SE533522C2 - Nanowire-based effective medium solar cell - Google Patents

Nanowire-based effective medium solar cell

Info

Publication number
SE533522C2
SE533522C2 SE0702072A SE0702072A SE533522C2 SE 533522 C2 SE533522 C2 SE 533522C2 SE 0702072 A SE0702072 A SE 0702072A SE 0702072 A SE0702072 A SE 0702072A SE 533522 C2 SE533522 C2 SE 533522C2
Authority
SE
Sweden
Prior art keywords
solar cell
nanowires
cell structure
nanowire
light
Prior art date
Application number
SE0702072A
Other languages
Swedish (sv)
Other versions
SE0702072L (en
Inventor
Lars Samuelson
Federico Capasso
Original Assignee
Qunano Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qunano Ab filed Critical Qunano Ab
Priority to SE0702072A priority Critical patent/SE533522C2/en
Priority to KR1020107001213A priority patent/KR101547711B1/en
Priority to CN201610640931.7A priority patent/CN106206780B/en
Priority to EP08767200.2A priority patent/EP2168167B1/en
Priority to PCT/SE2008/050734 priority patent/WO2008156421A2/en
Priority to AU2008264257A priority patent/AU2008264257A1/en
Priority to CN200880103566.XA priority patent/CN101803035B/en
Priority to US12/452,175 priority patent/US20100186809A1/en
Publication of SE0702072L publication Critical patent/SE0702072L/en
Publication of SE533522C2 publication Critical patent/SE533522C2/en
Priority to US15/374,217 priority patent/US10128394B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Description

25 533 522 2 rnanium är ett lämpligt substratmateriaP. Tillgången på Ge i jordskorpan är be- gränsad och dyr, och om sådana tandemsolceller med hög verkningsgrad skulle användas i stor skala på jorden, skulle detta bli en begränsning. Av denna anled- ning skulle utvecklingen av MJ -solceller baserade på kristallint Si eller ännu enkla- re substrat öppna nya möjligheter för applikationer på jorden, vilka utnyttjar förde- len med MJ-cellernas högre verkningsgrader och lägre kostnader och större tillgång på Si-substrat jämfört med Ge. En MJ PV-cell enligt teknikens ståndpunkt visas schematiskt i ñg. 2. Tvärsnittet visar gitteranpassad växning på Ge-substrat3 som når verkningsgrader på mer än 40% med koncentratorer. R 53nium is a suitable substrate material. The availability of Ge in the earth's crust is limited and expensive, and if such tandem solar cells with high efficiency were to be used on a large scale on earth, this would be a limitation. For this reason, the development of MJ solar cells based on crystalline Si or even simpler substrates would open up new possibilities for applications on earth, which take advantage of the MJ cells' higher efficiencies and lower costs and greater availability of Si substrates. compared to Ge. An MJ PV cell according to the prior art is shown schematically in ñg. 2. The cross section shows lattice-adapted growth on Ge-substrate3 which reaches efficiencies of more than 40% with concentrators.

Tekniska begränsningar för planara lll-V multipelövergångssolceller: Verkningsgrader på över 60% är mycket svåra att uppnå på grund av fysiska begränsningar och kräver mer än tre övergångselement.Technical limitations of planar III-V multiple transition solar cells: Efficiencies of over 60% are very difficult to achieve due to physical limitations and require more than three transition elements.

Konventionella lll-V-material för multipelövergångsceller erfordrar perfekt git- teranpassning på stora substratytor för att undvika dislokationer.Conventional III-V materials for multiple transition cells require perfect lattice fitting on large substrate surfaces to avoid dislocations.

God funktionalitet hos anordningen kommer även att kräva mycket hög grad av homogen sammansättning på en hel skiva.Good functionality of the device will also require a very high degree of homogeneous composition on an entire board.

Gitteranpassning för epitaxiell växning och / eller tjocka buffertlager är nöd- vändiga för att undvika defektbildning, vilket gör det svårt att tillverka an- ordningar med mer än några få övergångar.Lattice adjustment for epitaxial growth and / or thick buffer layers are necessary to avoid defect formation, which makes it difficult to manufacture devices with more than a few transitions.

Förutom ovannämnda tekniska utmaningar förknippade med SOA- multípelövergångscellen ger frågor rörande kostnader och skalning problem såsom: v Multipelövergångsceller växta på Ge- eller III-V-substrat år mycket dyra på grund av höga substratkostnader och skivor i små storlekar. v IIl-V-material är idag epitazriellt växta i höggradig MOCVD- eller till och med MBE-reaktorer med låg genornströmning.In addition to the above-mentioned technical challenges associated with the SOA multiple transition cell, issues related to cost and scaling present problems such as: v Multiple transition cells grown on Ge or III-V substrates are very expensive due to high substrate costs and small size disks. v IIl-V materials are today epitazrially grown in high-grade MOCVD or even low-flow MBE reactors.

Den höga kostnaden för dyrbara material gör användningen av optiska kon- centratorer nödvändig för att förbättra kostnadsförhållandet för utförande på systemnivå. 2 F. Dímroth, “High-efficiency solar cells from III-V compound serniconductors” Phys. Stat. Sol. (c) 3, 373 (2006) och http:Uwwwsgectrolab.com/com/news/news-detail.asp?id=l 72 3 Figurer med tillstånd av LL. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overvievv" I Electr Spectr Rel Phen 150, 105 (2006) l5 20 25 30 533 522 3 ~ Även om kostnaden skulle kunna reduceras, skulle koncentratorer behöva uppnå en mättnadsspänning även under fullt solljus, vilket begränsar det maximala effektuttaget.The high cost of expensive materials makes the use of optical concentrators necessary to improve the cost ratio for execution at the system level. 2 F. Dímroth, “High-efficiency solar cells from III-V compound serniconductors” Phys. State. Solar. (c) 3, 373 (2006) and http: Uwwwsgectrolab.com/com/news/news-detail.asp? id = l 72 3 Figures courtesy of LL. Kazmerski, "Solar photovoltaics R&D at the tipping point: A 2005 technology overviewv" I Electr Specter Rel Phen 150, 105 (2006) l5 20 25 30 533 522 3 ~ Even if the cost could be reduced, concentrators would need to achieve a saturation voltage even during full sunlight, which limits the maximum power output.

