SE531879C2 - Scintillation fibers made by electrospinning - Google Patents

Scintillation fibers made by electrospinning

Info

Publication number
SE531879C2
SE531879C2 SE0800231A SE0800231A SE531879C2 SE 531879 C2 SE531879 C2 SE 531879C2 SE 0800231 A SE0800231 A SE 0800231A SE 0800231 A SE0800231 A SE 0800231A SE 531879 C2 SE531879 C2 SE 531879C2
Authority
SE
Sweden
Prior art keywords
particles
polymerization
molecularly
scintillation
polymers
Prior art date
Application number
SE0800231A
Other languages
Swedish (sv)
Other versions
SE0800231L (en
Inventor
Lei Ye
Ioannis S Chronakis
Keiichi Yoshimatsu
Original Assignee
Lei Ye
Ioannis S Chronakis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lei Ye, Ioannis S Chronakis filed Critical Lei Ye
Priority to SE0800231A priority Critical patent/SE531879C2/en
Publication of SE0800231L publication Critical patent/SE0800231L/en
Publication of SE531879C2 publication Critical patent/SE531879C2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2600/00Assays involving molecular imprinted polymers/polymers created around a molecular template

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Textile Engineering (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

531 SWE aromatiska föreningarna. Konsekvensen blir att ingen scintillationssignal kommer att genereras. 531 SWE aromatic compounds. The consequence will be that no scintillation signal will be generated.

Principen för närhets-scintillation återfinns i US Patent 4 568 649 och i FCT-applikationen WO 91/08489, vari en stödjande kropp som används fór närhets-scintillation i radioimmunfórsök beskrivs. Den stödjande kroppen konstrueras av scintillationsmaterial, till vilket biologiska igenkänningskomponenter såsom antigener, anfikroppar, etc är bundna. De biologiska igenkänningskomponenterna är kapabla att selektivt binda en målanalyt. Flera patent och patentapplikationer (US 4271139; US 4568649; EP 1007971 Al) relaterar till infórlivandet av SPA-tekniken genom att använda olika scintillationsmaterial och provningsformat. I alla de ovanstående exemplen är de selektiva igenkänningskomponenterna exklusivt deriverade från biologiska makromolekyler såsom antikroppar, membranreceptorer, enzymer, lecitiner, etc.The principle of proximity scintillation is found in US Patent 4,568,649 and in FCT application WO 91/08489, in which a support body used for proximity scintillation in radioimmunoassays is described. The support body is constructed of scintillation material, to which biological recognition components such as antigens, antibodies, etc. are bound. The biological recognition components are capable of selectively binding a target analyte. Several patents and patent applications (US 4271139; US 4568649; EP 1007971 A1) relate to the implementation of the SPA technique by using different scintillation materials and test formats. In all of the above examples, the selective recognition components are exclusively derived from biological macromolecules such as antibodies, membrane receptors, enzymes, lecithins, etc.

Molekylärt präglade polymerer (eng. molecular imprinted polymers = MIPs) är syntetiska material vilka har fórdesignade molekylära igenkänningsegenskaper. MIPs kan framställas genom att använda mallstyrda polymerisationsreaktioner där mallen genom tvärbindningsreaktioner formar stabila komplex med funktionella monomerer. Efter polymerisationen kan mallen tas bort från den tvärbundna polymemiatrisen, eñerlämnande väldefinierade håligheter, vilka är kapabla att återbinda originalrnallen likaväl som sina strukturella analoger. Under namnen ”syntetiska enzymer” och ”syntetiska antikroppar” beskrivs i US Patent S 110 833 användningen av molekylär prâgling som en generell metod fór att skapa MIPs .Molecular imprinted polymers (MIPs) are synthetic materials that have pre-designed molecular recognition properties. MIPs can be prepared using template-directed polymerization reactions in which the template forms stable complexes with functional monomers through crosslinking reactions. After the polymerization, the template can be removed from the crosslinked polymemetry, leaving well-defined cavities which are capable of reattaching the original template as well as its structural analogues. Under the names "synthetic enzymes" and "synthetic antibodies", U.S. Patent S110,833 describes the use of molecular imprinting as a general method for creating MIPs.

