment of fidelity J, whereby for example the fuel consumption of a vehicle can be reduced and / or the performance of the vehicle can be increased, since substantiated and elective choices can be made in these systems. . According to one embodiment, the inertial estimation according to the present invention can be used to estimate thermal inertia K for defined volumes, whereby temperature control of, for example, an office space, a cold room, a cab or a cargo space can be regulated very precisely based on the knowledge of the thermal inertia K. Increased comfort for office staff and drivers as well as things such as transport of food, for example, can be made safe.

Enligt en utferingsform kan treghetsskattningen enligt foreliggande uppfinning utnyttjas for att skatta det totala trOghetsmomentet hot vid ett kraftuttag. Enligt fOreliggande uppfinning skattas det totala troghetsmomentet [ tot vilket innefattar bade motorns troghetsmoment J och kraftuttagets treghetsmoment I PTO Lot = I + JPTO • HOrigenom erhalls en skattning av det totala troghetsmomentet J tOt vilket kan utnyttjas for att reglera varvtalet hos motorn sa att tillrOcklig och vOsentligen konstant kraft for att driva utrustningen ansluten i kraftuttaget kan tillhandahallas, eftersom denna reglering underlOttas av en kunskap om det totala troghetsmomentet itot • Alltsa kan med foreliggande uppfinning mer eller mindre okOnd utrustning av skiftande typ drivas via ett standigt vOldimensionerat kraftuttag i fordonet, vilket tidigare har varit mycket svart. Regulatorn kan Oven kalibrera sig automatiskt mot en bOttre skattning av det totala treghetsmomentet I Jtot, sd att den alltid är ins-Land pa raft regulatoraggressivitet. According to one embodiment, the inertial estimation of the present invention can be used to estimate the total moment of inertia threat at a power take-off. According to the present invention, the total moment of inertia [tot which includes both the moment of inertia J of the engine and the moment of inertia of the PTO I PTO Lot = I + JPTO • Hereby an estimate of the total moment of inertia J tOt is obtained which can be used to regulate the engine speed constant force to drive the equipment connected to the power take-off can be provided, since this regulation is facilitated by a knowledge of the total moment of inertia itot • Thus, with the present invention more or less okOnd equipment of varying type can be driven via a permanent well-dimensioned power take-off in the vehicle, which previously has been very black. The controller can also automatically calibrate itself against a better estimate of the total moment of inertia in the Jtot, so that it is always in-Land due to controller aggressiveness.

Foreliggande uppfinning kan enligt en utforingsform utnyttjas for system dOr en styrning av systemet Or baserad pa en modell vilken innefattar en kraftekvation eller en annan ekvation som Or relaterad till systemet som ska regleras. Alltsa utgar styrningen av tillstanden cid fran systemen vilka innefattar 9 537 144 respektive tillstand. Med andra ord regleras systemen baserat pa systemen sjalva, eftersom regleringen av systemen utfors baserat pa modeller av systemen som ska regleras. Harigenom finns en god kannedom om systemen som ska regleras mom regleralgoritmen, vilket gor att skattningen blir robust. According to an embodiment, the present invention can be used for systems where a control of the system Or is based on a model which comprises a force equation or another equation which Or is related to the system to be regulated. Thus, the control of the state cid emanates from the systems which include 9,537,144 and the respective state. In other words, the systems are regulated based on the systems themselves, since the regulation of the systems is performed based on models of the systems to be regulated. As a result, there is a good knowledge of the systems that are to be regulated according to the control algorithm, which makes the estimation robust.

Foreliggande uppfinning kan enligt en utforingsform aven utnyttjas fir system dar en styrning av systemet utfors av en PID-regulator eller av en differentiell PI-regulator. Troghetsskattningen enligt foreliggande uppfinning kan darfor tillampas di en stor mangd olika reglersystem utnyttjas fir att styra system i fordon. According to an embodiment, the present invention can also be used for systems in which a control of the system is performed by a PID controller or by a differential PI controller. The fidelity estimate according to the present invention can therefore be applied in that a large number of different control systems are used to control systems in vehicles.

Kortfattad figurforteckning Uppfinningen kommer att belysas narmare nedan med ledning av de bifogade ritningarna, dar lika hanvisningsbeteckningar anvands fir lika delar, och van: Figur 1 visar ett flodesschema fir ett forfarande enligt uppfinningen, Figur 2 visar ett exempel pa insvangningsforlopp mot ett referensvarde, Figur 3 visar ett exempel pa insvangningsforlopp mot ett referensvarde, Figurer 4a och 4b visar ett exempel pa massbestamning av ett fordon, och Figur 5 visar en styrenhet. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further elucidated below with reference to the accompanying drawings, in which like reference numerals are used for like parts, and are used: Figure 1 shows a flow chart of a method according to the invention, Figure 2 shows an example shows an example of a trapping process against a reference value, Figures 4a and 4b show an example of mass determination of a vehicle, and Figure 5 shows a control unit.

Beskrivning av fOredragna utforingsformer Foreliggande uppfinning hanfor sig enligt en aspekt till ett ferfarande fir skattning av en treghet I fir ett tillstand i ett system. Tillstanden, fir vilka enligt foreliggande 10 537 144 uppfinning en troghet / kan skattas, har ett motstand mot fordndring for tillstandet, till exempel ett motstand mot en rerelsefOrdndring eller mot en temperaturferdndring. Fordndringar for tillstanden sker ddrfor Over en tidsperiod och vdsentligen inte momentant. DESCRIPTION OF PREFERRED EMBODIMENTS The present invention relates to an aspect of a method for estimating an inertia of a state in a system. The state, for which according to the present invention a fidelity / can be estimated, has a resistance to change in the state, for example a resistance to a change in motion or to a change in temperature. Changes to the condition therefore occur over a period of time and probably not momentarily.

Foreliggande uppfinning forutsdtter att dtminstone en regulator är anordnad att reglera dtminstone ett faktiskt tillstAndsvdrde Sact i systemet mot atminstone ett respektive motsvarande referensvdrde Sref. The present invention provides that at least one controller is arranged to control at least one actual state value Sact in the system against at least one respective corresponding reference value Sref.

Figur 1 visar ett flodesschema for ett forfarande enligt fOreliggande uppfinning. Figure 1 shows a flow chart of a method according to the present invention.

I ett forsta step 101 av forfarandet bestdms atminstone ett faktiskt insvdngningsfOrlopp Strans actfOr det Atminstone ett faktiska tillstandsvdrdet Sact mot det Atminstone ett respektive motsvarande referensvdrdet Sref. Dd det dtminstone ett faktiska tillstandsvdrdet Sact regleras mot det Atminstone ett respektive motsvarande referensvdrdet Sref uppstdr atminstone ett faktiskt insvangnings forlopp Strans act'ddr detta atminstone ett faktiskt insvdngningsfarlopp Strans actbeskriver hur det atminstone ett faktiska tillstandsvdrdet Sact ndrmar sip och svdnger in mot det dtminstone ett respektive motsvarande referensvdrdet Sref. Utseendet for detta dtminstone ett faktiska insvdrigningsforlopp Strans actberor bland annat av trogheten / has tillstAndet. In a first step 101 of the procedure, at least one actual subtraction process is determined for the At least one actual state value Sact against the At least one respective corresponding reference value Sref. If at least one actual state value Sact is regulated against it At least one respective corresponding reference value Sref arises at least one actual capture process Strans act this is at least an actual input process Strans act describes how the at least one actual state value Sact at least affects the respective sip and svd corresponding to the reference value Sref. The appearance of this, at least an actual process of incarnation, is due in part to the fidelity / condition.

I ett andra step 102 av forfarandet utfors Atminstone en jdmforelse av det dtminstone ett faktiska insvangningsforloppet Sans actmed dtminstone ett respektive motsvarande fervdntat insvdngningsforlopp Strans_exp• Detta forvdntade insvdngningsforlopp Strans_exp har ett utseende vilket 11 537 144 skulle ha blivit resultatet for det faktiska insvangningsforloppet Samsact am regiersystemet hade haft tillgang till ett korrekt varde fOr trOgheten I. Om till exempel trogheten I Or relaterad till fordonsmassan m och am reglersystemet har tillgang till en korrekt skattning av fordonsmassan m sa kommer det faktiska insvangningsforloppet Strans actvara identiskt med det forvantade insvangningsforloppet Strans_exp • PA motsvarande satt motsvarar utseendet has det forvantade insvangningsforloppet Strans_exp ett faktiskt insvangningsforlopp Strans actbaserat pa korrekta skattningar av traghetsmomentet J, den termiska trogheten K, eller det totala troghetsmomentet [ Jtot vid ett kraftuttag. In a second step 102 of the procedure, at least one comparison of the at least one actual capture process Sans act is performed with at least one respective corresponding expected capture process Strans_exp • This expected capture process Strans_exp has an appearance which 11 537 144 would have been the result of the actual process. had access to a correct value for inertia I. If, for example, inertia I Or related to the vehicle mass m and am the control system has access to a correct estimate of the vehicle mass, then the actual capture process Strans actvara will be identical to the expected capture process Strans_exp • PA correspondingly corresponds appearance, the expected trapping process Strans_exp has an actual trapping process Strans act based on correct estimates of the moment of inertia J, the thermal inertia K, or the total moment of inertia [Jtot at a power take-off.

Dock skiljer sip det faktiska insvangningsforloppet Strans actofta fran det motsvarande forvantade insvangningsforloppet Strans_exp eftersom fullstandigt korrekta skattningar sallan finns att tillga, vilket utnyttjas av foreliggande uppfinning. However, sip distinguishes the actual capture process Strans actofta from the corresponding expected capture process Strans_exp because completely correct estimates are available, which are utilized by the present invention.

I ett tredje step 103 av forfarandet skattas tragheten I baserat pa den atminstone en jamforelsen av det atminstone ett faktiska insvangningsforloppet Strans actmed det atminstone ett respektive motsvarande forvantade insvangningsforloppet Strans_exp • Alltsa utnyttjas enligt fereliggande uppfinning insvangningsforloppet Sans actfor det atminstone ett faktiska tillstandsvardet Sact mot det atminstone ett respektive motsvarande referensvardet Sref for att bestamma trogheten I has tillstandet. Harigenom kan en mycket tillforlitlig skattning av exempelvis massan rn, motorns troghetsmoment J, eller den termiska trogheten K for exempelvis forarhytten erhallas. 12 537 144 Manga system har inbyggda trogheter for sina tillstand. Vasentligen alla sddana trbgheter kan skattas genom utnyttjande av foreliggande uppfinning. Ett par utforingsformer av fOreliggande uppfinning kommer att beskrivas nedan. Dock inser en fackman pd omradet att fbreliggande uppfinning generellt kan tillampas pa vasentligen alla system dar systemens tillstdnd har nagon slags motvilja till att fbrandras, det viii saga nagon slags troghet. In a third step 103 of the method, the inertia I is estimated based on the at least one comparison of the at least one actual capture process Strans act with the at least one corresponding expected capture process Strans_exp • Thus, according to the present invention, the capture process Sans act is used for at least one actual state value. a respective corresponding reference value Sref to determine the fidelity I has state. As a result, a very reliable estimate of, for example, the mass rn, the moment of inertia of the engine J, or the thermal inertia K of, for example, the driver's cab can be obtained. 12 537 144 Many systems have built-in inertia for their state. Essentially all such efficiencies can be estimated by utilizing the present invention. A couple of embodiments of the present invention will be described below. However, one skilled in the art will recognize that the present invention can generally be applied to substantially all systems where the state of the systems has some kind of reluctance to burn, that is to say some kind of fidelity.

Styrningen av det dtminstone ett tillstandet i systemet som ska regleras av regulatorn är enligt en utfbringsform av uppfinningen modellbaserat. Modellen vilken har tilldmpas är relaterad till systemet som ska regleras genom att modellen innefattar en kraftekvation eller en annan ekvation som är relaterad till detta system och innefattar det dtminstone ett faktiska tillstandsvdrdet Sact. Alltsa tas en modell av systemet fram dtminstone derv-is genom att en kraftekvation eller en annan ekvation stalls upp for atminstone en del av systemet. The control of the at least one state in the system to be regulated by the controller is model-based according to an embodiment of the invention. The model which has been applied is related to the system to be regulated in that the model includes a force equation or another equation that is related to this system and it includes at least an actual state value Sact. Thus, a model of the system is developed at least by having a force equation or other equation set up for at least a part of the system.

Vidare utfors vid regleringen av systemet styrningen av tillstandet genom utnyttjande av en styrsignal, varvid den modellbaserade styrningen gor att en storlek hos denna styrsignal är proportionell mot en forandring fbr det atminstone ett tillstdndet, det viii saga mot en fbrdndring hos namnda Atminstone det faktiska tillstandsvardet Sact. Alltsa tillhandahdller en styrenhet styrsignalen baserat pa modellen sa att dess storlek är proportionell mot en forandring hos tillstandet. Furthermore, in controlling the system, the control of the state is performed by utilizing a control signal, the model-based control causing a magnitude of this control signal to be proportional to a change before the at least one state, that is to say against a change of the at least the actual state value Sact . Thus, a control unit provides the control signal based on the model so that its magnitude is proportional to a change in the state.

