SE535245C2 - Fuel cells without octrolytes - Google Patents

Fuel cells without octrolytes

Info

Publication number
SE535245C2
SE535245C2 SE1000813A SE1000813A SE535245C2 SE 535245 C2 SE535245 C2 SE 535245C2 SE 1000813 A SE1000813 A SE 1000813A SE 1000813 A SE1000813 A SE 1000813A SE 535245 C2 SE535245 C2 SE 535245C2
Authority
SE
Sweden
Prior art keywords
fuel cell
conducting material
cell according
component
electrolyte
Prior art date
Application number
SE1000813A
Other languages
Swedish (sv)
Other versions
SE1000813A1 (en
Inventor
Bin Zhu
Original Assignee
Gett Fuel Cells Internat Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gett Fuel Cells Internat Ab filed Critical Gett Fuel Cells Internat Ab
Priority to SE1000813A priority Critical patent/SE535245C2/en
Priority to CN2011800425612A priority patent/CN103081197A/en
Priority to PCT/SE2011/050959 priority patent/WO2012018297A1/en
Priority to EP11814871.7A priority patent/EP2601703A1/en
Publication of SE1000813A1 publication Critical patent/SE1000813A1/en
Publication of SE535245C2 publication Critical patent/SE535245C2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Uppfmningen rör a helt ny typ av bränslecell (FC), utan enskild anod-, elektrolyt- ellerKatod-konstruktion utan gjord avenbart en enkelkomponent med både jonisk ochElektronisk ledningsförmåga. Två-komponentsversioner är också möjliga. Med dennaConfiguration utan elektrolyt behövs inte den konventionella trekomponents FC-teknologin. Istället är en- eller två-komponentsdesignen konstruerad genom att använda material med lämplig porositet vilket gör denna FC-teknologi fullständigt olik jämfört med konventionell FC-teknologi vilken kräver en tät elektrolyt och porösaelektroder (anod och katod). Den nya en- eller två-komponentsFCn har demonstreratutmärkt och stabil funktion som ger 200 till 900 mWcmJ mellan 400 och 600 ° C. Dennya teknologin har även demonstrerat goda resultat med stora ytor som 6x6 cmz, då med ett bidrag på 10-20 watt. Den nya F C-teknologi som beskrivs här kommer att ha stora fördelar vad avsertillverkning, kostnader, prestanda och konkurrenskraft samt har potential att revolutionera framtida FC-teknologi, utveckling och marknader. The invention relates to a completely new type of fuel cell (FC), without a single anode, electrolyte or cathode construction, but made of a single component with both ionic and electronic conductivity. Two-component versions are also possible. With this configuration without electrolyte, the conventional three-component FC technology is not needed. Instead, the one- or two-component design is constructed using materials of suitable porosity, which makes this FC technology completely different from conventional FC technology, which requires a dense electrolyte and porous electrodes (anode and cathode). The new one- or two-component FC has demonstrated excellent and stable function that gives 200 to 900 mWcmJ between 400 and 600 ° C. This new technology has also demonstrated good results with large areas such as 6x6 cmz, then with a contribution of 10-20 watts. The new F C technology described here will have major advantages in terms of overhead production, costs, performance and competitiveness and has the potential to revolutionize future FC technology, development and markets.

Description

535 245 zirconia) för att nå tillräckligt högjonkonduktivitetófl. Detta har historiskt allvarligt begränsat valet av konstruktionsmaterial vilket resulterat i alltför höga kostnader för en kommersialiseringz. 535 245 zirconia) to achieve sufficient high ion conductivity fl. This has historically severely limited the choice of construction materials, which has resulted in excessive costs for a commercialization.

Som en konsekvens av detta har stora ansträngningar lagts på att utveckla nya, altemativa elektrolytmaterial för SOF Cs med avsikten att sänka arbetstemperaturen” för att minska kostnaderna och göra valet av material enklare etc. Exempel på material är fluoritstrukturerad jondopad ceriumw, oxides",av proveskite-typ 02' ledande oxidern och protonledande keramer” liksom andra komplexa material som LagMozOgu, BalnO- baserade oxiderß, apatite-type oxiderw och annatz. SOFC-elektrolyter kan utvecklas genom design från strukturer som baseras på olika nya materialen".As a consequence, great efforts have been made to develop new, alternative electrolyte materials for SOF Cs with the intention of lowering the working temperature "to reduce costs and make the choice of materials easier, etc. Examples of materials are fl unoritated iodopathic ceriumw, oxides", of sample kite type 02 'conductive oxidant and proton conducting ceramics "as well as other complex materials such as LagMozOgu, BalnO-based oxides, apatite-type oxides and others. SOFC electrolytes can be developed by design from structures based on various new materials".

Den nya uppfinning som beskrivs här företer ett genombrott och en helt ny bränslecellsteknologi som inte kräver en MEA-konstruktion/teknologi. Den är utan elektrolyt och använder i stället enbart en eller två komponenter. Materialen i FCn är antingen baserade på cerium-kompositer som består av nanokompositer av metalloxider eller industriella produkter med blandade jordartsoxider.The new invention described here presents a breakthrough and a completely new fuel cell technology that does not require an MEA design / technology. It is electrolyte free and instead uses only one or two components. The materials in FCn are either based on cerium composites consisting of nanocomposites of metal oxides or industrial products with mixed earth oxides.

Figur 1 visar en konventionell FC konstruerad av tre komponenter. la) Uppfinningen - en FC teknologi utan elektrolyt, lb) Utan anod och katod med endast en enkel- komponent.Figure 1 shows a conventional FC constructed of three components. la) The invention - an FC technology without electrolyte, lb) Without anode and cathode with only a single component.

