SE531018C2 - Use of a composite material as thermal contact material for microelectronic components - Google Patents

Use of a composite material as thermal contact material for microelectronic components

Info

Publication number
SE531018C2
SE531018C2 SE0601186A SE0601186A SE531018C2 SE 531018 C2 SE531018 C2 SE 531018C2 SE 0601186 A SE0601186 A SE 0601186A SE 0601186 A SE0601186 A SE 0601186A SE 531018 C2 SE531018 C2 SE 531018C2
Authority
SE
Sweden
Prior art keywords
nanoparticles
microparticles
mixtures
thermal contact
thermal conductivity
Prior art date
Application number
SE0601186A
Other languages
Swedish (sv)
Other versions
SE0601186L (en
Inventor
Johan Liu
Dongkai Shangguan
Original Assignee
Johan Liu
Dongkai Shangguan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johan Liu, Dongkai Shangguan filed Critical Johan Liu
Priority to SE0601186A priority Critical patent/SE531018C2/en
Publication of SE0601186L publication Critical patent/SE0601186L/en
Publication of SE531018C2 publication Critical patent/SE531018C2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

531 018 2 Dagens material för kondensatorer har blivit den begränsande faktorn för miniatyrísering av elektronik. Som exempel på små kondensatorer som ”01005 storlek”, 0.2 x 0.2 x 0.4 mm, är bara tillgängliga i små kapacitansområden. Det finns därför ett stort behov av material som kan öka kapacitansen i kondensatorer tör att främja miniatyrisering av elektronisk utrustning. 531 GiB Sammanfattning av uppfinningen Målet med denna uppfinning är att presentera ett material som har väsentligt högre värmeledningsfórmåga och bättre mekaniska egenskaper än material som är tillgängliga idag. Detta material kommer att vara viktigt inom Värmereglering av mikroelektroník idag och i framtiden samt for att öka tilliörlitligheten hos elektroniken. 531 018 2 Today's materials for capacitors have become the limiting factor for miniaturization of electronics. As examples of small capacitors such as "01005 size", 0.2 x 0.2 x 0.4 mm, are only available in small capacitance ranges. There is therefore a great need for materials that can increase the capacitance of capacitors and dare to promote miniaturization of electronic equipment. 531 GiB Summary of the invention The aim of this invention is to present a material that has significantly higher thermal conductivity and better mechanical properties than materials available today. This material will be important in thermal regulation of microelectronics today and in the future and to increase the reliability of electronics.

Uppfinningen idag är relaterad till bra värmeledande nanostrukturer bestående av polymera nanofibrer med inblandade värmeledande nanopartiklar (kiselkarbid, SiC, Bornitrid (BN), silver partiklar (Ag)), rnikropartíldar (koppar, (Cu)), kolnanorör (Carbon NanoTubes, CNTs) eller andra partiklar. Värmeledningstörmâgan för nanostrukturen av varierande tjocklek är väsentligt förbättrad i närvaro av andra värmeledande partiklar, antingen genom partikelinkapsling i nanofibrer eller genom att befästa nanopartiklar på ytan av nanofiber under elektrospinn processen.The invention today is related to good thermally conductive nanostructures consisting of polymeric nanobres with mixed thermally conductive nanoparticles (silicon carbide, SiC, boron nitride (BN), silver particles (Ag)), microparticles (copper, (Cu)), carbon nanotubes (Carbon NanoTs) or CNbon NanoTs other particles. The thermal conductivity of the nanostructure of varying thickness is significantly improved in the presence of other thermally conductive particles, either by particle encapsulation in nanometers or by attaching nanoparticles to the surface of nanoparticles during the electrospinning process.

Dessa nanostruktunnaterial är attraktiva som ett värmeledande material inom mikroelektronik på grund av deras egenskaper så som hög elasticitet, renhet, högt termisk ledningstörmåga och dess möjlighet att formas till tunna skikt. Dessa egenskaper uppfyller utmaningen av fortsatt miniatyrisering av milcroelektronik.These nanostructure thin materials are attractive as a thermally conductive material in microelectronics due to their properties such as high elasticity, purity, high thermal conductivity and its ability to be formed into thin layers. These properties meet the challenge of continued miniaturization of microelectronics.

