SE537110C2 - Arrangement and method of pressurizing a cooling system which cools an internal combustion engine in a vehicle - Google Patents
Arrangement and method of pressurizing a cooling system which cools an internal combustion engine in a vehicle Download PDFInfo
- Publication number
- SE537110C2 SE537110C2 SE1251396A SE1251396A SE537110C2 SE 537110 C2 SE537110 C2 SE 537110C2 SE 1251396 A SE1251396 A SE 1251396A SE 1251396 A SE1251396 A SE 1251396A SE 537110 C2 SE537110 C2 SE 537110C2
- Authority
- SE
- Sweden
- Prior art keywords
- cooling system
- compressed air
- combustion engine
- internal combustion
- coolant
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 123
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 5
- 239000002826 coolant Substances 0.000 claims abstract description 68
- 239000003570 air Substances 0.000 description 95
- 230000003068 static effect Effects 0.000 description 10
- 239000012809 cooling fluid Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 239000004922 lacquer Substances 0.000 description 5
- 239000004575 stone Substances 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/22—Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/029—Expansion reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/14—Indicating devices; Other safety devices
- F01P11/18—Indicating devices; Other safety devices concerning coolant pressure, coolant flow, or liquid-coolant level
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Safety Valves (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
537 1 Sammandrag Foreliggande uppfinning avser ett anangemang och ett forfarande for att trycksatta ett kylsystem som kyler en forbrdnningsmotor (2) i ett fordon (1). Kylsystemet innefattar kylvdtskepump (3), som iir anpassad att cirkulera kylvdtska i kylsystemet, en expansionstank (12) som majligger expansion av kylvdtskan i kylsystemet, en overtrycksventil (15) som slapper ut tuft di ett bestamt tryck uppnds i kylsysternet. Arrangemanget innefattar tryckluftstillforande medel (17-21) som mojliggor tillforsel av tryckluft till kylsystemet. Namnda tryckluftstillforande medel (17-21) är anpassat att kontinucrligt tillfora ett luftflode till kylsystemet under hela den lid som forbranningsmotom (2) ãr i drift och att tillfora ett luftflode av en storlek som atminstone motsvarar ett uppskattat lackage frail kylsystemet. 537 1 Summary The present invention relates to an arrangement and a method for pressurizing a cooling system which cools an internal combustion engine (2) in a vehicle (1). The cooling system comprises coolant pump (3), which is adapted to circulate coolant in the cooling system, an expansion tank (12) which allows expansion of the coolant in the cooling system, an overpressure valve (15) which releases tuft at a certain pressure in the cooling system. The arrangement includes compressed air supply means (17-21) which enable the supply of compressed air to the cooling system. Said compressed air supply means (17-21) is adapted to continuously supply an air flow to the cooling system during the entire period in which the combustion engine (2) is in operation and to supply an air flow of a size which at least corresponds to an estimated leakage from the cooling system.
Description
Arrangemang och forfarande for att trycksitta ett kylsystem som kyler en forbranningsmotor i ett fordon 10 UPPFINNINGENS BAKGRUND OCH KAND TEKNIK Foreliggande uppfinning avser ett arrangemang och ett forfarande for att trycksdtta ett kylsystem som kyler en forbrdnningsmotor i ett fordon enligt patentkravens 1 och 11 ingresser. BACKGROUND AND BACKGROUND OF THE INVENTION The present invention relates to an arrangement and method for pressurizing a cooling system that cools an internal combustion engine in a vehicle according to the preambles of claims 1 and 11.
Kylvdtska som cirkulerar i ett kylsystem for kylning av en forbrdnningsmotor har i regel en driftstemperatur av cirka 80°C - 100°C. Vid en kallstart av forbranningsmotorn har kylvdtskan en betydligt ldgre temperatur. Kylvdtskan upptar emellertid en storre volym i kylsystemet da den är varm an da den är kall. For att mOjliggOra en volymandfing av kylvdtskan under drift innefattar kylsystemet en expansionstank. Expansionstanken utgors av ett slutet utrymme som innehaller luft och kylvdtska. Expansionstanken är forsedd med ett pafyllningslock och en overtrycksventil som begransar trycket i denna samt en backventil som forhindrar att det uppstar ett undertryck i tanken. Da kylvdtskan expanderar under uppvarmning stiger trycket i tanken. Trycket kan dock inte stiga over ett hogsta tillatet vdrde som definieras av overtrycksventilens oppningstemperatur. Coolant circulating in a cooling system for cooling an internal combustion engine generally has an operating temperature of about 80 ° C - 100 ° C. During a cold start of the internal combustion engine, the cooling fluid has a significantly lower temperature. However, the refrigerator occupies a larger volume in the cooling system when it is hot than when it is cold. In order to enable a volume control of the cooling vessel during operation, the cooling system comprises an expansion tank. The expansion tank consists of an enclosed space that contains air and cooling water. The expansion tank is equipped with a filling cap and an overpressure valve that limits the pressure in this and a non-return valve that prevents a negative pressure from arising in the tank. As the coolant expands during heating, the pressure in the tank rises. However, the pressure cannot rise above a maximum permissible value defined by the opening temperature of the overpressure valve.
Expansionstanken är normalt forbunden med ovriga delar av kylsystemet via en vertikal ledning som bendmns "static line". Expansionstanken placeras darmed pa en viss hojdniva ovanfor kylvdtskepumpen som cirkulerar kylvdtskan i kylsystemet. Med en sadan konstruktion tillhandahalls en kylvdtskepelare som strdcker sig fran kylvdtskepumpen upp till en expansionstank, varvid ett overtryck skapas i anslutning till kylvaskepumpens inlopp sa att kavitation inte uppkommer vid tillfallen som kylvitskepumpen startas. 1 537 1 Kylvdtskepumpens tendens att kavitera okar emellertid med kylvdtskans temperatur. Da kylvdtskan natt driftstemperatur racker normalt inte det overtryck som static line pelaren astadkommer for att eliminera risken for kavitation i kylvatskepumpen. Kylvdtskan expanderar emellertid da den varms upp vilket resulterar i att ett overtryck skapas i kylsystemet. Expansionstankens volym, som upptas av luft och kylvdtska, är dimensionerad sa att det uppkommer ett lampligt overtryck da kylvatskan expanderar. Detta overtryck och static line skapar tillsammans ett overtryck vid kylvatskepumpens inlopp som sakerstaller att kylvdtskepumpen inte kaviterar da kylvdtskan är varm. The expansion tank is normally connected to other parts of the cooling system via a vertical line called the "static line". The expansion tank is thus placed at a certain height level above the coolant pump which circulates the coolant in the cooling system. With such a construction, a coolant booster is provided which extends from the coolant pump up to an expansion tank, whereby an overpressure is created in connection with the inlet of the coolant pump so that cavitation does not occur when the coolant pump is started. 1 537 1 However, the tendency of the coolant pump to cavitate increases with the temperature of the coolant. As the cooling water at night operating temperature does not normally exceed the overpressure created by the static line column to eliminate the risk of cavitation in the cooling water pump. However, the cooling fluid expands as it heats up, which results in an overpressure being created in the cooling system. The volume of the expansion tank, which is occupied by air and coolant, is dimensioned so that a suitable overpressure arises when the coolant expands. This overpressure and static line together create an overpressure at the coolant pump inlet which ensures that the coolant pump does not cavitate when the coolant is hot.