När FCn utan elektrolyt placeras i H2 och luñ kan både H2 och 02 katalytiskt åtskiljas som H* och 02' och alstra elektricitet genom en dubbelkatalytisk funktion hos komponenten. H* och 02' blir ett pà partikelns yta och producerar H20. Under denna process fungerar H2 's kontaktsida som en anod som frigör elektroner genom att skapa H* och luftens (02) kontaktsida som en katod vilken tar emot elektroner vilket innebär att FC-reaktionen omedelbart är slutförd så länge som I-Y och 02' är i lämplig eller nära anslutning. I denna uppfinning är den jontransport som sker inom elektrolyten I en konventionell FC ersatt med jonísering på ytan, rörelse och reaktion i en F C-reaktor utan elektrolyt. Alla reaktioner och processer slutförs på partiklamas yta genom en direkt 535 245 förening av H* - och 02' -joner. Reaktionsprocessen för den patentsökta FCn beskrivs nedan. pâ H2 -sidan: H2 -+ 2H+ +2e' (1) vid lufisidan (o2); 1/20, + 2 e' _» 02' (2) generella reaktioner: H2 + 1/202 -> 2H+ + 02' (3-a) 2 H* + 02' -» H20 (s-b) Detta skall jämföras med FC-reaktioner/processer, tex. i fallet men en I-f -ledande elektrolyt. vid anoden: H2 -> ZH* +2e' (4) vid katoden: 1/202 + 2 l-Ü + 2e' -v H20 (5) generella reaktioner: H2+I/202 -> H20. (6) Och i fallet med den 02' -ledande elektrolyten: vid anoden; H2+o2' -+ H20 - ze' (7) vid katoaen; 1/2o2 + 2 e' _» 02' (s) generella reaktioner: H2+1/202 -+ H20. (9) Den betydelsebärande skillnaden mellan andra FCs och denna uppfinning är att denna FC inte omfattar jon (l-Ü or 02-) transport genom elektrolyten. FC-reaktionen sker istället direkt med H* och 02' jonema på partiklarnas yta. Pâ detta sätt är den uppfunna FCn en reaktor och inte som en vanlig bränslecellsapparat.When the FC without electrolyte is placed in H2 and luñ, both H2 and O2 can be catalytically separated as H * and O2 'and generate electricity by a double catalytic function of the component. H * and 02 'become one on the surface of the particle and produce H20. During this process, the contact side of H2 acts as an anode which releases electrons by creating the contact side of H * and the air (02) as a cathode which receives electrons which means that the FC reaction is immediately completed as long as IY and 02 'are in suitable or close connection. In this invention, the ion transport that takes place within the electrolyte in a conventional FC is replaced by ionization on the surface, movement and reaction in a F C reactor without electrolyte. All reactions and processes are completed on the surface of the particles by a direct combination of H * and O2 'ions. The reaction process for the claimed FC is described below. on the H2 side: H2 - + 2H + + 2e '(1) at the lu fi side (o2); 1/20, + 2 e '_ »02' (2) general reactions: H2 + 1/202 -> 2H + + 02 '(3-a) 2 H * + 02' -» H20 (sb) This should be compared with FC reactions / processes, e.g. in the case but an I-f -conducting electrolyte. at the anode: H2 -> ZH * + 2e '(4) at the cathode: 1/202 + 2 l-Ü + 2e' -v H2O (5) general reactions: H2 + I / 202 -> H2O. (6) And in the case of the 02 '-conducting electrolyte: at the anode; H2 + o2 '- + H2O - ze' (7) at the cotton; 1 / 2o2 + 2 e '_ »02' (s) general reactions: H2 + 1/202 - + H20. (9) The significant difference between other FCs and this invention is that this FC does not comprise ion (1-Ü or O 2 -) transport through the electrolyte. The FC reaction instead takes place directly with the H * and O 2 'ions on the surface of the particles. In this way, the invented FC is a reactor and not like an ordinary fuel cell apparatus.

Det har förekommit en uppfinning, en SOFC med enkelkropp med patentnummer US 5298235, 1994, Worrell et al. Den FC-apparaten var dock fortfarande baserad på en elektrolyt- och elektrod-trekomponentsfunktíon.There has been an invention, a single body SOFC with patent number US 5298235, 1994, Worrell et al. However, the FC apparatus was still based on an electrolyte and electrode three-component function.

Ett annat amerikanskt patent, 20090258276, 2009, beskriver en bränslecell som är konstruerad av material med P-N funktioner. För denna fanns inte behov av att konstruera en elektrolyt men den blev bestrálad med ljus senares.Another U.S. patent, 20090258276, 2009, discloses a fuel cell constructed of materials having P-N functions. For this there was no need to construct an electrolyte but it was irradiated with light later.

En summering av uppfinningen Denna uppfinning avser en revolutíonärt ny bränslecells teknologi- en FC utan elektrolyt och teknologi. FCn konstruerades baserad på en- eller tvåkomponenter vilka har en blandad elektronisk ledning och jonledning, där blandade jordartsmetaller (oxider) både 535 245 naturliga och syntetiserade som jonledande material blandade med metalloxider som elektroniskt ledande material. l alla existerande bränslecellsteknologíer och apparater finns tre basala bränslecellskomponenter: anod, elektrolyt och katod. Dessa fonnar en så kallad MEA (membrane and electrolyte assembly). Elektrolyten ska erbjuda elektronisk isolering men fullt genomträngbar för joner, e.g. 02' eller PF' -ledning för att fullständigt separera drivmedlet och oxidanten. Existerande SOFC-teknologier kräver alla konstruktioner med fullständig detaljerade törenlighet mellan komponentema både mekaniskt och elektrokemiskt. De ska även erbjuda god kemisk stabilitet. Speciellt har elektrolytens jontransporterande ßrmàga eller ledníngsflinnåga har begränsat driflsfunktionema. Tex i SOFCs fall når för närvarande ”yttrium stabilised zirconia” (Y SZ) en önskad ledningsfiirrnåga på 0.] S/cm vid l000°C, vilket resulterar i drifi vid höga temperaturer. l denna uppfinning har FCn utan elektrolyt ingen separat anod, elektrolyt och katod.A Summary of the Invention This invention relates to a revolutionary new fuel cell technology FC without electrolyte and technology. The FC was constructed based on one or two components which have a mixed electronic conductor and ionic conductor, where mixed earth metals (oxides) are both natural and synthesized as ion-conducting materials mixed with metal oxides as electronically conductive materials. All existing fuel cell technologies and devices have three basic fuel cell components: anode, electrolyte and cathode. These form a so-called MEA (membrane and electrolyte assembly). The electrolyte should offer electronic insulation but fully permeable to ions, e.g. 02 'or PF' line to completely separate the propellant and oxidant. Existing SOFC technologies require all constructions with complete detailed dryness between the components both mechanically and electrochemically. They must also offer good chemical stability. In particular, the electron-transporting ßrmàga or conduction fl inlet of the electrolyte has limited the drive functions. For example, in the case of SOFCs, “yttrium stabilized zirconia” (Y SZ) currently reaches a desired conductivity of 0.] S / cm at 1000 ° C, resulting in dri fi at high temperatures. In this invention, the FC without electrolyte has no separate anode, electrolyte and cathode.

Istället används enbart en eller två komponenter. FCn består av åtminstone två funktioner för elektronisk och jonisk, tex l-fl/Oz-ledningsfönnåga och katalyt till både H2 och 02.Instead, only one or two components are used. The FC consists of at least two electronic and ionic functions, such as l-fl / Oz conductivity and catalytic to both H2 and 02.

FCn är konstruerad av antingen en eller två komponenter av ett homogent material eller två komponenter med olika material och ett interface mellan de två komponentema.The FC is constructed of either one or two components of a homogeneous material or two components with different materials and an interface between the two components.

Ingen elektrolyt. Komponentema har blandade jonisk och elektroniskt ledande (MIEC) material framställda av rena MIE-ledare eller en blandning/komposit av elektronisk och joniska ledare/material. Komponentema är gjorda med lämplig struktur och nödvändiga porositet vilket är nödvändigt för alla bränslecellsteknologier. Normal keramisk sintring eller keramiska filmfonnande teknologier har använts.No electrolyte. The components have mixed ionic and electronic conductive (MIEC) materials made from pure MIE conductors or a mixture / composite of electronic and ionic conductors / materials. The components are made with the appropriate structure and necessary porosity which is necessary for all fuel cell technologies. Normal ceramic sintering or ceramic molding technologies have been used.