FCT-applikationen WO 94/ 1 1403 beskriver en metod för att producera molekylärt präglade polymerer som artificiella antikroppar samt metoder fór att använda dessa artificiella antikroppar i terapeutiska och diagnostiska applikationer. Analogt med heterogena irnmunanalyser kvantifierades mängden av bundna, radioísotop-märkta analyter efter separation av obundna fraktioner genom ett centrifugerings- eller ñltreringssteg. Separeringssteget är ofta tidskrävande och svårt att automatisera vilket gör det svårt att få ett högt genomflöde när ett stort antal prover skall hanteras.FCT application WO 94/1 1403 describes a method for producing molecularly shaped polymers as artificial antibodies and methods for using these artificial antibodies in therapeutic and diagnostic applications. Analogously to heterogeneous immunoassays, the amount of bound, radioisotope-labeled analytes was quantified after separation of unbound fractions by a centrifugation or filtration step. The separation step is often time consuming and difficult to automate, which makes it difficult to obtain a high throughput when a large number of samples are to be handled.

FCT-applikationen WO 02/068958 beskriver metoder fór framställning av molekylärt präglade polymerer lämpliga fór provning av närhetsscintillation. De präglade polymererna innehåller 531 8753 minst en typ av organisk scintillator vilken är kovalent bunden i polymeren. Den omedelbara närheten mellan de molekylära igenkänningsställen och den bundna scintillatom gör det möjligt att använda materialet i icke-separationsprover för olika analyter. Som beskrivs i dokumentet bör en optimalt präglad scintillationspolymer innehålla minst en av varje av följande komponenter: (1) molekylära ígenkänningsställen, (2) en arornatisk förening och (3) en organisk scintillator.FCT application WO 02/068958 describes methods for preparing molecularly embossed polymers suitable for testing proximity scintillation. The embossed polymers contain at least one type of organic scintillator which is covalently bonded in the polymer. The immediate proximity between the molecular recognition sites and the bound scintillator makes it possible to use the material in non-separation samples for different analytes. As described in the document, an optimally embossed scintillation polymer should contain at least one of each of the following components: (1) molecular recognition sites, (2) an aromatic compound, and (3) an organic scintillator.

Kravet på bindning mellan den aromatiska föreningen och den organiska scintillatom i molekylärt präglade polymerer kan fås genom co-polymerisation av styrenlika monomerer och scintillator-monomerer eller genom kemisk bindning av dessa komponenter till prefabricerade präglade partiklar. l den svenska patentapplikationen 0502041-7 beskrivs en enkel elektrospirniingsmetod för framställning av kompositfibrer innehållande molekylärt präglade partiklar. Genom att applicera en hög spänning på en polymerlösning emitterad från en spinndysa erhålls elektrospunna kontinuerliga fibrer. När polymerlösningen innehåller molekylärt präglade partiklar kan dessa lätt kapslas in i de polymera fibrerna vilket ger komposita ñbermaterial lämpliga för affinitetsseparering.The requirement for bonding between the aromatic compound and the organic scintillator in molecularly embossed polymers can be obtained by copolymerizing styrene-like monomers and scintillator monomers or by chemical bonding of these components to prefabricated embossed particles. Swedish patent application 0502041-7 describes a simple electrospraying method for producing composites containing molecularly embossed particles. By applying a high voltage to a polymer solution emitted from a spinneret, electrospun continuous fibers are obtained. When the polymer solution contains molecularly embossed particles, these can be easily encapsulated in the polymeric fibers, giving composite fiber materials suitable for affinity separation.

Detaljerad beskrivning av uppfinningen De i denna uppfinning beskrivna scintillationsfibrerna framställs genom elektrospinning av en polymerlösning som innehåller minst en av varje av följande komponenter: (1) aromatisk förening, (2) scintillator och (3) molekylärt präglade partiklar. I Figur 1 visas schernatiskt grunderna för ett elekrospinningsexperiment. I Figur 2 visas principen för signalomvandling i scintillationsfibrer innehållande molekylärt präglade partiklar.Detailed Description of the Invention The scintillators described in this invention are prepared by electrospinning a polymer solution containing at least one of each of the following components: (1) aromatic compound, (2) scintillator, and (3) molecularly embossed particles. Figure 1 schematically shows the basics of an electrospinning experiment. Figure 2 shows the principle of signal conversion in scintillation beams containing molecularly imprinted particles.