Redogörelse för uppfinningen Det är uppenbart att solcellsanordningar enligt teknikens ståndpunkt kan förbätt- ras för att uppnå de nämnda fördelarna, vilka avser verkningsgrad och produk- tionskostnad.Disclosure of the invention It is obvious that solar cell devices according to the state of the art can be improved in order to achieve the mentioned advantages, which relate to efficiency and production cost.

Syftet med föreliggande uppfinning är att tillhandahålla en solcellsstruktur som kan övervinna nackdelarna hos anordningar enligt teknikens ståndpunkt. Detta uppnås med hjälp av en solcellsstruktur såsom definierad i patentkrav l.The object of the present invention is to provide a solar cell structure which can overcome the disadvantages of devices according to the prior art. This is achieved by means of a solar cell structure as defined in claim 1.

Solcellsstrukturen enligt en utföringsform av föreliggande uppfinning innefattar ett flertal nanotrådar, vilka utgör den ljusabsorberande delen av solcellsstrukturen.The solar cell structure according to an embodiment of the present invention comprises a plurality of nanowires, which form the light-absorbing part of the solar cell structure.

Nanotrådarna är tíllhandahållna i en matris på ett substrat, företrädesvis kisel, med en delning mellan intilliggande nanotrådar som är kortare än den ljusvåglängd som solcellstrukturen är designad att absorbera. Nanotrådarna bildar ett kvasi- kontinuerligt effektivmedium.The nanowires are provided in a matrix on a substrate, preferably silicon, with a pitch between adjacent nanowires that is shorter than the light wavelength that the solar cell structure is designed to absorb. The nanowires form a quasi-continuous efficient medium.

Solcellsstrukturen enligt en utföringsform av föreliggande uppfinning innefattar en nanotråd, vilken utgör den ljusabsorberande delen av solcellsstrukturen, och en vågledare som omsluter åtminstone en del av nanotråden. Nanotråden är gjord i ett material med direkt bandgap och vågledaren är ord i ett material med ett stort och indirekt bandgap.The solar cell structure according to an embodiment of the present invention comprises a nanowire, which forms the light-absorbing part of the solar cell structure, and a waveguide enclosing at least a part of the nanowire. The nanowire is made of a material with direct bandgap and the waveguide is word in a material with a large and indirect bandgap.

Ljusabsorptionen uppnås genom och begränsas till nanotråden genom tillhandahål- landet av ett segment i den nanoträd som utgör ett bandgap anpassat att absorbera en del av solspektrumet. Företrädesvis innefattar nanotråden ett flertal segment, där varje har individuella bandgap som motsvarar olika delar av solspektrumet.The light absorption is achieved through and limited to the nanowire by the provision of a segment in the nanotree which constitutes a bandgap adapted to absorb a part of the solar spectrum. Preferably, the nanowires comprise a plurality of segments, each of which has individual band gaps corresponding to different parts of the solar spectrum.

Enligt en utföringsform av föreliggande uppfinning är segmenten separerade genom att vara kopplade i serier med hjälp av Esaki-dioder.According to an embodiment of the present invention, the segments are separated by being connected in series by means of Esaki diodes.

Enligt en utföringsform av föreliggande uppfinning är segmenten separerade genom kopplingar i serier med hjälp av metallsegment.According to an embodiment of the present invention, the segments are separated by couplings in series by means of metal segments.

Tack vare föreliggande uppfinningen är det möjligt att producera solceller med hög verkningsgrad till rimliga kostnader. 10 15 20 25 533 522 4 En fördel med solcellsstrukturen enligt föreliggande uppfinning är att den uppfin- ningsenliga strukturen tillåter heterostrukturer som inte kräver gitteranpassning, vilket ger stor frihetsgrad med avseende på materialkombinationer. l princip finns det ingen begränsning av antalet olika bandgap, dvs. segment i nanotråden som ger möjlighet att absorbera hela eller en vald del av solspektrumet. Genom att placera nanotrådarna tillräckligt nära varandra på substratet kombineras fördelarna med att använda nanotrådar med en effektiv absorption av ljuset eftersom det infallande ljuset ”ser” ett kontinuerligt effektivrnedium.Thanks to the present invention, it is possible to produce solar cells with high efficiency at reasonable costs. An advantage of the solar cell structure according to the present invention is that the structure according to the invention allows heterostructures which do not require lattice adaptation, which gives a large degree of freedom with respect to material combinations. In principle, there is no limit to the number of different bandgaps, ie. segments of the nanowire that provide the ability to absorb all or a selected portion of the solar spectrum. By placing the nanowires sufficiently close to each other on the substrate, the advantages of using nanowires are combined with an efficient absorption of the light because the incident light "sees" a continuous effective medium.

Tack vare den lilla växtarean för varje tråd behövs ingen extrem homogen växning på en hel skiva, vilket minskar kraven på växtsystem. Dessutom kan substratet, tack vare den lilla arean, vara polykristallint eller tunnñlmskisel eller ett ännu enk- lare material.Thanks to the small plant area for each wire, no extremely homogeneous growth is needed on an entire disc, which reduces the requirements for plant systems. In addition, thanks to the small area, the substrate can be polycrystalline or thin-silicon or an even simpler material.

Utföringsformer av uppfinningen definieras i de oberoende patentkraven. Andra syf- ten rned, fördelar med, och nya särdrag hos uppfinningen kommer att bli tydliga av den följande detaljerade beskrivningen av uppfinningen, när den beaktas i samband med de tillhörande ritningarna och kraven.Embodiments of the invention are defined in the independent claims. Other objects, advantages, and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings and claims.