Enligt denna uppfmning är de jonledande materialen proton- eller syre-jonledande material vanligen i) dopade Ba(Ce,Zr)O3 keramer; ii) jondopat cerium (SDC: samariumdopat cerium; GDC: gadoliniumdopat cerium; yttriumdopad cerium; kalciumdopat cerium; Sm-Pr- eller Gd-Pr-dopat cerium; iii) blandade jordartsmetaller (oxider), e.g. DCP (patententerad i Sverige..xxx); iv) YSZ, ScSZ; v) LaGaMgO3 etc.; vi) 535 245 ceriumbaserade inklusive LCP-kompositer som patenterats tidigare, PCT och svenskt patent nummer 0101424-0.According to this invention, the ion-conducting materials are proton or oxygen-ion-conducting materials, usually i) doped Ba (Ce, Zr) O3 ceramics; ii) ion doped cerium (SDC: samarium doped cerium; GDC: gadolinium doped cerium; yttrium doped cerium; calcium dopated cerium; Sm-Pr or Gd-Pr doped cerium; iii) mixed earth metals (oxides), e.g. DCP (patented in Sweden..xxx); iv) YSZ, ScSZ; v) LaGaMgO3 etc .; vi) 535,245 cerium-based including LCP composites previously patented, PCT and Swedish patent number 0101424-0.

Enligt en annan flâredragen konkret form av uppfinningen är den elektroniskt ledande fas- materialen baserade på metalloxider, speciellt, M (M= Li, Na, K, Cu, Ni, Zn, Mg, Ag, Fe, Sn, Al, Co, Mn, Mo, Cr, In, Ca, Ba, Sr) -oxider och deras komplexa oxider med två eller fler av dessa oxider i en blandning eller komposit.According to another preferred concrete form of the invention, the electronically conductive phase materials are based on metal oxides, in particular, M (M = Li, Na, K, Cu, Ni, Zn, Mg, Ag, Fe, Sn, Al, Co, Mn , Mo, Cr, In, Ca, Ba, Sr) oxides and their complex oxides with two or fl of these oxides in a mixture or composite.

Dessa metalloxider kan definieras i olika metalloxidsystem, e.g. Fe-oxidsystem, som odopad BiFeO;, enkeldopad BiFeO3 (e.g. Bi0_9Ba0_1FeO;, ßiFeogMnoJOg, ßiogCaoiFeOg, ßiFeogCruiOg etc.) och dubbeldopad BiFeO3 (e.g. Bi0.9Ba0.lFe0.9Mn0.lO3, Bi0.9Ca0.lFe0.9CrO.103) Zn-oxidsystem med både en n- och p-typ av ZnO. Al, Ga, och i så substitutionella ingredienser som Zn och Cl och I så substitutionella ingredienser som O kan användas som n-typ av dopämnen; p-typ Zn0 med Li, Na, och K, Cu, Ag, och N, P, As.These metal oxides can be deposited in various metal oxide systems, e.g. Fe oxide systems, such as undoped BiFeO 2;, single doped BiFeO 3 (eg BiO oxide system with both an n- and p-type of ZnO. Al, Ga, and in such substitutional ingredients as Zn and Cl and I such substitutional ingredients as O can be used as n-type dopants; p-type ZnO with Li, Na, and K, Cu, Ag, and N, P, As.

Enligt en annan mer töredragen konkret fonn av uppfinningen innehåller vissa material naturligt både jonisk och elektronisk ledningsfórrnåga baserad på proveskite oxider av Ba0.5Sr0.5-Co0.8Fe0.2032d(BSCF), (Ba/Sr/Ca/lßW6MxNbl-xO3-å (M: Mg, Ni, Mn, Cr, Fe, ln, Sn); dopad LaMO3 (M= Ni, Cu, Co, Mn), e.g. LaNi0_,Fe,,,,Cu.,_,,0, etc.According to another more intricate concrete form of the invention, certain materials naturally contain both ionic and electronic conductivity based on sample kite oxides of Ba0.5Sr0.5-Co0.8Fe0.2032d (BSCF), (Ba / Sr / Ca / lßW6MxNbl-xO3-å). (M: Mg, Ni, Mn, Cr, Fe, ln, Sn); doped LaMO3 (M = Ni, Cu, Co, Mn), eg LaNiO_, Fe ,,,, Cu., _ ,, 0, etc.

Jämfört med andra FC-teknologier har teknologin för bränslecellen utan elektrolyt konstruerad med en eller två komponenter fördelar speciellt vad avser kemisk stabilitet, mekaniska egenskaper och kompatibilitet (elektrolytens problem med kompatibilitet mellan anoden och elektrolyten liksom elektrolyten och katoden undviks således). Den nya enkomponents-FCn utan elektrolyt har uppvisat extraordinära FC-prestanda, mellan zoo och iooo mwcm* under soo-sooo mAcm-Z inom rempemmfområaa (400 m1 600°C).Compared to other FC technologies, the technology for the fuel cell without electrolyte designed with one or two components has advantages especially in terms of chemical stability, mechanical properties and compatibility (the electrolyte's problems with compatibility between the anode and electrolyte as well as the electrolyte and cathode are thus avoided). The new one-component FC without electrolyte has shown extraordinary FC performance, between zoo and iooo mwcm * below soo-sooo mAcm-Z within the belt range (400 m1 600 ° C).

Bränslecellsteknologin utan elektrolyt kan erbjuda en extremt billig FC-teknologier med en stor marknadspotential. Det finns en stor potential till fortsatt utveckling med en person som år skicklig inom området. Nyckeln ligger i att optimera material, blandningar, syntetisering och tillverkningsteknologier genom att använda keramiska membranteknologier. 535 245 Kort beskrivning av ritningen och figgrer Några typiska FC-prestanda med en en- eller tvåkomponentskonstruktion visas i figurer och är även förtecknade i tabell 2 nedan.The fuel cell technology without electrolyte can offer an extremely cheap FC technologies with a large market potential. There is a great potential for further development with a person who is skilled in the field. The key lies in optimizing materials, blends, synthesizing and manufacturing technologies using ceramic membrane technologies. 535 245 Brief Description of the Drawing and Figures Some typical FC performance with a one- or two-component design is shown in the figures and is also listed in Table 2 below.

Figur 1. En konventionell fastkerarn FC (till vänster) med tre komponenter (inkluderande katod, elektrolyt och anod). Till höger FCs utan elektrolyter.Figure 1. A conventional fastener FC (left) with three components (including cathode, electrolyte and anode). To the right FCs without electrolytes.

Figur 2 illustrerar typiska karaktärístika; I-V (strömtäthet-volt) och I-P (effekttäthet) för en enkomponentskonstruerad FC-enhet med olika materialkomposítioner: a) och b). b) avser kommersiell GDC och SDC som jonledande material, blandade metalloxider, av Ni-Cu-Zn-oxid som den elektroniska; c) LCP-LiNiCu-oxid; d) SDC-LiNaCO3-komposít- LiNiCu-oxid; e) Na2CO3-SDC-nanokomposit-LiCuZnNi-oxid.Figure 2 illustrates typical characteristics; I-V (current density-volt) and I-P (power density) for a one-component designed FC unit with different material compositions: a) and b). b) refers to commercial GDC and SDC as ion-conducting materials, mixed metal oxides, of Ni-Cu-Zn oxide as the electronic; c) LCP-LiNiCu oxide; d) SDC-LiNaCO3 composite LiNiCu oxide; e) Na2CO3-SDC-nanocomposite-LiCuZnNi oxide.

Bränsle: H2, Oxidant: luñ. Gasflöde: 80 till l20 ml/min, gastryck: I atm; Cellstorlek: 13 mm i diameter med en aktiv area på 0.7 cmz.Fuel: H2, Oxidant: luñ. Gas fl fate: 80 to 120 ml / min, gas pressure: I atm; Cell size: 13 mm in diameter with an active area of 0.7 cmz.