Med ett sadant reglersystem kan, d det implementeras i ett temperaturreglersystem, exempelvis en faktisk temperatur Tact styras mot ett temperaturreferensvarde Tref. I ett motorreglersystem i ett fordon kan ett faktiskt varvtal waa styras mot ett referensvarvtal wref. I ett farthdllarsystem i 13 537 144 ett fordon kan en faktisk fordonshastighet vaa styras mot en referenshastighet v„f. I ett reglersystem for accelerationsbegransning kan en faktisk acceleration aaa styras mot en referensacceleration a„f. I ett bromssystem i ett fordon kan en faktisk hastighet vaa styras mot ett referensvarde i form av en maximal hastighet vm„. Utforingsformer av uppfinningen i vilka dessa styrningar utnyttjas for att bestamma tragheter kommer att beskrivas mer I detalj nedan. With such a control system, it can be implemented in a temperature control system, for example an actual temperature Tact is controlled against a temperature reference value Tref. In an engine control system in a vehicle, an actual speed waa can be controlled against a reference speed wref. In a cruise control system in a vehicle, an actual vehicle speed may be controlled at a reference speed. In a control system for acceleration limitation, an actual acceleration aaa can be controlled against a reference acceleration a „f. In a braking system of a vehicle, an actual speed may be controlled towards a reference value in the form of a maximum speed vm „. Embodiments of the invention in which these guides are used to determine inertia will be described in more detail below.

Enligt en utfOringsform av uppfinningen är systemet som ska regleras ett farthallningssystem exempelvis i ett fordon, vilket har en troghet / som Or relaterad till en massa in relaterad till systemet, exempelvis en massa for fordonet. Modellen som regleringen Or baserad pa tar hansyn till en skillnad mellan en faktisk acceleration aaa relaterad till systemet och en referensacceleration a„f for fordonet, dar skillnaden beror av en tidsparameter T. According to an embodiment of the invention, the system to be regulated is a cruise control system, for example in a vehicle, which has an inertia / as Or related to a mass in related to the system, for example a mass for the vehicle. The model on which the regulation Or is based takes into account a difference between an actual acceleration aaa related to the system and a reference acceleration a „f for the vehicle, where the difference depends on a time parameter T.

Det faktiska tillstandsvardet Saa som ska styras av regulatorn utgor har en faktisk hastighet vaa relaterad till systemet, exempelvis en faktisk fordonshastighet, det vill saga den verkliga hastighet fordonet kommer att halla som reslutat av farthallningen. Referensvardet Sref som tillstandet styrs emot utgor har en referenshastighet v„f for systemet. Eftersom massa in relaterad till systemet har är relaterat till trogheten / kan enligt denna utforingsform massan m skattas tillforlitligt genom att analysera insvangningsforloppet Strans actfor det faktiska tillstandsvardet Saa mot motsvarande referensvarde Sre f • Det finns en mangd olika typer av farthallare fOr fordon. I en del av dessa farthallare staller foraren sjalv in 14 537 144 referenshastigheten v„f. I andra typer av farthallare staller foraren in en set-hastighet vsa baserat pa vilken farthallaren sedan faststaller storleken pa referenshastigheten v„f som skickas till hastighetsregulatorn, varvid referenshastigheten Vref kan ha ett annat varde an set-hastigheten vsa. The actual state value Saa to be controlled by the regulator is an actual speed vaa related to the system, for example an actual vehicle speed, that is to say the actual speed the vehicle will keep as a result of the cruise control. The reference value Sref against which the state is controlled has a reference speed v „f for the system. Since mass in related to the system has is related to the inertia / according to this embodiment the mass m can be estimated reliably by analyzing the capture process Strans actfor the actual state value Saa against the corresponding reference value Sre f • There are many different types of cruise control for vehicles. In some of these cruise control the driver himself sets the reference speed v „f. In other types of cruise control, the driver sets a set speed vsa based on which the cruise control then determines the magnitude of the reference speed v „f sent to the speed controller, whereby the reference speed Vref may have a different value than the set speed vsa.

Modellen tar hansyn till en skillnad mellan en faktisk acceleration a„t relaterad till systemet, exempelvis en faktisk fordonsacceleration, det viii saga den verkliga acceleration som resulterar av farthallningen, och en referensacceleration are f for systemet. Denna skillnad beror av en tidsparameter vilket beskrivs mer i detalj nedan. Tidsparametern T avgor hur utseendet pa insvangningsforloppet Strans actfor den faktiska hastigheten vaa mot referenshastigheten vref ser ut pa sa satt att ett mindre varde pa tidsparametern T per ett snabbt insvangningsforlopp och ett storre varde pa tidsparametern T per ett langsamt insvangningsforlopp. The model takes into account a difference between an actual acceleration a 't related to the system, for example an actual vehicle acceleration, the viii saga the actual acceleration resulting from the cruise control, and a reference acceleration are f for the system. This difference is due to a time parameter which is described in more detail below. The time parameter T determines how the appearance of the capture process Strans actfor the actual speed va against the reference speed vref looks like in such a way that a smaller value of the time parameter T per a fast capture process and a larger value of the time parameter T per a slow capture process.

Detta visas schematiskt i figur 2 for ett fordonsexempel, dir den streckade raka horisontella linjen Or en referenshastighet vref mot vilken faktiska hastigheter for olika varden pa svanger in. Sasom illustreras i figur 2 per det minsta vardet pa tidsparametern T=2 (heldragen kurva) det snabbaste insvangningsfOrloppet Sans act'det stOrre vardet pa tidsparametern T=(punktad kurva) ett langsammare insvangningsforlopp Stransact/ och det storsta vardet pa tidsparametern T=8 (streckad kurva) det langsammaste insvangningsforloppet Strans act• Enligt en utfOringsform av foreliggande uppfinning Or vdrdet pa tidsparametern T relaterat till en kormod, Oven benamnt karlage, exempelvis far ett fordon. Detta visas schematiskt figur 3, dar den streckade raka horisontella linjen Or en 537 144 referenshastighet v„f mot vilken faktiska hastigheter for olika varden pa T svanger in. Vardet pa tidsparametern T ses har som relaterat till en aggressivitet has regleringen. Darfor kan vid en normal kormod, exempelvis benamnd som "standard" (punktad kurva), tidsparametern T ges ett medelstort varde. This is shown schematically in Figure 2 for a vehicle example, where the dashed straight horizontal line Or a reference velocity is against which actual velocities for different values of turn. As illustrated in Figure 2, the smallest value of the time parameter T = 2 (solid curve) the fastest capture process Sans act'det larger value of the time parameter T = (dotted curve) a slower capture process Stransact / and the largest value of time pair 8 dashed curve) the slowest trapping process Strans act • According to an embodiment of the present invention, the value of the time parameter T is related to a chore mode, also called carriage, for example a vehicle. This is shown schematically in Figure 3, where the dashed straight horizontal line Or a 537 144 reference velocity v „v against which actual velocities for different values of T oscillate. The value of the time parameter T is seen as related to an aggressiveness has the regulation. Therefore, in a normal chore mode, for example referred to as "standard" (dotted curve), the time parameter T can be given a medium value.

For en mer aggressiv kormod, exempelvis benamnd "power" (streckad kurva), ges tidsparametern T ges ett forhallandevis litet varde am den faktiska hastigheten vaa är lagre an referenshastigheten v„f. For denna kormod ges tidsparametern T ges ett fOrhallandevis start varde am den faktiska hastigheten vaa är hogre an referenshastigheten v„f, sasom visas i figur 3. Den mer aggressiva kormoden power svanger alltsa in snabbt nar den narmar sig referenshastigheten v„f nerifran (fran en lagre hastighet), men svanger in langsamt nar den narmar sig referenshastigheten vref uppifran (fran en hogre hastighet). For a more aggressive chore mode, for example called "power" (dashed curve), the time parameter T is given a relatively small value am the actual speed vaa is lower than the reference speed v „f. For this cormod, the time parameter T is given a relative start if the actual velocity vaa is higher than the reference velocity v „f, as shown in Figure 3. The more aggressive cormod power thus swings in quickly as it approaches the reference velocity from below (from a lower speed), but swings in slowly as it approaches the reference speed vref from above (from a higher speed).

Kormoden power forsaker alltsa snabbt na upp till referenshastigheten v„f nerifran och mater tidigt upp uppifran, vilket ger ett kraftfullt intryck, en hogre medelhastighet och en tidsvinst i jamforelse med de andra kormoderna. The cormod power thus quickly tries to reach the reference speed from below and feeds early from the top, which gives a powerful impression, a higher average speed and a time gain compared to the other cormods.

For en mindre aggressiv kormod, exempelvis benamnd "eco" (heldragen kurva), ges tidsparametern T ett forhallandevis start varde am den faktiska hastigheten vaa är lagre an referenshastigheten v„f. Pa motsvarande satt ges tidsparametern T for denna kormod ett forhallandevis litet varde am den faktiska hastigheten vaa är hogre an referenshastigheten v„f, sasom visas i figur 3. Den mindre aggressiva kormoden eco svanger alltsa in snabbt nar den narmar sig referenshastigheten v„f uppifran (fran en hogre hastighet), men svanger in langsamt nar den narmar sig referenshastigheten v„f nerifran (fran en lagre hastighet), vilket ger ett mjukt 16 537 144 intryck, samt en lagre medelhastighet och darmed en lagre total bransleforbrukning. Dessutom minskas aven mangden bortbromsad energi med kormoden eco for ett fordon, eftersom fordonet exempelvis under ett vagavsnitt innefattande en uppforsbacke foljt av en nedforsbacke har en lagre hastighet pa toppen av kronet. Pa grund av den lagre hastigheten pa toppen kravs mindre bromsning under nedforsbacken varvid mindre energi bromsas bort. For a less aggressive chore mode, for example called "eco" (solid curve), the time parameter T is given a relative start where the actual speed vaa is lower than the reference speed v „f. Correspondingly, the time parameter T for this chore mode is given a relatively small value of the actual speed vaa is higher than the reference speed v „f, as shown in Figure 3. The less aggressive chore mode eco thus swings in quickly when it approaches the reference speed v„ f from above (from a higher speed), but swings in slowly as it approaches the reference speed from below (from a lower speed), which gives a soft impression, as well as a lower average speed and thus a lower total fuel consumption. In addition, the amount of decelerated energy is also reduced by the co-mode eco of a vehicle, since the vehicle, for example, has a lower speed at the top of the crown during a section of the road comprising an uphill slope followed by a downhill slope. Due to the lower speed at the top, less braking is required under the downhill slope, with less energy being braked away.

I anslutning till figurerna 2 och 3 har ovan beskrivits hur tidsparametern T paverkar insvangningsforloppet Strans actfor det faktiska tillstandsvardet Saa, har den faktiska hastigheten vaa, mot det motsvarande referensvardet Sreff, har referenshastigheten vref, for ett farthallarsystem. In connection with Figures 2 and 3, it has been described above how the time parameter T affects the capture process Strans actfor the actual state value Saa, has the actual speed vaa, against the corresponding reference value Sreff, has the reference speed vref, for a cruise control system.

Tidsparametern T har en motsvarande inverkan pa insvangningsforloppet Sans act for nedan beskrivna motorsystem, temperaturreglerings system, accelerationsbegransningssystem, bromssystem och kraftuttagssystem. The time parameter T has a corresponding effect on the capture process Sans act for the engine systems, temperature control systems, acceleration limitation systems, brake systems and PTO systems described below.

Enligt en utferingsform, dar uppfinningen tillampas vid farthallning, innefattar modellen som är relaterad till systemet som ska regleras en kraftekvation med ett utseende enligt: Fic+i = m * (vref -Vact aaa) + Fk , dar(ekv. 1) Fk+1 är en kraft vilken kommer verka pa ndmnda fordon vid nasta iteration av ekvationen beraknas; - m är massan for fordonet; vref är referenshastigheten; Vact är den faktiska hastigheten; T är tidsparametern; clact är den faktiskt accelerationen for fordonet; och - F1, är en nuvarande kraft vilken verkar pa fordonet. 17 537 144 Enligt en utforingsform av uppfinningen kan skattningen av massan m utgora en skattning av en hissmassa, det viii saga av en vikt for en hiss, dar systemet är ett hissystem vilket har en troghet I relaterad till en massa m for hissen. Harigenom kan en korrekt skattning av hissens totala massa m erhallas. According to one embodiment, where the invention is applied in cruise control, the model related to the system to be regulated comprises a force equation with an appearance according to: Fic + i = m * (vref -Vact aaa) + Fk, dar (eq. 1) Fk + 1 is a force which will act on the said vehicle at the next iteration of the equation is calculated; - m is the mass of the vehicle; vref is the reference speed; Guard is the actual speed; T is the time parameter; clact is the actual acceleration of the vehicle; and - F1, is a current force which acts on the vehicle. According to an embodiment of the invention, the estimation of the mass m may constitute an estimate of a mass of an elevator, the viii saga of a weight for an elevator, where the system is an elevator system which has an inertia I related to a mass m of the elevator. As a result, a correct estimate of the total mass of the lift can be obtained.

Det faktiska tillstandsvardet Sact som ska styras av regulatorn utgOr har en faktisk hastighet vact for hissen. Referensvardet Sref som tillstandet styrs emot utgor har en referenshastighet vref for hissen. E ftersom massan in for hissen är relaterad till trOgheten / kan enligt denna utfOringsform massa m har skattas tillforlitligt genom att analysera insvangningsforloppet Strans actfor det faktiska tills tandsvardet Sact mot motsvarande referensvarde Sref. Modellen som regleringen är baserad pa tar har hansyn till en skillnad mellan en faktisk acceleration aect for hissen och en referensacceleration aref for hissen, cidr skillnaden beror av en tidsparameter T. The actual state value Sact to be controlled by the controller is an actual speed vact for the elevator. The reference value Sref against which the condition is controlled has a reference speed vref for the elevator. Since the mass in front of the lift is related to the inertia / can according to this embodiment mass m has been estimated reliably by analyzing the trapping process Strans actfor the actual until the tooth value Sact against the corresponding reference value Sref. The model on which the control is based takes into account a difference between an actual acceleration aect for the lift and a reference acceleration aref for the lift, since the difference depends on a time parameter T.