Ett kylsystem är emellertid inte helt tat utan det foreligger ofrankomligt ett litet lackage av bade luft och kylvdtska fran kylsystemet under drift av forbranningsmotorn. Vatskelackaget forekommer huvudsakligen i kylvatskepumpens axeltatning och luftlackaget forekommer huvudsakligen i expansionstankens backventil. Lackaget sanker trycknivan i kylsystemet under drift av forbrdnningsmotom. Lackaget är dock sa litet att trycknivan endast sanks forsumbart om fordonet vid normal drift av fordonet och med mellanliggande perioder da kylvdtskan har mojlighet att kylas ned till omgivningens temperatur. However, a cooling system is not completely sealed, but there is inevitably a small leakage of both air and cooling fluid from the cooling system during operation of the internal combustion engine. The liquid leakage occurs mainly in the shaft seal of the cooling water pump and the air leakage occurs mainly in the non-return valve of the expansion tank. The leakage lowers the pressure level in the cooling system during operation of the internal combustion engine. However, the leakage is so small that the pressure level only drops negligibly around the vehicle during normal operation of the vehicle and with intermediate periods when the coolant has the possibility to cool down to ambient temperature.
Ndr kylvatskan kyls ned efter en driftsperiod atertar den sin ursprungliga volym. When the coolant cools down after an operating period, it returns to its original volume.
Darmed skapas ett undertryck i kylsystemet som motsvarar lackaget i kylsystemet under driftsperioden. Backventilen Oppnar och justerar i efterskott detta lackage. Transportfordon kan koras vasentligen dygnet runt utan mellanliggande perioder vid vilka kylvdtskan kyls ned. Aven om lackaget av luft och kylvdtska är mycket litet sa kan lackaget under en lang sammanhangande driftsperiod sanka overtrycket till en sa lag niva att det foreligger risk for kavitationsskador pa kylvaskepumpen. This creates a negative pressure in the cooling system that corresponds to the paint in the cooling system during the operating period. The non-return valve Opens and adjusts this leakage afterwards. Transport vehicles can be run essentially around the clock without intermediate periods during which the cooling fluid is cooled down. Even if the leakage of air and coolant is very small, the leakage can during a long continuous operating period lower the overpressure to such a low level that there is a risk of cavitation damage to the coolant pump.
DE 10 2007 058 575 visar ett kylsystem for en forbranningsmotor dar trycket i kylsystemet kan regleras under drift av forbranningsmotom. I detta fall utnyttjas ett avancerat tryckregleringssystem for aft reglera trycket i kylsystemet till en onskad niva med kannedom om kylvatskans temperatur och forbranningsmotorns driftstillstand. DE 10 2007 058 575 discloses a cooling system for an internal combustion engine where the pressure in the cooling system can be regulated during operation of the internal combustion engine. In this case, an advanced pressure control system is used to regulate the pressure in the cooling system to a desired level with knowledge of the coolant temperature and the operating condition of the internal combustion engine.
Man kan bl.a. hoja trycket till en extra hog niva vid snabbavstangning av en varm forbranningsmotor for att undvika angbildning i forbranningsmotoms motorblock. Det innebar aft expansionstanken kan goras mindre da den inte kraver flagon extra volym for att mottaga den rikliga mangd anga som i annat fall bildas vid snabbavstangning av en varm forbranningsmotor. 2 537 1 SAMMANFATTNING AV UPPFINNINGEN Syftet med ffireliggande uppfinning är att tillhandahalla ett arrangemang som forhindrar uppkomsten av kavitationsskador pa en kylvdtskepump aven om kylsystemet drivs vdsentligen kontinuerlig under langa perioder. Ett annat syfte är att tillhandahalla ett arrangemang som har en enkel utformning och innefattar komponenter som tdmligen ldtt kan appliceras i ett befintligt kylsystem. One can i.a. raise the pressure to an extra high level when quickly switching off a hot internal combustion engine to avoid fouling in the internal combustion engine engine block. This meant that the expansion tank can be made smaller as it does not require additional extra volume to receive the abundant amount of fuel which is otherwise formed during rapid shut-off of a hot internal combustion engine. SUMMARY OF THE INVENTION The object of the present invention is to provide an arrangement which prevents the occurrence of cavitation damage to a coolant pump even if the cooling system is operated substantially continuously for long periods. Another object is to provide an arrangement which has a simple design and comprises components which can be easily applied in an existing cooling system.
Dessa syften uppnas med kylsystemet av det inledningsvis namnda slaget, vilket kannetecknas av de sardrag som anges i patentkravets 1 kannetecknande del. Under drift uppkommer det saledes ett litet ldckage av luft och vatska i kylsystemet. Ett sadant ldckage resulterar i att overtrycket i kylsystemet successivt reduceras vid kontinuerlig drift av kylsystemet med varm kylvdtska. Det är dock mojligt att uppskatta detta lackage med en relativt god noggrannhet Enligt uppfinning tillförs kontinuerligt ett luftflOde till kylsystemet vid alla tillfällen som forbranningsmotorn är i drift. Den tillffirda mangden luft är av en storlek sâ att den atminstone alltid motsvarar det uppskattade ldckaget fran kylsystemet. I och med det kan ett avsett overtryck i kylsystemet upprdtthallas kylsystemet oberoende av ur lange driften av forbranningsmotorn fortgar. Det avsedda overtrycket i kylsystemet är av en storlek sâ att det tillsammans med static line forhindrar att kavitation uppstar i kylvdtskepumpen. These objects are achieved with the cooling system of the kind mentioned in the introduction, which can be characterized by the features stated in the can-forming part of claim 1. During operation, there is thus a small leakage of air and liquid in the cooling system. Such a leakage results in the overpressure in the cooling system being gradually reduced during continuous operation of the cooling system with hot cooling fluid. However, it is possible to estimate this leakage with a relatively good accuracy. According to the invention, an air flow is continuously supplied to the cooling system at all times when the internal combustion engine is in operation. The amount of air supplied is of such a size that it at least always corresponds to the estimated leakage from the cooling system. As a result, an intended overpressure in the cooling system can be maintained regardless of the continued operation of the internal combustion engine. The intended overpressure in the cooling system is of such a size that it, together with the static line, prevents cavitation from occurring in the coolant pump.