Den aromatiska föreningen kan antingen vara av låg molekylvikt eller vara en del av den polymer som används vid elektrospinningen. När den aromatiska föreningen är av låg molekylvikt kan den, oavsett polymertyp, tillsättas direkt i en lösning lämplig för elektrospinning. Ett exempel på en icke-aromatisk polymer är polymetylmetakrylat (PMMA).The aromatic compound can either be of low molecular weight or be part of the polymer used in the electrospinning. When the aromatic compound is of low molecular weight, it can be added directly to a solution suitable for electrospinning, regardless of the type of polymer. An example of a non-aromatic polymer is polymethyl methacrylate (PMMA).

När den till elektrospinning använda polyrneren innehåller aromatiska delar är det inte nödvändigt att tillsätta ytterligare aromatiska föreningar med låg molekylvikt i spinnlösningen.When the polymer used for electrospinning contains aromatic moieties, it is not necessary to add additional low molecular weight aromatic compounds to the spinning solution.

Polymerer innehållande aromatiska delar är exempelvis polystyren (PS) och polyvinyltoluen (PVT).Polymers containing aromatic moieties are, for example, polystyrene (PS) and polyvinyltoluene (PVT).

Den i denna uppfinning använda scintillatorn kan vara antingen en Oorganisk eller en organisk sointillator. En organisk scintillator skall ha låg vattenlöslighet. Två exempel på oorganiska scintillatorer är yttriumsilikat (YSi) och yttriurnoxid (YOX) Några representativa organiska scintillatorema som täcks av denna uppfinning har någon av de kerniska strukturer som visas i Figur 3. Ett exempel på organiska scintillatorer är LIO-difenylantracen (Figur 3).The scintillator used in this invention may be either an inorganic or an organic sointillator. An organic scintillator should have low water solubility. Two examples of inorganic scintillators are yttrium silicate (YSi) and yttrium oxide (YOX). Some representative organic scintillators covered by this invention have any of the core structures shown in Figure 3. An example of organic scintillators is the LIO-diphenylanthracene (Figure 3).

Det är möjligt att använda polymerer som innehåller kovalent bundna organiska scintillatorer för elektrospinning. I sådana fall behövs ingen ytterligare scintillator tillsättas till spinnlösningen.It is possible to use polymers containing covalently bonded organic scintillators for electrospinning. In such cases, no additional scintillator needs to be added to the spinning solution.

De molekylärt präglade partiklarna kan erhållas genom utfállningspolyrnerísation, emulsionspolymerisation, rniniemulsionspolymerisation, niiluoemulsionspolymerisation, suspensionspolymerisation sarnt genom fragmentering av polymerpariklar med hjälp av mekanisk malning. Partikelstorleken hos de molekylärt präglade partiklarna som används i denna uppfinning är mellan 5 nanometer och l0 mikrometer. De molekylärt präglade partiklarna kan vara organiska eller oorganiska partiklar eller kompositpartiklar vilka erhållits från organiska och oorganiska monomerer eller förstadier.The molecularly embossed particles can be obtained by precipitation polymerization, emulsion polymerization, mineral emulsion polymerization, fluorine emulsion polymerization, suspension polymerization, especially by fragmentation of polymer particles by mechanical grinding. The particle size of the molecular embossed particles used in this invention is between 5 nanometers and 10 micrometers. The molecularly embossed particles may be organic or inorganic particles or composite particles which are obtained from organic and inorganic monomers or precursors.

Exem pel E>_ra__mp_<=._l_l: Framställning av molekylärt präglade nanopartiklar Molekylärt präglade nanopartiklar syntetiseras genom att använda utfállningspolymerísationsmetoden vilken beskrivs i litteraturen (Yoshimatsu et al., Anal. Chim.Example E> _ra__mp _ <= ._ l_l: Preparation of Molecular Embossed Nanoparticles Molecular embossed nanoparticles are synthesized using the precipitation polymerization method described in the literature (Yoshimatsu et al., Anal. Chim.