Ett armat mål med uppfinningen är att skapa nya material med hög kapacitans som består av polymera nanofibrer blandade med oorganiska nanopartiklar (t.ex. BaTi03) för kondensatorer. Dessa tunna material kan användas för att minska storleken på kondensatorerna som tillåter fortsatt miniatyrisering av elektronik.Another objective of the invention is to create new high capacitance materials consisting of polymeric nanobres mixed with inorganic nanoparticles (eg BaTiO 3) for capacitors. These thin materials can be used to reduce the size of the capacitors that allow continued miniaturization of electronics.

Ytterligare ett annat mål med uppfinningen är att skapa en enkel och billig metod fór att producera tunna kompositmateñal som består av nanofibrer och andra metalliska, oorganiska eller organiska partiklar i nano-eller mikroskalan.Yet another object of the invention is to create a simple and inexpensive method for producing thin composite materials consisting of nanobres and other metallic, inorganic or organic particles in the nano- or micro-scale.

KORT BESKRIVNING AV RITNINGAR, FIGURER OCI-l TABELLER Figur 1 är en schematisk illustration av tekniken elektrospinning.BRIEF DESCRIPTION OF DRAWINGS, FIGURES OCI-1 TABLES Figure 1 is a schematic illustration of the electrospinning technique.

Figur 2a och 2b âr fotografier med svepelektronmikroskopi av nanofibrer av fenolharts (2a) med nanopartiklar av silver (2b).Figures 2a and 2b are photographs with scanning electron microscopy of nanoparticles of phenolic resin (2a) with silver nanoparticles (2b).

Figur 3 visar en typisk tillämpning av materialet som termiskt kontaktmaterial.Figure 3 shows a typical application of the material as thermal contact material.

Figur 4 visar en typisk tillämpning av materialet som kondensator.Figure 4 shows a typical application of the material as a capacitor.

Tabell 1 visar typiska termiska och mekaniska egenskaper hos nâgra olika nanofiberrnaterial ijåmförelse med konventionella material från 3M. 53% D18 DETALJERAD BESKRIVNING AV FÖREDRAGNA REALISERINGAR AV UPPFiNNINGEN.Table 1 shows typical thermal and mechanical properties of some different nanofiber materials compared to conventional materials from 3M. 53% D18 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION.

I figur 1 visas tekniken elektrosplnning, vilken används för att producera nanofibrer blandade med nanoparilklar, mikropartlklar och/eller nanokolrör. l processen upplöses en polymer (företrädesvis en harts med hög elasticitet, stark kohesionfömiåga, slagtâlighet, seghet och tänjbarhet, exempelvis polyuretan och fenolhartser) l ett organiskt lösningsmedel (exempelvis blandning av tetrahydrofuran, THF, och dimetylformarnid, DMF, fördelaktligen med 40 - 60 viktprocent THF). För termiska kontaktmaterial kan nano- eller míkropartiklar med hög termisk iedningsfönnåga (exempelvis kiselkarbid (SiC), bomitrid (BN), silver (A9), koppar (Cu) och guld (Au)), kolnanorör ochleller andra partiklar blandas med den viskoelastiska polymerlösningen.Figure 1 shows the electroplating technique, which is used to produce nanofibers mixed with nanoparticles, microparticles and / or nanotubes. In the process, a polymer (preferably a resin with high elasticity, strong cohesion, impact resistance, toughness and extensibility, for example polyurethane and phenolic resins) is dissolved in an organic solvent (for example mixture of tetrahydrofuran, THF, and dimethylformamide, DMF, advantageously by 40-60% by weight THF). For thermal contact materials, nano- or microparticles with high thermal conductivity (eg silicon carbide (SiC), bomitride (BN), silver (A9), copper (Cu) and gold (Au)), carbon nanotubes and / or other particles can be mixed with the viscoelastic polymer solution.

För tillämpningar där hög kapacitans är önskvärt kan oorganlska nanopartiklar blandas med polymerlösningen. För vidhäftningsfönnåga kan llmmets beståndsdelar (hårdare och bas) direkt blandas i l polymerlösningen. För att förbättra lösningens homogenitet kan exempelvis magnetomröming användas.For applications where high capacitance is desired, inorganic nanoparticles can be mixed with the polymer solution. For adhesion, the components of the adhesive (harder and base) can be mixed directly into the polymer solution. To improve the homogeneity of the solution, for example, magnetic stirring can be used.