FOr att skapa arrangemanget behovs saledes endast tillffiras komponenter som kontinuerligt tillfOr tryckluft i en ldmplig mangd till kylsystemet. Sadana komponenter kan ha en relativt enkel konstruktion och de kan med ffirdel alien appliceras i ett befintligt kylsystem. Den mangd tryckluft som behOver tillffiras är sâ liten att den är forsumbar i forhallande till den mangd tryckluft som forbrukas av andra komponenter exempelvis, ett tungt fordon Enligt en utforingsform av uppfinningen är namnda tryckluftstillffirande medel anpassat att tillfOra ett kontinuerligt luftflode av en storlek som overskrider det luftflode som uppskattas lacka ut frail kylsystemet. Foretradesvis tillfOrs nagot mer luft till kylsystemet an vad som ldcker ut. Vdsentligen alla konventionella expansionstankar innefattar en overtrycksventil. I detta fall kommer trycket i kylsystemet aft saga tills det nar det overtryck som definieras av overtrycksventilen. När overtrycksventilens oppningstryck nas oppnar den och luft slapps ut sa att trycket i kylsystemet reduceras. Overtrycksventilen ser saledes till att trycknivan inte overskrider en hogsta tillaten niva. Trycket i kylsystemet halls i och med det pa en 3 537 1 vasentligen konstant hog nivâ som definieras av overtrycksventilen appningstryck sâ lOnge som forbranningsmotorn är aktiverad. Overtrycksventilen slapper har saledes ut skillnaden mellan den mangd luft som tillfors i kylsystemet och lackaget fran kylsystemet. In order to create the arrangement, it is thus only necessary to supply components which continuously supply compressed air in a suitable amount to the cooling system. Such components can have a relatively simple construction and they can be applied with a quarter of an alien in an existing cooling system. The amount of compressed air that needs to be supplied is so small that it is negligible in relation to the amount of compressed air consumed by other components, for example, a heavy vehicle. air flow that is estimated to leach out the frail cooling system. Preferably, slightly more air is supplied to the cooling system than is leaking. Essentially all conventional expansion tanks include a pressure relief valve. In this case, the pressure in the cooling system will decrease until it reaches the overpressure defined by the overpressure valve. When the overpressure valve opening pressure is reached, it opens and air is released so that the pressure in the cooling system is reduced. The pressure relief valve thus ensures that the pressure level does not exceed a maximum permitted level. The pressure in the cooling system is maintained at a substantially constant high level defined by the overpressure valve opening pressure as long as the internal combustion engine is activated. The overpressure valve slack has thus made out the difference between the amount of air supplied in the cooling system and the leakage from the cooling system.
Tillforseln av tryckluft bar heist overskrida det uppskattade lackaget med en relativt liten . Ett for stort flode av tryckluft till kylsystemet resulterar i ett mycket frekvent oppnande av overtryckventilen och en onodigt stor forbrukning av tryckluft. Aven om lackaget kan uppskattas med en relativt god noggrannhet maste det dock finnas en viss felâ att tillflodet av tryckluft till kylsystemet med sakerhet 'atminstone motsvarar det verkliga ldckaget. Ldckaget i kylsystemet är inte konstant utan det Or relaterat till Overtryckets storlek i kylsystemet. Ett maximalt lackage uppkommer vid det maximalt tillatna overtrycket som saledes rader i kylsystemet strax innan overtrycksventilen oppnar. Det tillforda flodet av tryckluft kan med fordel vara vasentligen konstant och motsvara det maximala lackaget. Darmed stiger trycket relativt snabbt i kylsystemet dâ det rader ett lagt overtryck och ddrmed ett litet ldckage medan trycket stiger betydligt langsammare da det fader ett stone overtryck och armed ett stOrre lOckage. The supply of compressed air had to exceed the estimated lacquer by a relatively small amount. An excessive flow of compressed air to the cooling system results in a very frequent opening of the overpressure valve and an unnecessarily large consumption of compressed air. Although the leakage can be estimated with a relatively good accuracy, there must be a certain error that the supply of compressed air to the cooling system certainly corresponds at least to the actual leakage. The leakage in the cooling system is not constant but it Or related to the magnitude of the overpressure in the cooling system. A maximum leakage occurs at the maximum permissible overpressure which thus lines in the cooling system just before the overpressure valve opens. The supplied flow of compressed air can advantageously be substantially constant and correspond to the maximum lacquer. As a result, the pressure rises relatively quickly in the cooling system as it creates a laid overpressure and thus a small leakage, while the pressure rises much more slowly as it fades a stone overpressure and armed a larger leakage.
Enligt en utforingsform av uppfinningen innefattar namnda trycktillforande medel en tryckluftskdlla och en tryckluftsledning som leder tryckluft fran tryckluftskallan till kylsystemet. I tunga fordon finns i regel vasentligen alltid tillgang till tryckluft som med fordel kan utnyttjas for detta dndamal. Namnda tryckluftskdlla kan utgoras av en ackumulatortank som lagrar tryckluft for ett befintligt tryckluftssystem i fordonet. According to an embodiment of the invention, said pressure supply means comprise a compressed air source and a compressed air line which conducts compressed air from the compressed air head to the cooling system. In heavy vehicles, there is usually always access to compressed air which can be used to advantage for this purpose. Said compressed air source can be constituted by an accumulator tank which stores compressed air for an existing compressed air system in the vehicle.
Under drift av ett fordon uppratthalls i regel ett forbestamt relativt hogt lufttryck i en ackumulatortank av en kompressor som drivs av forbrdnningsmotorn. Sadana ackumulatortankar aT relativt tata sâ att tryckluft kan lagras med ett relativt stort overtryck under langa tidsperioder Oven da fordonet inte är i drift. Ackumulatortanken kan exempelvis lagra tryckluft for ett befintligt tryckluftssystem for fordonets bromsar. During operation of a vehicle, a predetermined relatively high air pressure is generally maintained in an accumulator tank by a compressor driven by the internal combustion engine. Such accumulator tanks are relatively tight so that compressed air can be stored with a relatively large overpressure for long periods of time, even when the vehicle is not in operation. The accumulator tank can, for example, store compressed air for an existing compressed air system for the vehicle's brakes.
Enligt en utforingsform av uppfinningen innefattar namnda tryckluftsledning ett stryporgan med en fast strypning som definierar luftflodet till kylsystemet. De fiesta tryckluftskdllor i ett fordon lagrar tryckluft med eft betydligt hogre tryck an det tryck som erfordras for att trycksdtta kylsystemet. Med kannedom om trycket i tryckluftskallan och i kylsystemet sâ kan stryporganet dimensioneras sâ att tryckluft leds fran ackumulatortanken till kylsystemet i en onskad mangd. Om tryckluftskdllan 4 537 1 har ett hogt konstant tryck i forhallande till kylsystemets tryck erhalls ett vdsentligen konstant luftflode till kylsystemet da tryckfordndringarna i kylsystemet är relativt sma. According to an embodiment of the invention, said compressed air line comprises a throttling means with a fixed throttling which defines the air flow to the cooling system. Most compressed air shields in a vehicle store compressed air at a much higher pressure than the pressure required to pressurize the cooling system. With knowledge of the pressure in the compressed air shell and in the cooling system, the throttling means can be dimensioned so that compressed air is led from the accumulator tank to the cooling system in a desired amount. If the compressed air cooler 4 537 1 has a high constant pressure in relation to the pressure of the cooling system, a substantially constant air flow is obtained to the cooling system as the pressure demands in the cooling system are relatively small.