Figur 3 visar ökad prestanda genom att förbättra metalloxidens katalytiska funktion i LiCuZnNi-Fe-oxiden och nanokompositens Na2CO3-SDC-jonledare.Figure 3 shows increased performance by improving the catalytic function of the metal oxide in the LiCuZnNi-Fe oxide and the nanocomposite Na2CO3-SDC ion conductor.

Bränsle: H; Oxidant: lufi. Gasflöde: 80 till l20 ml/min, gastryck: 1 atm; Cellstorlek: 13 mm i diameter med en aktiv area på 0.7 cmz.Fuel: H; Oxidant: lu fi. Gas fl fate: 80 to 120 ml / min, gas pressure: 1 atm; Cell size: 13 mm in diameter with an active area of 0.7 cmz.

Figur 4 visar I-V/I-P-karaktäristiska för en tvåkomponentskonsuuerad FC utan elktrolyt. a, b och c är vid 480, 520 respektive 560°C.Figure 4 shows the I-V / I-P characteristics of a bicomponent FC without electrolyte. a, b and c are at 480, 520 and 560 ° C respectively.

Bränsle: H; Oxidant: lufi. Gasflöde: 150 till 200 ml/min, gastryck: l atm; Cellstorlek: 20 mm i diameter med en aktiv area på 2.l cmz.Fuel: H; Oxidant: lu fi. Gas fl fate: 150 to 200 ml / min, gas pressure: 1 atm; Cell size: 20 mm in diameter with an active area of 2.l cmz.

Figur 5 visar I-V/I-P-karaktäristiska för den bästa FCn genom att både den jon- och elektroniska ledningstörrnågan förbättrats. a, b och c är vid 480, 500 respektive 520°C.Figure 5 shows the I-V / I-P characteristics of the best FC by improving both ion and electronic conductivity. a, b and c are at 480, 500 and 520 ° C respectively.

Bränsle: H; Oxidant: luft. Gasflöde: 80 till l20 ml/min, gastryck: l atm; Cellstorlek: 13 mm i diameter med en aktiv area pá 0,7 cmz. 535 245 Figur 6 visar l-V/l-P-karaktäristiska för F Cn med membran som tillverkats med slurry casting process och het-pressning vid 550°C.Fuel: H; Oxidant: air. Gas fl fate: 80 to 120 ml / min, gas pressure: 1 atm; Cell size: 13 mm in diameter with an active area of 0.7 cmz. Figure 6 shows the 1-V / 1-P characteristic of F Cn with membranes made by slurry casting process and hot pressing at 550 ° C.

Bränsle: H2_ Oxidant: lufi. Gasflöde: 1000 till 2000 ml/min, gastryck: 1 atm; Cellstorlek: 6 x 6 cmzi diameter med en aktiv area på 25 cmz.Fuel: H2_ Oxidant: lu fi. Gas fl fate: 1000 to 2000 ml / min, gas pressure: 1 atm; Cell size: 6 x 6 cmzi diameter with an active area of 25 cmz.

Detaljerad beskrivning av den avsedda utföringsforrner Material och pregareringar De jonledande materialen: i) iii) SDC (cerium dopat med samarium), GDC (cerium dopat med gadolinium) och YSZ (yttrium stabilized zirconia) syre-jonledare var inköpta från (Seattle Specialty Ceramics, Seattle, WA, USA).Detailed Description of the Intended Embodiments Materials and Preparations The ion-conducting materials: i) iii) SDC (cerium doped with samarium), GDC (cerium doped with gadolinium) and YSZ (yttrium stabilized zirconia) oxygen ion conductors were purchased from (Seattle Specialty Ceramics, Seattle, WA, USA).

Nanostrukturerad SDC-NagCQ-n i.e. nanokomposit-elektrolyter syntetiserades i en samflillningsprocess. Vid syntetiseringen av oeriumkarbonat-kompositema användes de följande kemikaliema i 1.0 M-lösningar, Ce (NO;)3'6H2O (Sigma- Aldrich) och Sm (N03);'6H2O (Sigma-Aldrich). Enligt önskade molartörhållanden blandades lösningen av Sm (NO;)3'6H2O en lösning av Ce (NO3);'6H2O. Vad avser “metalljonz Karbonatjon l:2 i molar förhållande, adderades en a väsentlig mängd NazCO; -lösning (1.0 M) långsamt (10 ml/min) för att helt tillverka ceriumkarbonat-kompositema med en våtkemisk samfállningsprocess. I samma process farms en blandning av SDC och karbonater med. Efter denna process filtrerades blandningen med ”suction filtration method” F ällningen torkades över natten i en ugn vid 50°C. Slutligen krossades torrmassan (dried solid) i en mortel och sintrad vid 800°C i en timme.Nanostructured SDC-NagCQ i.e. nanocomposite electrolytes were synthesized in an assembly process. In the synthesis of the urium carbonate composites, the following chemicals were used in 1.0 M solutions, Ce (NO;) 3 '6H2O (Sigma-Aldrich) and Sm (NO3);' 6H2O (Sigma-Aldrich). According to the desired molar ratios, the solution of Sm (NO 3) 3 '6H 2 O was mixed with a solution of Ce (NO 3); 6H 2 O. As for the metal ion carbonate ion 1: 2 in molar ratio, a significant amount of NazCO was added; solution (1.0 M) slowly (10 ml / min) to completely make the cerium carbonate composites with a wet chemical precipitation process. In the same process, a mixture of SDC and carbonates is used. After this process, the mixture was filtered by suction filtration method. The precipitate was dried overnight in an oven at 50 ° C. Finally, the dry solid was crushed in a mortar and sintered at 800 ° C for one hour.

LCPn inköptes från Baotou rare-earth plant, Inre Mongoliet, Kina, en världskänd jordartsproducent. Tabell 1 fórtecknar innehållet i LCPn efter värmebehandling vid 800°C i 2 timmar. Genom att värmebehandla LCPn direkt vid denna temperatur skapade de resulterande materialen jordartsmetalloxider I en 535 245 blandning/komposit med de huvudsakliga komponentema som bestod av CeOz, LagOg och flera procent PrfiOn, se tabell l. Dessa LCP användes som elektrolyter till lTSOFCs. LCPn kan modifieras vidare genom att addera andra alkaliska eller alkaliskajordkarbonater, e.g., MXCO; (M= Li, Na, K, Ca, Sr, Ba, x = 1, 2). Under värmebehandlíngen kan delar av CeOg och MXCO; bilda någon form av jondopat ceríum, MxCenxOg, de resulterande materialen blev till och med bättre SOFC- elektrolyter.The LCP was purchased from Baotou rare-earth plant, Inner Mongolia, China, a world-renowned soil producer. Table 1 lists the contents of the LCP after heat treatment at 800 ° C for 2 hours. By heat treating the LCP directly at this temperature, the resulting materials created earth metal oxides in a 535,245 mixture / composite with the main components consisting of CeO 2, LagO 2 and procent your percent Pr fi On, see Table 1. These LCPs were used as electrolytes for lTSOFCs. The LCP can be further modified by adding other alkaline or alkaline earth carbonates, e.g., MXCO; (M = Li, Na, K, Ca, Sr, Ba, x = 1, 2). During the heat treatment, parts of CeOg and MXCO; form some form of ion-doped cerium, MxCenxOg, the resulting materials became even better SOFC electrolytes.