Figurbeskrivníng Uppñnningen kommer att beskrivas närmare nedan i anslutning till de bifogade ritningarna, i vilka Fig. l visar schematiskt en del av AMLS-solspektrumet som kan användas teore- tiskt av en kiselsolcell jämfört med en GalnP/GaInAs/ Ge-solcell. Svagt skuggade områden visar verkningsgradsförluster till följd av termisk excitation av laddnings- bärare eller transmission av fotoner, Fig. 2 visar en MJPV-cell enligt teknikens ståndpunkt i en tvärsnittsvy där gitteran- passad växning på Ge-substrat4 når verkningsgrader på mer än 40% med koncen- tratorer, Fig. 3 visar schematiskt solcellsstrukturen enligt en utföringsform av föreliggande uppfinning, 4 Figurer med tillstånd av LL. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview” I Electr Spectr Rel Phen 150, 105 (2006) 10 20 25 30 533 522 5 Fig. 4 visar schematiskt utföringsformer av föreliggande uppfinning, där i fig. 4a nanotråden sträcker sig ovanför vågledaren och substratet tillhandahåller en diod och där i fig. 4b nanotråden slutar vid vågledarens övre ände, Fig. 5 visar schematiskt utföringsformer av föreliggande uppfinning, där i fig. 5a Esaki-dioder används och där i ñg. 5b metallsegment används för att sammankopp- la segmenten i nanotråden, Fig. 6 visar schematiskt en solcellsstruktur enligt en utföringsform av föreliggande uppfinning, Fig. 7 visar schematiskt en solcellstruktur enligt en utföringsform av föreliggande uppfinning, Fig. 8 visar schematiskt en solcellstruktur enligt en utföringsforrn av föreliggande uppfinning, och Fig. 9 a] visar schernatiskt en solcellstruktur enligt teknikens ståndpunkt, och b) visar schematiskt en solcellsstruktur enligt en utföringsform av föreliggande upp- finning Detaljerad beskrivning Solcellsstrukturen 300 enligt föreliggande uppfinning visas schematiskt i fig. 3, där den ljusabsorberande delen är en nanotråd 305, vilken åtminstone delvis är omslu- ten av en vågledare 305. Nanotråden 305 innefattar vanligtvis ett material med di- rekt bandgap. Vågledaren 3 10 består av ett material med stort och indirekt band- gap. Botten på strukturen står i kontakt med ett substrat 320. Nanotråden 305, vilken företrädesvis ligger i mitten av vågledaren 310, består av flera segment 315 med större bandgap närmare toppen, för att effektivt absorbera olika delar av sol- spektrumet. Segmenten är kopplade i serie med Esaki-dioder 316 eller korta me- tallsegrnent. Vågledaren 3 10 bör företrädesvis vara tillräckligt smal för att tillåta endast ljusutbredning i singelmode, och nanotråden bör vara jämförelsevis liten.Description of the Figure The invention will be described in more detail below in connection with the accompanying drawings, in which Fig. 1 schematically shows a part of the AMLS solar spectrum which can be used theoretically by a silicon solar cell compared to a GalnP / GaInAs / Ge solar cell. Slightly shaded areas show efficiency losses due to thermal excitation of charge carriers or transmission of photons, Fig. 2 shows a prior art MJPV cell in a cross-sectional view where lattice-adapted growth on Ge-substrate 4 reaches efficiencies of more than 40% with concentrators, Fig. 3 schematically shows the solar cell structure according to an embodiment of the present invention, 4 Figures with the permission of LL. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview” In Electr Specter Rel Phen 150, 105 (2006) 10 20 25 30 533 522 5 Fig. 4 schematically shows embodiments of the present invention, where in fi g. Fig. 4a shows the nanowire above the waveguide and the substrate provides a diode and where in Fig. 4b the nanowire ends at the upper end of the waveguide, Fig. 5 schematically shows embodiments of the present invention, where in Fig. 5a Esaki diodes are used and where in ñg. Fig. 5b shows metal segments used to connect the segments in the nanowire, Fig. 6 schematically shows a solar cell structure according to an embodiment of the present invention, Fig. 7 schematically shows a solar cell structure according to an embodiment of the present invention, Fig. 8 schematically shows a solar cell structure according to an embodiment of the present invention, and Fig. 9 a] schematically shows a solar cell structure according to the prior art, and b) schematically shows a solar cell structure according to an embodiment of the present invention. Detailed description The solar cell structure 300 according to the present invention is shown schematically in fi g. 3, where the light absorbing member is a nanowire 305, which is at least partially enclosed by a waveguide 305. The nanowire 305 usually comprises a material with a direct bandgap. The waveguide 3 10 consists of a material with a large and indirect band gap. The bottom of the structure is in contact with a substrate 320. The nanowire 305, which is preferably located in the middle of the waveguide 310, consists of several segments 315 with larger band gaps closer to the top, to effectively absorb different parts of the solar spectrum. The segments are connected in series with Esaki diodes 316 or short metal segments. The waveguide 3 should preferably be narrow enough to allow only light propagation in single mode, and the nanowire should be comparatively small.

Strukturen kontaktas från bottnen av en bottenkontakt 325, t.ex. genom substratet 320 och uppifrån med hjälp av en toppkontakt, vilken kan vara ett metallgitter som kontakterar den övre tråden eller en transparent kontakt som täcker hela struktu- ren. Såsom visas i fig. 4a kan nanotråden 305 ha en övre del 340 som sträcker sig ovanför vågleclaren 310 för att underlätta kontakteringsegenskaperna. Dessutom 20 25 533 522 6 kan den del av nanotråden som sträcker sig över vågledaren vara dopad för att yt- terligare förbättra kontakteringsegenskaperna. I denna utföringsform täcker kon- takteringsmedlen företrädesvis endast nanotråden.The structure is contacted from the bottom by a bottom contact 325, e.g. through the substrate 320 and from above by means of a top contact, which may be a metal grid which contacts the upper wire or a transparent contact which covers the whole structure. As shown in fi g. 4a, the nanowire 305 may have an upper portion 340 extending above the wave clearer 310 to facilitate contacting properties. In addition, the portion of the nanowire extending across the waveguide may be doped to further improve the contacting properties. In this embodiment, the contacting means preferably covers only the nanowire.