Enligt en utforingsform av uppfinningen innefattar tryckluftsledningen en ventil som är anordnad i ndmnda ledning vilken stalls i ett oppet ldge da forbrdnningsmotorn startas och i ett stangt ldge da fOrbranningsmotorn stangs ay. Darmed kommer tillforseln av tryckluft till kylsystemet att starta sa snart som forbrdnningsmotorn startar och upphora sa snart som forbrdnningsmotorn stdngs ay. Ndmnda ventil kan innefatta stryporganet. En sadan ventil kan ha en utformning sa att den i det oppna ldget reducerar tryckluften tryck och armed luftflodet till kylsystemet till en onskad niva. Ventilen har i detta fall, i det oppna ldget, en relativt trang flodeskanal for tryckluften. Alternativt, kan stryporganet och ventilen utgora separata komponenter i tryckluftledningen. According to an embodiment of the invention, the compressed air line comprises a valve which is arranged in said line which is housed in an open position when the internal combustion engine is started and in a closed position when the internal combustion engine is closed. Thus, the supply of compressed air to the cooling system will start as soon as the internal combustion engine starts and cease as soon as the internal combustion engine is stopped. Said valve may comprise the throttling means. Such a valve can be designed so that in the open it reduces the compressed air pressure and the armed air flow to the cooling system to a desired level. In this case, the valve has, in the open space, a relatively narrow flow channel for the compressed air. Alternatively, the throttle member and the valve may be separate components of the compressed air line.
Enligt en utforingsform av uppfinningen kan ndmnda trycktillfOrande medel innefatta en styrenhet som är anpassad att motta information som indikerar ndr forbrdnningsmotorn startar och stdngs av och att styra namnda ventil med hjalp av denna information. En sadan styrenhet kan utgora en del av en motorstyrenhet eller en separat styrenhet som mottar information fran exempelvis en motorstyrenhet. Ventilen är med fordel en elektrisk styrd ventil sasom en magnetventil. Med hjdlp av en sadan ventil kan styrenheten pa ett enkelt och snabbt sat Oppna och stanga av tillforseln av tryckluft till kylsystemet. According to an embodiment of the invention, said pressure supply means may comprise a control unit which is adapted to receive information indicating when the internal combustion engine starts and switches off and to control said valve with the aid of this information. Such a control unit can form part of a motor control unit or a separate control unit which receives information from, for example, a motor control unit. The valve is advantageously an electrically controlled valve such as a solenoid valve. With the aid of such a valve, the control unit can easily and quickly set up and switch off the supply of compressed air to the cooling system.
Enligt en annan utfOringsform av uppfinningen leder tryckluftsledningen tryckluft till expansionstanken i kylsystemet. Eftersom en expansionstank redan innehaller luft i ett ovre omrade är det ldmpligt att tillfora tryckluften till detta omrade av expansionstanken. Den tillforda tryckluften hojer lufttrycket i omradet ovanfor kylvdtskan i expansionstanken. Lufttrycket verkar armed med en tryckkraft pa kylvdtskan i expansionstanken sa att den erhaller ett motsvarande tryck. Kylvdtskans tryck i expansionstanken overfors till kylvdtskan i ovriga delar av kylsystemet. According to another embodiment of the invention, the compressed air line conducts compressed air to the expansion tank in the cooling system. Since an expansion tank already contains air in an upper area, it is advisable to supply the compressed air to this area of the expansion tank. The supplied compressed air raises the air pressure in the area above the cooling vessel in the expansion tank. The air pressure appears armed with a compressive force on the cooling fluid in the expansion tank so that it receives a corresponding pressure. The pressure of the cooling tank in the expansion tank is transferred to the cooling tank in other parts of the cooling system.
Alternativt kan luften tillforas till static line eller annat lampligt ställe i kylsystemet. Expansionstanken innefattar med fordel overtrycksventilen. Expansionstanken kan dven innefatta en sdkerhetsventil. En sakerhetsventil är normalt anordnad i expansionstankens lock. Den kan oppna och hjdlpa till att sanka trycket i tanken om overtrycksventilen inte har kapacitet att sanka trycket pa ett onskat satt. 537 1 Enligt en annan foredragen utforingsform av uppfinningen innefattar expansionstanken en backventil som sdkerstdller att trycket i expansionstanken inte understiger omgivande lufts tryck. En sadan backventil är i regel en befintlig komponent i en expansionstank. Backventilen oppnar om trycket i expansionstanken understiger omgivningens tryck. Forekomsten av en sadan backventil garanterar att trycket i expansionstanken atminstone uppvisar omgivningens lufttryck efter att kylvdtskan i kylsystemet kylts ned efter drift. Alternatively, the air can be supplied to a static line or other suitable place in the cooling system. The expansion tank advantageously includes the pressure relief valve. The expansion tank may also include a safety valve. A safety valve is normally arranged in the lid of the expansion tank. It can open and help to lower the pressure in the tank if the overpressure valve does not have the capacity to lower the pressure in a desired way. According to another preferred embodiment of the invention, the expansion tank comprises a non-return valve which ensures that the pressure in the expansion tank does not fall below the ambient air pressure. Such a non-return valve is usually an existing component in an expansion tank. The non-return valve opens if the pressure in the expansion tank falls below the ambient pressure. The presence of such a non-return valve ensures that the pressure in the expansion tank at least shows the ambient air pressure after the cooling unit in the cooling system has cooled down after operation.
Det inledningsvis angivna syftet uppnas dven med forfarandet enligt patentkravet 11. KORT BESKRIVNING AV RITNINGEN I det foljande beskrivs, sasom ett exempel, en foredragen utforingsform av uppfinningen med hanvisning till bifogade ritning, pa vilken: Fig. 1visar ett kylsystem i ett fordon enligt en utforingsform av uppfinningen. The initially stated object is thus achieved by the method according to claim 11. BRIEF DESCRIPTION OF THE DRAWING In the following, as an example, a preferred embodiment of the invention is described with reference to the accompanying drawing, in which: Fig. 1 shows a cooling system in a vehicle according to an embodiment of the invention.