Tabell I Komposition av en industriell LCP- produkt efier 2 timmars vârmebehandling vid 800°C LCP TREO LagOg CeOg PróOn NdgOg Sm-2O3 Y2O3 Re2(C03) 3 43.25 36.55 57.69 5.59 0.18 < 0.0l < 0.04 Elektroniskt ledande material: De elektroniskt ledande metalloxidblandningama preparerades med vanlig ”solid state reaction” metod. Stökiometriska mängder av Li2CO3, NiCO; . 2Ni (OH) 2- 61-120 (Sigma Aldrich, USA) och Zn (l\I03)2-6H2O (Sigma Aldrich, USA) och CuCOg (99.99%, Aldrich) blandades, maldes och sintrades vid 700-800 °C i 3 timmar.Table I Composition of an industrial LCP product is 2 hours heat treatment at 800 ° C LCP TREO LagOg CeOg PróOn NdgOg Sm-2O3 Y2O3 Re2 (C03) 3 43.25 36.55 57.69 5.59 0.18 <0.0l <0.04 Electronic conductive material: The electronically conductive metals was prepared by the usual solid state reaction method. Stoichiometric amounts of Li2CO3, NiCO; . 2Ni (OH) 2-61-120 (Sigma Aldrich, USA) and Zn (I103) 2-6H 2 O (Sigma Aldrich, USA) and CuCO 3 (99.99%, Aldrich) were mixed, ground and sintered at 700-800 ° C for 3 hours.

BSCFn (Ba0.2SrCo0.4Fe0.60x) syntetiserades i en samfällningprocess. Följande kemikalier användes for 1.0 M lösningar, Ba (N 03); (Sigma-Aldrich), Sr(NO3)2, Co(N03)s'6H2O (Sigma-Aldrich) och Fe(NO;);' 9H2O. För att uppnå önskade molar ratios blandades alla dessa nitrater för att beredas i 1.0 M lösning. “Metalljonerz karbonatjoner i lämplig molárt förhållande för att göra en fullständig utfällning av Ba, Sr, Co och Fe som karbonater, en avsevärd mängd NazCOg -lösning (1.0 M) adderades sakta (10 ml/min för att slutföra samfállningsprocessen. Efter denna ñltrerades fïillningen och torkad över natten i en ugn vid 50°C. Slutligen sintrades torrmassan (dried solid) vid 800°C l2 timmar.The BSCFn (Ba0.2SrCo0.4Fe0.60x) was synthesized in a precipitation process. The following chemicals were used for 1.0 M solutions, Ba (N 03); (Sigma-Aldrich), Sr (NO3) 2, Co (NO3) s'6H2O (Sigma-Aldrich) and Fe (NO;); 9H2O. To achieve the desired molar ratios, all these nitrates were mixed to be prepared in 1.0 M solution. Metallic ionic carbonate ions in the appropriate molar ratio to make a complete precipitation of Ba, Sr, Co and Fe as carbonates, a considerable amount of NazCO 3 solution (1.0 M) was added slowly (10 ml / min to complete the precipitation process. After this, the precipitate was filtered and dried overnight in an oven at 50 ° C. Finally, the dried solid was dried at 800 ° C for 12 hours.

Beredning av FC-komponenten utan elektrolyt och FC-konstruktioner 535 245 De resulterande ovan beskrivna elektroniskt ledande materialen blandades med ovan beskrivna jonledare i det viktmässiga förhållandet 1:3 och 3:1.Preparation of the FC component without electrolyte and FC constructions 535 245 The resulting electronically conductive materials described above were mixed with the above-described ion conductors in the weight ratio 1: 3 and 3: 1.

Det resulterande pulvret pressades uniaxially till pellets i ett steg med ett 300MPa tryck till en tablett av en-komponenten vars bägge ytor beströks med silver som strömupptagare. Dess storlek var ofiast 13 mm eller 20 mm i diameter och 0.60-1.0 mm tjockt. De större , 6x6 cm2 en-komponents-FC konstruerades genom varmpressteknik med 600°C värme och 10-20 tons tryck för att forma materialen. Silverbelagda metallnåt användes på båda sidor som strömupptagare.The resulting powder was uniaxially pressed into pellets in one step at a pressure of 300 MPa into a tablet of the one-component, both surfaces of which were coated with silver as current absorbers. Its size was at least 13 mm or 20 mm in diameter and 0.60-1.0 mm thick. The larger, 6x6 cm2 one-component FCs were constructed using hot press technology with 600 ° C heat and 10-20 tons of pressure to form the materials. Silver-plated metal nets were used on both sides as current collectors.

Bränslecellsmâtningar Cellprestanda testades genom datoriserade instrument (L43, Tianjin, China) vid temperaturer på 400-600°C där vätgasen och luften låg på 80-110 ml min* vid 1 atm tryck på båda sidor för 13 mm cellerna och 1-2 liter min-l för cellema på 6x6 cm2.Fuel cell measurements Cell performance was tested by computerized instruments (L43, Tianjin, China) at temperatures of 400-600 ° C where the hydrogen and air were at 80-110 ml min * at 1 atm pressure on both sides for the 13 mm cells and 1-2 liters min -l for the cells of 6x6 cm2.

Exempel 1: 1 g kommersiell GDC blandades med 1 g Li0.lNi0.5Zn0.4-oxid.Example 1: 1 g of commercial GDC was mixed with 1 g of LiO.1Ni0.5ZnO.4 oxide.

Blandningen pressades med 200 kgs tryck i en 13 mms form för att skapa pellets med 0.6-0.8 mm tjocklek. FC-prestandan visas i Figur 2a.The mixture was pressed with 200 kg pressure in a 13 mm mold to create pellets with 0.6-0.8 mm thickness. FC performance is shown in Figure 2a.

Exempel 2: I g kommersiell SDC blandades med 1 g Li0.lNi0.5Zn0.4-oxid. Blandningen värmdes ytterligare vid 700°C i 2 timmar pressades med 200 kgs tryck i enl3 mm form för att skapa pellets med 0.6-0.8 mm tjocklek, se Figur 2b.Example 2: 1 g of commercial SDC was mixed with 1 g of LiO.1Ni0.5ZnO.4 oxide. The mixture was further heated at 700 ° C for 2 hours and pressed at 200 kg pressure in a shape of 13 mm to create pellets 0.6-0.8 mm thick, see Figure 2b.