Fackmannen inser att massor aven has andra system kan skattas pa motsvarande satt. Exempelvis kan massan m for last pa vasentligen alla typer av transportband, sasom bagagerullband, brickband for disk i matsalar, lopande band i tillverkningsindustri och liknande, skattas genom att utnyttja foreliggande uppfinning. Detta beror pa att lasten pa transportbandet, sasom vaskor, disk, fordon under tillverkning etc. paverkar transportbandets troghet I. DarfOr kan massorna enkelt skattas baserat pa analys av insvangningsforloppet Strans_act for det faktiska tillstandsvardet Sact mot motsvarande referensvarde Sref, vilka har kan utgora hastigheter. Those skilled in the art will appreciate that many of these other systems may be appreciated accordingly. For example, the mass of cargo on substantially all types of conveyor belts, such as luggage conveyor belts, tray belts for dining rooms, conveyor belts in the manufacturing industry and the like, can be estimated by utilizing the present invention. This is because the load on the conveyor belt, such as sinks, counters, vehicles under construction, etc., affects the conveyor belt's inertia I. Therefore, the masses can be easily estimated based on analysis of the capture process Strans_act for the actual state value Sact against the corresponding reference value Sref, which can be velocities.

Om massorna has dessa system andrar sig, det viii saga am exempelvis fordonsmassan andras vid omlastning, am fler vaskor stalls pa ett bagageband, eller am mycket disk stalls pa ett 18 537 144 diskband, kommer dessutom denna modellbaserade regulator att kalibrera am sig sjalv efter de nya massorna. If the masses have these systems change, as will be the case with, for example, the vehicle mass of others when reloading, if more sinks are placed on a luggage strap, or if many disks are placed on a wash strap, this model-based controller will also calibrate itself according to the new masses.

Enligt en utforingsform av foreliggande uppfinning är systemet som ska regleras av regulatorn ett motorsystem exempelvis i ett fordon, dar modellen av motorsystemet tar hansyn till en skillnad mellan en forandring w -Cza av ett faktiskt varvtal for motorn och en forandring m -Tlef av ett referensvarvtal for motorn, dar skillnaden beror av tidsparametern T. Det faktiska tillstandsvardet S„t som ska styras utgor har ett faktiskt varvtal waa for motorn och det motsvarande referensvardet S„ef utgor ett referensvarvtal coref for motorn. Trogheten I baseras har pa ett traghetsmoment j far motorn, varfor detta troghetsmoment J kan skattas baserat pa jamforelsen av det faktiska insvangningsforloppet Stransact med det forvantade insvangningsfOrloppet Strans_exp • Enligt en utforingsform av foreliggande uppfinning är systemet som ska regleras av regulatorn ett system for accelerationsbegransning exempelvis i ett fordon, dar modellen av accelerationsbegransningssystemet tar hansyn till en skillnad mellan den faktiska accelerationen acia och referensaccelerationen aref. Det faktiska tillstandsvardet Saa som ska styras utger da en faktisk acceleration aaa relaterad till systemet och referensvardet S„ef som utnyttjas vid styrningen utgar en referensacceleration are! relaterad till systemet, exempelvis en referensacceleration a„f for fordonet. According to an embodiment of the present invention, the system to be controlled by the controller is an engine system, for example in a vehicle, where the model of the engine system takes into account a difference between a change w -Cza of an actual engine speed and a change m -Tlef of a reference speed for the motor, where the difference depends on the time parameter T. The actual state value S „t to be controlled has an actual speed waa for the motor and the corresponding reference value S„ ef is a reference speed coref for the motor. The inertia I is based on a moment of inertia j of the engine, so this moment of inertia J can be estimated based on the comparison of the actual capture process Stransact with the expected capture process Strans_exp • According to an embodiment of the present invention, the system to be controlled by the controller is an acceleration limiting system a vehicle, where the model of the acceleration limitation system takes into account a difference between the actual acceleration acia and the reference acceleration aref. The actual state value Saa to be controlled then gives an actual acceleration aaa related to the system and the reference value S „ef used in the control gives a reference acceleration are! related to the system, for example a reference acceleration a „f for the vehicle.

Trogheten I i systemet for accelerationsbegransning baseras har pa en massa m relaterad till systemet, exempelvis fordonsmassan iii, vilket gor att massan m kan skattas baserat pa jamforelsen av det faktiska insvangningsforloppet Strans act med det forvantade insvangningsforloppet Strans_exp• 19 537 144 Den fysikaliska modellen, pa vilken regleringen baseras innefattar kraftekvationen vilken har ett utseende enligt: Fk+1 = M. * (aref — ct,,,t) + Fk , ddr(ekv. 2) Fk+1 är den kraft som kommer vara relaterad till systemet vid ndsta iteration; m är massan relaterad till systemet; ref är referensaccelerationen; aaa är den faktiska accelerationen; och Fri, är en tidigare nuvarande kraft vilken verkar pa fordonet. The inertia I in the acceleration limitation system is based on a mass m related to the system, for example the vehicle mass iii, which means that the mass m can be estimated based on the comparison of the actual capture process Strans act with the expected capture process Strans_exp • 19 537 144 The physical model, on which the regulation is based on includes the force equation which has an appearance according to: Fk + 1 = M. * (aref - ct ,,, t) + Fk, ddr (eq. 2) Fk + 1 is the force that will be related to the system at ndsta iteration; m is the mass related to the system; ref is the reference acceleration; aaa is the actual acceleration; and Free, is a previous current force which acts on the vehicle.

Far styrs alltsa den faktiska accelerationen aaa mot referensacceleration aref sa att en begrdnsning av den faktiska accelerationen aaa erhalls, vilket ger ett insvangningsforlopp Strans_exp vilket kan utnyttjas for att bestdmma massan m, exempelvis en fordonsmassa am systemet relaterar till ett fordon. Thus, the actual acceleration aaa is controlled against reference acceleration aref so that a limitation of the actual acceleration aaa is obtained, which gives a capture process Strans_exp which can be used to determine the mass m, for example a vehicle mass am the system relates to a vehicle.

Sasom beskrivits ovan bestdmmer storleken pa tidsparametern T hur insvangningsforloppet Strans_exp ser ut nar den faktiska accelerationen aaa narmar sig referensacceleration aref, sa att olika varden pa tidsparametern T ger olika uppforande for systemet for accelerationsbegrdnsning. As described above, the size of the time parameter T determines how the capture process Strans_exp looks when the actual acceleration aaa approaches reference acceleration aref, so that different values of the time parameter T give different behaviors for the acceleration limitation system.

Enligt en utforingsform av foreliggande uppfinning utgor systemet som ska regleras ett system for bromsning exempelvis av ett fordon. Vasentligen vilken typ av fordonsbromssystem som helst kan regleras enligt denna utforingsform, exempelvis en fardbroms, en retarder, eller en elektromagnetisk broms, vilken till exempel kan utgoras av en elmotor i ett hybridfordon. Det faktiska tillstandsvdrdet S„t utgor har en faktisk hastighet vaa och referensvardet Sraf utgor en maximal hastighet vmax, vars vdrde exempelvis for ett fordon kan baseras pa en hastighetsbegransning for ett vagavsnitt. 537 144 Trogheten baseras for bromssystemet pa massan m relaterad till bromssystemet, exempelvis till en fordonsmassa, vilket gor att massan m, exempelvis fordonsmassan, hdr kan skattas baserat pa jdmforelsen av det faktiska insvdngningsforloppet Stransact Med det fOrvdntade insvdngningsforloppet Strans exp. According to an embodiment of the present invention, the system to be regulated constitutes a system for braking, for example, of a vehicle. Essentially any type of vehicle braking system can be controlled according to this embodiment, for example a service brake, a retarder, or an electromagnetic brake, which can be constituted, for example, by an electric motor in a hybrid vehicle. The actual state value S "t constitutes has an actual speed vaa and the reference value Sraf constitutes a maximum speed vmax, the value of which, for example, for a vehicle can be based on a speed limit for a road section. 537 144 The inertia of the braking system is based on the mass m related to the braking system, for example to a vehicle mass, which means that the mass m, for example the vehicle mass, can be estimated here based on the comparison of the actual Stransact induction process with the expected Strans exp indentation process.

For denna utforingsform av uppfinningen tar modellen av bromssystemet hansyn till en skillnad mellan den faktiska accelerationen aaa och referensaccelerationen are/. for fordon dl kraftekvationen har ett utseende enligt: Bk±i m * (vmax _vaat aaCT) + Bk , ddr(ekv. 3) Bk+1 är en kraften vilken kommer vara relaterad till systemet vid ndsta iteration av algoritmen; m är massan; Vref dr referenshastigheten; Vact Or den faktiska hastigheten; T är tidsparametern; (tact Or den faktiska fordonsaccelerationen; och Bk Or den nuvarande bromsande kraften relaterad till systemet. For this embodiment of the invention, the model of the braking system takes into account a difference between the actual acceleration aaa and the reference acceleration are /. for vehicles dl the force equation has an appearance according to: Bk ± i m * (vmax _vaat aaCT) + Bk, ddr (eq. 3) Bk + 1 is a force which will be related to the system at the next iteration of the algorithm; m is the mass; Vref dr reference speed; Vact Or the actual speed; T is the time parameter; (tact Or the actual vehicle acceleration; and Bk Or the current braking force related to the system.

Sasom framgar av ekvation 4 beror skillnaden mellan den faktiska fordonsaccelerationen aaa och referensaccelerationen aref av tidsparametern T eftersom referensaccelerationen aref 14120,0c -vact motsvaras av termen. pa motsvarande sdtt som beskrivits ovan bestdmmer storleken p1 tidsparametern T hur insvdngningsforloppet Strans_exp ser ut ndr hdr den faktiska hastigheten vaa ndrmar sig den maximala hastigheten vmax. As can be seen from Equation 4, the difference between the actual vehicle acceleration aaa and the reference acceleration aref depends on the time parameter T since the reference acceleration aref 14120.0c -vact corresponds to the term. in the same way as described above, the magnitude of the time parameter T determines how the induction process Strans_exp looks when the actual velocity is at the maximum velocity vmax.

Enligt en utforingsform av foreliggande uppfinning utgor systemet som ska regleras en motor exempelvis i ett fordon. According to an embodiment of the present invention, the system to be regulated constitutes an engine, for example in a vehicle.

Det faktiska tillstOndsvdrdet Sact som ska styras vid denna 21 537 144 reglering utger da ett faktiskt varvtal waa for motorn och referensvardet Sref som det faktiska varvtalet waa ska styras mot utgor ett referensvarvtal co„f far motorn. Trogheten for motorsystemet utgars har av ett traghetsmoment J for motorn, vilket gor att motorns troghetsmoment J kan skattas baserat pa jamfOrelsen av det faktiska insvangningsfOrloppet Stransact Med det motsvarande forvantade insvangningsforloppet Strans_exp• Modellen far motorsystemet, pa vilken regleringen baseras, tar har hansyn till en skillnad mellan en forandring w —c;ta av ett faktiskt varvtal fbr motorn och en forandring w -;ef av ett referensvarvtal fer motorn. Skillnaden beror hdr av en wref -waa tidsparameter T, eftersom termeninnefattar tidsparametern T, varfor fOrloppet for det faktiska varvtalets coact insvangning Strans actmot referensvarvtalet coref kan styras genom storleken pa tidsparametern T, pa motsvarande satt som beskrivits ovan for de andra utforingsformerna. The actual state value Sact which is to be controlled by this control then constitutes an actual speed waa for the engine and the reference value Sref against which the actual speed waa is to be controlled constitutes a reference speed co „f far the engine. The inertia of the engine system is based on a moment of inertia J for the engine, which means that the moment of inertia J of the engine can be estimated based on the comparison of the actual capture process Stransact With the corresponding expected capture process Strans_exp • The model gets the engine system, on which the regulation is based. between a change w - c; take of an actual speed fbr the engine and a change w -; ef of a reference speed for the engine. The difference depends here on a wref -waa time parameter T, since the term includes the time parameter T, so that the course of the actual speed coact winding Strans act against the reference speed coref can be controlled by the magnitude of the time parameter T, in the same way as described above for the other embodiments.

Enligt utforingsformen har modellens kraftekvation ett utseende enligt: Tk+1 = I * ref -Wact ct) + Tk, dar(ekv. 4) - Tk+1 Or ett vridmoment vilket kommer avges av motorn vid nasta iteration av algoritmen; J Or traghetsmomentet far motorn; wref Or referensvarvtalet for motorn; waa Or motorns faktiska varvtal; - r Or tidsparametern; waa Or en forandring av det faktiska varvtalet; och Tic Or det vridmoment som for narvarande avges av motorn. Enligt en utforingsform av foreliggande uppfinning utgor systemet som ska regleras ett temperaturregleringssystem for 22 537 144 en begrdnsad volym, ddr temperaturregleringssystemets trOghet I baseras pa en termisk troghet K for volymen, varfor den termiska trogheten K kan skattas baserat pa jdmforelsen av det faktiska insvdngningsforloppet Strans_act med det motsvarande forvantade insvdngningsforloppet Strans_exp• Det faktiska tillstandsvdrdet Sact utgOr har en faktisk temperatur Tact for den begrdnsade volymen och den faktiska temperaturen Tact styrs mot referensvdrdet Sref, vilket utgors av en referenstemperatur Tref fer volymen. According to the embodiment, the power equation of the model has an appearance according to: Tk + 1 = I * ref -Wact ct) + Tk, dar (eq. 4) - Tk + 1 Or a torque which will be emitted by the motor at the next iteration of the algorithm; J Or the moment of inertia father the engine; wref Or the reference speed of the motor; waa Or the actual engine speed; - r Or the time parameter; waa Or a change in the actual speed; and Tic Or the torque currently emitted by the engine. According to an embodiment of the present invention, the system to be controlled constitutes a temperature control system for a limited volume, since the inertia I of the temperature control system is based on a thermal inertia K for the volume, so the thermal inertia K can be estimated based on the comparison of the actual input process with Strans_act. the corresponding expected immersion process Strans_exp • The actual state value Sact utgOr has an actual temperature Tact for the limited volume and the actual temperature Tact is controlled against the reference value Sref, which consists of a reference temperature Tref for the volume.