I en alternativ utföringsform, såsom visas i fig. 4b, slutar nanotråden vid vägleda- rens övre del. Möjligen, men inte nödvändigtvis, slutar nanotråden med en kopp 350 av den katalysatorpartikel som är vanlig i vissa växtmetoder för nanoträdar.In an alternative embodiment, as shown in Fig. 4b, the nanowire ends at the upper part of the guide. Possibly, but not necessarily, the nanowire ends with a cup 350 of the catalyst particle common in some nanowire plant growing methods.

Anordningen är mest lärnplig för platta, företrädesvis transparenta kontakter.The device is most teachable for flat, preferably transparent contacts.

Substratet kan antingen fungera endast som ett mekaniskt stöd och elektrisk kon- takt, såsom visas i fig. 3, eller kan det innefatta en eller flera elektriskt aktiva kom- ponenter, t.ex, en vanlig fotodíodstruktur. En utföringsform med en fotodiod utförd med ett p-dopat område 322 och påföljande n- dopat område 323 visas i fig. 4a.The substrate may either function only as a mechanical support and electrical contact, as shown in Fig. 3, or it may comprise one or more electrically active components, for example, a conventional photodiode structure. An embodiment with a photodiode formed with a p-doped region 322 and the subsequent n-doped region 323 is shown in Fig. 4a.

Fig. 5a visar schematiskt en förstoring av nanotråden 305, med segmenten och Esaki-dioderna 316, och med ett p-typ- och n-typområde mellan segmenten. Fíg. 5b visar schematiskt en utföringsform av uppfinningen, varvid Esaki-dioderna är ut- bytta mot metallsegment 317. Detta är möjligt, eftersom den tunna nanotråden 305 i solcellsstrukturen enligt uppfinningen inte behöver vara transparent. Som alterna- tiv till metallsegmentet kan en degenerationsdopad halvledare istället användas.Fig. 5a schematically shows an enlargement of the nanowire 305, with the segments and the Esaki diodes 316, and with a p-type and n-type region between the segments. Fig. 5b schematically shows an embodiment of the invention, in which the Esaki diodes are replaced by metal segments 317. This is possible, since the thin nanowire 305 in the solar cell structure according to the invention does not have to be transparent. As an alternative to the metal segment, a degenerate doped semiconductor can be used instead.

På en solcellspanel är vanligen ett stort antal av de ovan beskrivna strukturerna tätt packade på skivan, för att täcka huvuddelen av ytan med vågledarna. Solcells- panelen kan innefatta en skiva, men även ett flertal sinsemellan sammankopplade skivor kan ge önskad energiproduktion.On a solar panel, a large number of the structures described above are usually tightly packed on the disk, to cover the main part of the surface with the waveguides. The solar panel can comprise a disk, but also a number of interconnected disks can provide the desired energy production.

Solcellsstrukturen enligt uppfinningen kan även användas som detektor.The solar cell structure according to the invention can also be used as a detector.

Funktionen för solcellsstrukturen enligt uppfinningen är följande. Vid strukturens övre del riktas (sol)ljuset in i vågledaren. Eftersom vågledaren 310 är av ett material med ett indirekt stort bandgap kommer inget ljus att absorberas här, och eftersom vågledaren är singelmode är fältet starkast i kärnan, dvs. där nanotråden 305 är belägen. Då ljuset förflyttar sig nedåt, absorberas högre energier effektivare, samti- digt som fotoner med lägre energiinnehåll än bandgapet endast kommer att beröras av en transparent vågledare. Då energibanden är sekventiellt avskilda i nanotråden 305 ger fotonerna upphov till fotoelektricitet i varje segment 315, lika stort som bandgapet i det segmentet. Under idealiska förhållanden kommer strukturen att vara sä effektiv, att endast ljus med lågt energiinnehåll penetrerar substratet. Dock lO 20 25 533 522 7 kan substratet även innefatta en vanlig fotodiod för att samla spridda fotoner med högt energiinnehåll.The function of the solar cell structure according to the invention is as follows. At the upper part of the structure, the (solar) light is directed into the waveguide. Since the waveguide 310 is of a material with an indirectly large bandgap, no light will be absorbed here, and since the waveguide is single mode, the field is strongest in the core, i.e. where the nanowire 305 is located. As the light for fl moves downwards, higher energies are absorbed more efficiently, at the same time as photons with a lower energy content than the band gap will only be affected by a transparent waveguide. When the energy bands are sequentially separated in the nanowire 305, the photons give rise to photoelectricity in each segment 315, as large as the band gap in that segment. Under ideal conditions, the structure will be so efficient that only light with a low energy content penetrates the substrate. However, the substrate may also include an ordinary photodiode for collecting scattered photons with a high energy content.

Utföringsforrner av solceller enligt uppfinningen uppvisar följande särdrag: Vågledaren riktar ljuset på ett regelbundet sätt genom områden av minskan- de bandgap, vilket möjliggör att ljuset samlas sekventiellt.Embodiments of solar cells according to the invention have the following features: The waveguide directs the light in a regular manner through areas of decreasing bandgap, which enables the light to collect sequentially.

Tillåter heterostrukturer där det inte krävs gitteranpassning, vilket ger stor frihetsgrad med avseende på materialkombinationer.Allows heterostructures where grid adjustment is not required, which provides a high degree of freedom with respect to material combinations.

I princip finns det ingen begränsning till antalet olika bandgap, dvs. segment i nanotråden.In principle, there is no limit to the number of different bandgaps, ie. segment in the nanowire.

Dessa strukturer kan möjligen växa i mycket enklare system än vanliga MOCVD.These structures can possibly grow in much simpler systems than standard MOCVD.

Material som innehåller bandgap i hela solspektrumet kan införlivas i tråden, under idealiska förhållanden blir då substratet endast en stödstruktur.Materials that contain bandgaps in the entire solar spectrum can be incorporated into the wire, under ideal conditions the substrate then becomes only a support structure.