Acta 2007, 584, 112-121). Sammanfattningsvis, mallrnolekylen, (R,S)-propranolol, vilken föreligger i sin fria grundform (137 mg, 0.53 mrnol) löses i 40 ml acetonmtril i en 150 mm>< øZS mm glasflaska av borosilikat utrustad med skruvkork. Därefter tillsätts metakrylsyra (113 mg, h.) fr* -fa-r ^ t; 1.31 mmol), trimetylolpropan-trimetakrylat (684 mg, 2.02 mmol) och azobisisobutyronitril (28 mg, 3 vikt% på monomeren). Lösningen renas med ett svagt flöde av argon under 5 minuter och flaskan förseglas under argonflödet. Polymerisationen utförs genom att glasflaskan av borosilikat placeras i ett vattenbad, iöruppvärrnt till 60°C, under 24 timmar. Efter polymerisationen samlas partiklarna in genom centrifugering. Mallen tas bort genom lösningsmedelsextraktion, badfórfarande, med metanol innehållande 10 % ättiksyra (v/v). Detta upprepas tills mallen inte längre kan detekteras i tvättlösningen med spektrometriska mätmetoder. Slutligen tvättas de polymera partiklarna med aceton och torkas i valcuunikarrtrnare.Acta 2007, 584, 112-121). In summary, the template molecule, (R, S) -propranolol, which is present in its free basic form (137 mg, 0.53 mmol) is dissolved in 40 ml of acetonitrile in a 150 mm> <øZS mm glass fl ash of borosilicate equipped with a screw cap. Then methacrylic acid (113 mg, h.) Fr * -fa-r ^ t is added; 1.31 mmol), trimethylolpropane trimethacrylate (684 mg, 2.02 mmol) and azobisisobutyronitrile (28 mg, 3% by weight of the monomer). The solution is purified with a weak de-fate of argon for 5 minutes and the bottle is sealed during the argon-fate. The polymerization is carried out by placing the glass fl ash of borosilicate in a water bath, heated to 60 ° C, for 24 hours. After the polymerization, the particles are collected by centrifugation. The template is removed by solvent extraction, bath procedure, with methanol containing 10% acetic acid (v / v). This is repeated until the template can no longer be detected in the washing solution by spectrometric measurement methods. Finally, the polymeric particles are washed with acetone and dried in a desiccator dryer.

Exampel 2: Framställning av icke-präglade kontroll-nanopartiklar Icke-präglade kontroll-nanopartiklar framställs med samma metod som beskrevs i Exempel 1 men med skillnaden att ingen propanolol tillsätts till förpolymerisationsblandningen.Example 2: Preparation of non-embossed control nanoparticles Non-embossed control nanoparticles are prepared by the same method as described in Example 1 but with the difference that no propanolol is added to the prepolymerization mixture.

Exampel 3: Elektrospinning av präglade nanoñbrer Polystyren (molekylvikt 230,00(_) g moll), LIO-difenylantiacen och Triton X-100 löses i metyletylketon. Den erhållna lösningen innehåller 12.5 vikt% polystyren, l vikt% 1,10- difenylantracen och 0.6 vikt% Triton X-100. Präglade nanopartilclar som framställts enligt Exempel 1 (6.25 vikt% av lösningen) tillsätts till lösningen innan blandningen behandlas i ett ultraljudsbad. Detta görs för att erhålla en homogen suspension av nanopartiklar. Blandningen hälls i en spruta som sätts i en qi 0.8-0.9 mm spinndysa ansluten till en hög spänning på 20 kV (HV Power Supply, Gamma High Voltage Research, Ormond, FL). Som mottagarelektrod används en jordad aluminiumfolie placerad på ett avstånd av 15-25 cm från spinndysan.Example 3: Electrospinning of embossed nanobres Polystyrene (molecular weight 230.00 (_) g minor), LIO-diphenylantiacen and Triton X-100 are dissolved in methyl ethyl ketone. The resulting solution contains 12.5% by weight of polystyrene, 1% by weight of 1,10-diphenylanthracene and 0.6% by weight of Triton X-100. Embossed nanoparticles prepared according to Example 1 (6.25% by weight of the solution) are added to the solution before the mixture is treated in an ultrasonic bath. This is done to obtain a homogeneous suspension of nanoparticles. The mixture is poured into a syringe inserted into a qi 0.8-0.9 mm spinneret connected to a high voltage of 20 kV (HV Power Supply, Gamma High Voltage Research, Ormond, FL). A grounded aluminum foil placed at a distance of 15-25 cm from the spinneret is used as the receiving electrode.