Modellen for temperaturregleringssystemet tar hansyn till en skillnad mellan en fordndring Tact av en faktisk temperatur for volymen och en fordndring Tref av en referenstemperatur fofor denna volym. Skillnaden beror hdr av tidsparametern T och ekvationen enligt modellen av temperaturregleringssystemet, vilken har ett utseende enligt: Pk-Fi = K * (Tref -TactTa. ct) + Pk I dd./.(ekv. 5) Pk+1 Or en termisk effekt vilken kommer avges i den begrdnsade volymen vid ndsta iteration av algoritmen; K Or den termiska trogheten for den begransade volymen; - Tref Or referenstemperaturen; -Tact är den faktiska temperaturen; -T Or tidsparametern; Tact är en ferdndring av den faktiska temperaturen; och k Or en nuvarande termisk effekt vilken avges i den begransade volymen. The model for the temperature control system takes into account a difference between a change Tact of an actual temperature for the volume and a change Hit of a reference temperature for this volume. The difference depends on the hdr of the time parameter T and the equation according to the model of the temperature control system, which has an appearance according to: Pk-Fi = K * (Tref -TactTa. Ct) + Pk I dd./.(equ. 5) Pk + 1 Or a thermal power which will be emitted in the limited volume at the next iteration of the algorithm; K Or the thermal inertia of the limited volume; - Tref Or reference temperature; -Tact is the actual temperature; -T Or the time parameter; Tact is a change in the actual temperature; and k Or a current thermal effect which is emitted in the limited volume.

Aggressiviteten has insvdngningsforloppet for den faktiska temperaturen Tact mot referenstemperaturen Tref kan enkelt stdllas in genom justering av vdrdet for modellens tidsparameter T, varigenom insvdngningsforloppets karaktdr dndras sasom har beskrivits i detalj ovan. 23 537 144 Enligt en utforingsform av foreliggande uppfinning utgor det system som ska regleras ett godtyckligt lampligt system inkopplat till ett kraftuttag i ett fordon. Vissa fordon, exempelvis lastbilar och traktorer, har kraftuttag till vilka en anvandare kan koppla in i start sett vilken utrustning som heist, sasom exempelvis en kran, en cementblandare, eller olika typer av kraftaggregat. Den stora variationen mellan de olika typer av system som kan kopplas in till kraftuttaget gor att en regulator med en relativt star mangd olika egenskaper kravs for att pa ett tillfredstallande satt driva dessa system. The aggressiveness of the immersion process for the actual temperature Tact against the reference temperature Tref can be easily set by adjusting the value of the model time parameter T, whereby the nature of the immersion process is changed as described in detail above. According to an embodiment of the present invention, the system to be regulated constitutes an arbitrary lamp system connected to a power take-off in a vehicle. Some vehicles, such as trucks and tractors, have power outlets to which a user can connect at the start what equipment is being lifted, such as a crane, a cement mixer, or different types of power units. The large variation between the different types of systems that can be connected to the power take-off means that a regulator with a relatively large number of different properties is required to operate these systems in a satisfactory manner.

Ett totalt troghetsmoment J0 inkluderande ett troghetsmoment J for en motor i fordonet och ett treghetsmoment h,, for systemet for kraftuttag skattas enligt denna utforingsform baserat pa det faktiska tillstandsvardet S„t, vilket utgor ett faktiskt varvtal waa for en motor i fordonet och vilket svanger in emot ett respektive motsvarande referensvarde Sref vilket utgOr ett referensvarvtal co„f fOr motorn. Genom att det totala troghetsmomentet [tot for bade motor och kraftuttag skattas kan det faktiska varvtalet wact som kravs for att driva kraftuttaget regleras. A total moment of inertia J0 including a moment of inertia J for an engine in the vehicle and a moment of inertia h ,, for the power take-off system are estimated according to this embodiment based on the actual state value S „t, which is an actual speed waa for an engine in the vehicle and which turns towards a respective corresponding reference value Sref which constitutes a reference speed co „f for the engine. By estimating the total moment of inertia [tot for both engine and PTO shaft, the actual speed wact required for driving the PTO shaft can be regulated.

Modellen av systemet tar har hansyn till en skillnad mellan en forandring w -Cza av ett faktiskt varvtal for motorn och en forandring w -7:ef av ett referensvarvtal for motorn, dar skillnaden beror av tidsparameter Regleringen av systemet som ansluts till kraftuttaget kan har ges en Onskad karaktar/aggressivitet genom en enkel justering av tidsparametern T. The model of the system takes into account a difference between a change w -Cza of an actual speed for the engine and a change w -7: ef of a reference speed for the engine, where the difference depends on time parameters The regulation of the system connected to the power take-off may have been given an Unwanted character / aggressiveness through a simple adjustment of the time parameter T.

Enligt denna utforingsform gors regleringen av systemet enligt de ovan beskrivna utforingsformerna oscillationsfria, det vill 24 537 144 saga styrningen av tillstandet gors icke-oscillativa, genom att ge tidsparametern T ett varde som är atminstone fyra ganger stOrre an vardet for kalibreringstiden y, > 4*y. Da T > 4*y sker insvangningen Strans actfor det faktiska tillstandsvardet Sact mot referensvardet S,f helt utan Over- och/eller underslangar. Oscillationer i sjalva insvangningsforloppet Strans _act for det faktiska vardet mot referensvardet undviks ants& di T 4*y. According to this embodiment, the control of the system according to the above-described embodiments is made oscillation-free, i.e. the control of the state is made non-oscillative, by giving the time parameter T a value which is at least four times greater than the value of the calibration time y,> 4 * y. When T> 4 * y, the trapping Strans act takes place for the actual state value Sact against the reference value S, f completely without Upper and / or lower hoses. Oscillations in the actual capture process Strans _act for the actual value versus the reference value are avoided ants & di T 4 * y.

Enligt en annan utforingsform ges tidsparametern T ett varde som Or atminstone mer On fyra ganger sa start som vardet far kalibreringstiden y, T > 4*y. Exempelvis kan har tidsparametern T ges vardet 5*y, T = 5*y, vilket ger ytterligare 20 % stabilitetsT = 4*y. Aven hogre varden for tidsparametern T kan utnyttjas, exempelvis T = 6*y, eller T = 7*y, vilket ger ytterligare oscillation i regleringen. De hogre vardena for tidsparametern T kan utnyttjas for att ge ytterligare in. According to another embodiment, the time parameter T is given a value that Or at least more On four times said start as the value gets the calibration time y, T> 4 * y. For example, the time parameter T can be given the value 5 * y, T = 5 * y, which gives an additional 20% stability T = 4 * y. The higher value for the time parameter T can also be used, for example T = 6 * y, or T = 7 * y, which gives further oscillation in the control. The higher values for the time parameter T can be used to give further input.

Enligt en utforingsform anses en tidigare skattning Iav trOgheten / vara inexakt och/eller joke tillfOrlitlig am det faktiska insvangningsforloppet Strans actskiljer sig fran motsvarande forvantad insvangningsforlopp Strans_exp• Atminstone en kvotmellan en tidigare skattning P av trOgheten och det faktiska vardet pi trOgheten I kan bestammas baserat pi en analys av det faktiska insvangningsforloppet Stransaal vilket harefter ska visas. According to one embodiment, an earlier estimate of the inertia / is considered to be inaccurate and / or a joke reliable in the actual capture process. Strans differs from the corresponding expected capture process. Strans_exp • At least one ratio between an earlier estimate P of the inertia and the actual value based on an analysis of the actual capture process Stransaal, which will then be shown.

Vid analysen av insvangningsforloppet Strans_act for faktiska tillstandsvarden mot referensvardet Sref jamfors enligt fareliggande uppfinning utseendet for det faktiska 537 144 insvangningsfarloppet Strans_actl exempelvis for den faktiska hastigheten vaa, med ett fOrvantat utseende for samma insvangningsfOrlopp, exempelvis med ett fOrvantat utseende fOr denna hastighet Stram3exp • Om dessa tva insvangningsforlopp skiljer sig at kan det bero pa att skattningen av massan ar felaktig, vilket gor att regleringen enligt uppfinningen blir nagot inexakt, varvid den faktiska hastigheten vact fir ett annat utseende an den horde fa. DarfOr kan skattningen av massan m justeras baserat pa denna analys av insvingningsferloppet Swans act E'er att kunna skatta en kvot p mellan den verkliga massan m relaterad till systemet och den skattade massan m* gors en matematisk analys av ett insvingningsferlopp, vilken beskrivs harefter. In the analysis of the capture process Strans_act for the actual state value against the reference value Sref compares according to the present invention the appearance of the actual capture process Strans_actl for example for the actual velocity vaa, with a Preferred appearance for the same capture process, for example with a Preferred speed two trapping processes differ in that it may be due to the estimation of the mass being incorrect, which means that the regulation according to the invention becomes somewhat inaccurate, whereby the actual speed warrants a different appearance than the horde fa. Therefore, the estimation of the mass must be adjusted based on this analysis of the oscillation process Swans act E'er to be able to estimate a ratio of between the actual mass m related to the system and the estimated mass, a mathematical analysis of an oscillation process is made, which is described below.

Systemet, exempelvis ett fordon, foljer kraftekvationen (Newtons andra lag): in • a = Fdriv F • omgtvnt• ng(ekv. 6) Di systemet verkligen styrs av regulatorn, det vill saga di regulatorn fir det den begar och di reglersystemet inte ligger i mattning mot maxmoment eller slapmoment, kommer hastighetsprofilen for den faktiska hastigheten vaa att falja en fordefinierad profil som endast beror pa de tva parametrarna T och 7, vilket kan harledas enligt nedan. The system, for example a vehicle, follows the power equation (Newton's second law): in • a = Fdriv F • omgtvnt • ng (eq. 6) Di the system is really controlled by the controller, that is to say the controller for what it requests and the control system is not located in mating to maximum torque or slack torque, the velocity profile of the actual velocity will fall to a predefined profile which depends only on the two parameters T and 7, which can be deduced as below.

Systemet styrs, nar regulatorn verkligen styr, av ekvationen: hm* iv—v refact ,k a act ,k Fk+1 = +Fk, dar(ekv. 7) - Fk+1 ar en kraft vilken kommer vara relaterad till systemet vid nasta iteration; - h ar en diskretitionsfaktor; 26 537 144 y är en kalibreringstid; m är massan relaterad till systemet; v„f är referenshastigheten; V act ,k är den faktiska hastigheten; - 1- dr tidsparametern; a act ,k är den faktiska accelerationen; och F1, är en nuvarande kraft vilken är relaterad till systemet. The system is controlled, when the controller really controls, by the equation: hm * iv — v refact, ka act, k Fk + 1 = + Fk, dar (eq. 7) - Fk + 1 is a force which will be related to the system at the next iteration; - has a discretionary factor; 26 537 144 y is a calibration time; m is the mass related to the system; v „f is the reference speed; V act, k is the actual velocity; - 1- dr time parameter; a act, k is the actual acceleration; and F1, is a current force which is related to the system.

Genom att kombinera kraftekvationen (ekvation 6) och kraftuppdateringsekvationen (ekvation 7) erhdlls uttrycket: maact L* rtM ( V ref — V act ,k + Fomgivning,k + maact ,k (ekv. 8) Fomgivning ,k+1,k+1 7 a act ,k T Anta att omgivningskraftenAmIng är konstant frAn ett sampel till ett annat, vilket är ett rimligt antagande i exempelvis ett farthdllningssystem,vilket är relativt ldngsamt.DA erhalls efter lite algebraisk ommeblering uttrycket: ( 1 m* ( v„f Vact,k aact ,ka act ,k+1) 0 —a act ,k 7 M (ekv. 9) Om hastighetsfelet definieras som ovan C =vref-vact och man (61 act,ka act ,k+1 utnyttjar att termenar den numeriska derivatan av accelerationen erhdlls istdllet foljande ordindra differentialekvation av andra ordningen for hastighetsfelet am man dessutom Overgdr fran diskret tid till kontinuerlig tid: 1-1,- u=— --FE(ekv. 10) 7 27 537 144 darm är kvoten mellan den hittills skattade massan m* och den verkliga massan in Ur ekvation 10 kan masskvoten t enkelt lasas ut och beraknas. By combining the power equation (Equation 6) and the power update equation (Equation 7), the expression is obtained: maact L * rtM (V ref - V act, k + Fomgivning, k + maact, k (Equ. 8) Fomgivning, k + 1, k + 1 7 a act, k T Assume that the ambient forceAmIng is constant from one sample to another, which is a reasonable assumption in, for example, a speed control system, which is relatively slow.DA is obtained after some algebraic refurnishing the expression: (1 m * (v „f Vact, k aact, ka act, k + 1) 0 —a act, k 7 M (eq. 9) If the velocity error is defined as above C = vref-vact and man (61 act, ka act, k + 1 uses that term the numerical derivative of the acceleration is obtained instead of the following ordinal differential equation of the second order of the velocity error, but one also converts from discrete time to continuous time: 1-1, - u = - --FE (eq. 10) 7 27 537 144 gut is the ratio between the mass estimated m hitherto and the actual mass in From equation 10, the mass ratio t can be easily read out and calculated.

Problemet är att bade E och E ofta ar valdigt brusiga, varfor skattningen darmed ocksa ofta blir brusig. The problem is that both E and E are often very noisy, which is why the estimate thus also often becomes noisy.