Tack vare den lilla växtarean för varje tråd behövs ingen extrem homogen vaxning på en hel skiva, vilket minskar kraven på växtsystern.Thanks to the small plant area for each wire, no extremely homogeneous waxing is needed on an entire disc, which reduces the demands on the plant sister.

Dessutom kan substratet, tack vare den lilla arean, vara polykristallint eller tunnñlmskisel eller ett ännu enklare material.In addition, thanks to the small area, the substrate can be polycrystalline or thin-silicon or an even simpler material.

Vågledarstrukturen tillhandahåller en inneboende koncentration av fotoner till nanotråden, vilket ger en mättad spänning även under indirekta ljusför- hållanden.The waveguide structure provides an inherent concentration of photons to the nanowire, which provides a saturated voltage even under indirect light conditions.

Esaki-dioderna i planartandemceller kan bytas ut mot metalliska eller dege- nerationsdopade halvledarsegment, eftersom nanotråden inte behöver vara transparent.The esaki diodes in planar tandem cells can be replaced with metallic or degenerate doped semiconductor segments, since the nanowire does not have to be transparent.

Exempel på specifik utföringsform: En fotonisk vågledarutformning, som skapats med hjälp av radiell växning av ett helt transparent skal med högt brytningsindex, såsom AlN, fungerar som en hel všígledarstruktur på omkring 0,5 um diameter, varav omkring lOO nm år en multi- pel bandgapkärnestruktur. Den övre delen (ca 0,5 um) av nanotråden kommer, tack vare den täta ”gräslika” anordníngen av långa nanotrådar, fånga det inkommande flödet, vilket sedan leds nedåt på så sätt, att komponenten med högt energiinnehåll lO 15 20 25 30 533 522 8 kommer att fångas i det övre segmentet, vilket ser ut som den helt transparenta vågledaren för all fotoenergi nedanför dess bandgap. Samma selektiva absorption och transmission kommer sedan att erbjudas av det nästa segmentet med dess läg- re bandgap etc. Ovanför det översta valda bandgapssegmentet finns ett långt, hårt n-dopat GaN-segment som används för kontaktering.Example of specific embodiment: A photonic waveguide design, created by radial growth of a completely transparent shell with a high refractive index, such as AlN, functions as a whole waveguide structure of about 0.5 μm diameter, of which about 100 nm is a multiple bandgap core structure. The upper part (approx. 0.5 μm) of the nanowire will, thanks to the dense "grass-like" arrangement of long nanowires, capture the incoming flow, which is then led downwards in such a way that the high energy content component 10 20 25 25 30 533 522 8 will be captured in the upper segment, which looks like the completely transparent waveguide for all the photo energy below its bandgap. The same selective absorption and transmission will then be offered by the next segment with its lower bandgap etc. Above the top selected bandgap segment there is a long, hard n-doped GaN segment used for contacting.

Bottensegmentet kan vara gjort av lnN och med ökande fraktioner av Ga upp till toppsegmentet och bestå av en sammansättning av ungefär GavlngN. Substratet kommer i detta fall endast att ge stöd och bottenkontakt, eftersom det minsta band- gapet kommer att vara i botten av nanotråden. Eftersom växning av olika samman- sättningar av GalnN i den axiella riktningen ännu inte är helt bevisad, kan använd- ningen av AlGalnAsP NW-systemet vara mer praktisk. 1 detta system ñnns material med direkt bandgap med värden på mellan 0,4 eV upp till 2,25 eV, som följaktligen mycket väl kan konkurrera med de bästa kända multipelövergångscellerna. I detta fall kan de tre bottensegmenten bestå av det väletablerade InAstxPx-systemet, och de två översta i t.ex. GaxlnLXP-systemet, med det övre segmentet av Ga-rikt (80%) GalnP som har ett direkt bandgap på 2,25 eV, kombinationer som inte har varit åtkomliga vid användning av konventionella metoder där gitteranpassning har krävts.The bottom segment may be made of lnN and with increasing fractions of Ga up to the top segment and consist of a composition of approximately GavlngN. In this case, the substrate will only provide support and bottom contact, since the smallest band gap will be at the bottom of the nanowire. Since the growth of different compositions of GalnN in the axial direction is not yet fully proven, the use of the AlGalnAsP NW system can be more practical. In this system there are materials with direct bandgap with values between 0.4 eV up to 2.25 eV, which consequently can very well compete with the best known multiple transition cells. In this case, the three bottom segments may consist of the well-established InAstxPx system, and the top two in e.g. The GaxlnLXP system, with the upper segment of Ga-rich (80%) GalnP having a direct bandgap of 2.25 eV, combinations that have not been accessible using conventional methods where grid fitting has been required.

Eiilígt en utföringsform av föreliggande uppfinning, vilken visas schematiskt i ñg. 6, tillhandahålls en solcellsstruktur som innefattar nanotrådar med en vertikalt an- ordnad enkel pn-övergång. Substratet kan vara lll-V-skivor av p-typ, såsom exem- pelvis lnP- eller GaAS-substrat, vilka visas i figuren, men kiselsubstrat är i många fall ett föredraget val. För kontaktera de översta n-ledande områdena kommer en ledande transparent ñlm vara deponerad över hela strukturen eftersom områdena mellan de n-dopade nanotrådsområdena är täckta av en isolerande och ytpassive- rande mask, såsom exempelvis SiOz.According to one embodiment of the present invention, which is shown schematically in Figs. 6, a solar cell structure is provided which comprises nanowires with a vertically arranged simple pn junction. The substrate may be p-type III-V disks, such as, for example, lnP or GaAS substrates, which are shown in the figure, but silicon substrate is in many cases a preferred choice. To contact the top n-conducting areas, a conductive transparent ñlm will be deposited over the entire structure since the areas between the n-doped nanowire areas are covered by an insulating and surface passivating mask, such as SiO 2.