DETALJERAD BESKRIVNING AV EN FOREDRAGEN UTFORINGSFORM AV UPPFINNINGEN Fig. 1 visar schematiskt ett fordon 1 som drivs av en Overladdad forbranningsmotor 2. Fordonet 1 är med fordel ett tungt fordon. Forbranningsmotorn 2 kan vara en dieselmotor. Forbranningsmotorn 2 kyls av kylvdtska som cirkulerar i ett kylsystem. En kylvdtskepump 3 cirkulerar kylvdtskan i kylsystemet och genom forbranningsmotorn 2. Efter att kylvdtskan kylt forbranningsmotorn 2 leds den i en ledning 4 till en termostat 5 i kylsystemet. Innan kylvdtskan uppnar en normal driftstemperatur är termostaten 5 anpassad att leda kylvdtskan, via en ledning 6, till kylvdtskepumpen 3 som är anordnad i en ledning 7. Da termostaten 5 leder kylvdtskan till kylvdtskepumpen 3 cirkuleras kylvdtskan i kylsystemet utan att kylas. Sâ snart som kylvdtskan uppnar en temperatur som overstiger en forbestdmd driftstemperatur leder termostaten 5 kylvdtskan, via en ledning 8, till en kylvdtskekylare 9, som är monterad vid ett framre parti av fordonet 1. Kylvdtskan kyls av en kylande luftstrom i kylvdtskekylaren 9. Den kylande luftstrommen astadkoms av en kylarflakt 10 och av fordonets fartvind. Efter kylningen i kylvdtskekylaren 9 leds kylvdtskan, via en ledning 11, till kylvdtskepumpen 3 i ledningen 7. 6 537 1 Kylvdtskans volym i kylsystemet varierar med kylvdtskans temperatur. Kylsystemet innefattar av den anledningen en expansionstank 12 med ett invandigt utrymme som tar upp kylvdtskans varierande volym. Expansionstanken 12 är i detta fall, via en ledning 13, forbunden med ledningen 7 i en position pa kylvdtskepumpens 3 sugsida. DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION Fig. 1 schematically shows a vehicle 1 driven by an overcharged internal combustion engine 2. The vehicle 1 is advantageously a heavy vehicle. The internal combustion engine 2 can be a diesel engine. The internal combustion engine 2 is cooled by coolant circulating in a cooling system. A coolant pump 3 circulates the coolant in the cooling system and through the internal combustion engine 2. After the coolant has cooled the internal combustion engine 2, it is led in a line 4 to a thermostat 5 in the cooling system. Before the coolant reaches a normal operating temperature, the thermostat 5 is adapted to direct the coolant, via a line 6, to the coolant pump 3 which is arranged in a line 7. Since the thermostat 5 leads the coolant to the coolant pump 3, the coolant circulates in the cooling system without cooling. As soon as the coolant reaches a temperature exceeding a predetermined operating temperature, the thermostat 5 directs the coolant, via a line 8, to a coolant cooler 9, which is mounted at a front part of the vehicle 1. The coolant is cooled by a cooling air stream in the coolant 9. The cooler the air flow is provided by a radiator surface 10 and by the speed wind of the vehicle. After cooling in the coolant cooler 9, the coolant is led, via a line 11, to the coolant pump 3 in line 7. 6 537 1 The volume of the coolant in the cooling system varies with the temperature of the coolant. For this reason, the cooling system comprises an expansion tank 12 with an internal space which absorbs the varying volume of the cooling vessel. The expansion tank 12 is in this case, via a line 13, connected to the line 7 in a position on the suction side of the coolant pump 3.
Expansionstanken 12 innefattar, vid ett ovre parti, ett avtagbart lock 14 for att mOjliggOra pafyllning av kylvdtska till kylsystemet. Locket 14 innefattar en schematiskt visad overtrycksventil 15. Overtrycksventilen 15 appnar da trycket i expansionstanken 12 overstiger ett hogsta acceptabelt tryck i kylsystemet. Overtrycksventilen 15 kan, exempelvis, oppna vid ett overtryck av 0,9 bar. The expansion tank 12 comprises, at an upper portion, a removable lid 14 to enable refilling of coolant to the cooling system. The lid 14 comprises a schematically shown overpressure valve 15. The overpressure valve 15 opens when the pressure in the expansion tank 12 exceeds a maximum acceptable pressure in the cooling system. The overpressure valve 15 can, for example, open at an overpressure of 0.9 bar.
Expansionstanken 12 innefattar dven en backventil 16. Backventilen 16 sakerstaller att trycket i expansionstanken 12 atminstone motsvarar den omgivande luftens tryck. Den oppnar saledes och slapper in luft om det uppkommer ett undertryck i expansionstanken 12 i forhallande till omgivningen. The expansion tank 12 also comprises a non-return valve 16. The non-return valve 16 ensures that the pressure in the expansion tank 12 at least corresponds to the pressure of the ambient air. It thus opens and lets in air if a negative pressure arises in the expansion tank 12 in relation to the surroundings.
Fordonet 1 är i detta fall forsedd med en tryckluftskalla i form av en ackumulatortank Ackumulatortanken 17 innehaller tryckluft som anyands i ett tryckluftssystem for att aktivera fordonets tryckluftsbromsar. Under drift av forbranningsmotom 2 uppratthaller en bromskompressor ett fOrbestamt relativt Mgt lufttryck i ackumulatortanken 17. Eftersom en ackumulatortank 17 har en mycket tat konstruktion sa kan lufttrycket i ackumulatortanken uppratthallas relativt konstant under en lang tid efter att fordonets fOrbranningsmotor 2 stangts ay. I och med det kan tryckluftsbromsarna utnyttjas sa snart som fordonet 1 ska anyandas. Ackumulatortanken 17 är forbunden med expansionstanken 12 via en tryckluftsledning Tryckluftsledning 18 innefattar en elektroniskt styrd ventil 19 sasom en magnetventil som är stallbar i ett stangt ldge i vilket det forhindrar att tryckluft leds fran ackumulatortanken 17 till expansionstanken 12 och i ett oppet ldge i vilket det tillater att trycklufts leds fran ackumulatortanken 17 till expansionstanken 12. The vehicle 1 is in this case provided with a compressed air head in the form of an accumulator tank. The accumulator tank 17 contains compressed air as anyands in a compressed air system for activating the vehicle's compressed air brakes. During operation of the internal combustion engine 2, a brake compressor maintains a predetermined relatively high air pressure in the accumulator tank 17. Since an accumulator tank 17 has a very tight construction, the air pressure in the accumulator tank can be maintained relatively constant for a long time after the vehicle's internal combustion engine 2. As a result, the compressed air brakes can be used as soon as the vehicle 1 is to be used. The accumulator tank 17 is connected to the expansion tank 12 via a compressed air line Compressed air line 18 comprises an electronically controlled valve 19 as well as a solenoid valve which is stable in a rod ledge in which it prevents compressed air from the accumulator tank 17 to the expansion tank 12 and in an open ldge in which it allows that compressed air is led from the accumulator tank 17 to the expansion tank 12.
Tryckluftsledning 18 innefattar aven ett stryporgan 20 som tillhandahaller en fast strypning ay tryckluften som leds fran ackumulatortanken 17 till expansionstanken 12. Compressed air line 18 also includes a throttling means 20 which provides a fixed throttling of the compressed air which is led from the accumulator tank 17 to the expansion tank 12.