For att minimera problemet med brus i matsignaler integreras ekvationen fran och med att regulatorn verkligen bOrjar styra fordonet vid tiden t=0 till dess att systemet har stabiliserats kring referensen efter tiden t=T. To minimize the problem of noise in food signals, the equation is integrated from the fact that the controller really starts to steer the vehicle at time t = 0 until the system has stabilized around the reference after time t = T.

Da erhalls ett uttryck for masskvoten enligt: (0) — (T) (ekv. 11) T T(E(T)_E(0))+JE(t)dt 0 dar: E=S„f—Sact är ett tillstandsfel; är en derivata av tillstandsfelet E; - y Or en kalibreringstid; r Or en tidsparameter; och tidsperioden [0,7] har en langd som sakerstaller att det faktiska tillstandsvardet S„t hinner stabiliseras kring motsvarande referensvarde Sref. Then an expression is obtained for the mass ratio according to: (0) - (T) (eq. 11) TT (E (T) _E (0)) + JE (t) dt 0 days: E = S „f — Sact is a state error ; is a derivative of the state error E; - y Or a calibration time; r Or a time parameter; and the time period [0,7] has a length that states that the actual state value S „t has time to stabilize around the corresponding reference value Sref.

For exempelvis ett farthallningssystem, dar det faktiska tillstandsvardet Saa utgOr en faktisk hastighet vaa och det motsvarande referensvardet Sref utgor en referenshastighet v„f, utgor tillstandsfelet E ett hastighetsfel, E=vrefVact • Far ett bromssystem, dar det faktiska tillstandsvardet S„t utgor en faktisk hastighet vaa och det respektive motsvarande 28 537 144 referensvardet S„f utgar en maximal hastighet vmax, utgar tillstandsfelet E ett hastighetsfel, C = vmax. For example, for a cruise control system, where the actual state value Saa is an actual speed vaa and the corresponding reference value Sref is a reference speed v „f, the state error E is a speed error, E = vrefVact • If a braking system, where the actual state value S„ t is a actual velocity vaa and the respective corresponding 28 537 144 reference value S „f outputs a maximum velocity vmax, the state error E outputs a velocity error, C = vmax.

Om ekvation 10 loses erhalles Oven det forvantade insvangningsforloppet Strans_exp • Det forvantade insvangningsforloppet Strans_exp har ett utseende vilket det faktiska insvangningsforloppet Stransact skulle ha haft am reglersystemet hade haft tillgang till ett korrekt varde for trogheten /. If equation 10 is lost, it is obtained Above the expected capture process Strans_exp • The expected capture process Strans_exp has an appearance which the actual capture process Stransact would have had if the control system had had access to a correct value for the fidelity /.

For system dar tillstandsfelet C utgor ett hastighetsfel, sasom for farthallningssystemet och bromssystemet, kan enligt en utfOringsform av uppfinningen kvoten 1.1=- utnyttjas for att bestamma en ny skattning niav en massa relaterad till systemet, exempelvis en fordonsmassa, genom att uppdatera en tidigare skattningav massan genom att multiplicera den gamla skattningen m* med den beraknade masskvoten (ekv. 12) Detta kan upprepas vid varje insvangning S - transact mat referensen Sref • En fackman inser att motsvarande harledning aven kan goras for bromssystemet am referenshastighet vref byts ut mot den maximala hastigheten Ekvation 12 är enkel att realisera i ett diskret styrsystem och den konvergerar garanterat sa lange den faktiska hastigheten vaa konvergerar mot referenshastigheten v„f. For systems where the condition error C constitutes a velocity error, such as for the cruise control system and the braking system, according to an embodiment of the invention the ratio 1.1 = - can be used to determine a new estimate of a mass related to the system, for example a vehicle mass, by updating an earlier mass estimate. by multiplying the old estimate m * by the calculated mass ratio (eq. 12) This can be repeated at each capture S - transact food reference Sref • A person skilled in the art realizes that the corresponding harling can also be done for the brake system at reference speed vref is replaced by the maximum speed Equation 12 is easy to implement in a discrete control system and it is guaranteed to converge as long as the actual velocity vaa converges towards the reference velocity v „f.

Ett icke-begransande simulerat exempel pa masskattning enligt denna utferingsform visas i figurerna 4a och 4b, dar den 29 537 144 heldragna kurvan motsvarar en insvdngning S - transact dar masskattningen är korrekt och den punktade kurvan motsvarar en insvdngning Strans actmed felaktig masskattning. For den korrekta masskattningen blir insvdngningen Strans actoscillationsfri (framgar av figur 4a) och masskvoten 1.1=1 (framgar av figur 4h). A non-limiting simulated example of mass estimation according to this embodiment is shown in Figures 4a and 4b, where the solid curve corresponds to an indentation S - transact where the mass estimation is correct and the dotted curve corresponds to an indentation. For the correct mass estimate, the inlet Strans becomes actoscillation-free (shown in Figure 4a) and the mass ratio 1.1 = 1 (shown in Figure 4h).

For den inkorrekta masskattningen far insvdngningen en oversldng (framgar av figur 4a) och masskvoten 11=0.5 (framgar av figur 4b). Massan Or hdr alltsd 50 % underskattad. For the incorrect mass estimate, the inflow has an overshoot (shown in Figure 4a) and the mass ratio 11 = 0.5 (shown in Figure 4b). Mass Or hdr thus 50% underestimated.

I figur 4b framgar tydligt att algoritmen konvergerar mot masskvotsvdrdena g=1 respektive 1.1=0.5 for korrekt respektive felaktig masskattning, vilket gor att algoritmen blir mycket anvdndbar for att korrigera felaktiga masskattningar. Dessutom kan algoritmen implementeras med mycket lagt komplexitetstillskott. Figure 4b clearly shows that the algorithm converges towards the mass ratio values g = 1 and 1.1 = 0.5, respectively, for correct and incorrect mass estimation, respectively, which makes the algorithm very useful for correcting incorrect mass estimates. In addition, the algorithm can be implemented with much added complexity addition.

E'er ett accelerationsbegrdnsningssystem, ddr det faktiska tillstandsvdrdet Sact utgor en faktisk acceleration aact och referensvdrdet Sr-ef utgar en referensacceleration aref, kan analysen baseras pd en kraftekvation relaterad till systemet, exempelvis for ett fordon, enligt: aact(T)— (0) 1-t7 T a„f(t)dt + va„ (0) — va„(T) (ekv. 13) ddr: aact Or en faktisk acceleration; aref Or en referensacceleration; - V act Or en faktisk hastighet; y Or en kalihreringstid; och tidsperioden [0,7] har en ldngd som sdkerstdller att den 537 144 faktiska accelerationen a -aa hinner stabiliseras kring referensaccelerationen a„f. Ekvation 13 ser annorlunda ut an ekvation 11 eftersom accelerationsbegransningssystemet har styr mot en referensacceleration are! och inte mot en referenshastighet v„f. If an acceleration limitation system, where the actual state value Sact is an actual acceleration aact and the reference value Sr-ef is a reference acceleration aref, the analysis can be based on a force equation related to the system, for example for a vehicle, according to: aact (T) - (0 ) 1-t7 T a „f (t) dt + va„ (0) - va „(T) (eq. 13) ddr: aact Or an actual acceleration; aref Or a reference acceleration; - V act Or an actual speed; y Or a calibration time; and the time period [0,7] has a length which ensures that the actual acceleration a -aa has time to stabilize around the reference acceleration a „f. Equation 13 looks different from Equation 11 because the acceleration limitation system has control over a reference acceleration are! and not at a reference speed v „f.

Aven for accelerationsbegransningssystemet kan kvoten =-1; utnyttjas for att bestamma en ny skattning inav massan genom att uppdatera en tidigare skattning; ///=m*A.t, vilket kan harledas pa motsvarande satt som fer farthallarsystemet ovan. Even for the acceleration limitation system, the ratio can be = -1; used to determine a new estimate of the mass by updating an earlier estimate; ///=m*A.t, which can be deduced in the same way as for the cruise control system above.

For ett motorsystem i fordonet, dar det faktiska tillstandsvardet Sact utger ett faktiskt varvtal waa fer motorn och det motsvarande referensvardet Sref utgor ett referensvarvtal co„f for motorn, utgor tillstandsfelet E i ekvation 6 ett varvtalsfel, E °ref —Wact • Har kan, pa motsvarande satt som far massan kvoten pt=—/* utnyttjas far att bestamma en ny skattning Lew av traghetsmoment genom att uppdatera en tidigare skattning j, inew=jvilket kan harledas pa motsvarande satt som for masskattningen ovan. For an engine system in the vehicle, where the actual state value Sact is an actual speed waa fer the engine and the corresponding reference value Sref is a reference speed co „f for the engine, the state error E in equation 6 is a speed error, E ° ref —Wact • Har kan, in the same way as the mass ratio pt = - / * is used to determine a new estimate Lew of moment of inertia by updating an earlier estimate j, inew = j which can be deduced in the same way as for the mass estimate above.

Far ett temperaturregleringssystem i fordonet, dar det faktiska tillstandsvardet Sact utgor en faktisk temperatur Tact for en begransad volym och det motsvarande referensvardet Sref utgOr en referenstemperatur T,f for volymen, utgor tillstandsfelet E ett temperaturfel, E =Tref—Tact . Har kan, pa P motsvarande satt som fer massan kvoten =— utnyttjas fer att bestamma en ny skattning K av den termiska tregheten genom att uppdatera en tidigare skattningK=K*•p,, vilket kan harledas pa motsvarande satt som for masskattningen ovan. 31 537 144 For ett kraftuttagssystem i fordonet, dar det faktiska tillstandsvardet Sact utgor ett faktiskt varvtal waa for en motor i ett fordon och det respektive motsvarande referensvardet Sref utgor ett referensvarvtal coref for motorn, CO — . utgor tillstE =refCOact andsfelet E ett varvtalsfelHar kan, pa motsvarande satt som for massan kvoten pt=-1; utnyttjas for j* att bestdmma en ny skattning tot—new av det totala troghetsmomentet genom att uppdatera en tidigare skattning to j: new = tot . R , vilket kan harledas pa motsvarande satt som for masskattningen ovan. If there is a temperature control system in the vehicle, where the actual state value Sact is an actual temperature Tact for a limited volume and the corresponding reference value Sref is a reference temperature T, f for the volume, the state error E is a temperature error, E = Tref — Tact. Has can, in the same way as the mass ratio = - be used to determine a new estimate K of the thermal inertia by updating an earlier estimate K = K * • p ,, which can be deduced in the same way as for the mass estimate above. For a PTO system in the vehicle, where the actual state value Sact is an actual speed waa for an engine in a vehicle and the respective corresponding reference value Sref is a reference speed coref for the engine, CO -. the condition E = refCOact andsfelet E is a speed errorHar can, in the same way as for the mass quotient pt = -1; is used to determine a new estimate tot — new of the total moment of inertia by updating a previous estimate to j: new = tot. R, which can be deduced in the same way as for the mass estimate above.

Enligt en utforingsform av foreliggande uppfinning utgors regulatorn, vilken är anordnad att reglera dtminstone ett faktiskt tillstandsvarde Scict mot atminstone ett respektive motsvarande referensvarde Sref, av en PID-regulator, eller av en differentiell PI-regulator. According to an embodiment of the present invention, the controller, which is arranged to control at least one actual state value Scict against at least one respective corresponding reference value Sref, is constituted by a PID controller, or by a differential PI controller.

En PID-regulator är en regulator vilken ger en insignal u(t) till ett system som ska styras baserat pa en avvikelse e(t) mellan en onskad utsignal r(t), det vill saga referensvardet, och en verklig utsignal y(t). Nedan galler att e(t) = r(t) - y(t) enligt: dt.'( dt , (ekv. 14) dar: Kp utgar en forstdrkningskonstant; K1 utgor en integreringskonstant; och - KD utger en deriveringskonstant. 32 537 144 En PID-regulator reglerar pa tre satt, genom en proportionell forstarkning (P; Kr), genom en integrering (I; Ki), och genom en derivering (D; Kd). A PID controller is a controller which provides an input signal u (t) to a system to be controlled based on a deviation e (t) between a desired output signal r (t), i.e. the reference value, and an actual output signal y (t). ). Below it holds that e (t) = r (t) - y (t) according to: dt. '(Dt, (eq. 14) days: Kp is a gain constant; K1 is an integration constant; and - KD is a derivative constant. 537 144 A PID controller regulates in three ways, through a proportional gain (P; Kr), through an integration (I; Ki), and through a derivation (D; Kd).

Konstanterna Kr, K1 och Kd paverkar systemet enligt foljande. The constants Kr, K1 and Kd affect the system as follows.

Ett okat varde for forstarkningskonstanten Kr leder till foljande forandring av PID-regulatorn: okad snabbhet; minskade stabilitets forbattrad kompensering av processtorningar; och - okad styrsignalaktivitet. An increased value for the gain constant Kr leads to the following change of the PID controller: increased speed; reduced stability, improved compensation of process failures; and - increased control signal activity.

Ett Okat varde for integreringskonstanten Ki leder till foljande forandring av PID-regulatorn: battre kompensering av lagfrekventa processtOrningar (eliminerar kvarstaende fel vid stegstorningar); - Okad snabbhet; och minskade stabilitets Ett okat varde for deriveringskonstanten Kd leder till foljande forandring av PID-regulatorn: okad snabbhet - Okade stabilitets okad styrsignalaktivitet. An Increased value for the integration constant Ki leads to the following change of the PID controller: better compensation of law-frequency process disturbances (eliminates residual errors in step disturbances); - Increased speed; and decreased stability An increased value for the derivative constant Kd leads to the following change of the PID controller: increased speed - increased stability increased control signal activity.