Enligt en utföringsform av föreliggande uppfinning, vilken visas schematiskt i Fig. 7, tillhandahålls en solcellstruktur som innefattar nanotrådar med ett flertal verti- kalt anordnade pn-övergångar, varav de övre pn-Övergångarna bildar en sektion med stort bandgap och de nedre pn-övergångarna bildar en sektion med litet band- gap. Dessa sektioner är företrädesvis separerade av Esaki-tunneldioder. Exempel- vis kan tunneldiodlagren vara hårt dopade med AlGaAs, GaAsP eller GaInP. Denna kombination av material med olika gitterkonstanter skulle aldrig ha varit tillgängli- ga med hjälp av konventionella metoder där gitteranpassning krävs. Eftersom git- 10 20 25 533 522 9 teranpassning är av mindre betydelse (eftersom dettai annat fall hindrar denna typ av utveckling när traditionella planara epitaximetoder används) kan detta tillväga- gångssätt utökas till fler övergångar i framtiden. För en dubbelövergångssolcell bör bandgapet för den översta subcellen idealiskt vara området l,6-l,8 eV och den ne- dersta subcellen vara i området 0,9-1,1 eV. Dessa bandgapenergier kan uppnås genom att använda GaAsP, eller GaInP, för den översta cellen och GalnAs, eller lnAsP, för den nedersta cellen. Det totala energiområde som omfattas av dessa ma- terialkombinationer i syfte att samla energi täcker 0,4 eV (lnAs) till 2,24 eV (GaInP45). Pn-övergängarna kommer att vara omgivna av barriärlager med högre bandgapsenergi för att stänga in minoritetsladdningsbärare i nanotrådarna, och för att passivera nanotrådarnas yta.According to an embodiment of the present invention, which is shown schematically in Fig. 7, a solar cell structure is provided which comprises nanowires with a plurality of vertically arranged pn junctions, of which the upper pn junctions form a large band gap section and the lower pn junctions forms a section with a small band gap. These sections are preferably separated by Esaki tunnel diodes. For example, the tunnel diode bearings may be heavily doped with AlGaAs, GaAsP or GaInP. This combination of materials with different lattice constants would never have been available using conventional methods where lattice adjustment is required. Since lattice adaptation is of minor importance (since this otherwise hinders this type of development when traditional planar epitaxy methods are used), this approach may be extended to more transitions in the future. For a dual transition solar cell, the band gap for the top subcell should ideally be in the range 1.6-1.8 eV and the bottom subcell should be in the range 0.9-1.1 eV. These bandgap energies can be achieved by using GaAsP, or GaInP, for the upper cell and GalnAs, or lnAsP, for the lower cell. The total energy range covered by these material combinations for the purpose of collecting energy covers 0.4 eV (lnAs) to 2.24 eV (GaInP45). The Pn junctions will be surrounded by barrier layers with higher bandgap energy to enclose minority charge carriers in the nanowires, and to passivate the surface of the nanowires.

Enligt en utföringsform tillhandahålls ett flertal pn-övergängar inuti en ljusled- ningskonstruktion. Fig. 8 visar en elektromotorisk tandem(sol}cell med inbäddade Esaki-ttiniieldioder och omgivande ljusledare. Genom att välja nanotrådarnas längd. tjocklek och densitet tillräckligt hög säkerställer denna geometri att all infal- lande strålning kommer att absorberas av nanotrådarna. Ovanpå dubbelövergången kan ett segment av indirekt material växas för att förbättra ljusabsorptionseffektivi- teten för ljusledartillvägagångssättet, på liknande sätt som ett ”gräsfålt” (”grass~ ñeld”). Nanotrådsabsorptionen av fotoner med energier som överstiger bandgapet för det valda materialet kan vara hög och ett våglängdsberoende inträngningsdjup kan förväntas. Enligt en utföringsform, vilken beskrivs vidare nedan, är nanoträdarna växta i förutbestämda mönster med subvåglängdsdelning.According to one embodiment, a plurality of pn junctions are provided inside a light guide structure. Fig. 8 shows an electromotive tandem (solar} cell with embedded Esquitine diodes and ambient light guides. By selecting the length of the nanowires, thickness and density high enough, this geometry ensures that all incident radiation will be absorbed by the nanowires. segments of indirect material are grown to improve the light absorption efficiency of the light guide approach, similar to a “grass ~ ñeld.” The nanowire absorption of photons with energies exceeding the bandgap of the selected material can be high and According to one embodiment, which is further described below, the nanowires are grown in predetermined patterns with subwavelength division.

För förverkligande av elektrornotoriska multiövergångs(sol) celler baserade på nano- trådar krävs det att ljusabsorptionen sker i en korrekt sekvens. Följaktligen måste en slumpmässig absorption i de olika materialen undvikas. I de utföringsformer som beskrivits ovan åstadkommes den sekventiella absorptionen med hjälp av kår- næskal-strukturer. Därigenom leds ljuset från nanotrådarnas övre ände till deras nedre ände.For the realization of electronotoric multi-junction (solar) cells based on nanowires, it is required that the light absorption takes place in a correct sequence. Consequently, random absorption in the various materials must be avoided. In the embodiments described above, the sequential absorption is accomplished by means of core-shell structures. Thereby the light is conducted from the upper end of the nanowires to their lower end.