Kontinuerliga kompositfibrer samlas på aluminiumfolien i form av en fibrös matta (Figur 4). Den erhållna nanofiberrnattan torkas sedan i en vakuurnkanunare. ïíšßfi BTH! -iïï Exempg-LQ: Elektrospinning av kontroll-nanofibrer Genom att använda samma teknik som beskrivs i Exempel 3 framställs kontroll--nanofibren Den enda skillnaden är att icke-präglade kontroll-nanopartiklar, framställda enligt Exempel 2, används istället för präglade nanopartiklar. Figur 5 visar SEM-bilder av de erhållna kontroll-nanofibrerna.Continuous composite beams are collected on the aluminum foil in the form of a fragile mat (Figure 4). The resulting nano attan berrnattan is then dried in a vacuum cannon. ïíšß fi BTH! -Eïï Example LQ: Electrospinning of control nanofibers Using the same technique as described in Example 3, control - nanofibers are produced The only difference is that non-embossed control nanoparticles, prepared according to Example 2, are used instead of embossed nanoparticles. Figure 5 shows SEM images of the obtained control nanofibers.

Exempel 5: Mätning av närhetsscintillation (proximity scintillation) Räkningen av närhets-scintillation görs med en ß-strålningsräknare Rackbeta 1219 (LKB Wallac, Sollentuna, Sweden). I ett antal niikrocentrifiigrör av polypropylen sänks nanofiberrnattor, framställda enligt Exempel 3 och 4, ner i en lösning av 25 mM citrat-buffert (pH 6.0) och acetonitril (50:50, v/v). 3H-märkt (S)-propanolol (0.246 pmol, specifik aktivitet: 555GBq mmoll, NEN Life Science Products, Inc. Boston, MA, USA) tillsätts varefter den tidigare använda lösningen fylls på tills totalvolymen 1 mL erhålls. Mikrocentrifiigrören inkuberas i rumstemperatur över natten under försiktig omrörning på ett skakbord. Efter inkubationen överförs rören till 6-mL insattsvialer vilka placeras i 20 mL standardrälaiingsvialer och rälcnas i 1 min. Figur 6 visar den detekterade scintillations-signalen när olika mängder av nanofibrer utsätts for tritium-märkt (S)-propranolol. fiigLnpgLpz Provning av närhets-scintillation (eng. proximity scintillation assay) hos (S)- propranolol För att framställa dos-respons-kurvor för mätning av (Sj-propranolol i okända prover används samma förfaringssätt som det i Exempel 5 beskrivna med undantag av att olika mängd av omärkt (S')-propranolol eller liknande läkemedel tillsätts inlcubations-lösníngen innan inkubation.Example 5: Measurement of proximity scintillation The proximity scintillation calculation is made with a ß-radiation counter Rackbeta 1219 (LKB Wallac, Sollentuna, Sweden). In a number of micro-centrifuge tubes of polypropylene, nanotubes prepared according to Examples 3 and 4 are immersed in a solution of 25 mM citrate buffer (pH 6.0) and acetonitrile (50:50, v / v). 3 H-labeled (S) -propanolol (0.246 pmol, specific activity: 555GBq mmol, NEN Life Science Products, Inc. Boston, MA, USA) is added and the previously used solution is made up until the total volume of 1 mL is obtained. The microcentric tubes are incubated at room temperature overnight with gentle agitation on a shaking table. After incubation, the tubes are transferred to 6-mL insert vials which are placed in 20 mL of standard vials and rinsed for 1 min. Figure 6 shows the detected scintillation signal when different amounts of nanobres are exposed to tritium-labeled (S) -propranolol. Proximity scintillation assay of (S) -propranolol To produce dose-response curves for the measurement of (Sj-propranolol in unknown samples, use the same procedure as that described in Example 5 except that various amounts of unlabeled (S ') -propranolol or similar drugs are added to the incubation solution before incubation.