Det finns aven andra typer/varianter av reglulatorer/regleralgoritmer vilka har en funktion liknande den for PID-regulatorn. Aven vid reglering med dessa andra 33 537 144 typer/varianter av reglulatorer/regleralgoritmer kan troghetsskattning enligt foreliggande uppfinning utnyttjas, vilket inses av en fackman pd omradet. There are also other types / variants of controllers / control algorithms which have a function similar to that of the PID controller. Even when controlling with these other 33 537 144 types / variants of controllers / control algorithms, fidelity estimation according to the present invention can be used, which will be appreciated by a person skilled in the art.

En differentiell PI-regulator är en PI-regulator, alltsa utan D-delen i PID-regulatorn, vilken är uttryckt pa differentiell form. Den differentiella PI-regulatorn kan implementeras i ett diskret system. A differential PI controller is a PI controller, ie without the D-part of the PID controller, which is expressed in differential form. The differential PI controller can be implemented in a discrete system.

Enligt en utforingsform av foreliggande uppfinning utfors skattningen av trogheten / dven baserat pa information relaterad till ett vdgavsnitt dar ett fordon befinner sig, dar denna information kan innefatta en vdglutning c for vdgavsnittet. Vaglutningen kan erhallas baserat pa en eller flera av kartdata, en positioneringsanordning sdsom GPS (Global Positioning System), en accelerometer, en kraftekvation och en hojdfordndring. According to an embodiment of the present invention, the estimation of the inertia / dive is performed based on information related to a road section where a vehicle is located, where this information may include a road slope c for the road section. The road inclination can be obtained based on one or more of the map data, a positioning device such as GPS (Global Positioning System), an accelerometer, a force equation and an altitude change.

Fackmannen inser att det ovan beskrivna forfarandet enligt foreliggande uppfinning dessutom kan implementeras i ett datorprogram, vilket ndr det exekveras i en dator astadkommer att datorn utfor metoden. Datorprogrammet utgOr vanligtvis av en datorprogramprodukt 503 lagrad pa ett digitalt lagringsmedium, ddr datorprogrammet är innefattat i en datorprogramproduktens datorldsbara medium. Ndmnda datorldsbara medium bestdr av ett ldmpligt minne, sdsom exempelvis: ROM (Read-Only Memory), PROM (Programmable Read- Only Memory), EPROM (Erasable PROM), Flash-minne, EEPROM (Electrically Erasable PROM), en harddiskenhet, etc. Those skilled in the art will appreciate that the above-described method of the present invention may additionally be implemented in a computer program, which when executed in a computer causes the computer to execute the method. The computer program usually consists of a computer program product 503 stored on a digital storage medium, where the computer program is included in a computer program product's computer-storable medium. The aforementioned computer-capable media consists of a readable memory, such as: ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically Erasable PROM), a hard disk drive, etc .

Figur 5 visar schematiskt en styrenhet 500. Styrenheten 500 innefattar en berdkningsenhet 501, vilken kan utgaras av vdsentligen nagon lamplig typ av processor eller mikrodator, t.ex. en krets for digital signalbehandling (Digital Signal Processor, DSP), eller en krets med en forutbestdmd specifik 34 537 144 funktion (Application Specific Integrated Circuit, ASIC). BerOkningsenheten 501 Or forbunden med en, i styrenheten 500 anordnad, minnesenhet 502, vilken tillhandahaller berOkningsenheten 501 t.ex. den lagrade programkoden och/eller den lagrade data berakningsenheten 501 behover for att kunna utfora berOkningar. BerOkningsenheten 501 Or Oven anordnad att lagra del- eller slutresultat av berakningar i minnesenheten 502. Figure 5 schematically shows a control unit 500. The control unit 500 comprises a bending unit 501, which can be made of substantially any suitable type of processor or microcomputer, e.g. a Digital Signal Processor (DSP), or an application Specific Integrated Circuit (ASIC) function. The calculation unit 501 Or is connected to a memory unit 502 arranged in the control unit 500, which provides the calculation unit 501 e.g. the stored program code and / or the stored data calculation unit 501 need to be able to perform calculations. Calculation unit 501 Or Above arranged to store partial or final results of calculations in the memory unit 502.

Vidare är styrenheten 500 forsedd med anordningar 511, 512, 513, 514 for mottagande respektive sOndande av in- respektive utsignaler. Dessa in- respektive utsignaler kan innehalla vagformer, pulser, eller andra attribut, vilka av anordningarna 511, 513 for mottagande av insignaler kan detekteras som information och kan omvandlas till signaler som kan behandlas av berakningsenheten 501. Dessa signaler tillhandahalls sedan berOkningsenheten 501. Anordningarna 512, 514 for sOndande av utsignaler är anordnade att omvandla signaler erhallna fran berOkningsenheten 501 for skapande av utsignaler genom att t.ex. modulera signalerna, vilka kan overforas till andra delar av reglersystemet och/eller till system som regleras enligt foreliggande uppfinning. Furthermore, the control unit 500 is provided with devices 511, 512, 513, 514 for receiving and transmitting input and output signals, respectively. These input and output signals may contain waveforms, pulses, or other attributes, which of the input signals receiving devices 511, 513 may be detected as information and may be converted into signals which may be processed by the calculating unit 501. These signals are then provided to the calculating unit 501. The devices 512 , 514 for transmitting output signals are arranged to convert signals received from the computing unit 501 for creating output signals by e.g. modulate the signals, which can be transmitted to other parts of the control system and / or to systems controlled according to the present invention.

Var och en av anslutningarna till anordningarna for mottagande respektive sOndande av in- respektive utsignaler kan utgoras av en eller flera av en kabel; en databuss, sasom en CAN-buss (Controller Area Network bus), en MOST-buss (Media Orientated Systems Transport bus), eller nagon annan busskonfiguration; eller av en tradlos anslutning. Each of the connections to the devices for receiving and transmitting input and output signals, respectively, may be one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), a MOST bus (Media Orientated Systems Transport bus), or any other bus configuration; or by a wireless connection.

En fackman inser att den ovan namnda datorn kan utgOras av berakningsenheten 501 och att det ovan namnda minnet kan utgoras av minnesenheten 502. 537 144 Allmant bestar styrsystem i moderna fordon av ett kommunikationsbussystem bestaende av en eller flera kommunikationsbussar for att sammankoppla ett antal elektroniska styrenheter (ECU:er), eller controllers, och olika pa fordonet lokaliserade komponenter. Ett dylikt styrsystem kan innefatta ett stort antal styrenheter, och ansvaret for en specifik funktion kan vara uppdelat pa fler an en styrenhet. Fordon av den visade typen innefattar alltsa ofta betydligt fler styrenheter an vad som visas i figur 5, vilket är valkant for fackmannen mom teknikomradet. One skilled in the art will appreciate that the above-mentioned computer may be constituted by the computing unit 501 and that the above-mentioned memory may be constituted by the memory unit 502. 537 144 General control systems in modern vehicles consist of a communication bus system consisting of one or more communication buses for interconnecting a number of electronic control units ( ECUs, or controllers, and various components located on the vehicle. Such a control system may comprise a large number of control units, and the responsibility for a specific function may be divided into more than one control unit. Vehicles of the type shown thus often comprise considerably more control units than what is shown in Figure 5, which is a choice for those skilled in the art.

Foreliggande uppfinning är i den visade utforingsformen implementerad i styrenheten 500. Uppfinningen kan dock aven implementeras helt eller delvis i en eller flera andra vid fordonet redan befintliga styrenheter eller i nagon far foreliggande uppfinning dedikerad styrenhet. The present invention is in the embodiment shown implemented in the control unit 500. However, the invention can also be implemented in whole or in part in one or more other control units already existing at the vehicle or in a control unit dedicated to the present invention.

Enligt en aspekt av foreliggande uppfinning tillhandahalls ett skattningssystem for skattning av en troghet / for ett tillstand i ett system, dar atminstone en regulator är anordnad att reglera atminstone ett faktiskt tillstandsvarde Sact mot atminstone ett respektive motsvarande referensvarde Sref i systemet. Skattningssystemet for skattning av trOgheten innefattar en bestamningsenhet anordnad att bestamma atminstone ett faktiskt insvangningsforlopp Strans actfar det atminstone ett faktiska tillstandsvardet Sact mot det atminstone ett respektive motsvarande referensvardet Sref. Systemet for skattning av trogheten / innefattar aven en jamforelseenhet anordnad att utfora atminstone en jamforelse av det atminstone ett faktiska insvangningsforloppet Strans actmed atminstone ett respektive motsvarande forvantat insvangningsfarlopp Strans_exp och en skattningsenhet anordnad att skatta trogheten / baserat pa den atminstone en jamfarelsen. 36 537 144 Fackmannen inser ocksa att systemet ovan kan modifieras enligt de olika utforingsformerna av forfarandet enligt uppfinningen. Dessutom avser uppfinningen ett motorfordon, till exempel en lastbil eller en buss, innefattande atminstone ett reglersystem och ett system for skattning av en treghet / enligt uppfinningen. According to one aspect of the present invention, there is provided an estimation system for estimating an inertia / for a state in a system, wherein at least one controller is arranged to regulate at least one actual state value Sact against at least one respective corresponding reference value Sref in the system. The estimation system for estimating inertia comprises a determination unit arranged to determine at least one actual capture process. The transact value is at least one actual state value Sact against the at least one respective corresponding reference value Sref. The system for estimating the inertia / also comprises a comparison unit arranged to perform at least one comparison of the at least one actual capture process Strans act with at least one respective corresponding expected capture process Strans_exp and an estimation unit arranged to estimate the inertia / based on that at least one comparison. The person skilled in the art also realizes that the above system can be modified according to the various embodiments of the method according to the invention. In addition, the invention relates to a motor vehicle, for example a truck or a bus, comprising at least one control system and a system for estimating an inertia / according to the invention.

Foreliggande uppfinning är inte begransad till de ovan beskrivna utforingsformerna av uppfinningen utan avser och innefattar alla utforingsformer mom de bifogade sjalvstandiga kravens skyddsomfang. 37 The present invention is not limited to the above-described embodiments of the invention but relates to and includes all embodiments within the scope of the appended independent claims. 37

Claims (23)