Ett annat tillvägagångssätt får att åstadkomma denna kontrollerad absorption, vil- ket representerar en ytterligare utföringsform av föreliggande uppfinning, kan be- skrivas som ett ”effektivmedium”-líknande koncept. Ett ”effektivmedium” beskrivs vanligen som strukturer om innehåller olika material i längdskalor som väsentligen understiger det infallande ljusets våglängd. Detta koncept kan ses som en ersätt- ning för den vanligen använda absorptionen i kontinuerliga filmer genom de optiska lO 15 20 25 533 522 10 effekter absorption genom ett tätt arrangemang av parallella nanotrådar, med del- ning mellan trådarna som är väsentligen mindre än våglängden. Detta illustreras i Fig. 9a-b, där a) illustrerar en konventionell elektromotorisk multiövergångs(sol)cell där ett flertal lager 901, 902, 903, 904, 905, 906 formar segment som absorberar olika delar av det infallande ljuset, vilket indikeras av den tjocka pilen. Som beskri- vet i bakgrunden är det synnerligen svårt att forma sådana multilagerstrukturer med passande materialkombinationer och detta kräver användandet av Ill-V- substrat 911. Fíg. 9b visar schematiskt solcellstrukturen enligt en utföringsform av föreliggande uppfinning, innefattande en matris av tätt packade nanotrådar 910, med en delning D mellan nanotrådarna som är mindre än den kortaste våglängd anordningen är anpassad att absorbera. Infallande fotoner kommer att ”se” den täta arrayen som en följd av kvasi-kontinuerliga absorptionslager medan de genererade elektronerna och hålen strikt kommer att uppsamlas genom de vertikala nano- trådsstrukturerna. Detta tillvägagångssätt möjliggör standardgeometríer för belys- ning av elektromotoriska (sol)ce1ler, på så sätt säkerställande den sekventíella ab- sorptionskarakteristiken som krävs för de högsta elektromotoriska utbytena.Another approach to achieve this controlled absorption, which represents a further embodiment of the present invention, can be described as an "effective medium" -like concept. An "effective medium" is usually described as structures containing different materials in length scales that are substantially less than the wavelength of the incident light. This concept can be seen as a replacement for the commonly used absorption in continuous films by the optical absorption effects by a dense arrangement of parallel nanowires, with division between the wires that is substantially less than the wavelength. This is illustrated in Figs. 9a-b, where a) illustrates a conventional electromotive multi-transition (solar) cell in which a plurality of layers 901, 902, 903, 904, 905, 906 form segments which absorb different parts of the incident light, as indicated by the thick arrow. As described in the background, it is extremely difficult to form such multilayer structures with suitable material combinations and this requires the use of Ill-V substrate 911. Figs. 9b schematically shows the solar cell structure according to an embodiment of the present invention, comprising a matrix of tightly packed nanowires 910, with a pitch D between the nanowires which is smaller than the shortest wavelength the device is adapted to absorb. Incident photons will “see” the dense array as a result of quasi-continuous absorption layers while the generated electrons and holes will be strictly collected through the vertical nanowire structures. This approach enables standard geometries for illuminating electromotive (solar) cells, thus ensuring the sequential absorption characteristics required for the highest electromotive yields.

Delningen D mellan intilliggande nanotrådar är typiskt under 300 nm, företrädesvis under 200 nm och ännu hellre under 150 nm. Nanotrådarnas storlek i denna utfö- ringsform är typiskt i storleksordningen 100 nm. Substratet 920 är företrädesvis ett kiselsubstrat och nanotrådarna 910 är växta från substratet. Nanotrådarna kan till exempel ha den inre struktur som visas i figurerna 6-8. Även orn föreliggande uppfinning har beskrivits inom ramen för elektromotoriska multiövergångs(sobcellstíllärnpningar förväntas det att den kommer finna använd- ning inom andra områden inom optoelektroniken, såsom fotodetektorer. Fackman- nen inser att utföringsformerna av föreliggande uppfinning kan kombineras på olika sätt.The pitch D between adjacent nanowires is typically below 300 nm, preferably below 200 nm and more preferably below 150 nm. The size of the nanowires in this embodiment is typically on the order of 100 nm. The substrate 920 is preferably a silicon substrate and the nanowires 910 are grown from the substrate. For example, the nanowires may have the internal structure shown in Figures 6-8. The present invention has also been described in the context of electromotive multi-junction (sub-cell style adaptations), it is expected that it will find use in other fields of optoelectronics, such as photodetectors. Those skilled in the art will appreciate that the embodiments of the present invention may be combined in various ways.

Lämpliga material för substratet innefattar, men är inte begränsat till: Si, GaAs, GaP, GaPzZn, GaAs, lnAs, lnP, GaN, AlgOg, SiC, Ge, GaSb, ZnO, lnSb, S01 (silicon- on-insulator), CdS, ZnSe, CdTe. Lämpliga material för nanotrådarna och nano- trådssegmeiiten innefattar, men är inte begränsat till: GaAs (p), lnAs, Ge, ZnO, InN, GalnN, GaN AlGalnN, BN, lnP, lnAsP, GalnP, InGaP:Si, lnGaPzZn, GaInAs, AlInP, GaAllnP, GaAlInAsP, GalnSb, lnSb, Si. Möjliga donatordopämnen är Si, Sn, Te, Se, S, etc, och acceptordopämnen är Zn, Fe, Mg, Be, Cd, etc. Det ska noteras att nano- strädsteknologin gör det möjligt att använda nitrider såsom GaN, InN och AIN.Suitable materials for the substrate include, but are not limited to: Si, GaAs, GaP, GaPzZn, GaAs, lnAs, lnP, GaN, AlgOg, SiC, Ge, GaSb, ZnO, lnSb, SO1 (silicone insulator), CdS , ZnSe, CdTe. Suitable materials for the nanowires and nanowire segments include, but are not limited to: GaAs (p), lnAs, Ge, ZnO, InN, GalnN, GaN AlGalnN, BN, lnP, lnAsP, GalnP, InGaP: Si, lnGaPzZn, GaInAs AlInP, GaAllnP, GaAlInAsP, GalnSb, lnSb, Si. Possible donor dopants are Si, Sn, Te, Se, S, etc, and acceptor dopants are Zn, Fe, Mg, Be, Cd, etc. It should be noted that nano-tree technology makes it possible to use nitrides such as GaN, InN and AIN.

'Ji 533 522 11 Andra kombinationer av intresse innefattar, men är inte begränsat till, GaAs, GaInP, GaAIInP och GaP system, Även om uppfinningen har beskrivits i anslutning till vad som för närvarande anses vara de mest praktiska och föredragna utföringsformerna ska det förstås att upp» finnirigeii inte är begränsad till de visade utföringsformerna. Tvärtom är den avsedd att täcka olika modifikationer och motsvarande arrangemang inom ramen för de bifogade kraven.Other combinations of interest include, but are not limited to, GaAs, GaInP, GaAIInP and GaP systems. Although the invention has been described in connection with what are currently considered to be the most practical and preferred embodiments, it is to be understood that upp »finnirigeii is not limited to the embodiments shown. On the contrary, it is intended to cover various modifications and corresponding arrangements within the scope of the appended claims.