Exempel 3: 10 g LCP blandades med natriumkarbonat i ett viktförhállande från 20:] till 4:1 följt av att tillsätta 0.5-1.0 g NiCOg . 2Ni (OH)2- 6H2O , Zn (NO;)2-6H2O, CuCOg 0.5-1.0 g Fe(NO3)9H20, och 0.5-1.0 g LiNO3 blandat grundligt. Blandningen värmdes vid 720°C i 2 timmar. Det resulterande materialet pressades sedan med 200 kgs tryck i en 13 mms form för att skapa pellets med 0.6-0.8 mm tjocklek, Figur 2c. 535 245 10 Exempel 4: 10 g SDC-NaC03 nankompositer som jonledare blandades med Li0.1Cu0.4Zn0.5-oxid som tillverkats i ovan nämnda syntetisering. Blandningen sintrades i 700°C i 2 timmar och pressades sedan med 200 kgs tryck i en 13 mms form för att skapa pellets med 0.6-0.8 mm tjocklek, Figur 2d.Example 3: 10 g of LCP was mixed with sodium carbonate in a weight ratio of from 20:] to 4: 1 followed by the addition of 0.5-1.0 g of NiCO 3. 2Ni (OH) 2- 6H2O, Zn (NO;) 2-6H2O, CuCOg 0.5-1.0 g Fe (NO3) 9H2O, and 0.5-1.0 g LiNO3 mixed thoroughly. The mixture was heated at 720 ° C for 2 hours. The resulting material was then pressed at 200 kg pressure in a 13 mm mold to create pellets 0.6-0.8 mm thick, Figure 2c. Example 4: 10 g of SDC-NaCO 3 nanocomposites as ionic conductors were mixed with LiO.1Cu0.4ZnO.5 oxide made in the above-mentioned synthesis. The mixture was sintered at 700 ° C for 2 hours and then pressed with 200 kg pressure in a 13 mm mold to create pellets 0.6-0.8 mm thick, Figure 2d.

Exempel 5: 10 g blandades med 5 g Li0.2Ni0.3Cu0.2Zn0.3-oxid. Blandningen upphettades ytterligare vid 700C i 2 timmar och pressades sedan med 200 kgs tryck i en 13 mms form för att skapa pellets med 0.6-0.8 mm tjocklek, Figur 2e.Example 5: 10 g were mixed with 5 g of LiO.2Ni0.3Cu0.2ZnO.3 oxide. The mixture was further heated at 70 ° C for 2 hours and then pressed with 200 kg pressure in a 13 mm mold to create pellets 0.6-0.8 mm thick, Figure 2e.

Exempel 6: För förbättrad katalysfunktion hos metalloxidkatalyten adderades Fe. l.2g NazCOg-SDC -0.6 g LíNiCuZn-oxid blandades ytterligare med 0.6 g Fe(NO;)9H2O och blandades fullständigt. Blandningen upphettades vid 720°C i 2 timmar. Det resulterande materialet pressades sedan med 200 kgs tryck i en 13 mms form för att skapa pellets med 0.6-0.8 mm tjocklek. FC-prestandan visas i Figur 2, effect of catalyst function by adding Fe elements 3b) compared to non-Fc, 3a).Example 6: For improved catalytic function of the metal oxide catalyst, Fe was added. 1.2 g Na 2 CO 3 -SDC -0.6 g Lin 2 NiCuZn oxide was further mixed with 0.6 g Fe (NO 2) 9 H 2 O and mixed completely. The mixture was heated at 720 ° C for 2 hours. The resulting material was then pressed with 200 kg pressure in a 13 mm mold to create pellets 0.6-0.8 mm thick. The FC performance is shown in Figure 2, effect of catalyst function by adding Fe elements 3b) compared to non-Fc, 3a).

Example 7: Att konstruera två-komponents FCn utan elektrolyt. En komponent gjordes med hjälp av en Li0.2Ni0.3Cu0.2Zn0.30x -SDC-blandning och en annan med hjälp av en BSCF-SDC-blandning. Pulverblandningama pressades i en tvålagerskonfiguration med 300 kgs tryck i en 20 mm form för att skapa pellets med 0.6-0.8 mm tjocklek. FC- prestandan visas i Figur 4.Example 7: Constructing two-component FC without electrolyte. One component was made using a Li0.2Ni0.3Cu0.2Zn0.30x -SDC mixture and another using a BSCF-SDC mixture. The powder mixtures were pressed in a two-layer configuration with a pressure of 300 kg in a 20 mm mold to create pellets 0.6-0.8 mm thick. The FC performance is shown in Figure 4.

Exempel 8: Den bästa en-komponentsFC-prestandan av denna uppfinning förbättrades genom att noggrant anpassa delama mellan de joniska och elektroniska ledningsfönnågoma med hjälp av provexemplaren från exempel 6. Viktförhållandena 1: 1.5 mellan Na2CO3-SDC och LtNiCulnFe-oxiden användes. FC-prestandan som visas i Figur 5. a, b, c och d är vid 480, 500, 520 respektive 540°C. 535 245 ll Exempel 9: En-komponenten gjordes genom att använda den bästa kompositionen i Exempel 8 vilken ytterligare processades med ”slurry casting process” för framställning av membran och följdes av varmpressning vid 550°C och 20 tons tryck. The slutliga I- V/I-P karaktäristika för FCn visas i Figur 6.Example 8: The best one-component FC performance of this invention was improved by carefully fitting the parts between the ionic and electronic conductors using the samples from Example 6. The 1: 1.5 weight ratios between Na 2 CO 3 -SDC and the LtNiCulnFe oxide were used. The FC performance shown in Figure 5. a, b, c and d are at 480, 500, 520 and 540 ° C respectively. Example 9: The one component was made using the best composition of Example 8 which was further processed by slurry casting process to produce membranes and followed by hot pressing at 550 ° C and 20 tons of pressure. The final I- V / I-P characteristics of the FC are shown in Figure 6.

Fler exempel är fórtecknade i tabell 2, med indikationer på deras motsvarande ITSOFC- prestanda.More examples are listed in Table 2, with indications of their corresponding ITSOFC performance.

De med kunskaper inom området kommer att uppskatta att de ovan nämnda exemplen enbart ska tjäna som exempel och inte är avsedda att innebära någon begränsning av den nuvarande uppfinningen. 535 245 Tabell 2. Fler exempel på en-komponentsmaterial Jonledande Elektroniskt ledande material FC Temperatur prestanda material (mwcmq) (°C) i) LiNi0.6Cu0.40x 200-600 450 - 600 LCP oxider ii) LiCu0.4Zn0.60x 200-500 450-600 iii) LaM03 (M=Ni, Cu, Co, Mn) 150-400 400-650 Viktförhållandena mellan den elektroniska 300-1000 ledaren och LCPn är 1:1 400-650 Jondopad 200-700 500-700 M,.Ce1-,.O2 iv) LiNi0.6Cu0.40x Dopämne M < 20 mol%* och v) BSCF 120-540 500-700 = ef, SF, Gas* smsi v” ** BCY vi) LiNi0.6Cu0.40x 220-880 450 - 700 240-800 450-700 Not till tabell 2: * mol% betyder molar ratio, wt% är viktfórhållanden Referenser som citeras USA-patent 5298235, Worrell et al, 1994 Electrochemical devices based on single-component solid oxide fuel bodies 535 245 USA-patent, 20090258276, Kenneth Ejike Okoye Emenike Chinedozi Ejiogu Sachio Matsui, 2009 Fuel cell unit, fuel cell unit array, fuel cell module and fuel cell system Andra publikationer 1.Those skilled in the art will appreciate that the above-mentioned examples are intended to be exemplary only and are not intended to limit the present invention. 535 245 Table 2. More examples of one-component materials Ion conducting Electronic conductive material FC Temperature performance material (mwcmq) (° C) i) LiNi0.6Cu0.40x 200-600 450 - 600 LCP oxides ii) LiCu0.4Zn0.60x 200- 500 450-600 iii) LaMO 3 (M = Ni, Cu, Co, Mn) 150-400 400-650 The weight ratios between the electronic 300-1000 conductor and the LCP are 1: 1 400-650 Ion doped 200-700 500-700 M, .Ce1 - ,. O2 iv) LiNi0.6Cu0.40x Substance M <20 mol% * and v) BSCF 120-540 500-700 = ef, SF, Gas * smsi v ”** BCY vi) LiNi0.6Cu0.40x 220-880 450 - 700 240-800 450-700 Note to Table 2: * mol% means molar ratio, wt% are weight ratios References cited U.S. Patent 5298235, Worrell et al, 1994 Electrochemical devices based on single-component solid oxide fuel bodies 535 245 U.S. Patent, 20090258276, Kenneth Ejike Okoye Emenike Chinedozi Ejiogu Sachio Matsui, 2009 Fuel cell unit, fuel cell unit array, fuel cell module and fuel cell system Other publications 1.