Med lösningen placerad I en kapillär (1) eller spruta appliceras ett elektrostatiskt fält (högspänning, exempelvis mellan 15-50 kV) mellan lösningen och kollektom (3) (exempelvis en aluminiumfolie). Kollektom är placerad på ett visst avstånd från kapillärröret (1). När den elektrostatiska kraften (2) övervinner ytspänningen hos den kon eller lilla droppe (4) som sticker ut från änden av kaplllårröret (1) skapas en stråle av polymerlösning (5). Genom att det elektrostatiska fältet tänjer strålen skapas nano- fibrösa strukturer med elektrostatisk laddning. Dessa fibrösa strukturer färdas genom luften ner mot kollektom och under färden avdunstar lösnlngsmedlet. Detta resulterar I att extremt tunna fibrer (vanligtvis mindre än 100 nm i diameter) ansamlas på kollektom (3). Nanofibrema har stor yta (per massenhet) och relativt små porer. Olika strukturer kan tillverkas med hjälp av denna metod, exempelvis slumpmässiga fördelade fiberstruktrurer och riktade fiberstrukturer.With the solution placed in a capillary (1) or syringe, an electrostatic field (high voltage, for example between 15-50 kV) is applied between the solution and the collector (3) (for example an aluminum foil). The collector is located at a certain distance from the capillary tube (1). When the electrostatic force (2) overcomes the surface tension of the cone or droplet (4) protruding from the end of the capillary tube (1), a jet of polymer solution (5) is created. By stretching the electrostatic field, the beam creates nano-fragile structures with electrostatic charge. These fragile structures travel through the air down to the collector and during the journey the solvent evaporates. This results in extremely thin fibers (usually less than 100 nm in diameter) accumulating on the collector (3). Nano fi brema has a large surface area (per unit mass) and relatively small pores. Different structures can be fabricated using this method, such as random distributed structures and directed structures.

Om så önskas kan nanopartiklama (7) kapslas in i det nanfibrösa polymermaterialet eller användas för att täcka ytan av polymera fiber och skapa tenniskt ledande strukturer.If desired, the nanoparticles (7) can be encapsulated in the nanoseptic polymeric material or used to cover the surface of polymers and create tennis conductive structures.

Tunna skikt eller folier av olika tjocklekar bestående av nano-fibrösa strukturer, fördelaktligen blandade med nanopartiklar, mikropartiklar, kolnanorör och/eller andra 53% G13 5 partiklar kan tillverkas. Tunna skikt (några tiotals till hundra mikrometer i tjocklek) med nano-fibrösa polymer blandade med några av ovan nämnda partiklar har tillverkats.Thin layers or foils of different thicknesses consisting of nano-brittle structures, advantageously mixed with nanoparticles, microparticles, carbon nanotubes and / or other 53% G13 particles can be manufactured. Thin layers (a few tens to one hundred micrometers in thickness) with nano-brittle polymer mixed with some of the above-mentioned particles have been made.

Speciellt för tillämpning som terrniskt kontaktmaterlal har, i en realisering av uppfinningen, 2 viktprooent kolnanorör med termisk konduktivitet på cirka 2 000 W/(Km) använts (i ett speciellt fall användes flerväggade kolnanorör, MWCNTs, 10 nm - 30 nm i diameter). I ett annat fall användes 5 viktprocent SlC (beta) partiklar (45 nm - 55 nm i diameter) med termisk konduktivitet på cirka 150 W/(Km). l ytterligare en realisering användes 20 viktprocent Ag partiklar (0,5 um - 1 um i diameter) med termisk ledningsiörmåga på cirka 420 W/(Km). Även Cu (0.5-1,5pm) partiklar har använts.Especially for application as a thermal contact material, in a realization of the invention, 2% by weight of carbon nanotubes with a thermal conductivity of about 2,000 W / (Km) have been used (in a special case, walled carbon nanotubes, MWCNTs, 10 nm - 30 nm in diameter) were used. In another case, 5% by weight of SlC (beta) particles (45 nm - 55 nm in diameter) with a thermal conductivity of about 150 W / (Km) were used. In a further realization, 20% by weight of Ag particles (0.5 μm - 1 μm in diameter) with a thermal conductivity of about 420 W / (Km) were used. Cu (0.5-1.5μm) particles have also been used.