Luften som leds in i expansionstanken 12 uppvisar darmed ett betydligt ldgre tryck an luften i ackumulatortanken 17. For att strypa luften innefattar stryporganet 20 en flodeskanal som har en liten tydrsnittsarea. Damned tillhandahalls awn ett relativt litet luftflode fran ackumulatortanken 17 till expansionstanken 12. Med kannedom om trycket i ackumulatortanken och trycket i expansionstanken 12 kan det fasta stryporganet 20 dimensioneras sa att det erhalls ett onskat luftflode fran 7 537 1 ackumulatortanken 17 till expansionstanken 12 med en god precision. Ventilen 19 och stryporganet 20 utgor i detta fall i separata enheter. Altemativt kan ventilen 19 och stryporganet 20 utformas som en komponent i form av en strypventil som i det Oppna laget tillhandahaller en flodeskanal som ger en ldmplig strypning av luften som led fran ackumulatortanken 17 till expansionstanken 12. The air which is led into the expansion tank 12 thus has a considerably lower pressure than the air in the accumulator tank 17. In order to throttle the air, the throttling means 20 comprises a flow channel which has a small diameter section area. Therefore, a relatively small air flow is provided from the accumulator tank 17 to the expansion tank 12. With knowledge of the pressure in the accumulator tank and the pressure in the expansion tank 12, the fixed throttle member 20 can be dimensioned to obtain a desired air flow from the accumulator tank 17 to the expansion tank 12 with a good precision. The valve 19 and the throttling member 20 in this case form separate units. Alternatively, the valve 19 and the throttle member 20 may be formed as a component in the form of a throttle valve which in the open layer provides a flow channel which provides an inward throttling of the air which led from the accumulator tank 17 to the expansion tank 12.
Kylsystemet innefattar en styrenhet 21. Styrenheten 21 är anpassad att motta information som indikerar nar forbrdnningsmotom 2 startar och ndr den stangs ay. I detta fall mottar styrenheten 21 information fran en motorstyrenhet 22. Styrenheten 21 staller ventilorganet 19 i det oppna ldget da forbranningsmotorn 2 startar och i det stOngda ldget da. forbrdnningsmotom 2 stangs ay. Ventilorganet 19 är alltid i det oppna ldget da fOrbranningsmotom är aktiverad och i det stOngda Eget da den inte är aktiverad. Ndr styrenheten 21 mottar information som indikerar att forbranningsmotorn 2 har aktiverats oppnar den ventilorganet 19. I och med det leds ett kontinuerligt flode av tryckluft fran ackumulatortanken 17 till expansionstanken 12 vid alla tillfdllen som forbranningsmotom 2 är aktiverad. The cooling system comprises a control unit 21. The control unit 21 is adapted to receive information indicating when the internal combustion engine 2 starts and changes when it is switched off. In this case, the control unit 21 receives information from an engine control unit 22. The control unit 21 places the valve member 19 in the open position when the internal combustion engine 2 starts and in the closed position then. internal combustion engine 2 rod ay. The valve member 19 is always in the open position when the internal combustion engine is activated and in the closed position when it is not activated. When the control unit 21 receives information indicating that the internal combustion engine 2 has been activated, it opens the valve means 19. As a result, a continuous flow of compressed air is led from the accumulator tank 17 to the expansion tank 12 at all times when the internal combustion engine 2 is activated.
Kylvdtskan erhaller ett Overtryck i ledningen 7 pa kylvaskepumpens 3 sugsida som definieras av hojden pa static line pelaren och overtrycket i expansionstanken 17. Ndr kylvatskan är kall astadkommer static line pelaren ett tillräckligt overtryck pa kylvdtskepumpens 3 sugsida for att forhindrar kavitation. Under drift av forbranningsmotom varms kylvdtskan som cirkulerar i kylsystemet upp. Da kylvdtskan vdrms upp 'Aar kylvdtskepumpens 3 tendens att kavitera. Varm kylvdtskan upptar dock en stone volym an kall kylvdtska vilket skapar ett overtryck i kylsystemet da kylvdtskan vdrms upp. Detta overtryck och static line skapar tillsammans ett tillräckligt Mgt tryck som forhindrar kavitation i kylvdtskepumpen 3 da kylvdtskan är varm. Ett kylsystem är inte fullstandigt tatt. Eft visst vatskelackage forekommer, exempelvis, vid en axeltaning hos kylvdtskepumpen 3 och ett visst luftlackage forekommer, exempelvis, vid backventilen 16. Lackaget reduceras overtrycket i kylsystemet under drift av forbranningsmotor. I synnerhet om fordonet drivs under en mycket lang period utan avbrott finns det en risk att overtrycket reduceras avsevart pa grund av namnda lOckage. Det finns Oven en risk att overtrycket i kylsystemet reduceras genom att kylsystemets lock oppnas da kylvdtskan är varm. The coolant receives an overpressure in line 7 on the suction side of the coolant pump 3 which is defined by the height of the static line column and the overpressure in the expansion tank 17. When the coolant is cold, the static line column creates a sufficient overpressure on the suction side of the coolant pump 3 to prevent cavitation. During operation of the internal combustion engine, the coolant circulating in the cooling system heats up. As the cooling water heats up, the cooling water pump 3 tends to cavitate. The hot coolant, however, takes up a stone volume of cold coolant, which creates an overpressure in the cooling system when the coolant is heated up. This overpressure and static line together create a sufficient Mgt pressure that prevents cavitation in the coolant pump 3 when the coolant is hot. A cooling system is not completely taken. After a certain liquid leakage occurs, for example, during a shaft thawing of the coolant pump 3 and a certain air leakage occurs, for example, at the non-return valve 16. The leakage is reduced in the overpressure in the cooling system during operation of the internal combustion engine. Especially if the vehicle is operated for a very long period without interruption, there is a risk that the overpressure is reduced considerably due to the said leakage. There is also a risk that the overpressure in the cooling system is reduced by opening the cooling system cover when the cooling unit is hot.
Det ldckage av luft och kylvdtska som erhalls i ett kylsystem kan uppskattas med en relativt god noggrannhet Exempelvis sa innefattar backventiler 16 uppgift om 8 537 1 maximalt lOckage. Styrenheten 21 mottar saledes information fran motorenheten 22 ndr forbranningsmotorn 2 startar. Styrenheten staller armed ventilen 19 i det oppna I och med att trycket i ackumulatortanken 17 är hOgre an trycket i expansionstanken 12 erhalls ett luftflode frail ackumulatortanken 17, via tryckluftsledningen 18, till expansionstanken 12. Stryporganet 20 och skillnaden i tryck mellan ackumulatortanken 17 och expansionstanken definierar storleken pa luftflodet. Stryporganet 20 är dimensionerat sâ att det tillforda luftflodet är av en storlek sâ att det 'atminstone alltid motsvarar det lackage som sker fran kylsystemet. I och med det kan ett avsett Overtryck i kylsystemet uppratthallas oavsett hur lange driften av forbranningsmotorn 2 fortgar. Detta overtryck garanterar med static line att ett tryck erhalls vid kylvdtskepumpens inlopp vid vilket kavitation forhindras. The leakage of air and coolant obtained in a cooling system can be estimated with a relatively good accuracy. The control unit 21 thus receives information from the engine unit 22 when the internal combustion engine 2 starts. The control unit places the armed valve 19 in the open. Since the pressure in the accumulator tank 17 is higher than the pressure in the expansion tank 12, an air flow is obtained from the accumulator tank 17, via the compressed air line 18, to the expansion tank 12. the size of the air flow. The throttle member 20 is dimensioned so that the supply air flow is of such a size that it at least always corresponds to the leakage which takes place from the cooling system. As a result, an intended overpressure in the cooling system can be maintained regardless of how long the operation of the internal combustion engine 2 continues. This overpressure guarantees with static line that a pressure is obtained at the coolant pump inlet at which cavitation is prevented.