Mängden nanofibrer som används är bestämd till 2 mg. Närvaron av omärkt propanolol gör att scintillations-signalen minskar vilket ger en sigmoid (sigma-formad) dos-respons-l-surva. Figur 7 visar dos-respons-kurvan fór (S)-propranolol och andra liknande läkemedel. Nanofibrerna som används framställs i Exempel 3. Som visas är kors-reaktionen vid provning mot andra liknande läkemedel alltid mindre än 10%.The amount of nanobres used is fixed at 2 mg. The presence of unlabeled propanolol reduces the scintillation signal, resulting in a sigmoid (sigma-shaped) dose-response-1-surf. Figure 7 shows the dose-response curve for (S) -propranolol and other similar drugs. The nanobres used are prepared in Example 3. As shown, the cross-reaction when tested against other similar drugs is always less than 10%.

Kort beskrivning av bifogade figurer Figur 1 visar en sehematisk skiss över den elektrospinningsmetod som används for fianiställning av scintlllations-fibrer innehållande molekylärt präglade partiklar, Figur 2 visar principen fór signalöveriöring i scintillation-fibrer som innehåller molekylärt präglade partiklar.Brief Description of the accompanying Figures Figure 1 shows a sehematic sketch of the electrospinning method used for the production of scintillation fibers containing molecularly imprinted particles;

Figur 3 visar den kemiska strukturen hos vissa representativa organiska seintillatorer.Figure 3 shows the chemical structure of some representative organic senintillators.

Figur 4 visar SEM-bilder av elektrospunna nanofibrer innehållande molekylärt präglade nanopartiklar.Figure 4 shows SEM images of electrospun nanoparticles containing molecularly embedded nanoparticles.

Figur 5 visar SEM-bilder av elektrospurxna nanofibrer innehållande kontroll-nanopariklar.Figure 5 shows SEM images of electrospurx nanoparticles containing control nanoparticles.

Figur 6 visar den seintillations-sigiial som detekteras när olika mängd av nanofibrer exponeras för tritimn-märkt (Sypropranolol. Den fyllda fyrkanten indikerar nanofibrer innehållande präglade nanopartiklar och den tomma iyrkanten indikerar nanofibrer innehållande icke-präglade kontroll-nanopartiklar. CPM betyder beräkningar per minut (eng. counts per rriinute).Figure 6 shows the scintillation signal detected when different amounts of nanoparticles are exposed to tritime-labeled Sypropranolol. eng. counts per rriinute).

Figur 7 visar dos-respons-kurvan fór ersättning av 3H-(S')-propranolol från nanofibrerna innehållande molekylärt präglade nanopartilclar. Massan hos de använda nanofibrema var 2 mg.Figure 7 shows the dose-response curve for the replacement of 3H- (S ') -propranolol from the nanometers containing molecularly imprinted nanoparticles. The mass of the nano-brema used was 2 mg.

Jämförande analyter: (S-propranololhydroklorid (fylld fyrkant), (m-propranololhydroklorid (öppen cirkel) acebutololhydroldorid (öppen triangel), pindolol (öppen fyrkant), metopronolol(+)- tartratsalt (fylld cirkel), atenolol (fylld triangel).Comparative analytes: (S-propranolol hydrochloride (filled square), (m-propranolol hydrochloride (open circle) acebutolol hydrolide chloride (open triangle), pindolol (open square), metopronolol (+) - tartrate salt (filled circle), atenolol (filled triangle).