Nanopartiklar och mikropartiklar av guld, diamant, kiselnitrat, (SiN), boronnitrat (BN) med flera kan också användas.Nanoparticles and microparticles of gold, diamond, silicon nitrate, (SiN), boron nitrate (BN) with fl era can also be used.

Vad gäller uppfinningens tillämpning som termiskt kontaktmaterial kan, l en realisering, silikonolja fördelaktligen placeras på kollektom och/eller fibrema för att underiâtta avlägsnandet av nanofibrema från kollektom. Om så önskas kan det producerade materialet blötläggas ytterligare i sllikonolja. Användandet av silikonolia höjer den tennlska konduktlviteten ytterligare för det termiska kontaktmaterialet i denna uppfinning.With regard to the application of the invention as a thermal contact material, in a realization, silicone oil can advantageously be placed on the collector and / or the fibers in order to facilitate the removal of the nanobrema from the collector. If desired, the produced material can be further soaked in silicone oil. The use of silicone oil further increases the tin conductivity of the thermal contact material of this invention.

Det antas att den ökade konduktiviteten beror på att silikonoljan fyller upp de små håligheter och porer mellan fibrerna och runt partiklama genom kapillärkraft.It is believed that the increased conductivity is due to the silicone oil filling the small cavities and pores between the fibers and around the particles by capillary force.

Tabell 1 visar typiska termiska och mekaniska egenskaper för de några olika tillverkade nano-fibrösa materialen som exempel.Table 1 shows typical thermal and mechanical properties of the slightly different manufactured nano-brittle materials as examples.

Bindmedel (exempelvis ledande lim) kan, om så önskas, inkluderas l ovan nämnda blandning för att ge de tunna skikt och folier som produceras vidhäftande egenskaper och således underlätta användningen av dem som terrnlska kontaktmaterial. Slutligen kan, vid en realisering av uppfinningen, skyddsfilm av polyester appliceras ovanpå nanofiberrnaterialet (exempelvis nanofiberiilm eller -tejp). Syftet med skyddsfilmen är att skydda produkten under transport och hantering. Skyddsfilmen avlägsnas vid användandet.Binders (for example conductive adhesives) can, if desired, be included in the above-mentioned mixture to give the thin layers and foils produced adhesive properties and thus facilitate their use as thermal contact materials. Finally, in the realization of the invention, protective adhesive of polyester can be applied on top of the nano-bearing material (for example nano-adhesive tape or tape). The purpose of the protective strap is to protect the product during transport and handling. The protective strap is removed during use.

Speciellt gällande uppfinningens användningsområde som material med hög kapacitans har oorganiska nanopartiklar (exempelvis BaTIOS) använts. 531 018 Figur 2a visar ett fotografi med svepelektronmikroskopi av en bit material tillverkat av polyuretanbaserade nanofibrer med Ag nanopartiklar. Figur 2b visar ett fotografi av en bit material tillverkat av polyuretanbaserade nanofibrer och kolnanorör indränkt i silikonolja.In particular with regard to the application area of the invention as a material with high capacitance, inorganic nanoparticles (eg BaTIOS) have been used. 531 018 Figure 2a shows a scanning electron microscopy photograph of a piece of material made of polyurethane-based nanoparticles with Ag nanoparticles. Figure 2b shows a photograph of a piece of material made of polyurethane-based nanometers and carbon nanotubes soaked in silicone oil.

Figur 3a visar en möjlig tillämpning av det termiska kontaktmaterialet i denna uppfinning.Figure 3a shows a possible application of the thermal contact material in this invention.

I figur 3a är material 2 placerat mellan den integrerade kretsen 1 och kylflånsen 3.In Figure 3a, material 2 is placed between the integrated circuit 1 and the heat sink 3.

Riktningen på vârmeflödet ges av pil 4. l figur 3b är nanofibermaterialet 2 placerat mellan den integrerade kretsen (IC) 1 och substratet 3 för att förbättra värmeavledningen i den så kallade ”die attach" tillämpningen.The direction of heat dissipation is given by arrow 4. In Fig. 3b, the nanofiber material 2 is placed between the integrated circuit (IC) 1 and the substrate 3 to improve the heat dissipation in the so-called "die attach" application.

Figur 4 visar en möjlig tillämpning av materialet i denna uppfinning för kondensatorer.Figure 4 shows a possible application of the material of this invention for capacitors.