Med fordel är stryporganet 20 dimensionerat sâ att det kontinuerligt tiff& ett luftflode till expansionstanken 17 av en storlek som overskrider det uppskattade lackaget fran kylsystemet. Darmed kommer trycket i kylsystemet att stiga tills det nar det maximalt tillatna overtrycket som definieras av overtrycksventilen 15. Ndr overtrycksventilens 15 oppningstryck uppnas oppnar den och slapper ut luft sâ att trycket i expansionstanken 12 reduceras. Overtrycksventilen 15 ser saledes till att trycknivan inte overskrider en hogsta tillaten nivâ i kylsystemet. Trycket i kylsystemet halls i och med det pa en vasentligen konstant hog nivâ sâ lange som forbranningsmotorn är aktiverad. Detta overtryck garanterar tillsammans med static line att det erhalls ett tillräckligt stort tryck vid kylvdtskepumpens inlopp sâ att kavitation undviks. Advantageously, the throttling member 20 is dimensioned so that it continuously tiffs & an air flow to the expansion tank 17 of a size which exceeds the estimated lacquer from the cooling system. Thus, the pressure in the cooling system will rise until it reaches the maximum permissible overpressure defined by the overpressure valve 15. When the overpressure valve 15 is opened, it opens and releases air so that the pressure in the expansion tank 12 is reduced. The pressure relief valve 15 thus ensures that the pressure level does not exceed a maximum permitted level in the cooling system. The pressure in the cooling system is thereby kept at a substantially constant high level as long as the internal combustion engine is activated. This overpressure together with the static line guarantees that a sufficiently large pressure is obtained at the inlet of the coolant pump so that cavitation is avoided.
Tillforseln av tryckluft bar helst overskrida det uppskattade lackaget med en relativt liten . Ett for stort flode av tryckluft till kylsystemet resulterar i ett mycket frekvent oppnande av overtryckventilen 15 och en onodigt stor forbrukning av tryckluft. Aven om ldckaget vid kylvdtskepumpens axeltatning och backventilen 16 kan uppskattas med en relativt god noggrannhet maste det dock finnas en viss fel motsvarar det verkliga ffickaget. Lackaget i kylsystemet är inte konstant utan det är relaterat till overtryckets storlek i kylsystemet. Ett maximalt lackage uppkommer vid det maximalt tillatna overtrycket som saledes fader i kylsystemet strax innan overtrycksventilen 15 oppnar. Det tillforda flodet av tryckluft kan med fordel vara vasentligen konstant och motsvara det maximala lackaget. Darmed stiger trycket relativt snabbt i kylsystemet dâ det raider ett lagt overtryck och ett litet ldckage medan trycket stiger betydligt langsammare da det fader ett hogre tryck och ett stone lackage. 9 537 1 En overtrycksventil 16 finns i vdsentligen alla konventionella expansionstankar. En tryckluftskdlla 17 finns i regel i atminstone tunga fordon 1. FOr att tillfora tryckluft till expansionstanken 12 behovs saledes endast en tryckluftsledning 18, en ventil 19, ett stryporgan 20 och en styrenhet 21. Dessa komponenter kan aven med fordel appliceras i ett befintligt fordon utan stone problem. Den mangd tryckluft som behover tillfOras är sa liten att den är forsumbar i forhallande till den mdngd tryckluft som forbrukas av andra komponenter i ett tungt fordon 1. The supply of compressed air should preferably exceed the estimated lacquer by a relatively small amount. An excessive flow of compressed air to the cooling system results in a very frequent opening of the overpressure valve 15 and an unnecessarily large consumption of compressed air. Although the leakage at the shaft seal of the coolant pump and the non-return valve 16 can be estimated with a relatively good accuracy, there must be a certain error corresponding to the actual pocket. The leakage in the cooling system is not constant but is related to the size of the overpressure in the cooling system. A maximum leakage occurs at the maximum permissible overpressure which thus fades in the cooling system just before the overpressure valve 15 opens. The supplied flow of compressed air can advantageously be substantially constant and correspond to the maximum lacquer. As a result, the pressure rises relatively quickly in the cooling system as it exerts an added overpressure and a small leakage, while the pressure rises much more slowly as it fades a higher pressure and a stone lackage. 9 537 1 An overpressure valve 16 is present in essentially all conventional expansion tanks. A compressed air source 17 is generally present in at least heavy vehicles 1. In order to supply compressed air to the expansion tank 12, only a compressed air line 18, a valve 19, a throttling member 20 and a control unit 21 are thus needed. These components can also be advantageously applied in an existing vehicle stone problem. The amount of compressed air that needs to be supplied is so small that it is negligible in relation to the amount of compressed air consumed by other components in a heavy vehicle 1.
Uppfinningen är pa intet skt begransad till den utforingsform som beskrivs pa ritningen utan kan varieras fritt inom patentkravens ramar. The invention is in no way limited to the embodiment described in the drawing but can be varied freely within the scope of the claims.