Claims (12)

(fg Patentkrav(fg Patentkrav 1. En metod fór frarnställnirig av scintillationsñbrer innehållande molekylärt präglade partiklar. Sagda scintillationsfibrer framställs genom elektrospinning av en polymerlösning blandad med molekylärt präglade partiklar.1. A method for producing scintillation particles containing molecularly particle particles. Said scintillation fibers are prepared by electrospinning of a polymer solution mixed with molecularly embossed particles. 2. En metod enligt Krav 1 där polymerlösningen innehåller minst en sorts scintillator.A method according to Claim 1 wherein the polymer solution contains at least one kind of scintillator. 3. En metod enligt Krav l och 2 där sagda scintillator är antingen en organisk eller en Oorganisk scintillator. Sagda organiska scintillator inkluderar men är inte begränsad till 1,10- difenylantracene p-terfenyl, Zß-difenyloxazol, l,4-bis(5-fenyloxazol-Z-yßbensen, l,4-bis(2- metylstyryDbensen, och l ,l ,4,4,-tetrafenyl-l ,3 -butadienA method according to Claims 1 and 2 wherein said scintillator is either an organic or an Inorganic scintillator. Said organic scintillator includes but is not limited to 1,10-diphenylanthracene p-terphenyl, Zβ-diphenyloxazole, 1,4-bis (5-phenyloxazole-Z-ybenbenzene, 1,4-bis (2-methylstyrene) benzene, and 1,1 , 4,4, -tetraphenyl-1,3-butadiene 4. En metod enligt Krav 1 där storleken av de sagda molekylärt präglade partiklarna är mellan 5 nanometer and 10 rnikrorneter.A method according to Claim 1 wherein the size of said molecularly embossed particles is between 5 nanometers and 10 micron grains. 5. En metod enligt Krav 1 där diametern av de sagda scintillationsfibrerna är mellan 5 nanometer and 50 mikrometer.A method according to Claim 1 wherein the diameter of said scintillation fis is between 5 nanometers and 50 micrometers. 6. En metod enligt Krav l och 4 där sagda molekylärt präglade pariklar framställs genom en av följande polymerisationsmetoder: utfällningspolymerisation, emulsionspolymerisation, miniemulsionpolymerisation, mikroemulsionpolymerisation, dispersionpolymerisation, suspensionpolymerisation.A method according to Claims 1 and 4, wherein said molecularly embossed particles are prepared by one of the following polymerization methods: precipitation polymerization, emulsion polymerization, mini-emulsion polymerization, microemulsion polymerization, dispersion polymerization, suspension polymerization. 7. En metod enligt Krav 1 och 4 där sagda molekylärt präglade partiklar fås genom mekanisk malning av större molekylärt präglade monoliter.A method according to Claims 1 and 4, wherein said molecularly embossed particles are obtained by mechanical grinding of larger molecularly embossed monoliths. 8. En metod enligt Krav l och 2 där sagda polymerlösníng innehåller en eller flera typer av polymerer. Sagda polymerer kan lösas i elektrospinnings-lösningen och är valda från syntetiska polymerer eller bio-makromolekyler inkluderande proteiner, DNA- och RNA- molekyler.A method according to Claims 1 and 2 wherein said polymer solution contains one or typer your types of polymers. Said polymers can be dissolved in the electrospinning solution and are selected from synthetic polymers or bio-macromolecules including proteins, DNA and RNA molecules. 9. En metod enligt Krav 1, 2 och 8 där minst en av sagda polymerer innehåller aromatiska sidogrupper.A method according to Claims 1, 2 and 8 wherein at least one of said polymers contains aromatic side groups. 10. l0. En metod enligt Krav 1, 2 och 8 där en av sagda polymerer innehåller kovalent bundna organiska scintillatorer.10. l0. A method according to Claims 1, 2 and 8 wherein one of said polymers contains covalently bonded organic scintillators. 11. En metod enligt Krav l, 8 och 9 där sagda polymer som har en ringstrulctur med aromatiska sidogrupper är polystyren eller polyvinyltoluen.A method according to Claims 1, 8 and 9 wherein said polymer having an annular structure with aromatic side groups is polystyrene or polyvinyltoluene. 12. Använding av sagda scintillationsfibrer frarnställda enlig Krav 1-9 i applikationer för provningar av närhets-sciritillation (eng. proximity scintillation assays).Use of said scintillations prepared according to Claims 1-9 in applications for proximity scintillation assays.
SE0800231A 2008-01-31 2008-01-31 Scintillation fibers made by electrospinning SE531879C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE0800231A SE531879C2 (en) 2008-01-31 2008-01-31 Scintillation fibers made by electrospinning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0800231A SE531879C2 (en) 2008-01-31 2008-01-31 Scintillation fibers made by electrospinning