Material 2 placeras mellan tvà metallager, signalplanet 1 och jordplanet 3.Material 2 is placed between two metal layers, the signal plane 1 and the ground plane 3.

Det skall klargöras att denna uppfinning kan realiseras på andra vis än de som exemplifierats ovan utan att avvika från den grundtanke som demonstrerats.It is to be understood that this invention may be practiced otherwise than as exemplified above without departing from the spirit of the present invention.

Uppfinningen är således inte begränsad till exakt de konstruktioner och metoder som skisserats ovan. Alltså, de exempel och realiseringar som visats skall i alla avseenden ses som illustrativa, ej restriktiva, och uppflnningen skall ej anses begränsad av de detaljer som presenterats. De som är bekanta med ämnet som uppfinningen relaterar till kommer att se ytterligare altemativ vad gäller materialval och metoder för att realisera uppfinningen enligt de påståenden som ges nedan. 53% CVIB 7 Tabell 1. Mâtdata Egenskaper Enhet SM material 3M material Fenolhartsbaserad Polyuretanbaserad 5506 5509 nanofiber med nanofiber med CNT indrànkti silverpartiklar silikonolja Termisk W/(Km) 4,0-5,2 4,4-6,5 4.39 0,37-0,93 ledningsförrnága Skikttjocklek pm 1000 500 100 90 Termisk resistans K/W 0.91-1,17 0,36-0,55 0.11-0,30 0,46-1,17 Arbetstemperatur QC 50-130 50-130 70 till 90 50-120 Temperatur för QC 500 500 400 410 sönderfall Maximal MPa 0,09 0,22 0,55 4,48 spänning vid brott (töjningshastighet :8.10°/s) Maximal töjning % 54,1 29,5 15 455 vid brott (töjningshastighet :8.10“°/s) E-modul MPa 0,31 0,76 3,67 1 ,O1 Färg Grà Grå Svart ljusgråThe invention is thus not limited to exactly the constructions and methods outlined above. Thus, the examples and realizations shown should in all respects be seen as illustrative, not restrictive, and the invention should not be construed as limited by the details presented. Those familiar with the subject matter of the invention will see further alternatives in terms of material selection and methods for realizing the invention in accordance with the claims set forth below. 53% CVIB 7 Table 1. Measurement data Properties Unit SM material 3M material Phenolic resin based Polyurethane based 5506 5509 nanofiber with nano fibers with CNT impregnated silver particles silicone oil Thermal W / (Km) 4.0-5.2 4.4-6.5 4.39 0.37 -0.93 Conductivity Layer thickness pm 1000 500 100 90 Thermal resistance K / W 0.91-1.17 0.36-0.55 0.11-0.30 0.46-1.17 Working temperature QC 50-130 50-130 70 to 90 50-120 Temperature for QC 500 500 400 410 decomposition Maximum MPa 0.09 0.22 0.55 4.48 stress at break (elongation speed: 8.10 ° / s) Maximum elongation% 54.1 29.5 15 455 at break (elongation speed: 8.10 “° / s) E-module MPa 0.31 0.76 3.67 1, O1 Color Gray Gray Black light gray

Claims (4)