Claims (10)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE1251396A SE537110C2 (en) | 2012-12-10 | 2012-12-10 | Arrangement and method of pressurizing a cooling system which cools an internal combustion engine in a vehicle |
| KR1020157018346A KR20150091412A (en) | 2012-12-10 | 2013-11-19 | Arrangement and procedure for pressurizing a cooling system to cool an internal combustion engine in a vehicle |
| EP13862896.1A EP2929160A4 (en) | 2012-12-10 | 2013-11-19 | Arrangement and procedure for pressurizing a cooling system to cool an internal combustion engine in a vehicle |
| US14/649,631 US20150345365A1 (en) | 2012-12-10 | 2013-11-19 | Arrangement and procedure for pressurizing a cooling system to cool an internal combustion engine in a vehicle |
| BR112015013478A BR112015013478A2 (en) | 2012-12-10 | 2013-11-19 | device and procedure for pressurizing a refrigeration system to cool an internal combustion engine in a vehicle |
| RU2015127832A RU2015127832A (en) | 2012-12-10 | 2013-11-19 | DEVICE AND DISCHARGE METHOD FOR COOLING SYSTEM FOR INTERNAL COMBUSTION ENGINE IN A VEHICLE |
| PCT/SE2013/051357 WO2014092627A1 (en) | 2012-12-10 | 2013-11-19 | Arrangement and procedure for pressurizing a cooling system to cool an internal combustion engine in a vehicle |
| CN201380064268.5A CN104838107A (en) | 2012-12-10 | 2013-11-19 | Apparatus and method for pressurizing cooling system to cool internal combustion engine in vehicle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE1251396A SE537110C2 (en) | 2012-12-10 | 2012-12-10 | Arrangement and method of pressurizing a cooling system which cools an internal combustion engine in a vehicle |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| SE1251396A1 SE1251396A1 (en) | 2014-06-11 |
| SE537110C2 true SE537110C2 (en) | 2015-01-13 |
Family
ID=50934737
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SE1251396A SE537110C2 (en) | 2012-12-10 | 2012-12-10 | Arrangement and method of pressurizing a cooling system which cools an internal combustion engine in a vehicle |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US20150345365A1 (en) |
| EP (1) | EP2929160A4 (en) |
| KR (1) | KR20150091412A (en) |
| CN (1) | CN104838107A (en) |
| BR (1) | BR112015013478A2 (en) |
| RU (1) | RU2015127832A (en) |
| SE (1) | SE537110C2 (en) |
| WO (1) | WO2014092627A1 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6454142B2 (en) * | 2014-11-28 | 2019-01-16 | 日立建機株式会社 | Construction machinery |
| CN106351740A (en) * | 2016-08-31 | 2017-01-25 | 泰豪科技股份有限公司 | Engine water cooling system with evaporator |
| GB2554443A (en) * | 2016-09-28 | 2018-04-04 | Mclaren Automotive Ltd | Coolant header tank |
| TR201714018A2 (en) * | 2017-09-21 | 2019-04-22 | Ford Otomotiv Sanayi As | COOLED RETARDER SYSTEM |
| DE102018214899B3 (en) | 2018-09-03 | 2019-12-24 | Ford Global Technologies, Llc | Cooling system of an internal combustion engine of a motor vehicle, in which bubbles in the coolant flow are effectively prevented |
| DE102020120505A1 (en) * | 2020-08-04 | 2022-02-10 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Expansion tank arrangement of a cooling circuit and method for operating an expansion tank arrangement of a cooling circuit |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3345931A1 (en) * | 1983-12-20 | 1985-06-27 | Bayerische Motoren Werke AG, 8000 München | Cooling circuit for internal combustion engines |
| US6135067A (en) * | 1998-08-21 | 2000-10-24 | Uview Ultraviolet Systems, Inc. | System removing entrapped gas from an engine cooling system |
| US7152555B2 (en) * | 2001-02-20 | 2006-12-26 | Volvo Trucks North America, Inc. | Engine cooling system |
| US6532910B2 (en) * | 2001-02-20 | 2003-03-18 | Volvo Trucks North America, Inc. | Engine cooling system |
| DE10138083A1 (en) * | 2001-08-03 | 2003-02-27 | Mtu Friedrichshafen Gmbh | Cooling water circulation system for an internal combustion engine |
| DE102005007781B4 (en) * | 2005-02-19 | 2013-01-31 | Man Truck & Bus Ag | Method and arrangement for rapid construction of the system pressure in the coolant circuit of internal combustion engines |
| KR101047008B1 (en) * | 2006-03-24 | 2011-07-06 | 스쿠데리 그룹 엘엘씨 | System and method for split-cycle engine waste heat recovery |
| SE530868C2 (en) * | 2007-02-09 | 2008-09-30 | Volvo Lastvagnar Ab | Cooling |
| DE102009018012B4 (en) * | 2009-04-18 | 2021-02-04 | Daimler Ag | Method for controlling the system pressure in a coolant circuit |
| US20110308484A1 (en) * | 2010-06-16 | 2011-12-22 | Russell Peterson | Method and apparatus to regulate coolant pump inlet pressure |
| SE535942C2 (en) * | 2011-02-25 | 2013-02-26 | Scania Cv Ab | Cooling system in a vehicle |
-
2012
- 2012-12-10 SE SE1251396A patent/SE537110C2/en unknown
-
2013
- 2013-11-19 RU RU2015127832A patent/RU2015127832A/en not_active Application Discontinuation
- 2013-11-19 US US14/649,631 patent/US20150345365A1/en not_active Abandoned
- 2013-11-19 EP EP13862896.1A patent/EP2929160A4/en not_active Withdrawn
- 2013-11-19 BR BR112015013478A patent/BR112015013478A2/en not_active IP Right Cessation
- 2013-11-19 CN CN201380064268.5A patent/CN104838107A/en active Pending
- 2013-11-19 KR KR1020157018346A patent/KR20150091412A/en not_active Ceased
- 2013-11-19 WO PCT/SE2013/051357 patent/WO2014092627A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| BR112015013478A2 (en) | 2017-07-11 |
| RU2015127832A (en) | 2017-01-16 |
| SE1251396A1 (en) | 2014-06-11 |
| US20150345365A1 (en) | 2015-12-03 |
| EP2929160A1 (en) | 2015-10-14 |
| KR20150091412A (en) | 2015-08-10 |
| WO2014092627A1 (en) | 2014-06-19 |
| CN104838107A (en) | 2015-08-12 |
| EP2929160A4 (en) | 2016-07-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SE537110C2 (en) | Arrangement and method of pressurizing a cooling system which cools an internal combustion engine in a vehicle | |
| US8863704B2 (en) | Liquid-cooled internal combustion engine and method for operating an internal combustion engine of said type | |
| US9051870B2 (en) | Coolant circuit for internal combustion engine with inlet-side flow control | |
| US9442495B2 (en) | Method for supplying a drive unit | |
| EP2118463B1 (en) | Coolant system | |
| KR20130065435A (en) | Heat storage device of vehicle | |
| SE530802C2 (en) | Arrangement for heating oil in a gearbox | |
| US10378425B2 (en) | Systems and methods for a cooling system of a vehicle engine | |
| SE535942C2 (en) | Cooling system in a vehicle | |
| JP5641037B2 (en) | Cooling system | |
| JP4968095B2 (en) | Engine cooling device and air bleeding method in engine cooling device | |
| US20100319902A1 (en) | Auxiliary apparatus for vehicle water tank | |
| KR102361521B1 (en) | Heavy fuel oil supply apparatus of ship | |
| KR100745492B1 (en) | Constant temperature liquid circulating apparatus | |
| KR20150005344A (en) | Cooling water system of engine | |
| JP2017078377A (en) | Oil supply mechanism | |
| JP2014066241A (en) | Vehicle engine cooling system and method | |
| JP2009108812A (en) | Coolant circulating device for internal combustion engine | |
| SE1351512A1 (en) | Arrangement and method for regulating the temperature of an electrical energy store in a vehicle | |
| JP4929692B2 (en) | Fuel cell cooling system | |
| JP4495551B2 (en) | Oil circulation mechanism | |
| JP5878541B2 (en) | Means for supplying oil from a tank containing heavy oil fuel | |
| KR20180062801A (en) | Fuel oil supplying system for ship | |
| JP2016217240A (en) | Ship propulsion machine | |
| GB2270560A (en) | Engine cooling system |