Publications (2)

Publication Number Publication Date
SE0800231L SE0800231L (en) 2009-08-01
SE531879C2 true SE531879C2 (en) 2009-09-01

Family

ID=41008209

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0800231A SE531879C2 (en) 2008-01-31 2008-01-31 Scintillation fibers made by electrospinning

Country Status (1)

Country Link
SE (1) SE531879C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015134841A1 (en) * 2014-03-06 2015-09-11 Brown University Method and apparatus for creating coherent bundle of scintillating fibers
US10358376B2 (en) 2014-03-06 2019-07-23 Brown University Method and apparatus for creating coherent bundle of scintillating fibers
US10399887B2 (en) 2014-03-06 2019-09-03 Brown University Method and apparatus for creating coherent bundle of scintillating fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015134841A1 (en) * 2014-03-06 2015-09-11 Brown University Method and apparatus for creating coherent bundle of scintillating fibers
US9611168B2 (en) * 2014-03-06 2017-04-04 Brown University Method and apparatus for creating coherent bundle of scintillating fibers
US10358376B2 (en) 2014-03-06 2019-07-23 Brown University Method and apparatus for creating coherent bundle of scintillating fibers
US10399887B2 (en) 2014-03-06 2019-09-03 Brown University Method and apparatus for creating coherent bundle of scintillating fibers

Also Published As

Publication number Publication date
SE0800231L (en) 2009-08-01

Similar Documents

Publication Publication Date Title
Matlock-Colangelo et al. Recent progress in the design of nanofiber-based biosensing devices
Chronakis et al. Encapsulation and selective recognition of molecularly imprinted theophylline and 17β-estradiol nanoparticles within electrospun polymer nanofibers
JP5242688B2 (en) Conductive nano thin film and micro electro mechanical system sensor using the same
Dou et al. Bioinspired hierarchically structured surfaces for efficient capture and release of circulating tumor cells
US20140030788A1 (en) Microscale and nanoscale structures for manipulating particles
CN103204966B (en) Method for preparing magnetic/hollow double-shell layer print adsorbent by emulsion polymerization
US20140083859A1 (en) Biofunctional nanofibers for analyte separation in microchannels
CN1884430A (en) Fluorescent carbon nanometer tube and its preparation method and application
Matlock-Colangelo et al. Functionalized electrospun nanofibers as bioseparators in microfluidic systems
Cui et al. ZnO nanowire-integrated bio-microchips for specific capture and non-destructive release of circulating tumor cells
SE531879C2 (en) Scintillation fibers made by electrospinning
CN105297286B (en) A kind of preparation method of functional polyalkylene methyl methacrylate, cyclodextrin and carbon nano tube composite nanofiber membrane
Zaidi Recent developments in molecularly imprinted polymer nanofibers and their applications
Ning et al. Biomaterial-based microfluidics for cell culture and analysis
CN109540867B (en) Plasticizer Raman spectrum detection method based on molecularly imprinted nanofiber membrane
Jiang et al. Natural fish trap‐like nanocage for label‐free capture of circulating tumor cells
Kim et al. Applications of PLGA microcarriers prepared using geometrically passive breakup on microfluidic chip
CN111318238B (en) Composite microsphere and preparation method and application thereof
CN106076444A (en) A kind of ultrasonic standing wave type micro-fluidic chip and preparation method thereof
Razdan et al. Ionically self-assembled polyelectrolyte-based carbon nanotube fibers
Jiang et al. Simple Localization of Nanofiber Scaffolds via SU‐8 Photoresist and Their Use for Parallel 3D Cellular Assays
Yang et al. Reactive Gelation Synthesis of Monodisperse Polymeric Capsules Using Droplet‐Based Microfluidics
Kim et al. Three‐dimensional patterning of the ECM microenvironment using magnetic nanoparticle self assembly
Zhou et al. A brushed hemicylindrical pressure sensor based on triboelectricity exhibits high sensitivity, a low detection limit and a wide detection range
KR101512906B1 (en) Porous three dimensional micro-electrode structures and preparation method thereof

Legal Events

Date Code Title Description
NUG Patent has lapsed