Claims (1)

1. 0 15 20 25 30 533 522 lå PATENTKRAV En solcellsstruktur innefattande ett flertal nanotrådar (910) utgörande den ljusabsorberande delen av solcellsstrukturen, kännetecknat av att nanotrådarna (910) innefattar ett flertal segment (315), vart och ett anpassat att absorbera ljus i olika våglängdsområden; och nanotrådarna är anordnade vertikalt på ett substrat med en delning mellan intilliggande nanotrådar, vilken delning är kortare än våglängden för det ljus som solcellsstrukturen är avsedd att absorbera och mindre än den kortaste våglängden för våglängdsregionerna varvid nanotrådarna och mellanliggande material verkar som ett effektivmedium så att infallande ljus kommer att ledas sekventiellt genom nanotrådarna och de olika våglängdsområdena selektivt absorberas i respektive segment (315). Solcellsstruktur enligt krav 1, varvid delningen mellan intilliggande nanotrå- dar är mindre än 400 nm. Solcellsstruktur enligt krav 2, varvid delningen mellan intilliggande nanotrå- dar är mindre än 150 nm. Solcellsstruktur enligt något av föregående krav, varvid nanotråden (305) inne- fattar flera segment (315), där vaije segment är anpassat att absorbera en del av solspektrumet och anordnat så att segmentet med det största bandgapet är närmast den övre 'anden av solcellsstrukturen, dvs. motsatt ände av den ände som är kopplad till substratet. Solcellsstmktur enligt krav 4, varvid segmenten är kopplade i serie med hjälp av Esaki-dioder (3 16). Solcellsstruktur enligt något av föregående krav, varvid nanotrådarna (910) är växta på ett kiselsubstrat (920). En solcellspanel innefattande ett flertal solcellsstrukturer enligt något av före- gående krav.A patent cell structure comprising a number of nanowires (910) constituting the light absorbing part of the solar cell structure, characterized in that the nanowires (910) comprise a number of segments (315), each adapted to absorb light in different wavelength ranges; and the nanowires are arranged vertically on a substrate with a pitch between adjacent nanowires, which pitch is shorter than the wavelength of the light that the solar cell structure is intended to absorb and less than the shortest wavelength of the wavelength regions, the nanowires and intermediate material acting as an effective medium. light will be conducted sequentially through the nanowires and the different wavelength ranges will be selectively absorbed in each segment (315). A solar cell structure according to claim 1, wherein the pitch between adjacent nanowires is less than 400 nm. A solar cell structure according to claim 2, wherein the pitch between adjacent nanowires is less than 150 nm. A solar cell structure according to any one of the preceding claims, wherein the nanowire (305) comprises fl your segments (315), each segment being adapted to absorb a part of the solar spectrum and arranged so that the segment with the largest band gap is closest to the upper spirit of the solar cell structure, i.e. opposite end of the end connected to the substrate. Solar cell structure according to claim 4, wherein the segments are connected in series by means of Esaki diodes (3 16). A solar cell structure according to any one of the preceding claims, wherein the nanowires (910) are grown on a silicon substrate (920). A photovoltaic panel comprising a number of photovoltaic structures according to one of the preceding claims.
SE0702072A 2007-06-19 2007-09-13 Nanowire-based effective medium solar cell SE533522C2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
SE0702072A SE533522C2 (en) 2007-09-13 2007-09-13 Nanowire-based effective medium solar cell
KR1020107001213A KR101547711B1 (en) 2007-06-19 2008-06-19 Nanowire-based solar cell structure
CN201610640931.7A CN106206780B (en) 2007-06-19 2008-06-19 Solar battery structure based on nano wire
EP08767200.2A EP2168167B1 (en) 2007-06-19 2008-06-19 Nanowire-based solar cell structure
PCT/SE2008/050734 WO2008156421A2 (en) 2007-06-19 2008-06-19 Nanowire-based solar cell structure
AU2008264257A AU2008264257A1 (en) 2007-06-19 2008-06-19 Nanowire-based solar cell structure
CN200880103566.XA CN101803035B (en) 2007-06-19 2008-06-19 Solar battery structure based on nano wire
US12/452,175 US20100186809A1 (en) 2007-06-19 2008-06-19 Nanowire- based solar cell structure
US15/374,217 US10128394B2 (en) 2007-06-19 2016-12-09 Nanowire-based solar cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0702072A SE533522C2 (en) 2007-09-13 2007-09-13 Nanowire-based effective medium solar cell

Publications (2)

Publication Number Publication Date
SE0702072L SE0702072L (en) 2009-03-14
SE533522C2 true SE533522C2 (en) 2010-10-12

Family

ID=40527214

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0702072A SE533522C2 (en) 2007-06-19 2007-09-13 Nanowire-based effective medium solar cell

Country Status (1)

Country Link
SE (1) SE533522C2 (en)

Also Published As

Publication number Publication date
SE0702072L (en) 2009-03-14

Similar Documents

Publication Publication Date Title
US10128394B2 (en) Nanowire-based solar cell structure
US7629532B2 (en) Solar cell having active region with nanostructures having energy wells
US8530739B2 (en) Nanowire multijunction solar cell
US8952354B2 (en) Multi-junction photovoltaic cell with nanowires
US9214580B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
US7902453B2 (en) Edge illumination photovoltaic devices and methods of making same
JP5032496B2 (en) Stacked solar cell device
JP2015073130A (en) Four junction inverted metamorphic multi-junction solar cell with two metamorphic layers
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
KR20110073493A (en) Nanostructured photodiode
US20080011349A1 (en) Nanostructured quantum dots or dashes in photovoltaic devices and methods thereof
US20150179857A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
US20110278537A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
SE533522C2 (en) Nanowire-based effective medium solar cell
KR20240022562A (en) Method for manufacturing at least one photovoltaic cell for converting electromagnetic radiation into electrical energy

Legal Events

Date Code Title Description
NUG Patent has lapsed