537 144 Patentkrav 1. Forfarande for ett reglersystem innefattande en regulator, dar namnda Atminstone en regulator är anordnad att styra atminstone ett faktiskt tillstandsvarde Sact mot atminstone ett respektive motsvarande referensvarde Sref i ett fordonssystem vilket innefattar en trOghet / for namnda atminstone ett faktiskt tillstandsvarde Sact; kannetecknat av att namnda reglersystem är anordnat att: 1. bestamma atminstone ett faktiskt insvangningsforlopp Strans_act for namnda atminstone ett faktiska tillstandsvarde Sact mot namnda atminstone ett respektive motsvarande referensvarde Sref; 2. utfora atminstone en jamforelse av namnda atminstone ett faktiska insvangningsforlopp -Strans_act med atminstone ett respektive motsvarande forvantat insvangningsforlopp Strans_exp dar namnda forvantat insvangningsforlopp S -trans_eam har ett utseende vilket skulle ha blivit resultatet for namnda faktiska insvangningsforlopp -transact om namnda reglersystem hade haft tillgang till korrekta varden fOr namnda troghet /; 3. skatta namnda.troghet / baserat pa namnda Atminstone en jamfOrelse; och 4. styra, genom utnyttjande av namnda regulator, namnda atminstone ett faktiska tillstandsvarde Sact mot namnda Atminstone ett respektive motsvarande referensvarde Sref, dar namnda styrning är modellbaserad och utnyttjar en styacrtsignal vilken har en storlek som är proportionell mot en forandring hos namnda atminstone ett faktiska tillstAndsvarde goch dar namnda forandring beror av namnda troghet I. 2. Forfarande enligt patentkrav 1, varvid namnda atminstone en regulator är baserad pa en modell, dar namnda 38 537 144 modell innefattar en kraftekvation eller en annan ekvation vilken är relaterad till namnda fordonssystem. 3. Forfarande enligt patentkrav 2, varvid 1. namnda modell innefattar namnda Atminstone ett faktiska tillstandsvarde Sart, vilket är relaterat till namnda fordonssystem; 2. namnda Atminstone ett faktiska tillstAndsvarde Sact har namnda troghet ; och 3. namnda Atminstone en regulator styr genom utnyttjande av en styrsignal, dar en storlek hos namnda styrsignal är proportionell mot en forandring hos namnda Atminstone ett faktiska tillstAndsvarde Sart. 4. Forfarande enligt patentkrav 3, varvidA method for a control system comprising a controller, wherein said At least one controller is arranged to control at least one actual state value Sact against at least one respective corresponding reference value Sref in a vehicle system which comprises an inertia / for said at least one actual state value Sact; characterized in that said control system is arranged to: 1. determine at least one actual capture process Strans_act for said at least one actual state value Sact against said at least one respective corresponding reference value Sref; 2. perform at least one comparison of said at least one actual capture sequence -Strans_act with at least one respective corresponding expected capture sequence Strans_exp where said expected capture sequence S -trans_eam has an appearance which would have been the result of said actual capture sequence -transact had the correct value for the said inertia /; 3. estimate namnda.troghet / based on namnda Atmin at least a comparison; and 4. controlling, using said controller, said at least one actual state value Sact against said At least one respective corresponding reference value Sref, wherein said control is model based and uses a control signal which has a magnitude proportional to a change of said at least one actual The condition according to claim 1, wherein said at least one regulator is based on a model, wherein said model comprises a force equation or other equation which is related to said vehicle system. The method of claim 2, wherein 1. said model comprises said At least an actual state value Sart, which is related to said vehicle system; 2. said At least one actual conditional Sact has said fidelity; and 3. at least one controller controls by utilizing a control signal, where a magnitude of said control signal is proportional to a change in said at least one actual state value Sart. A method according to claim 3, wherein 1. namnda Atminstone ett faktiska tillstAndsvarde Scut utgor en faktisk hastighet vact relaterad till namnda fordonssystem,1. at least one actual condition value Scut constitutes an actual speed vact related to said vehicle system, 2. namnda Atminstone ett respektive motsvarande referensvarde Sref utgor en referenshastighet vref relaterad till namnda fordonssystem,Said at least one respective corresponding reference value Sref constitutes a reference speed vref related to said vehicle system, 3. namnda troghet / är relaterad till en massa m relaterad till namnda fordonssystem; och3. said inertia / is related to a mass m related to said vehicle system; and 4. namnda massa m skattas baserat pa namnda skattade troghet I.4. said mass must be estimated based on said estimated fidelity I. 5. Forfarande enligt patentkrav 4, varvid namnda modell tar hansyn till en skillnad mellan en faktisk acceleration aact for namnda fordonssystem och en referensacceleration are! for namnda fordonssystem, dar namnda skillnad beror av en tidsparameter T.The method of claim 4, wherein said model takes into account a difference between an actual acceleration act for said vehicle system and a reference acceleration are! for said vehicle system, where said difference depends on a time parameter T. 6. Forfarande enligt nAgot av patentkrav 4-5, varvid namnda fordonssystem är ett farthAllningssystem i ett fordon och namnda massa m utgor en fordonsmassa. 39 537 144A method according to any one of claims 4-5, wherein said vehicle system is a cruise control system in a vehicle and said mass m constitutes a vehicle mass. 39 537 144 7. Forfarande enligt patentkrav 3, varvid - namnda Atminstone ett faktiska tillstandsvarde S„t utgor en faktisk acceleration acia relaterad till namnda fordonssystem; 1. namnda atminstone ett respektive motsvarande referensvarde Sref utgor en referensacceleration are! relaterad till namnda fordonssystem; 2. namnda troghet I baseras pa en massa m relaterad till namnda fordonssystem; och 3. namnda massa m skattas baserat pa namnda skattade troghet I.A method according to claim 3, wherein - said At least an actual state value S "t constitutes an actual acceleration acia related to said vehicle system; 1. said at least one respective corresponding reference value Sref constitutes a reference acceleration are! related to said vehicle system; 2. said fidelity I is based on a mass m related to said vehicle system; and 3. said mass must be estimated based on said estimated fidelity I. 8. Forfarande enligt patentkrav 7, varvid namnda modell tar hansyn till en skillnad mellan namnda faktiska acceleration acia och namnda referensacceleration aref for namnda fordonssystem.The method of claim 7, wherein said model takes into account a difference between said actual acceleration acia and said reference acceleration aref for said vehicle system. 9. Forfarande enligt nagot av patentkrav 7-8, varvid namnda fordonssystem är ett system for accelerationsbegransning i ett fordon och namnda massa m utgOr en fordonsmassa.A method according to any one of claims 7-8, wherein said vehicle system is a system for acceleration limitation in a vehicle and said mass m constitutes a vehicle mass. 10. Forfarande enligt patentkrav 3, varvid 1. namnda atminstone ett faktiska tillstandsvarde Scat utgOr en faktisk hastighet vact relaterad till namnda fordonssystem; 2. namnda atminstone ett respektive motsvarande referensvarde Siref utgor en maximal hastighet vmax for namnda fordonssystem; 3. namnda troghet / baseras pa en massa m relaterad till namnda fordonssystem; och - namnda massa m skattas baserat pa namnda skattade troghet /.The method of claim 3, wherein 1. said at least one actual state value Scat is an actual velocity vact related to said vehicle system; 2. said at least one respective corresponding reference value Siref constitutes a maximum speed vmax for said vehicle system; Said fidelity / based on a mass m related to said vehicle system; and - said mass must be estimated based on said estimated fidelity. 11. Forfarande enligt patentkrav 10, varvid namnda modell tar hansyn till en skillnad mellan en faktisk acceleration aact for namnda fordonssystem och en referensacceleration aref for 537 144 namnda fordonssystem, dar namnda skillnad beror av en tidsparameter T.A method according to claim 10, wherein said model takes into account a difference between an actual acceleration aact for said vehicle system and a reference acceleration aref for 537 144 said vehicle system, wherein said difference depends on a time parameter T. 12. Forfarande enligt nAgot av patentkrav 10-11, varvid namnda fordonssystem är ett system for bromsning av ett fordon och namnda massa m utgor en fordonsmassa.A method according to any one of claims 10-11, wherein said vehicle system is a system for braking a vehicle and said mass m constitutes a vehicle mass. 13. Forfarande enligt patentkrav 3, varvid 1. namnda fordonssystem innefattar en motor; 2. namnda Atminstone ett faktiska tillstAndsvarde S„t utgor ett faktiskt varvtal coma for namnda motor; - namnda Atminstone ett respektive motsvarande referensvarde Sref utgOr ett referensvarvtal coref for namnda motor; 3. namnda troghet / baseras pA ett troghetsmoment J for namnda motor; och 4. namnda troghetsmoment J skattas baserat pa namnda skattade troghet I.The method of claim 3, wherein 1. said vehicle system comprises an engine; 2. said At least one actual state value S "t constitutes an actual speed coma for said motor; - said At least one respective corresponding reference value Sref constitutes a reference speed coref for said engine; 3. said inertia / is based on a moment of inertia J for said motor; and 4. said moment of inertia J is estimated based on said estimated inertia I. 14. Forfarande enligt patentkrav 13, varvid namnda modell tar hansyn till en skillnad mellan en forandring üJC av ett faktiskt varvtal for namnda motor och en forandring 04,1 av ett referensvarvtal for namnda motor, dar namnda skillnad beror av en tidsparameter T.A method according to claim 13, wherein said model takes into account a difference between a change üJC of an actual speed for said motor and a change 04.1 of a reference speed for said motor, said difference being due to a time parameter T. 15. airfarande enligt patentkrav 3, varvid 1. namnda fordonssystem är ett temperaturregleringssystem; 2. namnda Atminstone ett faktiska tillstAndsvarde Sact utgOr en faktisk temperatur Tact for en begransad volym; - namnda Atminstone ett respektive motsvarande referensvarde Srej utgor en referenstemperatur Tref for namnda volym; 3. namnda troghet / baseras 0 en termisk troghet K for namnda volym; och 41 537 144 4. namnda termisk troghet K skattas baserat pa namnda skattade troghet .The air conditioner of claim 3, wherein 1. said vehicle system is a temperature control system; 2. said At least one actual state value Sact constitutes an actual temperature Tact for a limited volume; - said At least one respective corresponding reference value Srej constitutes a reference temperature Tref for the said volume; 3. said inertia / based 0 a thermal inertia K for said volume; and 41 537 144 4. said thermal inertia K is estimated based on said estimated inertia. 16. Forfarande enligt patentkrav 15, varvid namnda modell tar hansyn till en skillnad mellan en forandring Tact av en faktisk temperatur for namnda volym och en fOrandring Tref av en referenstemperatur for namnda volym, dar namnda skillnad beror av en tidsparameter T.The method of claim 15, wherein said model takes into account a difference between a change Tact of an actual temperature for said volume and a change Tref of a reference temperature for said volume, wherein said difference depends on a time parameter T. 17. Forfarande enligt patentkrav 3, varvid 1. namnda fordonssystem är ett system for kraftuttag vid Oppen drivlina i ett fordon; 2. namnda atminstone ett faktiska tillstandsvarde Saa utgOr ett faktiskt varvtal coact for en motor i namnda fordon; 3. namnda atminstone ett respektive motsvarande referensvarde Sref ut gor ett referensvarvtal core! for namnda motor; - namnda troghet / baseras pa ett totalt troghetsmoment hot inkluderande ett traghetsmoment J for en motor i namnda fordon och ett troghetsmoment Jpro for namnda system for kraftuttag; och - namnda totala troghetsmoment hot skattas baserat pa namnda skattade troghet I.A method according to claim 3, wherein 1. said vehicle system is a power take-off system at the Open driveline of a vehicle; 2. said at least one actual state value Saa constitutes an actual speed coact for an engine in said vehicle; 3. named at least one respective corresponding reference value Sref uts a reference speed core! for the said engine; - said inertia / is based on a total moment of inertia threat including an inertia moment J for an engine in said vehicle and a moment of inertia Jpro for said power take-off system; and - said total moment of inertia threat is estimated based on said estimated inertia I. 18. Forfarande enligt patentkrav 17, varvid namnda modell tar hansyn till en skillnad mellan en forandring aliwt av ett faktiskt varvtal for namnda motor och en forandring üef av ett referensvarvtal fOr namnda motor, dar namnda skillnad beror av en tidsparameter T.The method of claim 17, wherein said model takes into account a difference between a change aliwt of an actual speed for said engine and a change üef of a reference speed for said engine, said difference being due to a time parameter T. 19. Forfarande enligt patentkrav 1, varvid namnda atminstone en regulator utgors av en PID-regulator. 42 537 144The method of claim 1, wherein said at least one controller is a PID controller. 42 537 144 20. Forfarande enligt patentkrav 1, varvid namnda atminstone en regulator utgOrs av en differentiell PI-regulator.The method of claim 1, wherein said at least one regulator is a differential PI regulator. 21. Forfarande enligt nagot av patentkrav 1-20, varvid en tidigare skattning /* av namnda troghet / anses vara inexakt om namnda atminstone ett faktiska insvangningsforlopp Strans _act skiljer sig fran namnda atminstone ett respektive motsvarande forvantat insvangningsforlopp Strans _e xpA method according to any one of claims 1-20, wherein an earlier estimate / * of said inertia / is considered to be inaccurate if said at least one actual capture process Strans _act differs from said at least one respective corresponding captured capture process Strans _e xp 22. -Forfarande enligt nagot av patentkrav 1-21, varvid Atminstone en kvot =—r mellan en tidigare skattning /* av namnda troghet och namnda troghet / bestams baserat pa en analys av namnda atminstone ett faktiska insvangningsforlopp Strans_act • 23. Forfarande enligt patentkrav 22, varvid namnda atminstone en kvot =— bestams baserat pa ekvationen: /1= r i.(0) - (T) Zig(T) 61(0+ f e(t)dt 0 dar: 1. s=Sref—Sac, är ett tillstandsfel; 2. är en derivata av namnda tillstandsfel e; - y är en kalibreringstid; 3. T är en tidsparameter; och 4. tidsperioden [OU] har en langd som sakerstaller att namnda faktiska tillstandsvarde Sact stabiliseras kring namnda motsvarande referensvarde Sref. 43 537 144 24. Forfarande enligt patentkrav 23, varvid 1. namnda analys av namnda atminstone ett faktiska insvangningsforlopp Strans_act baseras p5 en kraftekvation for - namnda fordonssystem; - namnda atminstone ett faktiska tillstandsvarde Sact utgOr en faktisk hastighet vact for ett fordon; 2. namnda atminstone ett respektive motsvarande referensvarde Sref utgor en referenshastighet vref for namnda fordon; och 3. namnda tillstandsfelutgor ett hastighetsfel,= vref vact - 25. Forfarande enligt patentkrav 23, varvid 1. namnda analys av namnda atminstone ett faktiska insvangningsforlopp trans_act Sbaseras pa en kraftekvation for - namnda fordonssystem; 2. namnda 5tminstone ett faktiska tillstandsvarde Sact utigtir en faktisk hastighet vact for ett fordon, 3. namnda atminstone ett respektive motsvarande referensvarde Sref utgor en maximal hastighet vmax for namnda fordon; och 4. namnda tillstandsfel e utgor ett hastighetsfel, C=V —Vact. 26. Forfarande enligt patentkrav 22, varvid namnda atminstone en kvot =— bestams baserat pa ekvationen: 1 clacAT)—(0) P a„f(t)dt + Vac, (0) — vac, (T) dar: 1. aact är en faktisk acceleration; 2. aref är en referensacceleration; Vact är en faktisk hastighet; 3. y är en kalibreringstid; och 4. tidsperiodenhar en langd som sakerstaller att namnda 44 537 144 faktisk acceleration aaa stabiliseras kring namnda referensacceleration aref. 27. Forfarande enligt nAgot av patentkrav 22-26, varvid namnda kvot =—r utnyttjas for att bestamma en ny skattning av en massa relaterad till namnda fordonssystem genom att uppdatera en tidigare skattning /r/* av namnda massa; m:w=11-I • 28. Forfarande enligt patentkrav 23, varvid 1. namnda analys av namnda &tminstone ett faktiska insvangningsforlopp S -tratts_act baseras pA en kraftekvation for namnda fordonssystem; 2. namnda &tminstone ett faktiska tillstAndsvarde Sact utgor ett faktiskt varvtal waa for en motor i ett fordon; 3. namnda &tminstone ett respektive motsvarande referensvarde Siref utgor ett referensvarvtal coref for namnda motor; och - namnda tillstandsfel e utgor ett varvtalsfel, e=corefC° act • 29. F6rfarande enligt patentkrav 28, varvid namnda kvot * utnyttjas for att bestamma en ny skattning Lew av ett troghetsmoment for namnda motor genom att uppdatera en tidigare skattning j av namnda troghetsmoment;J .0 . 30. Forfarande enligt patentkrav 28, varvid namnda kvot p =7 utnyttjas for att bestamma en ny skattning Lot_new av ett totalt troghetsmoment inkluderande ett troghetsmoment J for namnda motor och ett troghetsmoment Any) for ett system for kraftuttag i namnda fordon genom att uppdatera en tidigare skattning Jm av namnda troghetsmoment; Ifo,'_new=jco:./1° 31. Forfarande enligt patentkrav 23, varvid - namnda &tminstone ett faktiska tillstandsvarde S„t utgor en 537 144 faktisk temperatur Tact for en begransad volym; 1. namnda atminstone ett respektive motsvarande referensvarde Siref utgor en referenstemperatur Tref for namnda volym; och 2. namnda tillstandsfel 6 utgor ett temperaturfel, e=7,.ef—Ta„. 32. Forfarande enligt patentkrav 31, varvid namnda kvot =— utnyttjas for att bestamma en ny skattning Ar:,„ av en termisk troghet for namnda begransade volym genom att uppdatera en tidigare skattning A:* av namnda termiska trOghet; =K*•ii 33. Forfarande enligt nagot av patentkrav 1-32, varvid namnda skattning av namnda troghet / utfors baserat pa information relaterad till ett vagavsnitt dar namnda fordonssystem befinner sig. 34. Forfarande enligt patentkrav 33, varvid namnda information innefattar en vaglutning a for namnda vagavsnitt. 35. Forfarande enligt nagot av patentkrav 33-34, varvid namnda information erhalls baserat pa atminstone en i gruppen av: 1. kartdata; - en positioneringsanordning; 2. en accelerometer; 3. en kraftekvation; 4. en hojdforandring. 36. Datorprogram innefattande programkod, vilket nar namnda programkod exekveras i en dator astadkommer att namnda dator utfor metoden enligt nagot av patentkrav 1-35. 37. Datorprogramprodukt innefattande ett datorlasbart medium och ett datorprogram enligt patentkrav 36, varvid 46 537 144 namnda datorprogram är innefattat i namnda datorlasbara medium. 38. Reglersystem innefattande en regulator, dar namnda atminstone en regulator är anordnad att styra atminstone ett faktiskt tillstandsvarde Sact mot Atminstone ett respektive motsvarande referensvarde Sref i ett fordonssystem vilket innefattar en troghet / for namnda Atminstone ett faktiskt tillstandsvarde Sact; kannetecknat av 1. en bestamningsenhet anordnad att bestamma atminstone ett faktiskt insvangningsforlopp S -trans_act for namnda Atminstone ett faktiska tillstandsvarde Sact mot namnda atminstone ett respektive motsvarande referensvarde Sref; 2. en jamforelseenhet anordnad att utfera Atminstone en jamforelse av namnda atminstone ett faktiska insvangningsforlopp S trans_act med atminstone ett respektive motsvarande forvantat insvangningsforlopp S - trans_exp, dar namnda forvantade insvangningsforlopp S trans_exp har ett utseende vilket skulle ha blivit resultatet for namnda faktiska insvangningsforlopp S trans_act om namnda reglersystem hade haft tillgang till korrekta varden for namnda troghet /; 3. en skattningsenhet anordnad att skatta namnda troghet / baserat pa namnda atminstone en jamforelse; och 4. en regulator anordnad att styra namnda atminstone ett faktiska tillstandsvarde Sact mot namnda atminstone ett respektive motsvarande referensvarde Sref, dar namnda styrning är modellbaserad och utnyttjar en styrsignal vilken har en storlek som är proportionell mot en forandring hos namnda atminstone ett faktiska tillstandsvarde Sact, och dar namnda forandring beror av namnda troghet /. 47 537 144 1/ 101. Bestam faktiskt insvangningsforlopp Strans act for faktiskt tillstandsvarde mot motsvarande referensvarde 102. Jamfer faktiska insvangningsforloppet Strans act med respektive motsvarande forvantat insvangningsforlopp Strans exp 103. Skatta trogheten I baserat pa jamforelse i steg 102 Fic . 1 ningaf rned dika vaiten pi 7 Insng .%■■■■■%. 537 144 2/ 24A 24. 3 24. 2 23A method according to any one of claims 1-21, wherein At least one ratio = —r between an earlier estimate / * of said fidelity and said fidelity / is determined based on an analysis of said at least one actual capture process Strans_act • 23. A method according to claim 22, wherein said at least one ratio = - is determined based on the equation: / 1 = r i. (0) - (T) Zig (T) 61 (0+ fe (t) dt 0 days: 1. s = Sref — Sac , is a state error; 2. is a derivative of said state error e; - y is a calibration time; 3. T is a time parameter; and 4. the time period [OU] has a length that matters that said actual state value Sact is stabilized around said corresponding reference value. Ref. 43 537 144 24. A method according to claim 23, wherein 1. said analysis of said at least one actual capture process Strans_act is based on a force equation for - said vehicle system; - said at least one actual state value Sact constitutes an actual velocity vact for a vehicle; namnda atminston e a respective corresponding reference value Sref constitutes a reference speed vref for said vehicle; and 3. said state error is a velocity error, = vref vact - 25. A method according to claim 23, wherein 1. said analysis of said at least one actual capture process trans_act S is based on a force equation for - said vehicle system; 2. said at least one actual state value Sact utigtir an actual speed vact for a vehicle, 3. said at least one respective corresponding reference value Sref constitutes a maximum speed vmax for said vehicle; and 4. said state error e constitutes a velocity error, C = V —Vact. The method of claim 22, wherein said at least one ratio = - is determined based on the equation: 1 clacAT) - (0) P a „f (t) dt + Vac, (0) - vac, (T) dar: 1. aact is an actual acceleration; 2. aref is a reference acceleration; Guard is an actual speed; 3. y is a calibration time; and 4. the time period has a length which is such that the actual acceleration aaa is stabilized around said reference acceleration aref. A method according to any one of claims 22-26, wherein said quotient is used to determine a new estimate of a mass related to said vehicle system by updating an earlier estimate / r / * of said mass; m: w = 11-I • A method according to claim 23, wherein 1. said analysis of said & at least one actual capture process S -tratts_act is based on a force equation for said vehicle system; 2. said & at least one actual condition value Sact represents an actual speed waa for an engine in a vehicle; 3. said & at least one respective corresponding reference value Siref constitutes a reference speed coref for said engine; and - said state error e constitutes a speed error, e = corefC ° act • A method according to claim 28, wherein said quotient * is used to determine a new estimate Lew of a moment of inertia of said motor by updating an earlier estimate j of said moment of inertia ; J .0. The method of claim 28, wherein said ratio p = 7 is used to determine a new estimate Lot_new of a total moment of inertia including a moment of inertia J for said engine and a moment of inertia Any) for a power take-off system in said vehicle by updating a previous estimation Jm of the said moment of fidelity; Ifo, '_ new = jco: ./ 1 ° 31. A method according to claim 23, wherein - said & at least one actual state value S „t constitutes a 537 144 actual temperature Tact for a limited volume; 1. said at least one respective corresponding reference value Siref constitutes a reference temperature Tref for said volume; and 2. said state error 6 constitutes a temperature error, e = 7, .ef — Ta „. A method according to claim 31, wherein said ratio = - is used to determine a new estimate Ar :, „of a thermal inertia for said limited volume by updating a previous estimate A: * of said thermal inertia; A method according to any one of claims 1-32, wherein said estimating said fidelity is performed based on information related to a road section where said vehicle system is located. The method of claim 33, wherein said information comprises a vagal slope a of said vagal section. A method according to any one of claims 33-34, wherein said information is obtained based on at least one in the group of: 1. map data; a positioning device; 2. an accelerometer; 3. a force equation; 4. a height change. A computer program comprising program code, which when said program code is executed in a computer, causes said computer to execute the method according to any of claims 1-35. A computer program product comprising a computer readable medium and a computer program according to claim 36, wherein said computer program is included in said computer readable medium. A control system comprising a controller, wherein said at least one controller is arranged to control at least one actual state value Sact against At least one respective corresponding reference value Sref in a vehicle system which comprises a fidelity / for said At least one actual state value Sact; characterized by 1. a determination unit arranged to determine at least one actual capture sequence S -trans_act for said At least one actual state value Sact against said at least one respective corresponding reference value Sref; A comparison unit arranged to perform At least one comparison of said at least one actual capture sequence S trans_act with at least one respective corresponding expected capture sequence S - trans_exp, wherein said expected capture sequence S trans_exp has an appearance which would have been the result of said actual transaction act. the said system of rules had had access to the correct values for the said fidelity /; A estimating unit arranged to estimate said fidelity / based on said at least one comparison; and 4. a controller arranged to control said at least one actual state value Sact against said at least one respective corresponding reference value Sref, wherein said control is model based and uses a control signal which has a magnitude proportional to a change of said at least one actual state value Sact, and where said change depends on said fidelity. 47 537 144 1 / 101. Determine the actual capture process Strans act for actual state value against the corresponding reference value 102. Compare the actual capture process Strans act with the respective corresponding expected capture process Strans exp 103. Estimate the fidelity I based on comparison in step 102 Fic. 1 ningaf rned dika vaiten pi 7 Insng.% ■■■■■%. 537 144 2 / 24A 24. 3 24. 2 23 23. 7 % 111111111 21N 2200 27300 :2400 250 2E00 NW 2300 2900 Strackapl Fic . 2 2 537 144 3/23. 7% 111111111 21N 2200 27300: 2400 250 2E00 NW 2300 2900 Strackapl Fic. 2 2 537 144 3 /
SE1251366A 2012-12-04 2012-12-04 Estimation of an inertia for a condition in a vehicle SE537144C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1251366A SE537144C2 (en) 2012-12-04 2012-12-04 Estimation of an inertia for a condition in a vehicle
DE112013005495.7T DE112013005495T5 (en) 2012-12-04 2013-11-29 Control of a condition in a vehicle system
PCT/SE2013/051414 WO2014088491A2 (en) 2012-12-04 2013-11-29 Control of a condition in a vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1251366A SE537144C2 (en) 2012-12-04 2012-12-04 Estimation of an inertia for a condition in a vehicle