Grove, W. R. On voltaic series and the combination of gases by platinum. Phil. Mag.Grove, W. R. On voltaic series and the combination of gases by platinum. Phil. Mag.

Ser. 314, 127-130 (1839).Looks. 314, 127-130 (1839).

Steel, B. C. H. & Heinzel, A. Materials for firel-cell technologies. Nature 414, 345- 352 (2001).Steel, B. C. H. & Heinzel, A. Materials for fi rel-cell technologies. Nature 414, 345-352 (2001).

James R. W. et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode.James R. W. et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode.

Nat. Mater. 5, 541-544 (2006).Nat. Mater. 5, 541-544 (2006).

Sossina, M. et al. Solid acids as fuel cell electrolytes. Nature 410, 910-913 (2001). 5. Jacobson, M.Z. Cleaning the air and improving health with hydrogen fuel-cell 10. ll. 12. 13. vehicles. Science 308, 1901-1905 (2005).Sossina, M. et al. Solid acids as fuel cell electrolytes. Nature 410, 910-913 (2001). 5. Jacobson, M.Z. Cleaning the air and improving health with hydrogen fuel-cell 10. ll. 12. 13. vehicles. Science 308, 1901-1905 (2005).

Hibino T. et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science 16, 2031-2033 (2000).Hibino T. et al. A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science 16, 2031-2033 (2000).

. David, A. A. Optimization of ioníc conductivity in doped ceria. PNAS 103, 3518- 35210006).. David, A. A. Optimization of ionic conductivity in doped ceria. PNAS 103, 3518- 35210006).

Zhu, B. Solid oxide fuel cell (SOFC) technical challenges and solutions. Int. .I.Zhu, B. Solid oxide fuel cell (SOFC) technical challenges and solutions. Int. .IN.

Energy Res. 33, 1 126-1 137 (2009).Energy Res. 33, 1 126-1 137 (2009).

Zhu, B. Nanocomposites for advanced fuel cell technology. J. Nanosci. Nanotech ll, 1-7 (2010).Zhu, B. Nanocomposites for advanced fuel cell technology. J. Nanosci. Nanotech ll, 1-7 (2010).

Perry, E., Tsai, T. & Bamett, S. A. A direct-methane fuel cell with a cería-based anode. Nature 400, 649-651 (1999).Perry, E., Tsai, T. & Bamett, S. A. A direct-methane fuel cell with a ceria-based anode. Nature 400, 649-651 (1999).

Huang, Y. H., Dass, R. 1., Xing, Z. L. & Goodenough, J. B. Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254-257 (2006).Huang, Y. H., Dass, R. 1., Xing, Z. L. & Goodenough, J. B. Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254-257 (2006).

Ishihara, T., Matsuda, H. & Takita, Y. Dogg LaGaO; Erovskite type oxide as a new oxide ioníc conductor. J Am. Chem. Sac. 116, 3801-3803 (1994).Ishihara, T., Matsuda, H. & Takita, Y. Dogg LaGaO; Erovskite type oxide as a new oxide ionic conductor. J Am. Chem. Sac. 116, 3801-3803 (1994).

Yang, L. et al. Enhanced sulfirr and coking tolerance of a mixed ion conductor for SOFCs: BaZr0,|Ce0_7Y0_2_xYb,.O;_¿. Science 326, 126-129 (2009). 535 245 14 14. Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R. & Laligant, Y. Designing fast oxide-ion conductors based on LagMozOg. Nature 404, 856-858 (2000). 15. Goodenough, J. B., Ruiz-Diaz, J. E. & Zhen, Y. S. Oxide-ion conductíon in Ba¿In¿O¿ and BaêlngMOg (M=Ce, Hf, or Zr). Solid State Ionics 44, 21-31 (1990). 16. Yoshioka, H. & Tanase, S. Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solid oxide fuel cells. Solid State Ionics 176, 31-34 (2005). 17. Goodenough, J. B. Oxíde-ion conductors by design. Nature 404, 821-822 (2000).Yang, L. et al. Enhanced sul fi rr and coking tolerance of a mixed ion conductor for SOFCs: BaZr0, | Ce0_7Y0_2_xYb, .O; _¿. Science 326, 126-129 (2009). 535 245 14 14. Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R. & Laligant, Y. Designing fast oxide-ion conductors based on LagMozOg. Nature 404, 856-858 (2000). 15. Goodenough, J. B., Ruiz-Diaz, J. E. & Zhen, Y. S. Oxide-ion conduction in Ba¿In¿O¿ and BaêlngMOg (M = Ce, Hf, or Zr). Solid State Ionics 44, 21-31 (1990). 16. Yoshioka, H. & Tanase, S. Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solid oxide fuel cells. Solid State Ionics 176, 31-34 (2005). 17. Goodenough, J. B. Oxide-ion conductors by design. Nature 404, 821-822 (2000).

Claims (10)

1. A fuel cell comprising a porous body having a first side arranged to be incontact with H2 and a second side arranged to be in contact with air (02), andmeans for collecting current at said first and second side, wherein the bodycomprises one or two components for catalyzing dissociation of H2 and 02and comprising at least one ionic conducting material and at least one electron conducting material.
2. A fuel cell according to claim 1, wherein the component or components area composite of at least one ionic conducting material and at least one electron conducting material.
3. A fuel cell according to claim 1 or 2, wherein the component or componentsare a mixture of at least one ionic conducting material and at least one electron conducting material.
4. A fuel cell according to any previous claim, wherein at least one ionic conducting material is a proton or oxygen ion conducting material.
5. A fuel cell according to claim 4, wherein the at least one ionic conductingmaterial is selected from - doped Ba(Ce,Zr)O3 ceramics, - ion doped ceria, such as SDC (samarium doped ceria) GDC,(gadolinium doped ceria) yttrium doped ceria, calcium doped ceria, Sm-Pr orGd-Pr doped ceria, - mixed rare-earth oxides, such as LCP, -YSZ (yttrium stabilized zirconia), ScSZ (Scandia stabilized zirconia), - LaGaMgOg,
6. 26. A fuel cell according to any previous claim, wherein at least one electron conducting material is a metal oxide, such as oxides of Li, Na, K, Cu, Ni, Zn, Mg, Ag, Fe, Sn, Al, Co, Mn, Mo, Cr, ln, Ca, Ba, Sr and their complex oxides.
7. A fuel cell according to claim 6, wherein the at least one electron conducting material further comprises Fe.
8. A fuel cell according to any previous claim, wherein the weight ratiobetween the at least one electron conducting material and the at least oneionic conducting material is between 1:3 and 3:1.
9. A fuel cell according to any one of claims 1, wherein the at least one ionicconducting material and the at least one electron conducting material is the one and the same material.
10. A fuel cell according to claim 9, wherein the material is -proveskite oxides of Ba05Sr0_5-Co0_8Fe0_2O32d (BSCF),(Ba/Sr/Ca/La)O.6MxNb1-xO3-ö in which M is selected from Mg, Ni, Mn, Cr,Fe, ln and Sn, or -doped LaMO3 in which M =(Ni, Cu, Co, Mn), such as LaNiozFeoßscUotsøs -
SE1000813A 2010-08-02 2010-08-02 Fuel cells without octrolytes SE535245C2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SE1000813A SE535245C2 (en) 2010-08-02 2010-08-02 Fuel cells without octrolytes
CN2011800425612A CN103081197A (en) 2010-08-02 2011-07-21 Fuel cell
PCT/SE2011/050959 WO2012018297A1 (en) 2010-08-02 2011-07-21 Fuel cell
EP11814871.7A EP2601703A1 (en) 2010-08-02 2011-07-21 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1000813A SE535245C2 (en) 2010-08-02 2010-08-02 Fuel cells without octrolytes