531 018 Nytt Anspråk531 018 New Claim 1. Användning av ett kompositmaterial som ett termiskt kontaktmaterial för värmetransportering för mikroelektrorliska komponenter med varierande tjocklek som inkluderar polymera nanoñbrer och nanopartiklar, nanorör, rnikropartiklar eller en blandning av dessa i form av organiska, oorganiska, keramiska och/eller metalliska material med hög termisk ledningsförrnåga.Use of a composite material as a thermal contact material for heat transport for microelectrical components of varying thickness which include polymeric nanoubbers and nanoparticles, nanotubes, microparticles or a mixture thereof in the form of organic, inorganic, ceramic and / or metallic materials with high thermal conductivity . 2. I användningen enligt krav 1 kan nämnd polymer vara av polyuretan, polysulfoner, polyiniid, flytande kristalliria polymer (LCP) och/andra funktionella polymerer eller blandningar av dessa eller andra polymerer med hög termisk konduktivitet, elasticitet, sammansättningsstyrka, motståndskraft mot stötar, seghet och hög duktilitet.In the use according to claim 1, said polymer may be of polyurethane, polysulfones, polyimide, surface crystalline polymer (LCP) and / or other functional polymers or mixtures of these or other polymers with high thermal conductivity, elasticity, compositional strength, impact resistance, toughness and high ductility. 3. I användningen enligt krav 1 kan nämnda nanopartiklar och inikropartiklar bestå av guld (AU), silver (Ag), koppar (Cu), blyfria och Sn-baserade nanolod, diamant, kiselkarbid (SiC), kiselnitrid (SiN), borninid (BN), kol-nanorör eller CNT (en eller flerväggs) och alla andra högternriska konduktiva nanopartildar och mikropartiklar och blandningar av dessa.In the use according to claim 1, said nanoparticles and inicroparticles may consist of gold (AU), silver (Ag), copper (Cu), lead-free and Sn-based nan solder, diamond, silicon carbide (SiC), silicon nitride (SiN), borninide ( BN), carbon nanotubes or CNT (one or fl wall) and all other subterranean conductive nanoparticles and microparticles and mixtures thereof. 4. I användningen av krav 1 där nämnda nanopartiklar, lníkropartildar och CNT- rör är inkapslade eller belagda hos nämnda nanoñbrer eller blandningar av dessa situationer.In the use of claim 1 wherein said nanoparticles, microparticles and CNT tubes are encapsulated or coated in said nanoparticles or mixtures of these situations.
SE0601186A 2006-05-29 2006-05-29 Use of a composite material as thermal contact material for microelectronic components SE531018C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE0601186A SE531018C2 (en) 2006-05-29 2006-05-29 Use of a composite material as thermal contact material for microelectronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0601186A SE531018C2 (en) 2006-05-29 2006-05-29 Use of a composite material as thermal contact material for microelectronic components

Publications (2)

Publication Number Publication Date
SE0601186L SE0601186L (en) 2007-11-30
SE531018C2 true SE531018C2 (en) 2008-11-18

Family

ID=38871248

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0601186A SE531018C2 (en) 2006-05-29 2006-05-29 Use of a composite material as thermal contact material for microelectronic components

Country Status (1)

Country Link
SE (1) SE531018C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876095A (en) * 2010-07-28 2010-11-03 中国人民解放军国防科学技术大学 Porous silicon carbide fibers and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876095A (en) * 2010-07-28 2010-11-03 中国人民解放军国防科学技术大学 Porous silicon carbide fibers and preparation method thereof

Also Published As

Publication number Publication date
SE0601186L (en) 2007-11-30

Similar Documents

Publication Publication Date Title
Morris Nanopackaging: Nanotechnologies and electronics packaging
Guo et al. One‐step liquid metal transfer printing: toward fabrication of flexible electronics on wide range of substrates
US9017808B2 (en) Composite thermal interface material system and method using nano-scale components
Li et al. Electrical conductive adhesives with nanotechnologies
AT412265B (en) HEAT EXTRACTION COMPONENT
JP5355423B2 (en) Process for preparing a conductive film and article prepared using the process
Kim et al. Inkjet printed electronics for multifunctional composite structure
JP2007516314A (en) Nanocomposites and methods for nanocomposites
US10308856B1 (en) Pastes for thermal, electrical and mechanical bonding
US8377748B2 (en) Method of manufacturing cooling fin and package substrate with cooling fin
US8911821B2 (en) Method for forming nanometer scale dot-shaped materials
JP2015004121A (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
Lukacs et al. Dependence of electrical resistivity on sintering conditions of silver layers printed by InkJet printing technology
SE531018C2 (en) Use of a composite material as thermal contact material for microelectronic components
Li et al. Nano-conductive adhesives for nano-electronics interconnection
JP5733638B2 (en) Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same
KR20150036178A (en) Thermally conductive substrate article
Liu et al. New nano-thermal interface material for heat removal in electronics packaging
WO2023010106A1 (en) Flexible and stretchable structures
JP6966659B1 (en) Smart card manufacturing method, smart card, and hot melt adhesive sheet containing conductive particles
Ye et al. Synthesis of Bi–Pb–Sn–Cd solder particles for joining Ag-plated PZT ceramics at 100° C
CN111961386A (en) Heat radiation structure
Shu et al. Direct printing of conductive metal lines from molten solder jets via StarJet technology on thin, flexible polymer substrates
JP5010640B2 (en) Laminated structure using metal matrix composite
Morris Nanopackaging: nanotechnologies and electronics packaging