Publications (2)

Publication Number Publication Date
SE1251366A1 SE1251366A1 (en) 2014-06-05
SE537144C2 true SE537144C2 (en) 2015-02-17

Family

ID=49887186

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1251366A SE537144C2 (en) 2012-12-04 2012-12-04 Estimation of an inertia for a condition in a vehicle

Country Status (3)

Country Link
DE (1) DE112013005495T5 (en)
SE (1) SE537144C2 (en)
WO (1) WO2014088491A2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280948B1 (en) * 1987-02-25 1990-12-27 Siemens Aktiengesellschaft Electronic monitoring device for a torque generator coupled to a load-constituting machine, and process for determining the torque and for testing the torque generator
DE19812237C1 (en) * 1998-03-20 1999-09-23 Daimler Chrysler Ag Method for driving dynamics control on a road vehicle
DE19953511A1 (en) * 1999-11-06 2001-05-23 Bosch Gmbh Robert Process for controlling / regulating heat flows in the motor vehicle
JP2005509120A (en) * 2001-11-12 2005-04-07 シーメンス アクチエンゲゼルシヤフト Automobile powertrain and powertrain control method
DE10235969A1 (en) * 2002-08-06 2004-02-19 Zf Friedrichshafen Ag Motor vehicle gearbox and gear-change control method, wherein actual vehicle rolling resistance and mass are accurately determined to improve planning of automatic gear changes
DE102004051759A1 (en) * 2004-10-23 2006-04-27 Daimlerchrysler Ag Integration of a vehicle model with real-time update
WO2007060134A1 (en) * 2005-11-22 2007-05-31 Continental Teves Ag & Co. Ohg Method and apparatus for determination of a model parameter of a reference vehicle model
DE102006016769B3 (en) * 2006-04-10 2007-10-31 Ford Global Technologies, LLC, Dearborn Method for optimizing a one-track model
JP5031482B2 (en) * 2007-08-10 2012-09-19 株式会社デンソー VEHICLE STOP CONTROL DEVICE AND CONTROL SYSTEM
SE536124C2 (en) * 2011-04-01 2013-05-14 Scania Cv Ab Estimation of weight for a vehicle

Also Published As

Publication number Publication date
WO2014088491A3 (en) 2014-11-27
WO2014088491A2 (en) 2014-06-12
SE1251366A1 (en) 2014-06-05
DE112013005495T5 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
EP2956343B1 (en) Simultaneous estimation of at least mass and rolling resistance
CN102822046B (en) Apparatus and methods for control of a vehicle
CN101489861B (en) Vehicle
JP4829289B2 (en) Vehicle attitude stabilization control method and apparatus
JP2019502582A5 (en)
CN104114442B (en) For controlling the system and method slided
US20040068359A1 (en) Predictive speed control for a motor vehicle
EP3368870B1 (en) System for estimating a mass of a payload in a hauling machine
CN105480228B (en) Enhanced vehicle speed control
CN107010074B (en) Method for providing a setpoint value signal for a driver assistance device, motor vehicle and control device for a motor vehicle
CN105857296A (en) Enhanced road characterization for adaptive mode drive
SE1250334A1 (en) Estimating road slope by utilizing sensor fusion
US7099759B2 (en) Method and apparatus for estimating steering behavior for integrated chassis control
CN104925058A (en) Vehicle with mass and grade responsive cruise control
CN101437719A (en) Vehicle, characteristic value estimating device, and loaded article determination device
CN106965810B (en) The control device of vehicle
US11794747B2 (en) Method for controlling an actuator of a vehicle
US20150166067A1 (en) System and method for controlling the speed of an engine
CN109398472A (en) Steering angle adjuster
EP2956344B1 (en) A method for managing parameters that influence the driving resistance
CN109306910A (en) Method and apparatus for executing the rotational speed regulation of combustion motors
CN102730001A (en) Method and apparatus of triggering an active device of a vehicle
SE537144C2 (en) Estimation of an inertia for a condition in a vehicle
SE1250299A1 (en) Speed controller and method for improving the speed regulator swing-in process
CN106870183B (en) Vehicle intelligent torque controller based on power factor