Publications (2)

Publication Number Publication Date
SE1000813A1 SE1000813A1 (en) 2012-02-03
SE535245C2 true SE535245C2 (en) 2012-06-05

Family

ID=45559684

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1000813A SE535245C2 (en) 2010-08-02 2010-08-02 Fuel cells without octrolytes

Country Status (4)

Country Link
EP (1) EP2601703A1 (en)
CN (1) CN103081197A (en)
SE (1) SE535245C2 (en)
WO (1) WO2012018297A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126716A1 (en) * 2013-02-13 2014-08-21 Phillips 66 Company Electrolyte formation for a solid oxide fuel cell device
US9666891B2 (en) 2013-10-08 2017-05-30 Phillips 66 Company Gas phase modification of solid oxide fuel cells
WO2015054096A1 (en) 2013-10-08 2015-04-16 Phillips 66 Company Formation of solid oxide fuel cells by spraying
US9660273B2 (en) 2013-10-08 2017-05-23 Phillips 66 Company Liquid phase modification of solid oxide fuel cells
CN104103842B (en) * 2014-07-02 2017-01-04 湖北大学 A kind of electroless matter barrier film single part fuel cell with Schottky junction type
CN105514458A (en) * 2016-01-27 2016-04-20 广州道动新能源有限公司 Fuel voltaic battery
CN105576252B (en) * 2016-03-21 2018-02-27 吉林大学 SOFC based on semiconductor junction effect and preparation method thereof
CN107994234B (en) * 2017-11-06 2020-05-22 深圳大学 Ceramic fuel cell and preparation method thereof
CN109244501B (en) * 2018-09-25 2021-03-26 德州新动能铁塔发电有限公司 Fuel cell bipolar plate composite material and preparation method and application thereof
CN109686986B (en) * 2018-11-02 2020-12-08 全球能源互联网研究院有限公司 One-way electronic conduction solid oxide fuel cell and preparation method thereof
CN111554956B (en) * 2020-04-02 2021-11-23 湖北大学 LST-SDC-NCAL composite material and application thereof, single-layer fuel cell and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298235A (en) * 1991-12-16 1994-03-29 The Trustees Of The University Of Pennsylvania Electrochemical devices based on single-component solid oxide bodies
US5725965A (en) * 1995-04-25 1998-03-10 Gas Research Institute Stable high conductivity functionally gradient compositionally layered solid state electrolytes and membranes
AU2003278832A1 (en) * 2002-09-13 2004-04-30 Carnegie Mellon University Optical biosensors and methods of use thereof
GB2411043B (en) * 2004-02-10 2007-09-19 Ceres Power Ltd A method and apparatus for operating an intermediate-temperature solid-oxide fuel cell stack
US7588626B2 (en) * 2004-11-23 2009-09-15 Trustees Of Boston University Composite mixed oxide ionic and electronic conductors for hydrogen separation
WO2007126797A2 (en) * 2006-03-30 2007-11-08 Ctp Hydrogen Corporation Conducting ceramics for electrochemical systems
CN101295791B (en) * 2007-04-24 2011-01-26 中国科学院大连化学物理研究所 Ternary complex cathode material of intermediate/low temperature solid-oxide fuel battery

Also Published As

Publication number Publication date
CN103081197A (en) 2013-05-01
EP2601703A1 (en) 2013-06-12
WO2012018297A1 (en) 2012-02-09
SE1000813A1 (en) 2012-02-03

Similar Documents

Publication Publication Date Title
Zhang et al. Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices
SE535245C2 (en) Fuel cells without octrolytes
Liu et al. Superionic conductivity of Sm3+, Pr3+, and Nd3+ triple-doped ceria through bulk and surface two-step doping approach
Yang et al. In situ fabrication of CoFe alloy nanoparticles structured (Pr0. 4Sr0. 6) 3 (Fe0. 85Nb0. 15) 2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells
Fan et al. Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: a review
Kan et al. Challenges and prospects of anodes for solid oxide fuel cells (SOFCs)
Zhao et al. Ln 2 MO 4 cathode materials for solid oxide fuel cells
Flores et al. Advances in the development of titanates for anodes in SOFC
He et al. In situ formation of Er0. 4Bi1. 6O3 protective layer at cobaltite cathode/Y2O3–ZrO2 electrolyte interface under solid oxide fuel cell operation conditions
Shijie et al. A novel high-entropy cathode with the A2BO4-type structure for solid oxide fuel cells
Jing et al. Structure, synthesis, properties and solid oxide electrolysis cells application of Ba (Ce, Zr) O3 based proton conducting materials
Du et al. A SmBaCo 2 O 5+ δ double perovskite with epitaxially grown Sm 0.2 Ce 0.8 O 2− δ nanoparticles as a promising cathode for solid oxide fuel cells
Hu et al. Visiting the roles of Sr‐or Ca‐doping on the oxygen reduction reaction activity and stability of a perovskite cathode for proton conducting solid oxide fuel cells
He et al. A critical review of key materials and issues in solid oxide cells
JP2009037874A (en) Manufacturing method of air electrode support type single cell for intermediate temperature actuating solid oxide fuel cell
Zeng et al. Enhancing the oxygen reduction reaction activity and durability of a solid oxide fuel cell cathode by surface modification of a hybrid coating
Antonova Proton-conducting oxides based on LaScO 3: structure, properties and electrochemical applications. A focus review
Niemczyk et al. Development of novel air electrode materials for the SOFC and SOEC technologies
KR101186766B1 (en) Easy-sintering zirconia electrolyte for solid oxide fuel cell
Fan* Solid‐State Electrolytes for SOFC
CN101222059A (en) B-position omission perovskite anode material used for solid-oxide fuel battery
JP4191821B2 (en) Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte
KR20100108955A (en) Cathode material for solid oxide fuel cell and manufacturing method of the same
Shi et al. Solid‐state synthesis of BaCe0. 16Y0. 04Fe0. 8O3‐δ cathode for protonic ceramic fuel cells
He et al. Cathodes for solid oxide fuel cell

Legal Events

Date Code Title Description
NUG Patent has lapsed